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ABSTRACT
In this paper, we propose an efficient approach based on linear programming to study
constrained stabilization problem of linear positive differential-difference equations
with unbounded delay. We first propose new characterizations of positivity and
comparison solution principle, then sufficient conditions for designing state feedback
controllers of such equations are established. The conditions are presented via solving
linear programming problem. Numerical examples are provided to illustrate the
validity and effectiveness of the theoretical results.
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1. Introduction

Differential-difference equations (DDEs) are becoming increasingly important in var-
ious technical fields as control engineering, power systems, aircraft control modeling,
and so on [1-3]. Since DDEs with delay are not explicitly solvable or have hardly
manageable solutions, which even need not to be unique, qualitative study of such
system becomes more difficult. Stability control analysis of DDEs have attracted a lot
of attention from scientists over the past decades [4-6]. Summarizing these results, the
crucial method employed in the existing works is the use of Lyapunov function and
linear matrix inequalities (LMIs) approaches. In [7,8], stability analysis of linear DDEs
with delay with constant delays is studied by using the comparison principle. On the
other hand, positive systems, where the variables are non-negative, arise naturally
in many applications of physical systems such as pollutant transport, ecology, epi-
demiology, systems biology, industrial engineering [9,10]. Recently, extensive research
on qualitative theory of positive systems has been devoted to stability and stabiliza-
tion and many impressive results have been obtained by using various mathematical
methods [11-14]. The result of [14] on constrained stabilization of linear positive delay
systems was proposed for designing state feedback controllers via solving linear pro-
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gramming (LP) problem [15, 16]. Using input-output approaches, the author of [17]
proposed stability criteria for linear positive systems with constant delays in terms of
scaled small-gain theorems involving linear or semidefinite programs. For linear sin-
gular positive systems (LSPS) with delays, the problem of stability and stabilization
has also gained considerable interest with many significant results; see, e.g. [10, 18-20]
and the references therein. It is worth noting that most of the mentioned results are
concerned with stability and stabilization for LSPS with bounded delay. It should be
mentioned that for DDEs with time-varying delay, the stability method for the system
with bounded delay cannot be applied for the system with unbounded delay. There
are important results have been proposed in [21-23] for LSPS with time-varying delay
using Lyapunov direct method, however the authors considered a discrete-time system
where the time delay is uniformly bounded and the approach there can not be applied
to singular systems with an unbounded delay. In [24] the author proposed some condi-
tions for l∞/L∞−gain of positive linear systems with unbounded time-varying delays,
but the system is considered without singularity performance. Proposing an analytical
approach based on the bounding estimation technique, the authors of [25] provided
sufficient conditions for asymptotical stability of positive DDEs with unbounded de-
lays. The stabilization of positive DDEs with unbounded delay is considered in [26],
where the stability and stabilization conditions are proposed in terms of LP problem,
however, the system is considered without control constraints.

To the best of our ability, problem of constrained stabilization for DDEs with un-
bounded time-varying delays has not been fully studied so far. Therefore, the aim of
this paper is to solve problem of constrained stabilization for linear positive DDEs
with unbounded delay. Comparing with the existing results, our paper has the follow-
ing novel features. (i) The innovation of research approach. In this paper, we attempt to
develop an analytical approach based on linear programming to study constrained sta-
bilization problem, which can be solved efficiently by convex optimization algorithms
[26]. The proposed approach is the first trial in studying the constrained stabilization
of DDEs with unbounded time-varying delay. (ii) The difficulty and generalization of
the research result. The main drawbacks in control analysis of DDEs are the bounded-
ness of delays and the unconstrained controllers. Our system model describes a wider
class of DDEs, which subject to bounded control and unbounded delay. The mixture of
the constrained control and unbounded delay gives rise to the difficulty in the control
design due to limited research techniques. The main contributions of our paper lie in
the following.
(i) The positive DDEs under consideration deal with constrained controls and un-
bounded delay.
(ii) New characterizations of positivity and comparison solution principle are proposed.
(iii) Sufficient conditions for designing admissible controllers are presented via LP
problem [27, 28].

This work is organized as follows. In Section 2, we present problem formulation,
notations and some auxiliary results needed in next sections. Section 3 presents main
result on the constrained stabilization with numerical examples and simulation.

Notations. Rn denotes the vector space of real n−vectors; x ⪰ 0(≻ 0) means xi ≥
0 (> 0) ∀i = 1, 2, . . . , n, where x = (x1, x2, . . . , xn). (B)Ti represents the ith row vector
of matrix B. Rm×n stands for the set of (m×n)−matrices. B ⪰ 0 (or B ≻ 0) implies all
its entries are nonnegative (or positive). A ⪰ B(A ≻ B) means A−B ⪰ 0(A−B ≻ 0).
Rn
0,+(Rn

+) stands for space of nonnegative (positive) vectors of Rn. (M)(i,j) denotes the

ij entry of M. 1,m = {1, 2, . . . , m}, where m is a positive integer. PC ([a, b],Rm)
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stands for the set of piecewise continuous functions on [a, b]. AC ([a, b],Rn) stands for
the set of absolutely continuous functions on [a, b].

2. Preliminaries

Consider linear DDEs with time-varying delay{
v̇(t) = Av(t) +Bz(t) +Mv(t− d(t)) +Nz(t− d(t)) +Hu(t),

0 = Cv(t) +Dz(t) + Pv(t− d(t)) +Qz(t− d(t)) +Ru(t),
(1)

where v(t) ∈ Rn1 , z(t) ∈ Rn2 are the state vectors; u(t) ∈ Rm is the control vec-
tor; A,M ∈ Rn1×n1 , B,N ∈ Rn1×n2 , C, P ∈ Rn2×n1 , D,Q ∈ Rn2×n2 , H ∈ Rn1×m, R ∈
Rn2×m are constant matrices. The admissible control function u(t) satisfies the follow-
ing constraint

∃ū ∈ Rm : 0 ⪯ u(t) ⪯ u∗, t ≥ 0.

The delay function d(t) satisfies the following condition:

∃T > 0, θ ∈ (0, 1) : sup
t≥T

d(t)

t
≤ θ. (2)

Fom condition (2) it follows that 0 < (1− θ)t ≤ t− d(t), t ≥ T, setting τ = max
t∈[0,T ]

d(t),

we consider the following initial conditions φi(.) ∈ PC([−τ, 0],Rn)) of system (1):

v(s) = φ1(s), z(s) = φ2(s), s ∈ [−τ, 0]. (3)

For v(·) : [0,∞) → Rn1 , z(·) : [0,∞) → Rn2 , a pair of functions (v(·), z(·)) is said to
be a solution of (1) if (v(·), z(·)) ∈ AC ([0,+∞),Rn1) × PC ([0,+∞),Rn2) satisfying
(1) and (3).

Definition 2.1. ([9]). System (1) is positive if with non-negative φi(t) ⪰ 0, the solu-
tion v(t, φ1, φ2) ⪰ 0, z(t, φ1, φ2) ⪰ 0, t ≥ 0.

Definition 2.2. Equation (1) is stabilizable if there is an admissible control u(t) =
Kv(t) + Fz(t), K ∈ Rm×n1 , F ∈ Rm×n2 such that the closed-loop equation{

v̇(t) = (A+HK)v(t) + (B +HF )z(t) +Mv(t− d(t)) +Nz(t− d(t)),

0 = (C +RK)v(t) + (D +RF )z(t) + Pv(t− d(t)) +Qz(t− d(t)),

is asymptotically stable.

Using the control u(t) = Kv(t) + Fz(t) and denoting AK = A + HK,BF = B +
HF, CK = C+RK,DF = D+RF, equation (1) is reduced to the closed-loop equation{

v̇(t) = AKv(t) +BF z(t) +Mx(t− d(t)) +Nz(t− d(t)),

0 = CKv(t) +DF y(t) + Pv(t− d(t)) +Qz(t− d(t)).
(4)
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Lemma 2.3. ([9]). Assume that M ∈ Rn×n is Metzler. The following conditions are
equivalent.

1) ∃ ζ ∈ Rn
+ : Mζ ≺ 0.

2) det(M) ̸= 0 and M−1 ⪯ 0.
3) M is Hurwitz.

Lemma 2.4. Let matrices AK , DF be Metzler and BF , CK ,M,N, P,Q be non-
negative. If there exist κ ∈ Rn1

+ , ν ∈ Rn2

+ such that

(AK +M)κ+ (BF +N)ν ≺ 0, (5)

(CK + P )κ+ (DF +Q)ν ≺ 0, (6)

then
(i) For w1(t) ⪰ 0, w2(t) ⪰ 0 :{

v̇(t) = AKv(t) +BF v(t) +Mv(t− d(t)) +Nz(t− d(t)) + w1(t)

z(t) = −D−1
F CKv(t)−D−1

F Pv(t− d(t))−D−1
F Qz(t− d(t)) + w2(t).

(7)

is positive.
(ii) For φi(s) ⪰ ϕi(s), i = 1, 2, s ∈ [−τ, 0) :

v(t, φ1, φ2) ⪯ v(t, ϕ1, ϕ2), ∀t ≥ 0, (8)

z(t, φ1, φ2) ⪯ z(t, ϕ1, ϕ2), ∀t ≥ 0. (9)

(iii) ∃µ ∈ (0, 1) :

−D−1
F

(
CK + P

)
κ−D−1

F Qν ≺ (1− µ)ν. (10)

− (DF +Q)−1 (CK + P )κ ≺ (1− µ)ν. (11)

Proof. (i) We see that (CK + P )κ ⪰ 0, and from (6) we get

(DF +Q)ν ≺ 0. (12)

Using Q ⪰ 0 and (12) we have DF ν ≺ 0 and from DF Metzler and Lemma 2.3 it
claims that DF is invertible and −D−1

F ⪰ 0. Since AK is Metzler, we derive that the

matrices BF ,M,N,−D−1
F CK , −D−1

F P,−D−1
F Q are non-negative, then the proof of (i)

is similar to the one of [22, Lemma 2].
(ii) Employing the positivity and linearity of system (7), we have v(t, ϕ1, ϕ2) −
v(t, φ1, φ2) = v(t, ϕ1 − φ1, ϕ2 − φ2) ⪰ 0, t ≥ 0, which implies inequality (8). Simi-
larly, we can also derive inequality (9).
(iii) Taking Lemma 2.3 into account, Metzler matrix DF +Q and condition (12) into
account, we have −(DF+Q)−1 ⪰ 0. Pre-multiplying both sides of (6) with (−D−1

F ) ⪰ 0
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gives

−D−1
F (CK + P )κ+ (−D−1

F )Qν ≺ ν. (13)

Similarly, pre-multiplying both sides of (6) with −(DF +Q)−1 ⪰ 0 gives

−(DF +Q)−1(CK + P )κ ≺ ν. (14)

Because the inequalities (13), (14) are strict, there exists µ ∈ (0, 1) such that the
conditions (10), (11) hold.

Lemma 2.5. Let v̄ ∈ Rn1

+ , z̄ ∈ Rn2

+ be upper bounds of the initial conditions of system
(3) such that 0 ⪯ φ1(s) ⪯ v̄, 0 ⪯ φ2(s) ⪯ z̄, s ∈ [−τ, 0]. Moreover, assume that
AK , DF are Metzler, BF , CK ,M,N, P,Q are non-negative. If

(AK +M)v̄ + (BF +N)z̄ ≺ 0,

(CK + P )v̄ + (DF +Q)z̄ ≺ 0,
(15)

then 0 ⪯ v(t) ⪯ v̄, 0 ⪯ z(t) ⪯ z̄, t ≥ 0.

Proof. By using the second inequality of (15), (CK + P )v̄ ⪰ 0 and Qz̄ ⪰ 0 we have
DF ȳ ≺ 0. Since DF is Metzler, DF is Hurwitz and −D−1

F ⪰ 0. Setting v1(t) :=
v̄ − v(t), v2(t) = z̄ − z(t) gives

v̇1(t) = AKv1(t) +BF v2(t) +Mv1(t− d(t)) +Nv2(t− d(t))

− ((AK +M)x̄+ (BF +N)ȳ) ,

v2(t) = −D−1
F CKv1(t)−D−1

F Pv1(t− d(t))−D−1
F Qv2(t− d(t))

+D−1
F ((CK + P )x̄+Qȳ) + ȳ

On the other hand, taking (15) into account, we obtain that

− ((AK +M)v̄ + (BF +N)z̄) ≻ 0,

D−1
F ((CK + P )v̄ +Qz̄) + z̄ ⪰ 0.

Therefore, using Lemma 2.4-(i), (ii) we get v1(t) ⪰ 0, v2(t) ⪰ 0, t ≥ 0. Moreover, the
matrices − ((AK +M)v̄ + (BF +N)z̄) , D−1

F ((CK + P )x̄+Qz̄) + z̄ are non-negative
inputs, we have 0 ⪯ v(t) ⪯ v̄, and 0 ⪯ z(t) ⪯ z̄, ∀t ≥ 0.

3. CONSTRAINED STABILIZATION

Consider linear DDEs (1), where the time-varying delay satisfies the unbounded condi-
tion (2). Sufficient conditions for positivity and constrained stabilization are presented
in the following theorem.

Theorem 3.1. Assume that matrices M,N,P,Q are non-negative. The system (1)
with initial condition 0 ⪯ φ1(t) ⪯ v̄ = (λ1, ..., λn1

)T , 0 ⪯ φ2(t) ⪯ z̄ = (λn1+1,
...., λn1+n2

)T , t ∈ [−τ, 0], is positive and stabilizable if the LP problem is feasi-
ble in the variables λ = (λ1, λ2, ..., λn1+n2

), λi ∈ R+, kl ∈ Rm
0,+, l ∈ {1, 2, . . . , n1 +
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n2},
∑n1+n2

j=1 ki ⪯ u∗ :

(
A B
C D

)
(i,j)

λj +

(
H
R

)T

i

kj ≥ 0, i, j ∈ 1, n1 + n2, i ̸= j,

(
A+M B +N
C + P D +Q

)
λ+

(
H
R

) n1+n2∑
i=1

ki ≺ 0.

(16)

Moreover, the admissible controller is defined by

u(t) =

[
k1
λ1

k2
λ2

· · · kn1

λn1

]
v(t) +

[
kn1+1

λn1+1

kn1+2

λn1+2
· · · kn1+n2

λn1+n2

]
z(t), t ≥ 0.

Proof. 1. Positivity. We have K =

[
k1
λ1

· · · kn1

λn1

]
, F =

[
kn1+1

λn1+1
· · · kn1+n2

λn1+n2

]
. It

is clear that
∑n1+n2

j=1 kj = Kx̄+F ȳ ⪯ u∗. Using λj > 0, j = 1, 2, . . . , n1 + n2, and (16)
we have (

A B
C D

)
(i,j)

+

(
H
R

)T

i

kj
λj

≥ 0, i, j ∈ 1, n1 + n2, j ̸= i,

which gives

(
A+HK B +HF
C +RK D +RF

)
(i,j)

≥ 0, j ̸= i, i ∈ 1, n1 + n2, j ∈ 1, n1 + n2.

Hence, AK , DF are Metzler matrices and BF , CK ⪰ 0. Besides, we see that(
A+M B +N
C + P D +Q

)
λ+

(
H
R

)
(Kv̄ + F z̄) ≺ 0,

which implies

(AK +M)v̄ + (BF +N)z̄ ≺ 0,

(CK + P )v̄ + (DF +Q)z̄ ≺ 0.
(17)

From (CK + P )v̄ ⪰ 0 and (17) it follows that (DF + Q)z̄ ≺ 0. Combining this with
Lemma 2.3 and (DF + Q)−Metzler implies that DF + Q is a Hurwitz matrix. Since
DF +Q is a Hurwitz matrix and DF is Metzler, we get DF is Hurwitz and −D−1

F ⪰ 0.
Note that system (4) is reduced to the system{

v̇(t) = AKv(t) +BF z(t) +Mv(t− d(t)) +Nz(t− d(t)),

z(t) = −D−1
F CKv(t)−D−1

F Pv(t− d(t))−D−1
F Qz(t− d(t)),

(18)

which shows the positivity of systems (4) by using Lemma 2.3.
2. Asymptotic stability. Let v̄ := κ; z̄ := ν. We first show that there are numbers
t1 > 0, δ ∈ (0, µ) and t1 > 0 satisfying

v(t, κ, ν) ⪯ (1− δ)κ. ∀t ≥ t1, (19)
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z(t, κ, ν) ⪯ (1− δ)ν. ∀t ≥ t1, (20)

where µ is defined in (iii) of Lemma 2.4. Setting υ1(t) := κ − v(t, κ, ν), υ2(t) = ν −
z(t, κ, ν), we have

υ̇1(t) =AKυ1(t) +BFυ2(t) +Mυ1(t− d(t))

+Nυ2(t− d(t))− ((AK +M)κ+ (BF +N)ν) ,
(21)

υ2(t) =−D−1
F CKυ1(t)−D−1

F Pυ1(t− d(t))

−D−1
F Qυ2(t− d(t)) +D−1

F ((CK + P )κ+Qν) + ν.
(22)

Taking conditions (i), (ii) of Lemma 2.3 into account we get υ1(t) ⪰ 0, υ2(t) ⪰ 0, t ≥
0. By using − ((AK +M)κ+ (BF +N)ν) and D−1

F ((CK + P )κ+Qν) + ν as a non-
negative input, we have

v(t, κ, ν) ⪯ κ, ∀t ≥ 0, (23)

z(t, κ, ν) ⪯ ν, ∀t ≥ 0. (24)

Considering the second equation of (18) gives

z(t) = −D−1
F CKv(t)−D−1

F Pv(t− d(t))−D−1
F Qz(t− d(t)). (25)

Using (10), (24)-(26) and (25) we have

z(t, κ, ν) ≺ (1− µ)ν. (26)

Condition (17) and Mκ + (BF + N)ν ⪰ 0 give AKκ ≺ 0, and hence according to
Lemma 1, AK is invertible and −A−1

K ⪰ 0. Moreover, using the first inequality of (17)
gives

−A−1
K Mκ−A−1

K (BF +N) ν ≺ κ. (27)

Further, we show that

lim
t→∞

v(t, κ, ν) ⪯ −A−1
K Mκ−A−1

K (BF +N) ν. (28)

For this, taking the conditions (17), (23), (24) combining with the condition (18)
implies v̇(t, κ, ν) ≺ 0, t ≥ 0, which shows that v(t, κ, ν) is decreasing on [0,+∞).
Considering system

ṡ(t) = AKs(t) +Mκ+ (BF +N)ν, t ≥ 0, (29)

and using (23), (24) we obtain that

v(t, κ, ν) ⪯ s(t, κ), t ≥ 0. (30)
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Moreover, note that ẇ(t) = AKw(t), where w(t) := A−1
K Mκ+A−1

K (BF +N) ν + s(t).
In addition, since AK is Metzler and Hurwitz, equation ẇ(t) = AKw(t) is positive and
asymptotically stable. From (27) it follows that

κ+A−1
K Mκ+A−1

K (BF +N) ν ≻ 0,

and hence

w
(
t, κ+A−1

K Mκ+A−1
K (BF +N) ν

)
⪰ 0, t ≥ 0,

and lim
t→∞

w
(
t, p+A−1

K Mκ+A−1
K (BF +N) ν

)
= 0 which implies that

lim
t→∞

s(t, κ) = −A−1
K Mκ−A−1

K (BF +N) ν. (31)

Combining (30) and (31) gives (28). Moreover, note that the inequality (27) is strict,
there are a number δ ∈ (0, µ) satisfying

−A−1
K Mκ−A−1

K (BF +N) ν ≺ (1− δ)κ ≺ κ. (32)

From (28) and (32) it follows that the condition (19) holds for some t1 > 0. Combining
(26) and δ < µ we obtain (20).

Further, we show that there exists an increasing sequence {Ti, }i = 1, 2, ..., 0 =
T0, Ti < Ti+1 such that

v(t, κ, ν) ⪯ (1− δ)nκ, ∀t ∈ [Tn, Tn+1], (33)

z(t, κ, ν) ⪯ (1− δ)nν, ∀t ∈ [Tn, Tn+1]. (34)

Indeed, by assumption (2), setting h0 = 0, h1 = T, hm+1 =
⌈

hm

1−θ

⌉
, m = 1, 2, 3, . . . ,

we have
(i) hi is a strict increasing sequence, hi

i→+∞−−−−→ +∞,
(ii) ∀ k > 0 we get t− r(t) ≥ hk, ∀ t ≥ hk+1.

Setting k1 = min{k ∈ N : t1 ≤ hk} for n = 0 and choosing T1 = hk1
, from (23)

and (24) it follows that (33), (34) hold for n = 0. For the case n = 1, we consider the
equation{

v̇1(t) = AKv1(t) +BF z1(t) +Mv1(t− d(t)) +Nz1(t− d(t)), t ≥ hk1+1

z1(t) = −D−1
F CKv1(t)−D−1

F Pv1(t− d(t))−D−1
F Qz1(t− d(t)).

(35)

Similar part (ii) of Lemma 2.4, we can show the following inequalities

v1(t, ϕ1, ϕ2) ⪰ v1(t, φ1, φ2),∀t ≥ hk1+1, (36)

z1(t, ϕ1, ϕ2) ⪰ z1(t, φ1, φ2), ∀t ≥ hk1+1, (37)
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hold provided φi(s) ⪯ ϕi(s), i = 1, 2, s ∈ [hk1
, hk1+1). Setting

κ1 = (1− δ)κ, ν1 = (1− δ)ν, (38)

and taking (19), (20), (36) and (37) into account, we get

v(t, κ, ν) ⪯ v1(t, κ1, ν1), ∀t ≥ hk1+1, (39)

z(t, κ, ν) ⪯ z1(t, κ1, ν1),∀t ≥ hk1+1. (40)

Moreover, we see that conditions (10)-(11) are satisfied with κ = κ1 and ν = ν1. By
using similar way as in the proof of (a) for (35), there is t2 > hk1+1 satisfying

v1(t, κ1, ν1) ⪯ (1− δ)κ1. ∀t ≥ t2, (41)

z1(t, κ1, ν1) ⪯ (1− δ)ν1. ∀t ≥ t2. (42)

Taking (38)-(42) gives

v(t, κ, ν) ⪯ (1− δ)2κ. ∀t ≥ t2, (43)

z(t, κ, ν) ⪯ (1− δ)2ν. ∀t ≥ t2. (44)

Setting k2 := min{k ∈ N : hk ≥ t2} and taking hk2
= T2, from (43) and (44) it follows

that conditions (33), (34) are satisfied with n = 1. Further, we can find T2 < T3 < · · ·
such that (33) and (34) hold for n = 2, 3, . . . .

Finally, we are now in position to show the asymptotic stability of the closed-loop
system (4). For ϵ > 0 we set χ = max{∥κ∥∞, ∥ν∥∞} and find δ = ϵ

χ min{κmin, νmin},
where κmin = min

1≤i≤r
κi, νmin = min

1≤j≤n−r
νj . Thus, for initial functions φi, i = 1, 2 satis-

fying ∥φi∥∞ < δ, i = 1, 2 we have

φ1(s) <
ϵ

χ
κ, φ2(s) <

ϵ

χ
ν, s ∈ [−τ, 0).

Using (23), (24) gives

v(t, φ1, φ2) ⪯
ϵ

χ
v(t, κ, ν) ⪯ ϵ

χ
κ, ∀t ≥ 0, (45)

z(t, φ1, φ2) ⪯
ϵ

χ
z(t, κ, ν) ⪯ ϵ

χ
ν, ∀t ≥ 0, (46)

which implies that ∥v(t, φ1, φ2)∥∞ ≤ ϵ and ∥z(t, φ1, φ2)∥∞ ≤ ϵ. Then, from (33), (34)
it follows that lim

t→∞
x(t, κ, ν) = 0 and lim

t→∞
z(t, κ, ν) = 0. Using (45), (46) we have

lim
t→∞

v(t, φ1, φ2) = 0 and lim
t→∞

y(t, φ1, φ2) = 0. Moreover, by using Lemma 2.5 and

9



(17), the solutions v(t) and z(t) of (4) satisfy 0 ⪯ v(t) ⪯ v̄ and 0 ⪯ z(t) ⪯ z̄ with the
initial conditions 0 ⪯ v(s) ⪯ v̄, 0 ⪯ z(s) ⪯ z̄, s ∈ [−τ, 0]. Finally, since

n1+n2∑
i=1

ki = Kv̄ + F z̄, v̄ ∈ Rn1

+ , z̄ ∈ Rn2

+ , kj ∈ Rm
0,+, j ∈ 1, n1 + n2,

and
∑n1+n2

j=1 kj ⪯ u∗, we have

0 ⪯ u(t) = Kv(t) + Fz(t) ⪯ Kv̄ + F z̄ =

n1+n2∑
j=1

kj ⪯ u∗, ∀t ≥ 0,

which implies 0 ⪯ u(t) ⪯ u∗ for all t ≥ 0.

In the following corollary, constrained stabilization conditions will be derived for
the system with single-input control, i.e. m = 1. For this case, H and R are column
vectors and the gain matrix K, F are row vectors.

Corollary 3.2. Assume that matrices M,N,P,Q are non-negative. The system (1)
with initial condition 0 ⪯ φ1(t) ⪯ v̄ = (λ1, ..., λn1

)T , 0 ⪯ φ2(t) ⪯ z̄ = (λn1+1, ....,
λn1+n2

)T , t ∈ [−τ, 0], is positive, stabilizable if the LP problem is feasible in the vari-
ables λ = {λ1, λ2, ..., λn1+n2

}, λi ∈ R+, kl ∈ R0,+, l ∈ {1, 2, . . . , n1 + n2},
∑n1+n2

j=1 ki ⪯
u∗ : (

A B
C D

)
(i,j)

λj +

(
H
R

)T

i

kj ≥ 0, i, j ∈ 1, n1 + n2, i ̸= j,

(
A+M B +N
C + P D +Q

)
λ+

(
H
R

) n1+n2∑
i=1

ki ≺ 0.

Moreover, the admissible controller is defined by

u(t) =

[
k1
λ1

k2
λ2

· · · kn1

λn1

]
v(t) +

[
kn1+1

λn1+1

kn1+2

λn1+2
· · · kn1+n2

λn1+n2

]
z(t), t ≥ 0.

Remark 1. The authors of paper [17] studied asymptotic stability of coupled
differential-difference equations, the problem of constrained stabilization is not con-
sidered there. Moreover, the DDE considered in [17] is a special case of our DDEs (1)
(when B = 0,M = 0, D = −I, P = 0,) and the derived stability conditions in [17] are
less effective than ours. For example, Theorem 4 in [17] show that if A is a Metzler ma-
trix, N,C,Q are non-negative, Q is a Schur matrix and s(A+N(I−Q)−1C) < 0, then
system is asymptotically stable. However, in the Example 1 of our paper we consider
DDEs, where B,M,P are both non-zero matrices, which is asymptotically stable by
Theorem 1, while Theorem 4 in [17] can not be applied to get asymptotical stability.
In paper [26], the author studied unconstrained stabilization problem and the DDEs
is also a special case of our DDEs (1) (when B = 0,M = 0, D = −I, P = 0).

Remark 2. Note that the constrained stabilization of linear positive DDEs was stud-
ied in [6, 11, 15, 22, 24], however the obtained results are limited to the system with
bounded delay such that the approach proposed there can not be applied to our system
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with unbounded delay. Moreover, the stability and positivity of linear DDEs studied in
[25, 26] are based on the singular value decomposition approach and the regularity and
impulse-free assumptions without designing admissible controllers. Moreover, Theorem
3.1 provides sufficient conditions for constrained stabilization of positive DDEs with
unbounded delays via LP problem.

Remark 3. It is worth noting that Theorem 3.1 provides sufficient conditions for
the constrained stabilization problem, which are not necessary. It is possible to make
some of the stability conditions necessary and sufficient, for example the authors of
[15] proposed some necessary and sufficient conditions for stability and performance
of DDEs with bounded time-varying delay. For the stabilization problem, it is usually
difficult to get necessary and sufficient conditions due to the dependently designed
feedback controllers. However, we can establish an independent necessary condition
for the constrained stabilization in the following theorem.

Theorem 3.3. Consider system (1). Assume that M, N, P, Q are nonnegative ma-
trices. If there exists a controller u(t) = Kx(t) + Fy(t) such that the system (4)
is positive and asymptotically stable then the LP problem is feasible in the variables
Λ1 ∈ Rn1

0,+, Λ2 ∈ Rn2

0,+ :

(AK +M)Λ1 + (BF +N)Λ2 ⪯ 0,

(CK + P )Λ1 + (DF +Q)Λ2 ⪯ 0.
(47)

Proof. Consider the system (4) with constant delay
v̇(t) = AKv(t) +BF y(t) +Mv(t− τ) +Nz(t− τ),

0 = CKv(t) +DF z(t) + Pv(t− τ) +Qz(t− τ),

v(s) = φ1(s), s ∈ [−τ, 0],

z(s) = φ2(s), s ∈ [−τ, 0),

(48)

where τ = max
t∈[0,T ]

d(t). By the assumption, the system (4) is positive and asymptotically

stable for the unbounded delay d(t), then the system (48) with constant delay τ is
also positive and asymptotically stable. Integrating the equation (48) in the interval
[0, T ] we obtain

v(T )− v(0) =

∫ T

0
AKv(t) +BF z(t)dt+

∫ T

0
Mv(t− τ) +Nz(t− τ)dt

=

∫ T

0
AKv(t) +BF z(t)dt+

∫ T−τ

−τ
Mv(t) +Nz(t)dt

0 =

∫ T

0
CKv(t) +DF z(t)dt+

∫ T

0
Pv(t− τ) +Qz(t− τ)dt

=

∫ T

0
CKv(t) +DF z(t)dt+

∫ T−τ

−τ
Pv(t) +Qz(t)dt.

(49)
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On the other hand, we have∫ T−τ

−τ
Mv(t) +Nz(t)dt =

(∫ 0

−τ
Mv(t) +Nz(t)dt+

∫ T

0
Mv(t) +Nz(t)dt

)
−
∫ T

T−τ
Mx(t) +Ny(t)dt,∫ T−τ

−τ
Pv(t) +Qz(t)dt =

(∫ 0

−τ
Pv(t) +Qz(t)dt+

∫ T

0
Pv(t) +Qz(t)dt

)
−
∫ T

T−τ
Pv(t) +Qz(t)dt.

(50)

With initial condition v(s) = φ1(s), s ∈ [−τ, 0], z(s) = φ2(s), s ∈ [−τ, 0), since v(t) →
0, z(t) → 0 as t → ∞, then there exists a large enough σ such that

x(σ)− v(0)−
∫ 0

−τ
Mv(t) +Nz(t)dt+

∫ σ

σ−τ
Mv(t) +Nz(t)dt ⪯ 0,

−
∫ 0

−τ
Pv(t) +Qz(t)dt+

∫ σ

σ−τ
Pv(t) +Qz(t)dt ⪯ 0.

(51)

Fom (49), (50) and (51) we get

(AK +M)

∫ σ

0
v(t)dt+ (BF +N)

∫ σ

0
z(t)dt = x(σ)− v(0)−

∫ 0

−τ
Mv(t) +Nz(t)dt

+

∫ σ

σ−τ
Mx(t) +Ny(t)dt ⪯ 0,

(CK + P )

∫ σ

0
v(t)dt+ (DF +Q)

∫ σ

0
z(t)dt = −

∫ 0

−τ
Pv(t) +Qz(t)dt

+

∫ σ

σ−τ
Pv(t) +Qz(t)dt

⪯ 0.

This implies that (47) holds for Λ1 =
∫ σ
0 v(t)dt, Λ2 =

∫ σ
0 z(t)dt, which completes the

proof.

Remark 4. The following procedure for designing the admissible controllers can be
applied.

• Step 1: Input the system matrices A, B, C, D, M, N, P, Q, H,R, where
M, N, P, Q are nonnegative matrices.

• Step 2: Find feasible solutions λ = {λ1, λ2, ..., λn1+n2
}, λi ∈ R+, kj , j ∈

{1, 2, . . . , n1 + n2} satisfying the condition (16) by solving LP toolbox [27, 28].
• Step 3: Compute the controller gain matrices K,F by

K =

[
k1
λ1

· · · kn1

λn1

]
, F =

[
kn1+1

λn1+1
· · · kn1+n2

λn1+n2

]
.

• Step 4: Define admissible controllers u(t) = Kv(t) + Fz(t), t ≥ 0.
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Example 3.4. Consider system (1), where

d(t) =

{
0.9 t ∈ [0, 0.9]

8
9 t+ 0.1 t ≥ 0.9

, 0 ⪯ u(t) ⪯
(
4
6

)
, t ≥ 0,

A =

[
−10 4
3 1

]
, B =

[
−0.9
0

]
, C =

[
3 2

]
, D =

[
−6

]
,

H =

[
0.1 0.2
−4 1

]
, M =

[
3 1.2
1 4.5

]
, N =

[
0
0

]
, P =

[
3 1

]
, Q =

[
0
]
, R =

[
0 −1

]
.

0 10 20 30 40 50 60 70 80 90 100

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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1
(t)

x
2
(t)

y(t)

Figure 1. Solution response of the closed-loop system

Note that, the delay function d(t) satisfies condition (2) with T = 8.1
8 and θ = 8

8.1 ,
we get τ = max

t∈[0, 8.18 ]
d(t) = 1. Solving the LP problem for (16) we have

λ = (1.1, 1, 1), k1 = (1, 2), k2 = (2, 0), k3 = (1, 4),

K =

[
10
11 2
20
11 0

]
, F =

[
1
4

]
.

Therefore, using Theorem 3.1 the closed-loop system is positive and asymptotically
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stable with the admissible controllers:

u(t) =

[
10
11 2
20
11 0

]
x(t) +

[
1
4

]
y(t), t ≥ 0.

Figure 1 shows the state response of the closed-loop system with initial values

φ1(s) = (s2, −s), s ∈ [−1, 0] φ2(s) =
1

3
(s+ 1.2), s ∈ [−1, 0).

Example 3.5. Consider the following single-input DDEs with delays:{
v̇(t) = Av(t) +By(t) +Mv(t− d(t)) +Nz(t− d(t)) +Hu(t),

0 = Cv(t) +Dz(t) + Pv(t− d(t)) +Qz(t− d(t)) +Ru(t),
(52)

where

A =

 −5/2 1 2
1/2 −3 3/10

11/20 1 −3

 , B =

 1/5 1/10
1/10 1/5
1/10 1/10

 , C =

(
2 2 5
3 3/2 2

)
,

D =

(
−3 1/10
3/10 −4

)
, M =

 1/10 1/10 1/10
1/10 1/10 1/10
1/10 1/100 1/10

 , N =

 1/20 3/100
3/50 1/50
1/100 1/10

 ,

P =

(
1/10 1/10 1/10
1/10 1/10 1/10

)
, Q =

(
1/2 1/5
1/10 1/20

)
,

H =
(
1/2 1 −9/2

)T
, R =

(
−1/10 −1/10

)T
, 0 ⪯ u(t) ⪯ 2, t ≥ 0.

Solving the LP problem we obtain the following solutions:

λ = (6.5, 4, 2, 15, 10), k1 = 0.5,

k2 = 0.3, k3 = 1, k4 = 0.1, k5 = 0.1.

Therefore, the control gain matrices are given by

K =
[
1/13 3/40 1/2

]
, F =

[
1/150 1/100

]
.

By using Corollary 3.2, the closed-loop systems of system (52) is positive and asymp-
totic stable.

14



4. Conclusions

We have investigated constrained stabilization for positive DDEs with unbounded de-
lay via LP approach. From the approach, sufficient conditions for designing admissible
controllers have been proposed for positive DDEs with unbounded delay. A necessary
condition for the problem has been proposed for DDEs with bounded delay. A desired
feedback controllers can be determined by solving LP problem. Finally, numerical
examples with simulation are given to demonstrate the proposed results.
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