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A LIOUVILLE TYPE RESULT FOR FRACTIONAL GJMS EQUATIONS ON

HIGHER DIMENSIONAL SPHERES

QUỲNH N.T. LÊ, QUỐC ANH NGÔ, AND TIẾN-TÀI NGUYỄN

ABSTRACT. Let n be an integer and s be a real number such that n > 2s ≥ 2. Inspired
by the perturbation approach initiated by F. Hang and P. Yang (Int. Math. Res. Not. IMRN,
2020), we are interested in non-negative, smooth solution v to the following higher-order
fractional equation

P
2s
n (v) = Q2s

n (εv + vα)

on Sn with 0 < α ≤ (n + 2s)/(n − 2s), and ε ≥ 0. Here P2s
n

is the fractional
GJMS type operator of order 2s on Sn and Q2s

n
= P2s

n
(1) is constant. We show that

if ε > 0 and 0 < α ≤ (n + 2s)/(n − 2s), then any positive, smooth solution v to
the above equation must be constant. The same result remains valid if ε = 0 but with
0 < α < (n+ 2s)/(n− 2s). As a by-product, we obtain the subcritical/critical Sobolev
inequalities

∫

Sn
vP2s

n
(v)dµgSn ≥

Γ(n/2 + s)

Γ(n/2 − s)
|Sn|

α−1
α+1

(

∫

Sn
|v|α+1dµgSn

) 2
α+1

.

for the GJMS operator P2s
n

on Sn with 0 < α ≤ (n+ 2s)/(n − 2s).

1. INTRODUCTION

Let n be an integer and s be a real number such that n > 2s ≥ 2. Let 0 < α ≤
(n+ 2s)/(n− 2s) and ε > 0. In this paper, we are interested in Liouville type results for
the following higher-order fractional equation

P
2s
n (v) = Q2s

n (εv + vα) on S
n, (1.1)

Appearing on the left hand side of (1.1) is a so-called fractional GJMS type operator to be
described later and

Q2s
n = P

2s
n (1)

is constant. In terms of the Laplace–Beltrami operator ∆Sn on S
n, the fractional operator

P
2s
n is given as follows

P
2s
n =

Γ(B + 1/2 + s)

Γ(B + 1/2− s)
(1.2)

with

B =

√
−∆Sn +

(n− 1)2

4
.

Note that the action of the operators B and P
2s
n in any basis of spherical harmonics (and

on spherical harmonics of degree l ∈ N0 = N ∪ {0}) is diagonal. Precisely, on spherical
harmonics of degree l ∈ N0, the operator B acts by multiplication with l+ (n− 1)/2 and
therefore the operator P

2s
n acts by multiplication with

α2s,n(l) =
Γ(l + n/2 + s)

Γ(l + n/2− s)
; (1.3)
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see (4.12) below. In particular, there holds

Q2s
n = P

2s
n (1) =

Γ(n/2 + s)

Γ(n/2− s)
> 0.

Hence, the operator P
2s
n can be thought of as (−∆Sn)s perturbed by lower order terms.

For integer s, this operator is related to the GJMS operators in conformal geometry; see
[GJMS92, Bec93, FKT22].

In this paper, our range of s is s ∈ (0, n/2), which implies that the denominator in (1.3)
has no pole. Hence, it follows from [FKT22, page 3] that

∫

Sn

vP2s
n (v)dµgSn =

∑

l∈N0

α2s,n(l)‖Plv‖
2
2 for all v ∈ Hs(Sn), (1.4)

where Pl is the projection onto spherical harmonics of degree l ∈ N0. Let us remark that,
when s is an integer and by directly verifying from (1.2) we have the following expression

P
2s
n =

s∏

k=1

(
−∆Sn +

(n
2
− k

)(n
2
+ k − 1

))
. (1.5)

In the literature, the operator P
2s
n in (1.5) includes several important ones. For example,

in the case s = 1, the operator P
2s
n in (1.5) becomes

P2 = −∆Sn +
n(n− 2)

4
,

which is the well-known conformal Laplace operator on S
n. This plays the central role in

the Yamabe problem as well as the prescribed scalar curvature problem on S
n. In the case

s = 2, the operator P
2s
n in (1.5) becomes

P4 =
(
−∆Sn +

n(n− 2)

4

)(
−∆Sn +

(n− 2)(n− 4)

4

)
,

which is the well-known Paneitz operator on S
n. This operator plays the central role the

prescribed Q-curvature problem on S
n. Equation (1.1) can be thought of as the perturba-

tion of the following critical equation

P
2s
n (v) = v

n+2s
n−2s on S

n.

This equation belongs to a wider class of critical equations, known as the prescribing Q-
curvature equation for (fractional) GJMS operators, whose the right hand side is Qv

n+2s
n−2s

for some given function Q on S
n. Thus, in some sense, by considering (1.1) we are inter-

ested in subcritical equation for constant Q-curvature equations for GJMS operators.

Our motivation of working on the equation (1.1) traces back to a recent F. Hang and P.
Yang; see [HY20]. In this work, a perturbation approach was used. In our language, this
leads to the following higher-order equation

P
2s
n (v) = Q2s

n (εv + v−α) on S
n (1.6)

with odd n < 2s and s is an integer. It was proved in [Zha21] for the case s = 2 and in
[HN23] for the general case s ≥ 2 that if ε is sufficiently small, then any positive, smooth
solution v to (1.6) must be constant. Naturally, one wishes to consider the counter-part of
(1.6), namely the equation (1.1). However, there are also reasons why we are interested
in the equation (1.1). For example, the above equation is in much the same way as the
higher-order Lane–Emden equation in R

n, which is

(−∆)su = uα in R
n;

see [WX99, NNPY20] and the references therein, to name a few, for further discussion.

Back to the higher-order equation (1.1) on S
n, as far as we know, [CLS22] is the first

work studying Liouville type results. Among other results, it is proved in [CLS22] that



A LIOUVILLE TYPE RESULT FOR FRACTIONAL GJMS EQUATIONS ON HIGHER DIMENSIONAL SPHERES 3

any smooth, positive solution v to (1.1) with s integer, 1 ≤ α < (n + 2s)/(n− 2s) must
be constant. To obtain such a Liouville type result, the authors in [CLS22] follow a recent
strategy often used to seek for Liouville type result. The strategy consists of two steps: first
to transfer the differential equation (1.1) on S

n into a corresponding integral equation in
R

n, see (1.12) below, then apply method of moving spheres/planes to classify solutions to
the integral equation in R

n; see also [Zha21] and [HN23]. However, the most interesting
case α = (n+ 2s)/(n− 2s), namely the critical case, is left in [CLS22]. This motivates
us.

In this work, to tackle (1.1), we adopt the strategy used in [Zha21] and in [HN23].
As usual, the first step in this strategy is to transfer (1.1) on S

n to the integral equation
(1.12) in R

n by means of the stereographic projection πN to be described later. This step
is more or less well-known, but for completeness, we shall briefly sketch the derivation.
Throughout the paper, to avoid any confusion, we use v to denote a function in S

n while
we use u to denote a function in R

n. Let us denote by πN : Sn → R
n the stereographic

projection from the north pole N = (1, 0, .., 0) ∈ S
n. It is well-known that

(π−1
N )∗(gSn) =

( 2

1 + |x|2
)2
dx2

and making use of [FKT22, Lemma 4] gives

(−∆)⌊s⌋−s
(( 2

1 + |x|2
)n+2s

2
P

2s
n (v) ◦ π−1

N

)
= (−∆)⌊s⌋

(( 2

1 + |x|2
)n−2s

2 v ◦ π−1
N

)

in R
n. (Here ⌊·⌋ is the usual floor function.) Therefore, if we let

u =
( 2

1 + |x|2
)n−2s

2 (v ◦ π−1
N ), (1.7)

then it follows from (1.1) that

(−∆)⌊s⌋u = (−∆)⌊s⌋−s
(
Q2s

n

[
ε
( 2

1 + |x|2
)2s

u+
( 2

1 + |x|2
)n+2s

2
(
v ◦ π−1

N

)α])

= (−∆)⌊s⌋−s
(
Q2s

n

[
ε
( 2

1 + |x|2
)2s

u+
( 2

1 + |x|2
)n+2s

2 −αn−2s
2 uα

]) (1.8)

in R
n. For simplicity, we denote

Fε,u(y) = ε
( 2

1 + |y|2
)2s

u(y) +
( 2

1 + |y|2
) n+2s

2 −αn−2s
2 uα(y) (1.9)

and
σ =

n+ 2s

2
− α

n− 2s

2
which is non-negative due to the conditions 0 < α ≤ (n+2s)/(n−2s) and n > 2s. Thus,
we have just shown that u solves

(−∆)⌊s⌋u = (−∆)⌊s⌋−s(Q2s
n Fε,u) in R

n. (1.10)

However, our job is not over yet. In fact, we still need to transfer the differential equation
(1.10) to some integral equation. To be able to describe the procedure, a notation is needed.
For 0 < α < n we denote the constant C(α) as follows

C(α) := Γ
(n− α

2

)[
2απn/2Γ

(α
2

)]−1

. (1.11)

Under the condition n > 2s it is clear from (1.11) that C(2s) > 0. Furthermore, by
a direct computation we can verify that C(2s)|x|2s−n is the fundamental solution of the
(fractional) polyharmonic equation (−∆)su = 0 in R

n \ {0}. Indeed, using the definition
of fractional Laplacian via the Fourier transform, one has for any θ > 0 that

F((−∆)s|x|−θ)(ξ) =
(2π)n

C(θ)
|ξ|θ+2s−n.
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By taking θ = n− 2s > 0 and the inverse Fourier transform, we obtain that

(−∆)s
(
|x|2s−n

)
=

1

C(2s)
δ0,

where δ0 is the Dirac function at the origin. See also [CLM20, chapter 2]. With the higher
power fractional Laplacian (−∆)s being understood as

(−∆)s = (−∆)s−⌊s⌋ ◦ (−∆)⌊s⌋,

heuristically speaking, equation (1.10) can be seen as

(−∆)su = Q2s
n Fε,u.

(See the discussion in [FKT22, page 8] why we cannot directly claim this, but this is just as
good for us to prove (1.12) below.) Having the fundamental solution of the polyharmonic
equation, one expects that the corresponding integral equation for solution u to (1.10) in
R

n should be
u(x) = γ2s,n

∫

Rn

1

|x− y|n−2s
Fε,u(y)dy in R

n (1.12)

with
γ2s,n := C(2s)Q2s

n > 0.

In the first result of the paper we show that this is indeed true. We turn this into a theorem
which is stated as follows.

Theorem 1.1. If v is a non-negative, non-trivial, smooth solution to (1.1) on S
n, then

via the stereographic projection πN from the north pole N , the function u defined by

(1.7), namely

u(x) =
( 2

1 + |x|2
)n−2s

2
(
v ◦ π−1

N

)
(x),

solves (1.12) in R
n. Moreover, u is strictly positive, and hence v is also strictly

positive.

As described above, Theorem 1.1 is now a standard, and there are several ways to prove
it. If s is an integer, a typical way to prove is to make use of the super polyharmonic
property for solutions u to (1.10). Using this important property, combined with the use
of Green function for Laplace operator on unit ball, one can derive (1.12). In fact, this is
what the authors in [CLS22] used to obtain (1.12). Unfortunately, to be able to establish
the super polyharmonic property for solutions, the condition α ≥ 1 plays a crucial role.
This explains why the authors in [CLS22] cannot touch the range 0 < α < 1. The mo-
tivation of writing this paper also starts from this point. There is another way introduced
in [CAM08] to get (1.12) without using the super polyharmonic property for solutions u
to (1.10). Instead, the method introduced in [CAM08] exploits the advantages of distribu-
tional solutions to (1.10). In practice, a smooth solution is often a distributional one, hence
yielding (1.12) instantaneously.

In this paper, by making use of the advantages of (1.7), we propose another proof, which
allows us, at the same time, to treat the case 0 < α < 1 being left in [CLS22] and the case
s non-integer. Up to this point, we know that any smooth, positive solution v to (1.1) gives
rise to a smooth, positive solution u to (1.12). As the second step of the strategy, one could
obtain a Liouville type result from the integral equation (1.12). Let us now state the second
result of this paper.

Theorem 1.2. Let s ≥ 1 and n > 2s. Then under one of the following conditions

(1) either ε > 0 and 0 < α ≤ (n+ 2s)/(n− 2s)
(2) or ε = 0 and 0 < α < (n+ 2s)/(n− 2s)
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any non-negative, non-trivial, smooth solution v to (1.1) on S
n, if exists, must be

constant.

It is worth emphasizing that Theorem 1.2 can be though of a prior result. To be precise,
it only tells us that if a solution v to (1.1) exists, then it must be constant. By a simple
calculation, it can be verified that if α 6= 1, then the non-zero constant solution v to (1.1)
is (1 − ε)1/(α−1). However, in the case α = 1, there is no non-zero constant solution
v to (1.1). A similar situation occurs when ε ≥ 1, as the corollary below, just a direct
consequence of Theorem 1.2, shows.

Corollary 1.3. Let n > 2s ≥ 2 and ε ≥ 1. Then, equation (1.1) on S
n admits no non-

negative, non-trivial, smooth solution.

In case s is an integer, Corollary 1.3 can be proved directly by integrating both sides of
(1.1). Indeed, as n > 2s > 0 and Q2s

n > 0 by integrating we arrive at

(1− ε)

∫

Sn

vdµSn =

∫

Sn

vαdµSn .

This immediately tells us that ε < 1. Theorem 1.2 deserves further comments as follows.

• It is not difficult to see that the strict inequality α < (n + 2s)/(n − 2s) for the
case ε = 0 in Theorem 1.2 is optimal. In other words, the above Liouville type
result does not hold when ε = 0 and α = (n+ 2s)/(n− 2s). This is because the
corresponding equation (1.10) becomes

(−∆)su = u
n+2s
n−2s in R

n

and in this particular case we know that (see e.g. [CLZ17, Theorem 2]) there are
many positive, smooth solution of the form

u(x) = a
( 2

b2 + |x− x0|2

)n−2s
2

.

for some x0 ∈ R
n and some constants a, b > 0. This and (1.7) show that there are

many non-constant solutions v to (1.1). Therefore, our Theorem 1.2 shows how
does the linear perturbation effect the critical equation.

• An immediate consequence of Theorem 1.2 is that the function u defined by (1.7)
is of the form

u(x) = c
( 2

1 + |x|2

)n−2s
2

for some positive constant c > 0. In the course of the proof of Theorem 1.2, we
crucially make use of the structure of Sn as well as the relation (1.7). For exam-
ple, the relation (1.7) provides us the exact asymptotic behavior of u at infinity.
Therefore, by relaxing the relation (1.7), it is natural to ask if any smooth, positive
solution u to (1.10) in R

n, namely the equation

(−∆)su = ε
( 2

1 + |x|2
)2s

u+
( 2

1 + |x|2
)σ
uα,

at least in the case s is an integer and α 6= 1, is of the above form, up to translations
and dilations. It should be noted that in the special case ε = 0, the equation
(1.10) in R

n is very similar to the Matukuma equation; see [Mat38] and [BFH86,
Eq. (4.21)]. Therefore, one can ask many similar questions, for example, is any
solution to (1.10) radially symmetric? See [Li93]. Toward an answer for this
question, we expect that the method developed in [CAM08] and [NY22] could be
useful.
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Let us sketch our approach to prove Theorem 1.2. With help of Theorem 1.1, we mainly
work on the integral equation (1.12) and our aim is to prove that any positive, smooth
solution u to (1.12) must be radially symmetric with respect to the origin; see Lemma 3.7.
Unlike the similar work [CLS22] where the method of moving planes in integral form was
used, we use the method of moving spheres. Once we have the symmetry of u, by using
(1.7) we are able to conclude that v must be constant. This completes the proof of Theorem
1.2.

Finally, to illustrate our finding on a Liouville type result for solutions to (1.1), we revisit
the sharp subcritical/critical Sobolev inequality for P

2s
n on S

n proved in [Bec93], see also
[CLS22].

Theorem 1.4. Let n > 2s ≥ 2 and 0 < α ≤ (n + 2s)/(n − 2s). Then, for any

v ∈ Hs(Sn), we have the following sharp Sobolev inequality
∫

Sn

vP2s
n (v)dµgSn ≥

Γ(n/2 + s)

Γ(n/2− s)
|Sn|

α−1
α+1

(∫

Sn

|v|α+1dµgSn

) 2
α+1

. (1.13)

Moreover, equality occurs if v is any positive constant.

We prove Theorem 1.4 in section 4. The strategy is as follows. First we transfer a
perturbation of (1.13) into a minimizing problem; see (4.1). Then to look for an optimizer
we need to employ a concentration-compactness principle to gain a strong convergence
due to the fact we are in the critical case; see Lemma 4.1. It should be pointed out that
we still have strong convergence due to the presence of the perturbation. Finally, we use
duality argument to realize that the optimizer is necessarily non-negative; see Lemma 4.2.
From this we can apply the Liouville type result and through a limiting process to arrive at
(1.13).

Before closing this section, we briefly mention the organization of the paper.
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2. FROM DIFFERENTIAL EQUATIONS TO INTEGRAL EQUATIONS: PROOF OF THEOREM
1.1

This section is devoted to a proof of Theorem 1.1, namely we show that if v is a non-
negative, non-trivial, smooth solution to (1.1) on S

n, then the corresponding function u
defined by (1.7) solves (1.12) in R

n. However, it is clear from the previous section that it
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suffices to show that if u solves (1.10), then u also solves (1.12). To this purpose, we let ũ
be the right hand side of (1.12), namely

ũ(x) = γ2s,n

∫

Rn

1

|x− y|n−2s
Fε,u(y)dy in R

n

with Fε,u(y) given in (1.9) and γ2s,n = C(2s)Q2s
n > 0 as above. We have to prove that

u ≡ ũ everywhere in R
n.

In the first step, we show that

u(x)− ũ(x) = O
( 1

|x|n−2s

)
(2.1)

at infinity. From the definition of u, see (1.7), namely

u(x) =
( 2

1 + |x|2
)n−2s

2
(
v ◦ π−1

N

)
(x),

and the smoothness of v on S
n, it is clear that u(x) = O(|x|2s−n) near infinity. Next, we

shall see that the function ũ also has the decay as that of the function |x|2s−n at infinity.
This is done if one can show that∫

Rn

1

|x− y|n−2s
Fε,u(y)dy = O

( 1

|x|n−2s

)
.

To do so, first keep in mind that
( 2

1 + |y|2
)σ
uα(y) =

( 2

1 + |y|2
)n+2s

2 (v ◦ π−1
N )α(y) ∼

1

|y|n+2s

and that ( 2

1 + |y|2
)2s

u(y) =
( 2

1 + |y|2
)n+2s

2 (v ◦ π−1
N )(y) ∼

1

|y|n+2s

at infinity. Hence, there is some C > 0 such that

|Fε,u(y)| = ε
( 2

1 + |y|2
)2s

u(y) +
( 2

1 + |y|2
)σ
uα(y) <

C

|y|n+2s
(2.2)

everywhere in R
n. Due to the smoothness, it suffices to consider |x| ≥ 2. We decompose

R
n as follows

R
n = B|x|/2(x) ∪

[
R

n \B|x|/2(x)
]

Obviously, any y ∈ R
n \B|x|/2(x) enjoys the estimate 2|x− y| ≥ |x|. This gives

∫

Rn\B|x|/2(x)

|x|n−2s

|x− y|n−2s
Fε,u(y)dy .

∫

Rn

( 2

1 + |y|2
)σ
uα(y)dy < +∞.

Now for y ∈ B|x|/2(x) we can estimate |y| ≥ |x| − |x− y| ≥ |x|/2 ≥ 1. Hence, together
with (2.2), we obtain

∫

B|x|/2(x)

|x|n−2s

|x− y|n−2s
Fε,u(y)dy < C|x|n−2s

∫

B|x|/2(x)

1

|x− y|n−2s

1

|y|n+2s
dy

.
1

|x|4s

∫

B|x|/2(x)

dy

|x− y|n−2s

.
1

|x|2s
. 1.

Putting the above computations together gives ũ(x) = O(|x|2s−n). Thus, we have shown
that (2.1) holds.

In the next step, we prove that

(−∆)⌊s⌋
[
u(x)− ũ(x)

]
= 0 in R

n. (2.3)
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Note, for |x| large, that |Fε,u(x)| . (1 + |x|2)(−2s−n)/2, see (2.2). Hence, we can use the
following identity from [FKT22, page 8] (see the last line) to obtain that

(−∆)⌊s⌋
∫

Rn

|x− y|2s−nFε,u(y)dy =
1

C(2s)
(−∆)⌊s⌋−s

(
Fε,u(x)

)
.

It yields

(−∆)⌊s⌋ũ = Q2s
n (−∆)⌊s⌋−sFε,u in R

n.

Together with (1.10), we arrive at (2.3).

In view of (2.3), the function w = u − ũ is poly-harmonic in R
n. Hence, we make

use of the Liouville theorem for polyharmonic functions, see [Mar09, Theorem 5], to get
that w is a polynomial. (See [AGHW22, Lemma 5.7] for a similar result in the fractional
setting.) However, as w vanishes at infinity because of (2.1), it must be identically zero,
i.e. u ≡ ũ in R

n.

Finally, we prove that u must be strictly positive. If this is the case, then by (1.7) we
conclude that v is also strictly positive. To this end, we assume that there is some x0 ∈ R

n

such that u(x0) = 0. Using (1.12) we should have

0 = u(x0) = γ2s,n

∫

Rn

1

|x0 − y|n−2s
Fε,u(y)dy.

Keep in mind that γ2s,n > 0. The only possibility is that u ≡ 0 in R
n. Hence u is trivial.

This completes our proof.

3. CLASSIFICATION OF SOLUTION VIA THE METHOD OF MOVING SPHERES: PROOF
OF THEOREM 1.2

This section is devoted to the proof of Theorem 1.2, namely, we shall show that any non-
negative, non-trivial, smooth solution v to (1.1) is necessarily constant. Thanks to Theorem
1.1, we can assume at the beginning that v is positive everywhere on S

n. Therefore, our
aim is to show that, up to a constant, positive, smooth function u to (1.10) is of the form
(1 + |x|2)(2s−n)/2.

To prove Theorem 1.2, we make use of the method of moving spheres in the spirit of
[Li04] and [JLX08], see also [Yan21], with some modifications due to the presence of
the weight (1 + |y|2)−σ . It is worth noting that in the case n > 2s we still can make use
of the method of moving planes, resulting in the radial symmetry of solutions u to (1.10)
with respect to the origin. This is the approach used in [CLS22]. However, it is not clear
for us how to show that u must be of the form (1 + |x|2)(2s−n)/2. In the next paragraph,
we recall basics of the inversion and the Kelvin transform necessarily for the method of
moving spheres.

Given the parameter λ > 0 we denote by ξx,λ the inversion of ξ ∈ R
n via the sphere

∂Bλ with radius λ and center at x ∈ R
n.
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x

ξ

ξx,λ = x+ λ2(ξ−x)
|ξ−x|2

zx,λ

z = x+ λ2(zx,λ−x)
|zx,λ−x|2∂Bλ(x)

FIGURE 1. Inversion in the method of moving spheres.

Precisely, ξx,λ is given as follows

ξx,λ = x+
λ2(ξ − x)

|ξ − x|2
for ξ 6= x.

It is clear that

d(ξx,λ) =
( λ

|ξ − x|

)2n
dξ

and
|z − x||ξ − x||ξx,λ − zx,λ| = λ2|ξ − z|. (3.1)

We also denote by ux,λ the Kelvin transform of u via the sphere ∂Bλ, namely

ux,λ(ξ) =
( λ

|ξ − x|

)n−2s
u(ξx,λ) =

( λ

|ξ − x|

)n−2s
u
(
x+

λ2(ξ − x)

|ξ − x|2
)
.

Clearly, the Kelvin transform ux,λ is defined in R
n \ {0} and

ux,λ(ξ
x,λ) =

( λ

|ξx,λ − x|

)n−2s
u(ξ) =

( |ξ − x|

λ

)n−2s
u(ξ).

The basic idea of the method of moving spheres is to compareu and ux,λ pointwise starting
from small λ > 0. More precisely, we shall show for small λ > 0 that

u(y) ≥ ux,λ(y)

for any y satisfying |y − x| ≥ λ > 0; see Lemma 3.3. Then we increase λ toward√
1 + |x|2 until the above inequality does not hold; see (3.8). We shall show in Lemma

3.5 that λ ≥ |x|, and at the moment when λ passes |x|, we are able to capture further
information on u; see Lemma 3.7.

To be able to compare u and ux,λ, our proof starts with the following simple observation
for ux,λ.

Lemma 3.1. There holds

ux,λ(ξ) = γ2s,n

∫

Rn

1

|ξ − z|n−2s



ε
( 2λ2

1 + |zx,λ|2
)2s 1

|z − x|4s
ux,λ(z)

+
( 2λ2

1 + |zx,λ|2
)σ 1

|z − x|2σ
uα
x,λ(z)


 dz (3.2)

in R
n.

Proof. This is straightforward. For completeness, we include its proof here. With y =
zx,λ, the relation (3.1), and the identity 2σ = n+ 2s− α(n− 2s) in hand, we easily get

ux,λ(ξ) =
( λ

|ξ − x|

)n−2s
u(ξx,λ)
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= γ2s,n
( λ

|ξ − x|

)n−2s
∫

Rn



ε
( 2

1 + |zx,λ|2
)2s

u(zx,λ)

+
( 2

1 + |zx,λ|2
)σ
uα(zx,λ)




d(zx,λ)

|ξx,λ − zx,λ|n−2s
.

Note that

u(zx,λ) = (
|z − x|

λ
)n−2sux,λ(z), uα(zx,λ) =

( |z − x|

λ

)(n−2s)α
uα
x,λ(z),

and

d(zx,λ) =
( λ

|z − x|

)2n
dz. (3.3)

Therefore, we obtain

ux,λ(ξ) = γ2s,n

∫

Rn

1

(|ξ − x||ξx,λ − zx,λ|)n−2s

×




ελn−2s
( |z − x|

λ

)n−2s( λ

|z − x|

)2n( 2

1 + |zx,λ|2
)2s

ux,λ(z)

+
λn−2sλ2n

λα(n−2s)

( 2

1 + |zx,λ|2
)σ |z − x|α(n−2s)

|z − x|2n
uα
x,λ(z)


 dz

= γ2s,n

∫

Rn



ε

|z − x|n−2s

λ2(n−2s)|ξ − z|n−2s
.

λ2n

|z − x|n+2s

( 2

1 + |zx,λ|2
)2s

ux,λ(z)

+
1

|ξ − z|n−2s

( 2λ2

1 + |zx,λ|2
)σ 1

|z − x|2σ
uα
x,λ(z)


 dz

= γ2s,n

∫

Rn



ε

1

|z − x|4s
1

|ξ − z|n−2s

( 2λ2

1 + |zx,λ|2
)2s

ux,λ(z)

+
1

|ξ − z|n−2s

( 2λ2

1 + |zx,λ|2
)σ 1

|z − x|2σ
uα
x,λ(z)


 dz.

From this one easily gets (3.2) as claimed. The proof is complete. �

Next, we can estimate the difference u− ux,λ. This step is necessary to run the method
of moving spheres.

Lemma 3.2. We have

u(ξ)− ux,λ(ξ) = γ2s,n

∫

|z−x|≥λ

K(x, λ; ξ, z)Gε,λ,u(z)dz (3.4)

with

Gε,λ,u(z) =




ε
( 2

1 + |z|2
)2s

u(z) +
( 2

1 + |z|2
)σ

uα(z)

− ε
( 2λ2

1 + |zx,λ|2
)2s 1

|z − x|4s
ux,λ(z)

−
( 2λ2

1 + |zx,λ|2
)σ 1

|z − x|2σ
uα
x,λ(z)




and the kernel K(x, λ; ξ, z) given by

K(x, λ; ξ, z) =
1

|ξ − z|n−2s
−
( λ

|ξ − x|

)n−2s 1

|ξx,λ − z|n−2s

=
1

|ξ − z|n−2s
−

1

|ξ − zx,λ|n−2s

( λ

|z − x|

)n−2s
.

(3.5)

Moreover, the kernel K > 0 for any |ξ − x| > λ and |z − x| > λ.
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Proof. This is also straightforward. First, we estimate u by using (1.12). To do so, we
decompose the integral

∫
Rn in (1.12) into two parts

∫
{z:|z−x|≥λ}

+
∫
{z:|z−x|≤λ}

to get

u(ξ) =γ2s,n

∫

{z:|z−x|≥λ}

1

|ξ − z|n−2s
Fε,u(z)dz

+ γ2s,n

∫

{zx,λ:|zx,λ−x|≤λ}

1

|ξ − zx,λ|n−2s
Fε,u(z

x,λ)d(zx,λ).

For the integral
∫
{zx,λ:|zx,λ−x|≤λ}

we simply make use of (3.3) and the change of the
variable z 7→ zx,λ to get

u(ξ) =γ2s,n

∫

|z−x|≥λ

1

|ξ − z|n−2s
Fε,u(z)dz

+ γ2s,n

∫

|z−x|≥λ

1

|ξ − zx,λ|n−2s
Fε,u(z

x,λ)
( λ

|z − x|

)2n
dz.

As

ux,λ(z) =
( λ

|z − x|

)n−2s
u(zx,λ)

we further get

u(ξ) =γ2s,n

∫

|z−x|≥λ

1

|ξ − z|n−2s

[
ε
( 2

1 + |z|2
)2s

u(z) +
( 2

1 + |z|2
)σ

uα(z)
]
dz

+ γ2s,n

∫

|z−x|≥λ

1

|ξ − zx,λ|n−2s



ε
( 2

1 + |zx,λ|2
)2s( λ

|z − x|

)n+2s
ux,λ(z)

+
( 2

1 + |zx,λ|2
)σ( λ

|z − x|

)2n−α(n−2s)
uα
x,λ(z)


 dz.

In a same way, we obtain a similar decomposition of ux,λ by using (3.2) in Lemma 3.1.
Indeed, by letting

Fλ
ε,u(z) = ε

( 2λ2

1 + |zx,λ|2
)2s 1

|z − x|4s
ux,λ(z) +

( 2λ2

1 + |zx,λ|2
)σ 1

|z − x|2σ
uα
x,λ(z)

we clearly have

ux,λ(ξ) =γ2s,n

∫

|z−x|≥λ

1

|ξ − z|n−2s
Fλ
ε,u(z)dz

+ γ2s,n

∫

{zx,λ:|zx,λ−x|≤λ}

1

|ξ − zx,λ|n−2s
Fλ
ε,u(z

x,λ)d(zx,λ)

=γ2s,n

∫

|z−x|≥λ

1

|ξ − z|n−2s
Fλ
ε,u(z)dz

+ γ2s,n

∫

|z−x|≥λ

1

|ξ − zx,λ|n−2s
Fλ
ε,u(z

x,λ)
( λ

|z − x|

)2n
dz.

By using (3.1) one can verify that

1

|ξ − zx,λ|n−2s
Fλ
ε,u(z

x,λ)
( λ

|z − x|

)2n

=
λn−2s

|ξ − x|n−2s|ξx,λ − z|n−2s



ε
( 2

1 + |z|2
)2s

u(z)

+
( 2

1 + |z|2
)σ
uα(z)


 .



12 Q.N.T. LÊ, Q.A. NGÔ, AND T.-T. NGUYỄN

Hence,

ux,λ(ξ) =γ2s,n

∫

|z−x|≥λ

1

|ξ − z|n−2s



ε
( 2λ2

1 + |zx,λ|2
)2s 1

|z − x|4s
ux,λ(z)

+
( 2λ2

1 + |zx,λ|2
)σ 1

|z − x|2σ
uα
x,λ(z)


 dz

+ γ2s,n

∫

|z−x|≥λ

λn−2s

|ξ − x|n−2s|ξx,λ − z|n−2s



ε
( 2

1 + |z|2
)2s

u(z)

+
( 2

1 + |z|2
)σ
uα(z)


 dz.

Next, combining the above two decompositions for u(ξ) and ux,λ(ξ) yields

u(ξ)− ux,λ(ξ) = γ2s,n

∫

|z−x|≥λ




k1

[
ε
( 2

1 + |z|2
)2s

u(z) +
( 2

1 + |z|2
)σ
uα(z)

]

− k2



ε
( 2λ2

1 + |zx,λ|2
)2s 1

|z − x|4s
ux,λ(z)

+
( 2λ2

1 + |zx,λ|2
)σ 1

|z − x|2σ
uα
x,λ(z)







dz

with k1, k2 being

k1 = k1(x, λ; ξ, z) =
1

|ξ − z|n−2s
−
( λ

|ξ − x|

)n−2s 1

|ξx,λ − z|n−2s

and
k2 = k2(x, λ; ξ, z) =

1

|ξ − z|n−2s
−

1

|ξ − zx,λ|n−2s

( λ

|z − x|

)n−2s
.

The positivity of the kernels k1 > 0 and k2 > 0 for any |ξ − x| > λ and |z − x| > λ
follows from the following identities

( |ξ − x|

λ

)2
|ξx,λ − z|2 − |ξ − z|2 =

(|z − x|2 − λ2)(|ξ − x|2 − λ2)

λ2

and
( |z − x|

λ

)2
|ξ − zx,λ|2 − |ξ − z|2 =

(|z − x|2 − λ2)(|ξ − x|2 − λ2)

λ2
.

In addition, the above calculation shows k1 = k2. Hence, putting k1 = k2 = K gives
(3.4). The proof is complete. �

In the following lemma, we show that the method of moving spheres can start from
some very small λ > 0. The argument is standard and depends heavily on the smoothness
of u around the center x ∈ R

n and the asymptotic behavior of u near infinity.

Lemma 3.3. There exists some λ0 > 0 such that for any λ ∈ (0, λ0), we have

u(y) ≥ ux,λ(y)

for any y satisfying |y − x| ≥ λ > 0.

Proof. The proof consists of two steps. First, because u > 0 is C1, we obtain

∇y

(
|y − x|

n−2s
2 u(y)

)
=

n− 2s

2
|y − x|

n−2s
2 −2u(y)(y − x) + |y − x|

n−2s
2 ∇u(y),

which yields

〈∇y

(
|y − x|

n−2s
2 u(y)

)
, y − x〉 = |y − x|

n−2s
2 u(y)

(n− 2s

2
+ 〈∇ log u(y), y − x〉

)

> |y − x|
n−2s

2 u(y)
(n− 2s

2
− |∇ log u|∞|y − x|

)
.
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Hence, if |y − x| is sufficiently small, say

0 < |y − x| < λ1 := min
{ n− 2s

2|∇ log u|∞
, 1
}
,

then we must have

〈∇y

(
|y − x|

n−2s
2 u(y)

)
, y − x〉 > 0 for all 0 < |y − x| < λ1.

Hence, |y − x|
n−2s

2 u(y) is increasing in the direction of y with 0 < |y − x| < λ1. In
particular, for 0 < λ < |y − x| < λ1, by comparing at the two points y and yx,λ we must
have

|y − x|
n−2s

2 u(y) ≥
∣∣yx,λ − x

∣∣n−2s
2 u(yx,λ).

This shows that

u(y) ≥
(∣∣yx,λ − x

∣∣
|y − x|

)n−2s
2

u(yx,λ) = ux,λ(y)

for any y satisfying 0 < λ < |y − x| ≤ λ1. In the second step, we aim to consider
|y − x| ≥ λ1, and this requires the smallness of λ leading to the threshold λ0. To do so,
first we make use of (1.7), namely

u =
( 2

1 + |x|2
)n−2s

2 (v ◦ π−1
N ),

and the positivity of v everywhere on S
n to get

u(y) &
C1

|y|2s−n
for all |y| ≥ R (3.6)

for some constants C1 > 0 and R > 0. For the region |y| ≤ R we make use of the integral
equation (1.12) to get

u(y) ≥ γ2s,n

∫

|z|≤R

1

|y − z|n−2s

( 2

1 + |z|2
)σ
uα(z)dz

≥
γ2s,n

(2R0)n−2s

∫

|z|≤R

( 2

1 + |z|2
)σ
uα(z)dz > 0.

(3.7)

Putting the two estimates (3.6) and (3.7) together we arrive at

u(y) &
C2

|y − x|2s−n
for all |y − x| ≥ λ1

for some C2 > 0. Hence, for small λ0 ≪ λ1 and for λ ≤ λ0 we have

ux,λ(y) =
( λ

|y − x|

)n−2s
u(yλ) ≤

( λ0

|y − x|

)n−2s

sup
Bλ1

(x)

u ≤ u(y)

for |y − x| ≥ λ1 > 0. This completes the proof. �

For arbitrary but fixed point x ∈ R
n \ {0}, we define

λ(x) := sup

{
0 < µ ≤

√
1 + |x|2 : ux,λ(y) ≤ u(y) for all |y − x| ≥ λ > 0

and for all 0 < λ < µ

}
.

(3.8)
(It is worth noting that in the definition of λ(x), we require µ ≤

√
1 + |x|2, which is

different from the standard method of moving spheres in [Li04]. This extra restriction can
be easily understood by seeing Lemma 3.4 below.) It follows from Lemma 3.3 that λ(x)
is well defined and λ(x) > 0. Next we will show that λ(x) ≥ |x| for all x ∈ R

n. Before
proving this, we need the following auxiliary lemma.
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Lemma 3.4. For any λ ∈ (0,
√
1 + |x|2) there holds

λ2
(
1 + |z|2

)

|z − x|2
(
1 + |zx,λ|2

) < 1 (3.9)

for any z ∈ R
n satisfying |z − x| > λ.

Proof. This is elementary. Indeed, let z ∈ R
n with |z − x| > λ. As zx,λ = x + λ2(z −

x)/|z − x|2, the inequality (3.9) is equivalent to

0 <|z − x|2
(
1 +

∣∣∣x+
λ2(z − x)

|z − x|2

∣∣∣
2)

− λ2(1 + |z|2)

=|z − x|2(1 + |x|2) + 2λ2〈z − x, x〉+ λ4 − λ2(1 + |z|2)

=|z − x|2(1 + |x|2) + 2λ2〈z, x〉 − 2λ2|x|2 + λ4 − λ2(1 + |z|2)

=|z − x|2(1 + |x|2 − λ2)− λ2|x|2 + λ4 − λ2

=(|z − x|2 − λ2)(1 + |x|2 − λ2).

Clearly, the right most term on the preceding estimate is strictly positive, thanks to |z−x| >
λ and λ2 < 1 + |x|2. This completes the proof. �

For simplicity, from now on let us denote the left hand side of (3.9) by L(x, λ, z),
namely

L(x, λ, z) =
λ2

(
1 + |z|2

)

|z − x|2
(
1 + |zx,λ|2

) . (3.10)

We are now in position to estimate the threshold λ(x) for any x ∈ R
n \ {0}.

Lemma 3.5. Suppose that 0 < s < n/2 and 0 ≤ σ < 2s. Let u ∈ C(Rn) be a positive

solution to the integral equation (1.12). Then, there holds

λ(x) ≥ |x| for any x ∈ R
n \ {0}.

Proof. By way of contradiction, we suppose λ(x) 6= |x| for some x ∈ R
n \ {0}. Then by

the definition in (3.8) we must have

λ(x) < |x|.

For simplicity, let us write

λ = λ(x) and δ = min
{
1,

|x| − λ

2

}
.

Clearly, δ > 0. Still by the definition of λ, see (3.8), we have

ux,λ(y) ≤ u(y) for all y satisfying |y − x| ≥ λ. (3.11)

However, we shall prove that

ux,λ(y) ≤ u(y) for any |y − x| ≥ λ

for some λ slightly bigger than λ. If this is true, then this violates the definition of λ in
(3.8). Hence, we must have λ(x) ≥ |x| as claimed. The proof consists of two steps as
follows.

Estimate of u− ux,λ outside the ball B(x, λ+ δ). To estimate u− ux,λ we first estimate
u − ux,λ. In the region |y − x| ≥ λ + δ, we first claim that there exists C3 ∈ (0, 1) such
that

(u − ux,λ)(y) ≥
C3

|y − x|n−2s
for all |y − x| ≥ λ+ δ. (3.12)
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To this purpose, we start from making use of the identity (3.4) in Lemma 3.2 to obtain

(u− ux,λ)(y)

= γ2s,n

∫

|z−x|≥λ

K(x, λ; y, z)




ε
( 2

1 + |z|2
)2s

u(z) +
( 2

1 + |z|2
)σ

uα(z)

− ε
( 2λ

2

1 + |zx,λ|2

)2s 1

|z − x|4s
ux,λ(z)

−
( 2λ

2

1 + |zx,λ|2

)σ 1

|z − x|2σ
uα
x,λ

(z)




dz.

We now examine the terms in the parentheses in the preceding identity. With help of (3.11)
and (3.9) we observe that

( 2

1 + |z|2
)2s

u(z)−
( 2λ

2

1 + |zx,λ|2

)2s 1

|z − x|4s
ux,λ(z)

=
( 2

1 + |z|2
)2s[

u(z)− L(x, λ, z)2sux,λ(z)
]

≥
( 2

1 + |z|2
)2s[

1− L(x, λ, z)2s
]
ux,λ(z) > 0

(3.13)

and that
( 2

1 + |z|2
)σ
uα(z)−

( 2λ
2

1 + |zx,λ|2

)σ 1

|z − x|2σ
uα
x,λ

(z)

=
( 2

1 + |z|2
)σ[

uα(z)− L(x, λ, z)σuα
x,λ

(z)
]

≥
( 2

1 + |z|2
)σ[

1− L(x, λ, z)σ
]
uα
x,λ

(z) ≥ 0.

(3.14)

Here, L(x, λ, z) is defined as in (3.10). Therefore,

(u− ux,λ)(y) ≥ γ2s,n

∫

|z−x|≥λ

K(x, λ; y, z)Lε,λ,x(z)dz, (3.15)

where

Lε,λ,x(z) =ε
( 2

1 + |z|2
)2s[

1− L(x, λ, z)2s
]
ux,λ(z)

+
( 2

1 + |z|2
)σ[

1− L(x, λ, z)σ
]
uα
x,λ

(z).

Hence, under the condition that either ε > 0 if α = (n + 2s)/(n − 2s) or ε ≥ 0 if
α < (n+ 2s)/(n− 2s) we deduce that

Lε,λ,x(z) > 0 for all |z − x| ≥ λ,

which tells us
(u − ux,λ)(y) > 0 for all |y − x| ≥ λ.

This together with the Fatou lemma yields

lim inf
|y|ր∞

[
|y − x|n−2s(u− ux,λ)(y)

]

=γ2s,n lim inf
|y|ր∞

∫

|z−x|≥λ

|y − x|n−2sK(x, λ; y, z)Lε,λ,x(z)dz

≥γ2s,n

∫

|z−x|≥λ

(
1−

( λ

|z − x|

)n−2s)
Lε,λ,x(z)dz

>0.
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Thus, there is some small C4 > 0 and some large R ≥ δ such that

(u− ux,λ)(y) ≥
C4

|y − x|n−2s
for all |y − x| ≥ λ+R.

To gain (3.12), it suffices to show that u− ux,λ is bounded from below away from zero in
the ring {y : λ+ δ ≤ |y−x| ≤ λ+R}. By the positivity of the kernel K(x, λ; y, z) in the
region |y − x| > λ and |z − x| > λ, see Lemma 3.2, there is some small C5 > 0 such that

K(x, λ; y, z) ≥ C5

for all y and z satisfying

λ+ δ ≤ |y − x| ≤ λ+R < 2(λ+R) ≤ |z − x| ≤ 4(λ+R).

Using this and (3.15) we can estimate u− ux,λ from the below as follows

(u − ux,λ)(y) ≥ γ2s,nC5

∫

2(λ+R)≤|z−x|≤4(λ+R)

Lε,λ,x(z)dz = C6

for some C6 > 0 which possibly depends only on x. Putting the above estimates together
we arrive at (3.12) for some C3 depending on C4 and C6. We are now in position to
estimate u − ux,λ in the region |y − x| ≥ λ + δ but this requires λ closed to λ, say
λ ≤ λ ≤ λ+ δ1 for some small δ1 ∈ (0, δ). Indeed, recall

ux,λ(y) =
( λ

|y − x|

)n−2s
u(yx,λ).

Hence, by continuity, there is some small δ1 ∈ (0, δ) such that

(ux,λ − ux,λ)(y) ≥ −
C3

2

1

|y − x|n−2s

for all λ ≤ λ ≤ λ+ δ1 and all |y − x| ≥ λ+ δ. Here the constant C3 is as in (3.12). This
and (3.12) helps us to conclude that

(u− ux,λ)(y) = (u− ux,λ)(y) + (ux,λ − ux,λ)(y) ≥
C3

2|y − x|n−2s
(3.16)

for all y satisfying |y − x| ≥ λ+ δ and all λ satisfying λ ≤ λ ≤ λ+ δ1.

Estimate of u − ux,λ inside the ball B(x, λ + δ). From now on, we always assume
λ ≤ λ ≤ λ+δ1 where the constant δ1 is found in the previous step. We shall obtain (3.20).
Making use of (3.4), (3.13), and (3.14) we get

(u− ux,λ)(y) ≥ γ2s,n

∫

|z−x|≥λ

K(x, λ; y, z)Hε,λ,x(z)dz

= γ2s,n

(∫

λ+δ≥|z−x|≥λ

+

∫

|z−x|≥λ+δ

)
K(x, λ; y, z)Hε,λ,x(z)dz.

with

Hε,λ,x(z) = ε
( 2

1 + |z|2
)2s(

u(z)− ux,λ(z)
)
+
( 2

1 + |z|2

)σ(
uα(z)− uα

x,λ(z)
)
.

Thanks to (3.16) we know that u ≥ ux,λ in the region |z−x| ≥ λ+δ and λ ≤ λ ≤ λ+δ1.
This yields

∫

|z−x|≥λ+δ

K(x, λ; y, z)Hε,λ,x(z)dz ≥

∫

λ+3≥|z−x|≥λ+2

K(x, λ; y, z)Hε,λ,x(z)dz.

Therefore, we can further estimate u− ux,λ as follows

(u− ux,λ)(y) ≥ γ2s,n

( ∫

λ+δ≥|z−x|≥λ

+

∫

λ+3≥|z−x|≥λ+2

)
K(x, λ; y, z)Hε,λ,x(z)dz

= γ2s,n(I + II).
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Hence for some sufficiently small δ2 ∈ (0, δ1) to be specified later we shall show that

I + II ≥ 0 for all λ ≤ |y − x| ≤ λ+ δ, λ ≤ λ ≤ λ+ δ2;

see (3.20). To see this, we estimate I and II term by term.

Estimate of I . Using the smoothness of u, there exists some C7 > 0 independent of δ2
such that

max
{
|ux,λ(z)− ux,λ(z)|, |u

α
x,λ

(z)− uα
x,λ(z)|

}
≤ C5(λ− λ) ≤ C7δ2 (3.17)

for all λ ≤ |z − x| ≤ λ+ δ and all λ ≤ λ ≤ λ+ δ2. Besides, in view of (3.5) we have the
following estimate

∫

λ≤|z−x|≤λ+δ

K(x, λ; y, z)dz ≤ C8(|y − x| − λ) (3.18)

for some C8 > 0; see Appendix A. As 0 ≤ |z − x| − λ ≤ δ2, we obtain from (3.18) the
following

∫

λ≤|z−x|≤λ+δ2

K(x, λ; y, z)
(
|z − x| − λ

)
dz ≤ C8δ2(|y − x| − λ). (3.19)

With help of (3.17), (3.18), and (3.19) we are able to estimate I as follows

I =

∫

λ+δ≥|z−x|≥λ

K(x, λ; y, z)Hε,λ,x(z)dz ≥ −C7C8δ2(|y − x| − λ).

Estimate of II . By (3.16), there is some C9 > 0 such that

max
{
u(z)− ux,λ(z), u

α(z)− uα
x,λ(z)

}
≥ C9

for any z satisfying λ+ 2 ≤ |z − x| ≤ λ+ 3 and any λ ≤ λ ≤ λ+ δ2. This leads to

II =

∫

λ+3≥|z−x|≥λ+2

K(x, λ; y, z)Hε,λ,x(z)dz

≥ C9

∫

λ+3≥|z−x|≥λ+2

K(x, λ; y, z)
(
ε
( 2

1 + |z|2
)2s

+
( 2

1 + |z|2
)σ)

dz.

Observe from (3.5) that K(x, λ; y, z) = 0 for y ∈ ∂Bλ(x) and that

〈∇yK(x, λ; y, z), y − x〉
∣∣
|y−x|=λ

= (n− 2s)
|z − x|2 − |y − x|2

|y − z|n+2−2s
> 0

for all λ+ 2 ≤ |z − x| ≤ λ+ 3. Therefore, there is some C8 > 0 independent of θ2 such
that

K(x, λ; y, z) ≥ C10(|y − x| − λ) for all λ+ 2 ≤ |z − x| ≤ λ+ 3.

Putting the above estimates together we arrive at

II ≥ C7C8

∫

λ+3≥|z−x|≥λ+2

( 2

1 + |z|2
)σ
dz.

We are now in position to combine the two estimates for I and II to get Thus, it follows
from the above that for λ ≤ λ ≤ λ+ θ and for λ ≤ |y − x| ≤ λ+ δ,

(u− ux,λ)(y)

γ2s,n
= I + II

≥
(
− C7C8δ2 + C9C10

∫

λ+2≤|z−x|≤λ+3

( 2

1 + |z|2
)σ
dz

)
(|y − x| − λ).

(3.20)
In view of (3.20) if we choose θ2 sufficiently small, then the right most hand side of (3.20)
is positive. Together with the estimate in (3.16) we deduce that (u − ux,λ)(y) > 0. This
contradicts the definition of λ in (3.8). This completes the proof of Lemma 3.5. �
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After proving Lemma 3.5, we have the following remarks.

Remark 3.6. It is worth noting that the condition x ∈ R
n \ {0} is crucially used in the

proof of Lemma 3.5, and it is not clear if λ(x) = |x| or not. In fact, we would like to
know the exact value of λ(x) at any point x ∈ R

n \ {0}. It turns out that with help of
Theorem 1.2 we are able to compute the exact value of λ(x) at any point x ∈ R

n \ {0};
see Appendix C.

Finally, we are in position to complete our proof of Theorem 1.2.

Lemma 3.7. The function u is radially symmetric about the origin. Consequently, the

function v must be constant.

Proof. Using Lemma 3.5, we obtain for every x ∈ R
n \ {0},

ux,λ(y) ≤ u(y) for all |y − x| ≥ λ, 0 < λ < |x|. (3.21)

Let y ∈ R
n \ {0} and a > 0 be arbitrary but fixed. Let ~e ∈ R

n be any unit vector such
that

〈y − a~e, ~e〉 ≤ 0. (3.22)

For any number R > a if we set λ = R − a and x = R~e, then 0 < λ < |x| and with help
of (3.22) we get

|y − x|2 = |y − a~e− λ~e|2 = λ2 + |y − a~e|2 − 2λ〈y − a~e, ~e〉 ≥ λ2.

Therefore, we can apply (3.21) to get

u(y) ≥ ux,λ(y) =
( λ

|y − x|

)n−2s
u
(
x+

λ2(y − x)

|y − x|2
)

=
( R− a

|y −R~e|

)n−2s
u
(
R~e+

(R − a)2(y −R~e)

|y −R~e|2
)
.

Notice that

R~e+
(R− a)2(y −R~e)

|y −R~e|2
=

R|y −R~e|2e+ (R − a)2(y −R~e)

|y −R~e|2

=
R(|y|2 − 2R〈y,~e〉+R2)~e + (R2 − 2Ra+ a2)(y −R~e)

|y −R~e|2

Hence, by letting R to infinity, we get

R~e+
(R − a)2(y −R~e)

|y −R~e|2
→ y − 2(〈y,~e〉 − a)~e.

Obviously,
( R− a

|y −R~e|

)n−2s
→ 1

as R goes to infinity. Hence, by the continuity of u, we arrive at

u(y) ≥ u(y − 2(〈y,~e〉 − a)~e). (3.23)

Since the inequality (3.23) above holds for arbitrary a > 0, we let a ց 0 to get

u(y) ≥ u(−y) for all y ∈ R
n \ {0}.

Since y ∈ R
n \ {0} is arbitrary, it follows from the preceding inequality that u is radially

symmetric about the origin. Having the symmetry of u one can quickly conclude that v
must be constant. Indeed, using the relation

u =
( 2

1 + |x|2
)n−2s

2 (v ◦ π−1
N ) in R

n
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we know that the function v depends only the last coordinate xn+1 in R
n+1. However, as

the xn+1-axis is arbitrarily chosen, the function v must be constant. This completes the
proof. �

4. APPLICATION TO THE SHARP CRITICAL FRACTIONAL SOBOLEV INEQUALITY

This section is devoted to a proof of Theorem 1.4 which concerns a sharp subcriti-
cal/critical Sobolev inequality (1.13), namely

∫

Sn

vP2s
n (v)dµgSn ≥

Γ(n/2 + s)

Γ(n/2− s)
|Sn|

α−1
α+1

( ∫

Sn

|v|α+1dµgSn

) 2
α+1

with 0 < α ≤ (n+ 2s)/(n− 2s). We note by the Hölder inequality that
∫

Sn

|v|α+1dµgSn ≤ |Sn|1−
(α+1)(n−2s)

2n

( ∫

Sn

|v|
2n

n−2s dµgSn

) (α+1)(n−2s)
2n

,

which implies

|Sn|
α−1
α+1

(∫

Sn

|v|α+1dµgSn

) 2
α+1

≤ |Sn|
2s
n

(∫

Sn

|v|
2n

n−2s dµgSn

)n−2s
n

.

Hence, the subcritical case of (1.13) can be derived directly from the critical case of (1.13).
Of course, it is clear that equality in (1.13) occurs if v is any constant function. Therefore,
in the rest of this section, it suffices to investigate the critical case of (1.13), namely we
shall prove the following sharp inequality

∫

Sn

vP2s
n (v)dµgSn ≥

Γ(n/2 + s)

Γ(n/2− s)
|Sn|

2s
n

(∫

Sn

|v|
2n

n−2s dµgSn

)n−2s
n

.

Set
S = Q2s

n |Sn|2s/n.

Since we shall make use of a limit process, it is freely to consider ε ∈ (0, 1). Now we
consider the following variational problem

Sε = inf
v∈W

∫

Sn

[
vP2s

n (v)− εQ2s
n v2

]
dµgSn (4.1)

within the set

W =
{
v ∈ Hs(Sn) :

∫

Sn

|v|
2n

n−2s dµgSn = 1
}
.

The set W is not empty because |Sn|−
n−2s
2n ∈ W . Besides, we also have

|Sn|−
n−2s
2n P

2s
n (|Sn|−

n−2s
2n )− εQ2s

n |Sn|−
n−2s

n = (1− ε)Q2s
n |Sn|−

n−2s
n 6= 0,

which helps us to conclude from (4.1) that

Sε ≤ (1− ε)Q2s
n |Sn|2s/n < +∞,

however, Sε could be −∞. Eventually we are able to show that Sε = (1− ε)Q2s
n |Sn|2s/n,

but at the moment, we show that Sε is finite and is achieved by some smooth positive
function vε.

Lemma 4.1. The constant Sε in (4.1) is finite and there exists some vε ∈ C∞(Sn) such

that ∫

Sn

[
vε P

2s
n (vε)− εQ2s

n v2ε
]
dµgSn = Sε

(∫

Sn

|vε|
2n

n−s dµgSn

)n−2s
n

.

In particular, vε solves

P
2s
n (vε) = εQ2s

n vε + Sε|vε|
4s

n−2s vε in S
n.
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Proof. Let us write

A2s,ε(v) :=

∫

Sn

[
vP2s

n (v) − εQ2s
n v2

]
dµgSn .

Note that, α2s,n(l) ≥ 0 for all l as 2s < n and α2s,n(l) grows like l2s + s(n− 1)l2s−1 for
large l by Stirling’s formula; see (B.1) in Appendix B. Due to the formula (1.4) and the fact
that the remaining finite rank terms are bounded in L2(Sn), we obtain for all v ∈ Hs(Sn)
that ∫

Sn

vP2s
n (v)dµgSn ≥ C11‖v‖

2
Hs(Sn) − C12‖v‖

2
L2(Sn) (4.2)

with two positive constants C11 and C12. This and the Hölder inequality imply

A2s,ε(v) ≥ −
(
C12 + εQ2s

n

) ∫

Sn

v2dµgSn

≥ −
(
C12 + εQ2s

n

)
|Sn|

2s
n

( ∫

Sn

|v|
2n

n−2s dµgSn

)n−2s
n

for all v ∈ Hs(Sn). From this we get Sε > −∞. In fact, thanks to ε > 0 one should have

Sε < S.

This is trivial because by testing with the constant |Sn|−
n−2s
2n function on S

n one should
have

Sε ≤

∫

Sn

(1 − ε)Q2s
n |Sn|−

n−2s
n dµgSn < Q2s

n |Sn|
2s
n = S.

Having this if we let (vk)k≥1 be a minimizing sequence for Sε, then using (4.2) again,
we have (vk)k is bounded in Hs(Sn). By the lower semicontinuity, we have

A2s,ε(vε) ≤ lim
k→∞

A2s,ε(vk) = 1.

Therefore, let Ds be the fractional s-gradient, using the concentration-compactness princi-
ple, see e.g. [Maz16, Theorem 4] for integer case and [BSS18, Theorem 1.1] for fractional
case, there are two non-negative Borel regular measures µ and ν on S

n and a function
vε ∈ Hs(Sn) such that

vk ⇀ vε weakly in Hs(Sn) and a.e. in S
n, (4.3)

that
|Dsvk|

2dµgSn ⇀ µ weakly in the sense of measures, (4.4)
and that

|vk|
2n

n−2s ⇀ ν weakly in the sense of measures, (4.5)
up to a subsequence. In addition, there is an at most countable set I, a family of distinct
points {xi : i ∈ I} ⊂ S

n, families of non-negative weights {αi : i ∈ I} and {βi : i ∈ I}
such that

ν = |vε|
2n

n−2s dµgSn +
∑

i∈I

αiδxi , (4.6)

and
µ ≥ |Dsvε|

2dµgSn +
∑

i∈I

βiδxi , (4.7)

and

α
n−2s

n

i ≤
βi

S
for all i ∈ I. (4.8)

As vk ∈ W and |vk|
2n

n−2s ⇀ ν weakly in the sense of measures, testing (4.6) with suitable
constant functions gives ∫

Sn

dν = 1,
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which, by making use of (4.6), further implies

1 =

∫

Sn

|vε|
2n

n−2s dµgSn +
∑

i∈I

αi. (4.9)

In particular, there holds αi < 1 for all i ∈ I. In view of the inequality (4.7) for µ gives

Sε = lim
k→+∞

∫

Sn

[
vk P

2s
n (vk)− εQ2s

n v2k
]
dµgSn

= lim
k→+∞

∫

Sn

[
vk P

2s
n (vk)− |Dsvk|

2
]
dµgSn

+ lim
k→+∞

∫

Sn

[
|Dsvk|

2 − εQ2s
n v2k

]
dµgSn

≥ lim
k→+∞

∫

Sn

[
vk P

2s
n (vk)− |Dsvk|

2
]
dµgSn

+

∫

Sn

[
|Dsvε|

2 − εQ2s
n v2ε

]
dµgSn +

∑

i∈I

βi.

(4.10)

Set wk = vk − vε, we now show that

lim
k→+∞

∫

Sn

[
wk P

2s
n (wk)− |Dswk|

2
]
dµgSn = 0. (4.11)

Let l ∈ N0 and Yl be the spherical harmonic of degree l on S
n. Since (Yl)l∈N0 is a basis

of L2(Sn), we can write

wk =
∑

l∈N0

bklYl.

Owing to the weak convergence of wk to 0 in Hs(Sn), see (4.3), we have, for each l ∈ N0,
that bkl → 0 as k → ∞. Note that (wk)k is uniformly bounded in Hs(Sn), yielding∑

l∈N0
b2k,ll

2s is uniformly bounded in k by C13. Note also that

DsYl = lsYl

and that
P

2s
n (Yl) = α2s,n(l)Yl. (4.12)

Hence,
∣∣∣
∫

Sn

[
wk P

2s
n (wk)− |Dswk|

2
]
dµgSn

∣∣∣ ≤
∑

l∈N0

∣∣α2s,n(l)− l2s
∣∣b2k,l

Keep in mind that α2s,n(l)− l2s grows like (n− 1)sl2s−1 for large l. Consequently, for h
sufficiently small, we take m0 > 2(n− 1)sC13/h to obtain
∫

Sn

[
wk P

2s
n (wk)− |Dswk|

2
]
dµgSn ≤

m0∑

l=0

∣∣α2s,n(l)− l2s
∣∣b2k,l + 2(n− 1)s

∑

l>m0

b2k,ll
2s−1

≤

m0∑

l=0

∣∣α2s,n(l)− l2s
∣∣b2k,l +

2(n− 1)sC13

m0

≤

m0∑

l=0

∣∣α2s,n(l)− l2s
∣∣b2k,l + h.

Sending k → ∞, we deduce that
∣∣∣ lim
k→+∞

∫

Sn

[
wk P

2s
n (wk)− |Dswk|

2
]
dµgSn

∣∣∣ ≤ h
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for any h sufficiently small. The limit (4.11) thus follows. Using the weak convergence
wk = vk − vε ⇀ 0 in Hs(Sn) we deduce that
∫

Sn

[
vk P

2s
n (vk)− |Dsvk|

2
]
dµgSn =

∫

Sn

[
vε P

2s
n (vε)− |Dsvε|

2
]
dµgSn

+

∫

Sn

[
wk P

2s
n (wk)− |Dswk|

2
]
dµgSn + o(1)kր+∞.

Hence, combining this with (4.10) and (4.11) gives

Sε ≥ lim
k→+∞

∫

Sn

[
vk P

2s
n (vk)− |Dsvk|

2
]
dµgSn

+

∫

Sn

[
|Dsvε|

2 − εQ2s
n v2ε

]
dµgSn +

∑

i∈I

βi

=

∫

Sn

[
vε P

2s
n (vε)− εQ2s

n v2ε
]
dµgSn +

∑

i∈I

βi.

Using (4.8) and the boundedness αi < 1 for any i ∈ I, we get further

Sε ≥ Sε

∫

Sn

|vε|
2n

n−2s dµgSn + S
∑

i∈I

α
n−2s

n
i

≥ Sε

∫

Sn

|vε|
2n

n−2s dµgSn + S
∑

i∈I

αi.

Thanks to (4.9) we eventually arrive at

0 ≥
(
S − Sε

)∑

i∈I

αi ≥ 0.

Keep in mind that Sε < S. Therefore, the only possibility for which the above inequalities
occur is αi = 0 for all i ∈ I. This implies that no concentration occurs, that is equivalent
to saying that

vk → vε strongly in Hs(Sn).

In particular, vε ∈ W , and standard arguments show that vε solves

P
2s
n (vε) = εQ2s

n vε + Sε|vε|
4s

n−2s vε in S
n.

Hence

Sε ≤

∫

Sn

[
vε P

2s
n (vε)− εQ2s

n v2ε
]
dµgSn = Sε

∫

Sn

|vε|
n+2s
n−2s dµgSn = Sε.

Hence, the constant Sε is attained by vε. This completes the proof. �

When s = m is an integer, part of the above proof can be simplified, this is because
P

2s
n is a linear combination of finite terms. Precisely, we do not have to go through (4.11)

because

lim
k→∞

∫

Sn

vkP
2m
n (vk)dµgSn = lim

k→∞

∫

Sn

[
|∇mvk|

2 +

m−1∑

j=0

aj |∇
ivk|

2
]
dµgSn

≥

∫

Sn

|∇mvε|
2dµgSn +

∑

i∈I

βi +

m−1∑

j=0

aj

∫

Sn

|∇ivε|
2dµgSn

=

∫

Sn

vεP
2m
n (vε)dµgSn +

∑

i∈I

βi,
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thanks to (4.7) and the strong convergence∇jvk → ∇jvε in L2(Sn) for all 0 ≤ j ≤ m−1.
From this we immediately get

Sε ≥

∫

Sn

[
vεP

2m
n (vε)− εQ2m

n v2ε
]
dµgSn +

∑

i∈I

βi.

Adopting an interesting argument in [CLS22] we are able to prove that the function vε
obtained in Lemma 4.1 above is actually non-negative.

Lemma 4.2. The optimal function vε ∈ C∞(Sn) for Sε in (4.1) is strictly positive, in

particular, vε solves

P
2s
n (vε) = εQ2s

n vε + Sεv
n+2s
n−2s
ε in S

n.

Proof. Let us recall some facts from the Legendre duality on S
n. To a convex functional

F , we may associate the functional F∗ defined by the Legendre transform as

F∗[v] = sup
φ

(∫

Sn

φvdµgSn − F [φ]
)
.

A fundamental inequality, known as the order reversal property of the Legendre transform,
is the following: if we have

F1[v] ≤ F2[v]

then we have
F∗

1 [v] ≥ F∗
2 [v].

It is well-known that if

G[v] =

∫

Sn

vP2s
n (v)dµgSn ,

H[v] =
(∫

Sn

|v|pdµgSn

)2/p

= ‖v‖2p

for p > 1, then

G∗[v] =
1

4

∫

Sn

v
(
P

2s
n

)−1
(v)dµgSn ,

H∗[v] =
1

4

(∫

Sn

|v|
p

p−1 dµgSn

) 2(p−1)
p

=
1

4
‖v‖2p/(p−1)

Let us now consider the following perturbed Sobolev inequality for arbitrary v ∈ Hs(Sn)
∫

Sn

vP2s
n (v)dµgSn ≥ εQ2s

n

∫

Sn

v2dµgSn + Sε

( ∫

Sn

|v|
2n

n−2s dµgSn

)n−2s
n

. (4.13)

It follows from Lemma 4.1 that vε is an optimal function for (4.13). By the duality inequal-
ity, there holds

∫

Sn

v
(
P

2s
n

)−1
(v)dµgSn ≤

1

εQ2s
n

∫

Sn

|v|2dµgSn +
1

Sε

(∫

Sn

|v|
2n

n+2s dµgSn

)n+2s
n

.

Since
(
P

2s
n

)−1
(v)(y) =

∫

Sn

v(z)

|z − y|n−2s
dµgSn (z),

the above inequality becomes
∫

Sn

∫

Sn

v(y)v(z)

|z − y|n−2s
dµgSn dµgSn ≤

1

Sε

(∫

Sn

|v|
2n

n+2s dµgSn

)n+2s
n

+
1

εQ2s
n

∫

Sn

|v|2dµgSn

(4.14)
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for any v ∈ Hs(Sn). Thus, from the perturbed Sobolev inequality (4.13) we are able
to derive the perturbed Hardy–Littewood–Sobolev inequality (4.14). In particular, (4.14)
should hold for the symmetric decreasing rearrangement of v, which is obviously non-
negative. In fact, thanks to [LL01, page 81] and [Lie83, Lemma 2.1(i)] we should have
from (4.14) the following

∫

Sn

∫

Sn

v(y)v(z)

|z − y|n−2s
dµgSn dµgSn ≤

∫

Sn

∫

Sn

v∗(y)v∗(z)

|z − y|n−2s
dµgSndµgSn

≤
1

Sε
‖v∗‖2p/(p−1) +

1

εQ2s
n

‖v∗‖22

=
1

Sε
‖v‖2p/(p−1) +

1

εQ2s
n

‖v‖22,

where v∗ denotes the symmetric decreasing rearrangement of v. Since vε is an optimal
function for (4.13), it is clear that vε is also an optimal function for (4.14). From this we
necessarily have vε ≥ 0 everywhere. �

Having Lemmas 4.1 and 4.2 in hand, we are able to prove Theorem 1.4 as we shall do
now. By seeing our Liouville type result in Theorem 1.2, this is the place we need the
smallness of ε.

Proof of Theorem 1.4. Let ε ∈ (0, 1). By Lemmas 4.1 and 4.2, there is some non-negative,
smooth function vε satisfying

P
2s
n (vε) = εQ2s

n vε + Sεv
n+2s
n−2s
ε in S

n.

Then, it follows from Theorem 1.2 that vε must be constant. Hence, on one hand, as
Q2s

n = P
2s
n (1), we can compute to get

Sε = (1− ε)Q2s
n |Sn|2s/n,

on the other hand, by the definition of Sε we get
(∫

Sn

|v|
2n

n−2s dµgSn

)−n−2s
n

∫

Sn

[
vP2s

n (v) − εQ2s
n v2

]
dµgSn ≥ (1− ε)Q2s

n |Sn|2s/n

for any v ∈ Hs(Sn). Now letting ε ց 0 we obtain
∫

Sn

vP2s
n (v)dµgSn ≥ Q2s

n |Sn|
2s
n

(∫

Sn

|v|
2n

n−2s dµgSn

)n−2s
n

.

Recall that

Q2s
n = P

2s
n (1) =

Γ(n/2 + s)

Γ(n/2− s)
.

This completes the proof of the critical case of (1.13), hence completing the proof of The-
orem 1.4. �
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APPENDIX A. ESTIMATE (3.18) FOR THE KERNEL K

This appendix is devoted to the proof of (3.18), namely we prove that
∫

λ≤|z−x|≤λ+δ

K(x, λ; y, z)dz ≤ C
(
|y − x| − λ

)

for some C > 0. More or less this estimate is standard, but we re-mention it for com-
pleteness. Our argument depends on the following two ingredients. First we mention the
elementary inequality

∣∣∣
1

xp
−

1

yp

∣∣∣ ≤ p|x− y|max
{ 1

xp+1
,

1

yp+1

}

for any x, y > 0 and any p > 0. Next we observe that with κ < n, if y ∈ B(x,R), then
the following integral

∫

λ≤|z−x|≤λ+δ

1

|y − z|κ
dz ≤ C(λ, δ, |x|, R) (A.1)

is bounded from above, whose boundC depends on λ, δ, |x|, and R. This is simple because
∫

λ≤|z−x|≤λ+δ

1

|y − z|κ
dz =

∫

{y+z:λ≤|z−x|≤λ+δ}

dz

|z|κ
≤

∫

B(λ+δ+|x|+R)

dz

|z|κ
=: C

by triangle inequality. By using (3.5) we obtain
∫

λ+δ2≤|z−x|≤λ+δ

K(x, λ; y, z)dz

≤

∫

λ≤|z−x|≤λ+δ

K(x, λ; y, z)dz

≤

∫

λ≤|z−x|≤λ+δ

∣∣∣
1

|y − z|n−2s
−

1

|yx,λ − z|n−2s

∣∣∣dz

+

∫

λ≤|z−x|≤λ+δ

∣∣∣
( λ

|y − x|

)n−2s

− 1
∣∣∣

1

|yx,λ − z|n−2s
dz

=I1 + I2.

Using the above elementary inequality we immediately get
∣∣∣

1

|y − z|n−2s
−

1

|yx,λ − z|n−2s

∣∣∣

≤ (n− 2s)|y − yx,λ|max
{ 1

|y − z|n−2s+1
,

1

|yx,λ − z|n−2s+1

}
,

which, after making use of (A.1) twice, allows us to write

I1 ≤ C|y − yx,λ|

for some C > 0. (To be able to apply (A.1) we note that |yx,λ−x| = λ2/|y−x| ≤ λ ≤ λ+δ

for y being satisfied λ ≤ |y − x| ≤ λ+ δ.) For the term I2, we note that
∣∣∣
( λ

|y − x|

)n−2s

− 1
∣∣∣ = λn−2s

∣∣∣
1

|y − x|n−2s
−

1

λn−2s

∣∣∣

≤ (n− 2s)λn−2s
∣∣|y − x| − λ

∣∣max
{ 1

|y − x|n−2s
,

1

λn−2s

}

≤ (n− 2s)
(
|y − x| − λ

)

as |y − x| ≥ λ. Thus, applying (A.1) once gives

I2 ≤ C
(
|y − x| − λ

)
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for some C > 0. Putting the above estimates for I1 and I2 together we arrive at
∫

λ≤|z−x|≤λ+δ

K(x, λ; y, z)dz ≤ C|y − yx,λ|+ C
(
|y − x| − λ

)

= C
∣∣∣1−

λ2

|y − x|2

∣∣∣
∣∣y − x

∣∣+ C
(
|y − x| − λ

)

≤ C
(
|y − x| − λ

)

for some C > 0.

APPENDIX B. ASYMPTOTIC BEHAVIOR OF α2s,n(l)− l2s FOR LARGE l

Recall from (1.3) the following

α2s,n(l) =
Γ(l + n/2 + s)

Γ(l + n/2− s)
.

In [FKT22, page 13], the authors claim that α2s,n(l) grows like l2s for large l in the sense
that

α2s,n(l) = l2s + o(1)lր+∞.

To serve our purpose, see the proof of Lemma 4.1, we need a refiner asymptotic behavior
for α2s,n(l) for large l, and this is the content of this appendix. To be more precise, we
prove that

α2s,n(l) = l2s + (n− 1)sl2s−1 +O(l2s−2)lր+∞. (B.1)

This can be derived by making use of the following formula mentioned in [ET51]

Γ(x+ b)

Γ(x+ a)
= xb−a +

1

2
(b− a)(b + a− 1)xb−a−1 +O(xb−a−2)xր+∞. (B.2)

Indeed, using this formula, we deduce that

α2s,n(l) =
(
l +

n

2

)2s
− s

(
l +

n

2

)2s−1
+O

((
l +

n

2

)2s−2
)

lր+∞

= l2s + nsl2s−1 +O(l2s−2)lր+∞ − sl2s−1 +O(l2s−2)lր+∞.

From this we get (B.1). Since there is no direct proof of (B.2) in [ET51] and to make our
paper self-contained, we include here a proof for the reader’s convenience. Our starting
point is the following Stirling’s formula

ln Γ(x) = x lnx− x+
1

2
ln
(2π
x

)
+

N∑

n=1

B(n)

2n(2n− 1)x2n−1
+O(x−2N )xր+∞,

where B(n) is the n-th Bernoulli number. Hence, for any b > 0, we have

ln Γ(x+ b) =
1

2
ln(2π) +

(
x+ b−

1

2

)
ln(x+ b)− (x+ b) +

B(2)

2(x+ b)
+O(x−2)xր+∞.

Note that

ln(x+ b) = lnx+
b

x
−

b2

2x2
+ O(x−3)xր+∞.

That implies

ln Γ(x+ b) =
1

2
ln(2π) +

(
x+ b−

1

2

)(
lnx+

b

x
−

b2

2x2
+O(x−3)xր+∞

)

− (x+ b) +
B(2)

2x
+O(x−2)xր+∞

=
1

2
ln(2π)− x+

(
x+ b−

1

2

)
lnx+

b(b− 1) +B(2)

2x
+O(x−2)xր+∞.
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For any positive numbers a and b, we deduce that

ln Γ(x+ b)− ln Γ(x + a) = (b − a) lnx+
b(b− 1)− a(a− 1)

2x
+O(x−2)xր+∞

= (b − a) lnx+
(b− a)(b + a− 1)

2x
+O(x−2)xր+∞.

Consequently, we obtain
Γ(x+ b)

Γ(x+ a)
= xb−a exp

((b − a)(b+ a− 1)

2x
+O(x−2)xր+∞

)

= xb−a
(
1 +

(b− a)(b + a− 1)

2x
+O(x−2)xր+∞

)
,

which is our desired formula (B.2).

APPENDIX C. THE EXACT VALUE OF λ(x) FOR ANY x ∈ R
n \ {0}

We discuss the exact value of λ(x) at any x ∈ R
n \ {0} in this appendix. It follows

from Lemma 3.5 that
λ(x) ≥ |x| for any x ∈ R

n \ {0}.

But the above inequality is enough to obtain the symmetry of u; see Lemma 3.7. Conse-
quently, we conclude the main result saying that v must be constant. Remarkably, with help
of the main result we are able to obtain the exact value of λ. We shall prove the following.

Proposition C.1. There holds

λ(x) =
√
1 + |x|2 for any x ∈ R

n \ {0},

where λ(x) is given by (3.8).

The proof goes as follows. By means of Theorem 1.2 we know that the solution v to
(1.1) on S

n must be a non-negative constant, say C. Since v is non-trivial, we also have
C > 0. Thanks to (1.7), namely

u =
( 2

1 + |x|2
)n−2s

2 (v ◦ π−1
N ),

we conclude that

u(x) = C
( 2

1 + |x|2
)n−2s

2 everywhere in R
n.

Next we assume by way of contradiction that

λ(x) <
√
1 + |x|2 for some x ∈ R

n.

Then one can find sufficiently small ε > 0 in such a way that
(
(λ(x) + ε)2 − |y − x|2

)(
(λ(x) + ε)2 − 1− |x|2

)
≥ 0

for all y satisfying |y − x| ≥ λ(x) + ε. In fact, there holds
(
λ2 − |y − x|2

)
(λ2 − 1− |x|2) ≥ 0

for all y satisfying |y − x| ≥ λ with all λ ≤ λ(x) + ε. But this inequality is equivalent to
( λ

|y − x|

)n−2s
( 1

1 +
∣∣∣x+ λ2(y−x)

|y−x|2

∣∣∣
2

)n−2s
2

≤
( 1

1 + |y|2

)n−2s
2

,

which is nothing but
ux,λ(y) ≤ u(y) for all |y − x| ≥ λ

with λ ≤ λ(x) + ε. But this contradicts the definition of λ(x) in (3.8). Thus, λ(x) =√
1 + |x|2 as claimed.
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