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Abstract

This paper investigates the impulsive stability analysis issues of discrete-time positive singular
systems with time delay. First, the paper addresses the positivity problem of the system by
providing sufficient conditions. Next, a new method based on state transformations is presented
to derive a new delay-dependent criterion for the exponential stability of impulsive positive
singular systems. Finally, the effectiveness of the proposed conditions is validated through a
numerical example.
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1. Introduction

There exists a special class of dynamic systems called positive systems whose states and out-
puts are always nonnegative for any nonnegative inputs and nonnegative initial states [1]. Posi-
tive systems are widely applied in many fields like chemistry [2], ecology [3], and biomedicine
[4]. Numerous important results on positive systems have been achieved, such as stability anal-
ysis and controller synthesis [1, 5–9], input-output property analysis [10, 11], and filter design
[12, 13].

Impulsive systems have received considerable attention in the past few decades [14] due
to their wide applications in many practical areas such as economics, mechanics, population
dynamics, biological phenomena, etc. Many important results on various impulsive systems
have been explored. By employing Lyapunov functions with discontinuity at the impulse times,
the authors in [15] considered the problem of exponential stability of impulsive systems. Liu
[16] established comparison principles of existence and uniqueness and stability of solutions for
stochastic impulsive systems by combining Lyapunov-like function method and Itô’s formula.
The problem of input-to-state stability of impulsive systems with nonlinear perturbation was
addressed in [17]. Feng and Cao [1] discussed stability analysis for impulsive switched singular
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systems. Li et al. [18] provided several criteria for uniform stability and globally asymptotical
stability for impulsive systems via event-triggered impulsive control. The problem of noise-
to-state stability and globally asymptotic stability was studied in [19] for a class of random
nonlinear impulsive systems.

An impulsive positive system is positive system which is modeled with impulsive effect.
Impulsive positive system can be used to represent certain classes of epidemiology [20], popu-
lation models [21], and ecosystems [22], which having deterministic jumps in their dynamics.
Recently, impulsive positive systems have received great attention from researchers. By using
linear copositive Lyapunov functions, Zhang et al. [23] have proposed new conditions for im-
pulsive positive linear systems without time delays for the first time. However, as we know,
time delays are frequently encountered in many fields of science and engineering, and they are
often a source of degradation in system performance or instability. Therefore, it is necessary to
consider the problem of stability analysis for impulsive positive systems with time delays. Fol-
lowing these ideas, many researchers focus on stability analysis and control design problems for
impulsive positive systems through various techniques[24–28]. By combining a copositive LKF
and the average impulsive interval method, the authors in [24] established a sufficient criterion
of global exponential stability via linear programming problems for impulsive positive systems
with mixed time-varying delays. Hu et al. [25] derived some sufficient delay-independent
conditions to guarantee stability and stabilization for impulsive positive delay systems based
on the Lyapunov-Krasovskiis functional (LKF) method. Dwell-time stability and stabilization
for linear positive impulsive and switched systems were investigated in [26]. By constructing
a multiple linear copositive Lyapunov function and using the average dwell time method, the
guaranteed cost finite-time boundedness problem for positive discrete-time impulsive switched
systems was investigated in [29].

In the past three decades, singular systems theory has been widely investigated due to its
important applications in many fields from the engineering point of view. Many interesting
results have been explored for various singular systems such as linear delayed singular sys-
tems [30], TS fuzzy singular systems [31], stochastic polynomial fuzzy singular systems [32],
switched linear singular systems [33], and fractional-order singular systems [34]. For singular
systems with impulsive effects, few works on the problem of stability analysis can be found in
the literature [14, 35–38].

It should be noted that almost all of the current results on stability analysis problems are
focused on impulsive systems and singular systems, and few works are devoted to positive
impulsive systems, not to mention impulsive positive singular systems. To the best of the au-
thors’knowledge, the exponential stability analysis for discrete-time impulsive positive singular
system with time delays have not extensively investigated yet. One of the primary difficulties
is the presence of singularities, making applying standard linear analysis methods challenging.
The singularity of the matrix combined with the non-negativity of variables of impulsive pos-
itive singular systems makes the problem more difficult. Therefore, the exponential stability
analysis problem for the concerned systems is not trivial and still remains a technically chal-
lenging issue.

Motivated by the discussions mentioned above, this paper considers the impulsive stability
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analysis issues for the discrete-time positive singular system with time delays. The main con-
tributions of our paper are summarized as follows.
(i) For the first time, the problem of impulsive stability of the discrete-time positive singular
system with time delay has been studied;
(ii) New characterizations of positivity of such systems are proposed;
(iii) New sufficient conditions on the exponential stability of impulsive singular systems are
presented.

The rest of this paper is organized as follows. We present problem formulation, notations
and some auxiliary results that will be used in next sections in Section 2. Furthermore, in
Section 3, a new exponential stability criterion for discrete-time positive singular system with
time delay is established. In Section 4, numerical example is studied. The conclusions are given
in Section 5.

Notation: The sets of integers, positive integers, and nonnegative integers are represented
by Z,Z+, and N, respectively. The space of all nonnegative (positive) vectors in Rn is denoted
by Rn

0,+ (Rn
+), and the space of all real (s× q) matrices is denoted by Rs×q. In is the identity

matrix with n− dimensions. For x ∈Rn, x ⪰ 0 if all of the entries in a vector x are nonnegative.
For K ∈ Rh×h, if all of the off-diagonal entries in matrix K are nonnegative, the matrix is
Metzler. The notation || · || refers to the vector 1-norm. For a matrix K = (ki j)p×q ∈ Rp×q,
ki j denotes the entry in row i and column j. K ≻ 0(⪰ 0) indicates that all elements of the
matrix K are positive (nonnegative). Given a vector λ , the weighted ℓ∞ norm is defined as

∥x∥λ
∞ = max1≤i≤n

{
|xi|
λi

}
. For p < q, p,q ∈ N, p,q := p, p+1, . . . ,q.

2. Problem statement and preliminaries

Consider the following impulsive singular systems
Ex(t +1) = Ax(t)+Adx(t −h), t ̸= tm −1,
x1(tm) = Hx1(tm −1),m ∈ Z+,

x(s) = ν(s),s ∈ {−h,−h+1, · · · , 0},
(1)

where x(·) := (x1(·), x2(·)), x1(t) ∈ Rr and x2(t) ∈ Rn−r is the state vector. The matrix E ∈
Rn×n is singular and rank(E) = r < n. A, Ad are known constant matrices with appropriate
dimensions. In this paper, we suppose that the matrices E,A,Ad have the following expression:

E :=
(

Ir 0
0 0

)
,A :=

(
A1 A2
A3 A4

)
, Ad :=

(
Ad1 Ad2

Ad3 Ad4

)
,

A1,Ad1 ∈ Rr×r,A2,Ad2 ∈ Rr×(n−r),A3,Ad3 ∈ R(n−r)×r,A4, Ad4 ∈ R(n−r)×(n−r),H ∈ Rr×r. The
delay h ∈ Z+. ν : [−h,0] → Rn

+ is a vector-valued initial function with the norm defined by
∥ν∥h = sup−h≤s≤0 ∥ν(s)∥. The impulse sequence {tm}∞

m=1 satisfies 0 = t0 < t1 < t2 < · · · <
tm < · · · , tm → ∞ for m → ∞. Let us denote the state trajectory with the initial value (ν1,ν2) of
the system (1) by x1(t,ν1,ν2) and x2(t,ν1,ν2).
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Lemma 1. Assume that the matrix A4 in the system (1) satisfies the condition det(A4) ̸= 0. Then,
the solution of system (1) exists and is unique in Z+.

Proof. From det(A4) ̸= 0, for t ∈ [0,h], the system (1) can be reduced to the system:

x1(t +1) =A1x1(t)+A2x2(t)+Ad1ν1(t −h)+Ad2ν2(t −h), t ̸= tm −1,

x2(t) =−A−1
4
(
A3x1(t)+Ad3ν1(t −h)+Ad4ν2(t −h)

)
,

x1(tm) =Hx1(tm −1),m ∈ Z+,

(2)

For t = 0, from the first equation of (2) we have

x1(1) =
(
A1 −A2A−1

4 A3
)

ν1(0)+
(
Ad1 −A2A−1

4 Ad3

)
ν1(−h)+

(
Ad2 −A2A−1

4 Ad4

)
ν2(−h), (3)

Substitute (3) into the second equation of (2) we get

x2(1) =−A−1
4
(
A3x1(t)+Ad3ν1(1−h)+Ad4ν2(1−h)

)
,

Using the method of steps , we can find solution x1(t) on [0,h] of the first equation of (2).
Once x1(t) is known on [0,h], from the second equation of (2) we can find solution x2(t) on
[0,h]. Repeating the process on [nh,(n+ 1)h], n ∈ N, we can find solution x(t), t ≥ 0, which
completes the proof.

Definition 1. [39] System (1) is said to be an impulsive positive system if for all ν(t)⪰ 0, then
x(t,ν)⪰ 0 for all t ≥ 0.

Definition 2. The system (1) is said to be exponentially stable if ∃ ξ > 0,α ∈ (0,1) such that
for any ν(·)⪰ 0

∥x(t)∥ ≤ ξ α
t∥ν∥h, t ≥ 0.

Lemma 2. [40] Let K ∈Rl×l be a Metzler matrix. Then the following statements are equivalent:
i) ∃ ξ ∈ Rl satisfies ξ ≻ 0 and Kξ ≺ 0.
ii) K is Hurwitz.
iii) K is nonsingular and K−1 ⪯ 0.

Proposition 1. The system (1) is an impulsive positive system if A4 is a Metzler and Hurwitz
matrix and A1, A2, A3, H, Ad are nonnegative matrices.

Proof. A4 is a Metzler and Hurwitz matrix, then, using Lemma 2, we get det(A4) ̸= 0, then
system (1) has a unique solution, by Lemma 1. Furthermore, we get −A−1

4 ⪰ 0. Note that
−A−1

4 A3,−A−1
4 Ad3,−A−1

4 Ad4 are nonnegative matrices because −A−1
4 ,A3,Ad3,Ad4 , are nonneg-

ative. From (1) we get

x1(t +1) = A1x1(t)+A2x2(t)+Ad1x1(t −h)+Ad2x2(t −h),

x2(t) = (−A4)
−1(A3x1(t)+Ad3x1(t −h)+Ad4x2(t −h)

)
,

(4)
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for t = tm, we get

x1 (tm) = Hx1 (tm −1) ,m ∈ Z+. (5)

Firstly, we will prove that
x(t)⪰ 0, 0 ≤ t ≤ t1 −1. (6)

For t = 1, from the first equation of (4), we have

x1(1) = A1x1(0)+A2x2(0)+Ad1x1(−h)+Ad2x2(−h)
= A1ν1(0)+A2ν2(0)+Ad1ν1(−h)+Ad2ν2(−h)
⪰ 0,

(7)

From (7) and the second equation of (4), we have

x2(1) = (−A4)
−1(A3x1(1)+Ad3x1(1−h)+Ad4x2(1−h)

)
= (−A4)

−1(A3x1(1)+Ad3ν1(1−h)+Ad4ν2(1−h)
)

⪰ 0.

(8)

The combination of inequalities (7) and (8) yields x(1) ⪰ 0. Similarly, we have x(t) ⪰ 0,∀t ∈
{1,2, · · · , t1 −1}. Therefore, (6) holds.

For t = t1 we obtain x1 (t1) = Hx1 (t1 −1) . We have H ⪰ 0 and x1 (t1 −1) ⪰ 0 implies
x1 (t1)⪰ 0. From this and the second equation of (4) we get x2 (t1)⪰ 0.
For t1 ≤ t ≤ t2 −1, we show that

xi(t)⪰ 0, i = 1,2. (9)

Note that x(t1) ⪰ 0. Assume that (9) holds for all tk ≤ tl, t1 ≤ tl < t2 − 1. We shall prove (9)
holds for tk +1. From the first equation of (4), we have

x1(tk +1) = A1x1(tk)+A2x2(tk)+Ad1x1(tk −h)+Ad2x2(tk −h)⪰ 0, (10)

From (10) and the second equation of (4), we have

x2(tk +1) = (−A4)
−1(A3x1(tk +1)+Ad3x1(tk +1−h)+Ad4x2(tk +1−h)

)
⪰ 0. (11)

Combining the inequalities (10) and (11) yields x(tk +1)⪰ 0. Therefore, (9) holds.

When t = t2 we have x1 (t2) = Hx1 (t2 −1) . We have H ⪰ 0 and x1 (t2 −1) ⪰ 0 implies
x1 (t2)⪰ 0. From this and the second equation of (4) we get x2 (t2)⪰ 0. By repeating the same
procedure, we obtain xi(t)⪰ 0, i= 1,2, t ≥ 0. This implies that system (1) is impulsive positive.
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3. Stability analysis

This section investigates the exponential stability analysis problem for system (1). One ex-
ponential stability criterion for system (1) is given by the theorem below. From now, we always
assume that AE , Ad, H are nonnegative matrices.
Let us denote:

AE := A+ In −E,

A1 := A1 −A2A−1
4 A3 :=

(
ai j
)

r×r ,

A3 :=−A−1
4 A3 :=

(
di j
)
(n−r)×r ,

Ād1 := Ad1 −A2A−1
4 Ad3 :=

(
bi j
)

r×r ,

Ād2 := Ad2 −A2A−1
4 Ad4 :=

(
ci j
)

r×(n−r) ,

Ād3 :=−A−1
4 Ad3 :=

(
ei j
)
(n−r)×r ,

Ād4 :=−A−1
4 Ad4 :=

(
fi j
)
(n−r)×(n−r) ,

H := (hi j)r×r,

Λ1 := (λ1, . . . ,λr) ∈ Rr
+, Λ2 = (λr+1, . . . ,λn) ∈ Rn−r

+ ,

λ := (Λ1,Λ2) ∈ Rn
+.

Theorem 3. If there exist constants α ∈ (0,1), δ ∈ (0,1), and λ ∈ Rn
+ such that the following

conditions hold (
−αE +A+α

−hAd

)
λ ≺ 0, (12)

T≥− 1
δ

logαRλ , (13)

Ri
λ
=

1
α

r

∑
j=1

hi j
λ j

λi
> 1, i = 1,r, Rλ = max

1≤i≤r

{
Ri

λ

}
> 1. (14)

Then, under the minimum dwell-time T (i.e., the impulse time sequence fulfills infm {tm − tm−1}≥
T,m ∈ Z+), system (1) is an impulse positive and exponentially stable. Moreover, we have

∥x(t)∥ ≤

(
sup

−h≤s≤0
∥ν(s)∥λ

∞

)
∥λ∥α

(1−δ )t , t ≥ 0.

Proof. From AE :=A+ In−E ⪰ 0,Ad we have A1,A2,A3,A4+ In−r,Adi, i= 1,4 are nonnegative
matrices. This implies that A4 is a Metzler matrix. Setting λ = (Λ1, Λ2) ∈ Rr

+×Rn−r
+ . Using

(12), we get (
A4 +α

−hAd4

)
Λ2 ≺ 0,
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which implies that A4Λ2 ≺ 0 because of α−hAd4Λ2 ⪰ 0. Combining this with Lemma 2, we
get det(A4) ̸= 0 and A4 is a Hurwitz matrix, −A−1

4 ⪰ 0. As a result, system (1) has a unique
solution, according to Lemma 1. Moreover, from Proposition 1, we obtain that system (1) is an
impulse positive. Since Adi, i = 1,4,A1,A2,A3 are nonnegative, and −A−1

4 ⪰ 0, then we obtain

A1, A3, Ād1, Ād2, Ād3 , Ād4 are nonnegative matrices. Since
(

Ir −A2A−1
4

0 −A−1
4

)
is a nonnegative

matrix and nonsingular, from (12) we get:(
Ir −A2A−1

4
0 −A−1

4

)(
−αE +A+α

−hAd

)
λ ≺ 0. (15)

From (15), we have

r

∑
j=1

(
ai j +α

−hbi j

)
λ j +

n

∑
j=r+1

α
−hci jλ j −αλi ≺ 0, i = 1,r, (16)

r

∑
j=1

(
di j +α

−hei j

)
λ j +

n

∑
j=r+1

α
−h fi jλ j −λi ≺ 0, i = r+1,n. (17)

Let x(t,ν) = (x1(t),x2(t)), where x1(t) := (x1(t), . . . ,xr(t)), x2(t) := (xr+1(t), . . . ,xn(t)), be
the unique nontrivial solution of the system (1) with initial condition ν(·). From Proposition 1,
we have

x(t)⪰ 0, t ≥−h. (18)

To prove that the system (1) is exponentially stable, consider the functions as follows: Vi(x(t)) :=
xi(t)
λi

, i= 1,n and we choose the function V(x(t))=max1≤i≤n {Vi(x(t))}=max1≤i≤n

{
xi(t)
λi

}
,

this implies that x(t)⪯V(x(t))λ . From (16) and (17), we have

r

∑
j=1

(
ai j +α

−hbi j

)
λ j

λi
+

n

∑
j=r+1

ci jα
−h λ j

λi
−α < 0, i = 1,r, (19)

and

r

∑
j=1

(
di j +α

−hei j

)
λ j

λi
+

n

∑
j=r+1

α
−h fi j

λ j

λi
−1 < 0, i = r+1,n. (20)

It follows from (1) that

xi(t +1) =aiixi(t)+
r

∑
j=1, j ̸=i

ai jx j(t)+
r

∑
j=1

bi jx j(t −h)+
n

∑
j=r+1

ci jx j(t −h), i = 1,r,

xi(t) =
r

∑
j=1

di jx j(t)+
r

∑
j=1

ei jx j(t −h)+
n

∑
j=r+1

fi jx j(t −h), i = r+1,n.
(21)
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Setting ∥ν∥▷h := sup−h≤s≤0 ∥ν(s)∥λ
∞, and

zi(t) =


xi(t)
λi

−α t∥ν∥▷h, −h ≤ t ≤ 0, i = 1,n,

xi(t)
λi

− (Rλ )
m−1

α t∥ν∥▷h, tm−1 ≤ t < tm,m ∈ Z+.
(22)

We will show that
zi(t)≤ 0, ∀t ≥ 0,∀ i = 1,n. (23)

To prove (23), we divide into the following steps:
Step 1: We prove that (23) holds for t ∈ [−h,0]. Indeed, from (18), x(s) = ν(s),s ∈ [−h,0],
α ∈ (0,1) and the definition of ∥ν∥▷h, we obtain

zi(t) =
xi(t)
λi

−α
t∥ν∥▷h ≤ ∥x(t)∥λ

∞ −α
t∥ν∥▷h

≤ ∥ν∥▷h −α
t∥ν∥▷h ≤ 0, i = 1,n, t ∈ [−h,0] .

(24)

Step 2: We prove that
zi(t)≤ 0, ∀ i = 1,n, t ∈ (0, t1 −1] . (25)

Assume that this is not true. Then ∃ m ∈ {1,2, . . . ,n}, and t̄ ∈ (0, t1 −1] such that

zi(t)≤ 0, t ∈ (0, t̄ −1 ] , i = 1,n, (26)

and

zm (t̄)> 0. (27)

From (22), (24) and (26) we get

x(t)⪯ α
t∥ν∥▷hλ , ∀ t ∈ [−h, t̄ −1]. (28)

Now we consider two cases:

8



Case 1: If the index m ∈ {1,2, . . . ,r}, from (19), (21), (22) and (28) we have:

zm (t̄) =
xm(t̄)
λm

−α
t̄∥ν∥▷h

≤ 1
λm

(
ammxm(t̄ −1)+

r

∑
j=1, j ̸=m

am jx j(t̄ −1)+
r

∑
j=1

bm jx j(t̄ −1−h)

+
n

∑
j=r+1

cm jx j(t̄ −1−h)
)
−α

t̄∥ν∥▷h

≤ 1
λm

(
ammα

t̄−1∥ν∥▷hλm +
r

∑
j=1, j ̸=m

am jα
t̄−1∥ν∥▷hλ j +

r

∑
j=1

bm jα
−h

α
t̄−1∥ν∥▷hλ j

+
n

∑
j=r+1

cm jα
−h

α
t̄−1∥ν∥▷hλ j

)
−α

t̄∥ν∥▷h

= α
t̄−1∥ν∥▷h

(( r

∑
j=1

am j +α
−hbm j

) λ j

λm
+

n

∑
j=r+1

α
−hcm j

λ j

λm
−α

)
<

(19)
0,

(29)

which is in conflict with (27), zm (t̄)> 0, this implies that

zi(t)≤ 0,∀ i = 1,r, t ∈ (0, t1 −1] . (30)

Case 2: If the index m ∈ {r+1,r+2, . . . ,n}, from (20), (21), (22) and (28) we obtain:

zm(t̄) =
xm(t̄)
λm

−α
t̄∥ν∥▷h

=
1

λm

( r

∑
j=1

dm jx j(t̄)+
r

∑
j=1

em jx j(t̄ −h)+
n

∑
j=r+1

fm jx j(t̄ −h)
)
−α

t̄∥ν∥▷h

≤ 1
λm

( r

∑
j=1

dm jα
t̄∥ν∥▷hλ j +

r

∑
j=1

em jα
−h

α
t̄∥ν∥▷hλ j +

n

∑
j=r+1

fm jα
−h

α
t̄∥ν∥▷hλ j

)
−α

t̄∥ν∥▷h

= α
t̄∥ν∥▷h

(( r

∑
j=1

dm j + em jα
−h) λ j

λm
+

n

∑
j=r+1

fm jα
−h λ j

λm
−1
)

<
(20)

0,

(31)

which is in contradiction with zm (t̄)> 0, then we obtain

zi(t)≤ 0, ∀ i = r+1,n, t ∈ (0, t1 −1] . (32)

Combining together with (30) and (32) implies (25) hold.
Step 3: Suppose that zi(t)≤ 0, ∀ i = 1,n, t ∈ [0, ts) , s ∈ Z+, then

zi(t)≤ 0, i = 1,n, t ∈ [tm−1, tm) ,m = 1,2, . . . ,s. (33)
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For i = 1,n, we prove that zi(t)≤ 0, t ∈ [ts, ts+1) . First, we show that zi (ts)≤ 0, i = 1,n. From
(22) and (33), we get

xi(t) ≤
(22)

(Rλ )
m−1 ∥ν∥▷hα

t
λi, i = 1,n, t ∈ [tm−1, tm) , m = 1,2, . . . ,s,

x(ts −1)⪯ (Rλ )
s−1

α
ts−1∥ν∥▷hλ .

(34)

From (14), (22) and (34), for i = 1, . . . ,r, we get

zi (ts) =
(22)

xi (ts)
λi

− (Rλ )
s
α

ts∥ν∥▷h =
r

∑
j=1

hi j
x j(ts −1)

λi
− (Rλ )

s
α

ts∥ν∥▷h

≤
(34)

(Rλ )
s−1

α
ts−1∥ν∥▷h

r

∑
j=1

hi j
λ j

λi
− (Rλ )

s
α

ts∥ν∥▷h

= (Rλ )
s−1

α
ts−1∥ν∥▷h

(
r

∑
j=1

hi j
λ j

λi
−αRλ

)
≤

(14)
0, i = 1,r,

(35)

then, we have
xi (ts)≤ (Rλ )

s
α

ts∥ν∥▷h λi, i = 1,r. (36)

Note that Rλ > 1,h > 0, t ≥ 0, then ∀ t ∈ [0, ts), we get

xi(t −h)≤ (Rλ )
s ∥ν∥▷hα

−h
α

t
λi, i = 1,n. (37)

For i = r+1, . . . ,n, from (20), (21), (22), (34), (36) and (37) we achieve

zi(ts) =
xi(ts)

λi
−α

ts∥ν∥▷h (Rλ )
s

=
1
λi

( r

∑
j=1

di jx j(ts)+
r

∑
j=1

ei jx j(ts −h)+
n

∑
j=r+1

fi jx j(ts −h)
)
−α

ts∥ν∥▷h (Rλ )
s

≤ 1
λi

( r

∑
j=1

di j (Rλ )
s
α

ts∥ν∥▷hλ j +
r

∑
j=1

(Rλ )
s ei jα

−h
α

ts∥ν∥▷hλ j

+
n

∑
j=r+1

(Rλ )
s fi jα

−h
α

ts∥ν∥▷hλ j

)
− (Rλ )

s
α

ts∥ν∥▷h

= (Rλ )
s
α

ts∥ν∥▷h
(( r

∑
j=1

di j + ei jα
−h)λ j

λi
+

n

∑
j=r+1

fi jα
−h λ j

λi
−1
)

<
(20)

0.

(38)

Combining inequalities (35) and (38), we get

zi (ts)≤ 0, i = 1,n. (39)
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Therefore, we only need to show that zi(t)≤ 0 for all i = 1,n, t ∈ (ts, ts+1) . Assume that this is
not true, then ∃ p ∈ {1,2, . . . ,n}, t̂ ∈ (ts, ts+1 −1] such that

zi(t)≤ 0, i = 1,n, t ∈ (ts, t̂ −1] , (40)

zp (t̂)> 0. (41)

Combining (33), (39) and (40) yields

x(t)⪯ (Rλ )
m−1 ∥ν∥▷hα

t
λ , t ∈ [tm−1, tm),m = 1, · · · ,s.

x(t)⪯ (Rλ )
s ∥ν∥▷hα

t
λ , t ∈ [ts, t̂ −1].

(42)

Now we consider two cases:
Case I: If the index p ∈ {1,2, . . . ,r}, from (19), (21), (22), (42) we have:

zp (t̂) =
xp(t̂)
λp

− (Rλ )
s
α

t̂∥ν∥▷h

≤ 1
λp

(
appxp(t̂ −1)+

r

∑
j=1, j ̸=p

ap jx j(t̂ −1)+
r

∑
j=1

bp jx j(t̂ −1−h)+
n

∑
j=r+1

cp jx j(t̂ −1−h)
)

− (Rλ )
s
α

t̂∥ν∥▷h

≤ 1
λp

(
app (Rλ )

s
α

t̂−1∥ν∥▷hλp +
r

∑
j=1, j ̸=p

ap j (Rλ )
s
α

t̂−1∥ν∥▷hλ j +
r

∑
j=1

bp j (Rλ )
s
α
−h

α
t̂−1∥ν∥▷hλ j

+
n

∑
j=r+1

cp j (Rλ )
s
α
−h

α
t̂−1∥ν∥▷hλ j

)
− (Rλ )

s
α

t̂∥ν∥▷h

= (Rλ )
s
α

t̂−1∥ν∥▷h
(( r

∑
j=1

ap j +α
−hbp j

)λ j

λp
+

n

∑
j=r+1

α
−hcp j

λ j

λp
−α

)
<

(19)
0,

(43)

the opposite of (41), zp (t̂)> 0, therefore we obtain zi(t)≤ 0, i = 1,r, t ∈ (ts, ts+1) .
Case II: If the index p ∈ {r+1,r+2, . . . ,n}, from (20), (21), (22), and (42) we obtain:

zp(t̂) =
xp(t̂)
λp

− (Rλ )
s
α

t̂∥ν∥▷h

=
1

λp

( r

∑
j=1

dp jx j(t̂)+
r

∑
j=1

ep jx j(t̂ −h)+
n

∑
j=r+1

fp jx j(t̂ −h)
)
− (Rλ )

s
α

t̂∥ν∥▷h

≤ 1
λp

( r

∑
j=1

(Rλ )
s dp jα

t̂∥ν∥▷hλ j +
r

∑
j=1

(Rλ )
s ep jα

−h
α

t̂∥ν∥▷hλ j +
n

∑
j=r+1

(Rλ )
s fp jα

−h
α

t̂∥ν∥▷hλ j

)
− (Rλ )

s
α

t̂∥ν∥▷h

= (Rλ )
s
α

t̂∥ν∥▷h
(( r

∑
j=1

dp j + ep jα
−h)λ j

λp
+

n

∑
j=r+1

fp jα
−h λ j

λp
−1
)

<
(20)

0,

(44)
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which contradicts with (41), zp (t̂)> 0, therefore we obtain zi(t)≤ 0, i = r+1,n, t ∈ (ts, ts+1) .
As a result of the mathematical induction principle, we have established that zi(t)≤ 0, t ≥ 0, i =
1,n. In this light, we get

xi(t)
λi

≤(Rλ )
m−1

α
t∥ν∥▷h, i = 1,n, t ∈ [tm−1, tm) ,m ∈ Z+,

then

V(x(t)) = max
1≤i≤n

{
xi(t)
λi

}
≤ (Rλ )

m−1
α

t∥ν∥▷h, t ∈ [tm−1, tm) ,m ∈ Z+. (45)

Using (13), we have
Rλ ≤ α

−δT ≤ α
−δ (tm−tm−1), m ∈ Z+

combine this with inequality (45) to get

∥x(t)∥ ≤ ∥V(x(t))λ∥=V(x(t))∥λ∥ ≤ (Rλ )
m−1

α
t∥ν∥▷h∥λ∥

≤ α
−δ t1α

−δ (t2−t1) . . .α−δ (tm−1−tm−2)α
t∥ν∥▷h∥λ∥

= α
−δ [t1+(t2−t1)+...+(tm−1−tm−2)]α

t∥ν∥▷h∥λ∥= α
−δ tm−1α

t∥ν∥▷h∥λ∥
= α

−δ (tm−1−t)
α
−δ t

α
t∥ν∥▷h∥λ∥ ≤ α

(1−δ )t∥ν∥▷h∥λ∥, t ∈ [tm−1, tm) ,m ∈ Z+,

thus
∥x(t)∥ ≤ α

(1−δ )t∥ν∥▷h∥λ∥, t ≥ 0.

This means that system (1) is exponentially stable.

4. Numerical examples

Example 1 Consider system (1) where

E =

1 0 0
0 1 0
0 0 0

 , A =

0.15 0.2 0
0.1 0.2 0
0.15 0.2 −0.7

 ,

Ad =

0.2 0.1 0
0.1 0.2 0
1.0 2.0 0

 , H =

[
1 0.5
2 0.2

]
,

and h = 2. We see that AE := A+ I3−E, Ad, H are nonnegative matrices. For α = 0.8,δ = 0.9,
we can quickly check that the conditions (12), (13), (14) are satisfied with λ = [11 10 76]T .
By some simple calculation, we have R1

λ
= 1.4545 > 1, R2

λ
= 2.4 > 1, and Rλ = 2.4 > 1.

Thus, if tm − tm−1 ≥ T ≥ − 1
δ

logαRλ ,≈ 3.5310,m ∈ Z+, then, from Theorem 3, the system is
exponentially stable.

12



5. Conclusions

This research paper proposes a method for analyzing the exponential stability of discrete-
time impulsive positive singular systems with time delay. It presents new results on impul-
sive exponential stability for discrete-time impulsive positive singular systems with time delay,
which have not been previously reported in the literature. The proposed method is demonstrated
to be effective through a numerical example.
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