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ABSTRACT
In this paper, we present some new explicit criteria for exponential stability of positive monotone homo-
geneous continuous-time difference systems. Then, we apply the comparison principle to prove some
novel criteria for exponential stability of general nonlinear continuous-time difference systemswith delays,
not necessarily monotone and homogeneous. The obtained criteria include many results existing in the
literature as particular cases. Some examples are given to illustrate the obtained results.
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1. Introduction

This paper is devoted to the study of asymptotic proper-
ties of nonlinear monotone dynamical systems described by
continuous-time difference equations.

Applications of continuous-time difference equations are
well explained in several books, see, e.g. Hale and Lunel (1993)
and Niculescu (2001), where mathematical models in eco-
nomics and gas dynamics described by this type of equa-
tions are presented. Continuous-time difference equations with
delays appear in problems of delay approximation of the par-
tial differential equations describing the propagation phenom-
ena in excitable media (Courtemanche et al., 1996), in sta-
bility analysis of time-delay differential equations involving
system transformations (Kharitonov & Melchor-Aguilar, 2002;
Melchor-Aguilar et al., 2010) and difference operators in neu-
tral functional differential equations (Hale & Lunel, 1993;
Ngoc et al., 2007) and in coupled differential-difference equa-
tions (Pepe, 2005).

Stability of systems is always an important research topic in
the theory of control of dynamical systems. Given a widespread
interest in applications of continuous-time difference sys-
tems, stability analysis for this class of systems has recently
attracted a good deal of attention, see, e.g. Carvalho (1996),
Chitour et al. (2016), Damak et al. (2015, 2016), Di Loreto
et al. (2016), Di Loreto & Loiseau (2012), Iuliis et al. (2017),
Kharitonov (1996), Melchor-Aguilar (2013, 2019) and refer-
ences therein. So far, most of works in this field have been
concentrated on exponential stability analysis for linear time-
invariant systems with discrete multiple delays or distributed
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delays of the form

x(t) =
m∑
i=1

Aix(t − hi) +
∫ 0

−h
C(s)x(t + s) ds, t ≥ t0, (1)

or general linear time-invariant functional difference equations,
by using either the systems spectral properties or the Lyapunov
functions based approach. The more general case of time-
varying linear systems (for instance, when matrix functions
Ai(t),C(t, s), t ≥ t0, are considered in the systemmodel (1)) has
been studied in Ngoc and Huy (2015), by using the comparison
principle and spectral properties and non-negative matrices.
Nonlinear difference equations with delays have been consid-
ered in Gil and Cheng (2007), Melchor-Aguilar (2016) and
Shaikhet (2004), mainly by Lyapunov functions methods. In
particular, in Gil and Cheng (2007), some sufficient conditions
for asymptotic stability of the zero solution of the semi-linear
continuous-time difference systems with discrete delays

x(t) =
m∑
i=1

Ai(t)x(t − hi) + F(t, x(t − h1), x(t − h2), . . . ,

x(t − hm)), t ≥ 0, (2)

have been obtained, by using characteristic matrix-valued func-
tion and Laplace transform, under the assumption that the
nonlinear perturbation F is sufficiently small. These results have
been generalised recently in Melchor-Aguilar (2016) to the case
when F may include both discrete and integral delay terms.

© 2022 Informa UK Limited, trading as Taylor & Francis Group
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In this paper, we will study exponential stability of the class
of nonlinear monotone continuous-time difference systems with
both discrete delays and distributed delays of the general form

x(t) = F
(
t, x(t − h1(t)), x(t − h2(t)), . . . , x(t − hm(t)),

∫ 0

−h(t)
G(t, s, x(t + s)) ds

)
, (3)

t ≥ t0, which clearly includes linearmodels (1) and (2) as special
cases. It is worth noticing that monotone homogeneous sys-
tems comprise an important class of dynamical systems which
preserve an order in their state space. This types of systems
are of significant interest both for their practical applicability
(Sontag, 2007) and theoretical properties (Smith, 2008) and, in
recent years, problems of their stability analysis have attracted a
good deal of attention, see, e.g. Dashkovskiy et al. (2006), Dirr
et al. (2015) and Feyzmahdavian et al. (2014a, 2014b). Note that,
up to now, most efforts have been dedicated to time-invariant
monotone systems only. Exponential stability of time-varying
monotone systems, with both discrete delays and distributed
delays, is studied for the first time in this paper.

As a primary purpose, we will first establish some character-
isations of exponential stability for a class of nonlinear mono-
tone and homogeneous continuous-time difference systems of
the form (3). These results are shown to include many known
results in particular cases. Furthermore, the obtained results are
applied to get sufficient conditions of exponential stability for a
general class of nonlinear systems which can be upper-bounded
by monotone and homogeneous systems (in particular, by pos-
itive linear systems). To the best of our knowledge, such general
results are novel in the existing literature. In contrast to the
traditional Lyapunov functional-based method, our approach
relies on the comparison principle, with usingmonotonicity and
homogeneity of functions and the spectral properties of non-
negative matrices. Note additionally that a similar approach has
been used to study exponential stability for other classes of
nonlinear systems, see, e.g. Ngoc and Hieu (2013) (for discrete-
time model) and Tian and Sun (2020) (for differential model).
Differently, in this paper, we are dealing with exponential stabil-
ity for the continuous-time difference systems, containing both
multiple discrete delays and distributed delays.

The paper is organised as follows: In Section 1, we present the
scientific significance and motivation that lead us to the prob-
lem of stability of general nonlinear continuous-time difference
system of the form (3). In Section 2, we prove some novel cri-
teria for exponential stability of the zero solution of (3) when
F and G are monotone and positive homogeneous functions
for all non-negative initial conditions, satisfying some match-
ing assumption. In Section 3, we generalise the results to more
general cases when F and G are not necessarily positive but are
upper-bounded by some monotone and positive homogeneous
functions. In Section 4, we summarise the main contributions
of this paper.

Some notations. We now introduce some notations and
present some preliminary results which will be of use in the
paper. Throughout the paper, vectors are written in bold lower
case letters and matrices in capital letters, except for the zero
vector and the zero matrix, being denoted both as 0. Let

N,R,C be the set of all natural numbers, real numbers and
complex numbers, respectively. Set Z+ := N ∪ {0}. For given
n,m ∈ N,Rn denotes the vector space of all n-tuples of real
numbers and R

n×m denotes the space of n × m matrices with
real components. For a given k ∈ N, denote k := {1, 2, . . . , k}

and R
nk =

k times︷ ︸︸ ︷
R
n × · · · × R

n. The set of all vectors (resp., matri-
ces) in R

n (resp., R
n×m) with non-negative components is

denoted by R
n+ (resp., R

n×m
+ ). The identity n × n matrix is

denoted by In. Inequalities between real vectors and matrices
will be understood componentwise. More precisely, for x, y ∈
R
n, we write: x ≥ y if xi ≥ yi for i ∈ n := {1, 2, . . . , n}; x > y

if x ≥ y and x �= y; x � y if xi > yi for i ∈ n. Similar nota-
tions are adopted for matrices. If x = (x1, x2, . . . , xn)� ∈ R

n

and P = (pij) ∈ R
l×q, we denote |x| = (|x1|, |x2|, . . . , |xn|)� ∈

R
n+, |P| = (|pij|) ∈ R

l×q
+ . For anymatrixA ∈ R

n×n, the spectral
radius of A is denoted by ρ(A) = max{|z| : z ∈ C, det(zIn −
A) = 0}. A matrixA ∈ R

n×n is said to be Schur stable if ρ(A) <

1. Throughout the paper, the norm of vectors is assumed
to be monotonic, that is |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all
x, y ∈ R

n, or equivalently, ‖x‖ = ‖|x|‖, ∀x ∈ R
n, (see, e.g.)

Note that every p-norm on R
n, ‖x‖p = (|x1|p + |x2|p + · · · +

|xn|p)
1
p , 1 ≤ p < ∞ and ‖x‖∞ = maxi∈n |xi|), are monotonic

(Horn & Johnson, 1986). The norm ‖M‖ of a matrix M ∈
R
l×q is defined by ‖M‖ = max‖y‖=1 ‖My‖, where R

l and
R
q are provided with some monotonic vector norms. Then,

the following monotonicity property holds ‖P‖ ≤ ‖|P|‖ ≤
‖Q‖, whenever P ∈ R

l×q,Q ∈ R
l×q
+ , |P| ≤ Q, see, e.g. Hinrich-

sen and Son (1998). For any x = (x1, x2, . . . , xn)� ∈ R
n+ and

any α ∈ R, we define the vector xα = (xα
1 , x

α
2 , . . . , x

α
n )�. The

Hadamard product of two arbitrary vectors x, y ∈ R
n is defined

as x ◦ y = (x1y1, x2y2, . . . , xnyn)� ∈ R
n. By induction, we can

define the Hadamard product H
q
j=1 zj = z1 ◦ z2 ◦ · · · ◦ zq, of

any q vectors in R
n. It is easy to verify that if R

n is equipped
with p-norm, 1 ≤ p ≤ ∞, then

‖
q
H
j=1

zαj
j ‖ ≤

q∏
j=1

‖zj‖αj ∀zj ∈ R
n
+, ∀αj ∈ R+.

For k ∈ N and δ > 0,Bk(δ) := {x ∈ R
k : ‖x‖ < δ} is the open

ball of radius δ centred at the origin in R
k. Finally, for any

τ > 0, C([−τ , 0],Rn) denotes the Banach space of all con-
tinuous functions ϕ : [−τ , 0] → R

n equipped with the norm
‖ϕ‖[−τ ,0] = maxs∈[−τ ,0] ‖ϕ(s)‖.

2. Exponential stability of positively monotone
homogeneous systems

In this section, we shall prove some criteria for exponential
stability of the zero solution of the continuous-time differ-
ence equations of the form (3) where F(t, ·, . . . , ·) and G(t, s, ·)
are assumed to be monotone homogeneous and non-negative
functions.

First, we recall some definitions and known results necessary
for establishing the main results of this paper.

Definition 2.1: Let k, n ∈ N and a closed convex cone C ⊂ R
k

be given. A function H(·) : R
k �−→ R

n is said to be
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(i) monotone on C if H(u) ≥ H(v), for any u, v ∈ C satisfying
u ≥ v;

(ii) homogeneous on C ifH(λu) = λH(u), for all u ∈ C and all
real numbers λ > 0.

If C = R
k or C = R

k+ in (i) and (ii), then H is simply said to
be monotone homogeneous or, respectively, positively mono-
tone homogeneous, if no confusion can arise.

Clearly, if H is monotone on R
k+ and, moreover, H(0) = 0,

thenH(x) ∈ R
n+ for all x ∈ R

k+. Therefore, ifH is a linear func-
tion, then H is monotone if and only if its matrix (with respect
to the standard bases) is non-negative. These facts make the
class of dynamical systems described by monotone and homo-
geneous functions having many properties similar to those of
positive linear systems, in particular, those resulting from the
famous Perron–Frobenius Theorem for non-negative matri-
ces (see, e.g. Berman & Plemmons, 1979). Many efforts have
been observed during the last two decades to extend known
results on stability analysis for positive linear systems to this
particular class of nonlinear systems (see, e.g. Feyzmahdavian
et al., 2014a and the references given therein). For instance, it
has been proved, based on Perron–Frobenius Theorem, that the
discrete-time LTI positive system with time-varying delay

x(t + 1) = Ax(t) + Bx(t − τ(t)), t ∈ Z+,

where A,B ∈ R
n×n
+ and 0 ≤ τ(t) ≤ τmax is exponentially sta-

ble iff there exists some vector v � 0 such that (A + B)v � v
(see, e.g. Haddad & Chellaboina, 2004; Liu et al., 2010). The
extension of this result to monotone homogeneous systems has
been obtained in Feyzmahdavian et al. (2014b) as follows: The
discrete-time system

x(k + 1) = f (x(k)) + g(x(k − τ(k))), k ∈ Z+,

where f , g : R
n �→ R

n is continuous on R
n, monotone and

homogeneous on R
n+ and f (0) = g(0) = 0. Then the zero solu-

tion of this system is asymptotically stable if and only if there
exists a vector v � 0 such that f (v) + g(v) � v. See alsoMason
and Verwoerd (2009) for the case of continuous-time differen-
tial equations.

The main objective of this section is to establish some new
delay-independent, as well as delay-dependent, criteria of expo-
nential stability for nonlinear continuous-time difference sys-
tems of the general form (3) under some monotonicity and
homogeneity assumptions. It is important to note that (3)
is a time-varying nonlinear system containing both multiple
discrete delays and distributed delays. This general situation
renders the stability analysis for (3) much more technology
involved in comparison with the above time-invariant system.
The cost to be paid is that only sufficient conditions for expo-
nential stability of (3) will be established.

Consider the general nonlinear continuous-time difference
system with discrete and distributed delays of the form (3),
where h(·), hi(·) : R → R+, i ∈ m, are given continuous func-
tions satisfying 0 < h(t) ≤ ĥ, 0 < hi(t) ≤ ĥi, i ∈ m; F : R ×
R
n(m+1) �−→ R

n and G : R × [−ĥ, 0] × R
n �−→ R

n are given
continuous functions.

Denote τ := max{ĥ, ĥ1, ĥ2, . . . , ĥm}. Fix t0 ≥ 0 and ϕ ∈
C([−τ , 0],Rn), consider (3) with the initial condition of the
form

x(s + t0) = ϕ(s), s ∈ [−τ , 0]. (4)

By a solution of the initial value problem (3) and (4), we mean a
continuous vector-valued function x(·) : [−τ + t0,∞) �−→ R

n

such that (4) holds and x(·) satisfies (3) for all t ≥ t0.
Since functions F,G, hi, i ∈ m and h are continuous, it

follows that for any fixed t0 ≥ 0 and any given ϕ ∈ C :=
C([−τ , 0],Rn), the initial value problem (3) and (4) has a unique
continuous solution x(·; t0,ϕ), whenever ϕ satisfies the compat-
ibility condition ϕ ∈ Ct0 , where

Ct0 :=
{
ϕ ∈ C : ϕ(0) = F(t0,ϕ(−h1(t0)), . . . ,ϕ(−hm(t0)),

∫ 0

−h(t0)
G(t0, s,ϕ(s)) ds)

}
. (5)

In what follows, the system (3) with the initial condition (4) sat-
isfying the matching condition ϕ ∈ Ct0 will be referred to as the
system (3)–(5).

Remark 2.2: If the initial function ϕ ∈ C is taken arbitrarily,
then the initial value problem (3) and (4) still well admits, by an
obvious iterative scheme, a unique piecewise-continuous solu-
tion x(t, t0,ϕ), t ≥ t0, having possibly discontinuity at t = t0
which will be propagated in time and hence discontinuity may
occur again at tk = t0 + kτ , k = 1, 2, . . . In general, instead of
C one may choose a more general space (e.g. piecewise right-
continuous functions spacePC([−τ , 0),Rn) or even quadratic-
integrable function spaceL2([−τ , 0],Rn)) but then the concept
of solutions of the problem (3), (4)must be changed accordingly,
see, e.g. Carvalho (1996), Melchor-Aguilar (2013, 2016) and
Pepe (2014). In this paper, wewill restrict ourselves to the notion
of continuous solutions, so the spaceC := C([−τ , 0],Rn) is cho-
sen and the assumption that the initial function ϕ ∈ C satisfies
the matching condition (5) is needed and, consequently, the
solution x(·; t0,ϕ) of (3) and (4) is continuous.

Definition 2.3: The dynamical system (3)–(5) is said to be
positive if x(t; t0,ϕ) ∈ R

n+ for all t ≥ t0 wheneverϕ ∈ C+
t0 , where

C+
t0 := {ϕ ∈ Ct0 : ϕ(s) ≥ 0 for all s ∈ [−τ , 0]}. (6)

It is easy to show that the system (3)–(5) is positive if
F(t, x1, x2, . . . , xm+1) ≥ 0 and G(t, s, x) ≥ 0, for all t ≥ 0, s ∈
[−ĥ, 0], xi ∈ R

n+, i ∈ m + 1 and x ∈ R
n+. This implies, in par-

ticular, that the system (3)–(5) is positive if, for each t ≥ 0, s ∈
[−ĥ, 0], the functions F(t, ·) and G(t, s, ·) are monotone on
R
n(m+1)
+ and R

n+, respectively.
Consider the system (3)–(5) and assume that the functions F

and G satisfy the following condition:

F(t, 0, . . . , 0) = G(t, s, 0) = 0 ∀t ≥ t0, s ∈ [−ĥ, 0]. (7)

Then clearly the zero initial function ϕ(·) = 0 belongs to Ct0
and x0(t) := x(t, t0, 0) ≡ 0, t ≥ −τ + t0 is a solution (called the
zero solution) of (3)–(5).
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Definition 2.4: (i) The zero solution of (3)–(5) is said to be
locally exponentially stable (shortly, LES) if there exist r0 >

0,M > 0 and β ∈ (0, 1) such that for any ϕ ∈ Ct0 ,

‖ϕ‖[−τ ,0] ≤ r0 ⇒ ‖x(t, t0,ϕ)‖ ≤ Mβ t−t0‖ϕ‖[−τ ,0],

t ≥ t0. (8)

(ii) The zero solution of (3)–(5) is said to be globally exponen-
tially stable (shortly, GES) if r0 in (8) can be taken as large
as desired or, equivalently, there existM> 0 and β ∈ (0, 1)
such that for any ϕ ∈ Ct0 ,

‖x(t, t0,ϕ)‖ ≤ Mβ t−t0‖ϕ‖[−τ ,0], t ≥ t0. (9)

(iii) If (8) and (9) hold for any ϕ ∈ C+
t0 , then the zero solution

of (3)–(5) is said to be LES and GES with non-negative
initial conditions, respectively.

We are now in a position to prove the main result of this
section that gives a delay-dependent criterion for exponential
stability of the zero solution of (3)–(5).

Theorem 2.5: Consider the nonlinear continuous-time differ-
ence system (3)–(5) with continuous functions F, G. Assume that,
for each t ≥ t0, s ∈ [−ĥ, 0], the functions F(t, ·) and G(t, s, ·) are
monotone and homogeneous on R

n(m+1)
+ and R

n+, respectively. If
there exist a vector p ∈ R

n+, p � 0 and λ > 1 such that

F
(
t, λh1(t)p, λh2(t)p, . . . , λhm(t)p,

∫ 0

−h(t)
G(t, s, λ−sp) ds

)
� p

∀t ≥ t0, (10)

then the zero solution of (3)–(5) is GES with non-negative initial
conditions.

Proof: First, it follows from the assumption on F, G that (7)
holds and hence x(t) ≡ 0, t ≥ −τ + t0 is the zero solution
of (3)–(5). Further, it is obvious that the system (3) is positive,
and thus for any ϕ ∈ C+

t0 , the corresponding solution x(t) =
x(t; t0,ϕ) satisfies

x(t) ≥ 0, x(t − h(t)) ≥ 0, x(t − hi(t)) ≥ 0

∀t ≥ t0, ∀i ∈ m. (11)

We prove that there existM> 0 and β ∈ (0, 1) such that

‖x(t)‖ ≤ Mβ t−t0‖ϕ‖[−τ ,0], t ≥ t0, (12)

for any ϕ ∈ C+
t0 .

Take an arbitrary ϕ ∈ C+
t0 and let x(·) := x(·; t0,ϕ) be

the solution of (3) and (4). Choose K := Kϕ := λ‖ϕ‖[−τ ,0]

1
min{pi,i∈n} , then

ϕ(s) � Kp ∀s ∈ [−τ , 0]. (13)

Setting β = λ−1 ∈ (0, 1), consider the vector-valued function

u(t) = Kβ t−t0p, t ∈ R. (14)

It follows from (13) and the initial condition (4) that x(s + t0) =
ϕ(s) � Kp = u(t0) ≤ u(s + t0), ∀s ∈ [−τ , 0], or equivalently,

x(t) � u(t) ∀t ∈ [−τ + t0, t0]. (15)

We show that

x(t) ≤ u(t) ∀t ≥ t0. (16)

Assume to the contrary that (16) does not hold. Then, by the
continuity, it follows from (15) that there exist t1 > t0 and i0 ∈ n
such that

x(t) � u(t) ∀t ∈ [t0, t1) and xi0(t1) = ui0(t1). (17)

By the assumptions (i), (ii) on monotonicity and homogeneity
of F and G, we can deduce from (3), (10), (11), (14)–(16) and
the inequality in (17) that

xi0(t1) = Fi0

(
t1, x(t1 − h1(t1)), . . . , x(t1 − hm(t1)),

∫ 0

−h(t1)
G(t1, s, x(t1 + s)) ds

)

≤ Fi0

(
t1, u(t1 − h1(t1)), . . . , u(t1 − hm(t1)),

∫ 0

−h(t1)
G(t1, s, u(t1 + s)) ds

)

= Fi0

(
t1,Kβ t1−h1(t1)−t0p, . . . ,Kβ t1−hm(t1)−t0p,

∫ 0

−h(t)
G(t1, s,Kβ t1+s−t0p) ds

)

= Kβt1−t0Fi0

(
t1,β−h1(t1)p, . . . ,β−hm(t1)p,

∫ 0

−h(t1)
G(t1, s,βsp) ds

)

= Kβt1−t0Fi0

(
t1, λh1(t1)p, . . . , λhm(t1)p,

∫ 0

−h(t1)
G(t1, s, λ−sp) ds

)
< Kβt1−t0pi0 = ui0(t1).

However, this conflicts with the equality in (17). Thus, (16)
holds and implies, by the monotonicity of vector norms, that
‖x(t)‖ = ‖|x(t)|‖ ≤ ‖u(t)‖. SettingM := λ

min{pi,i∈n} ‖p‖, we see
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thatM is independent of ϕ,M > 1 and

‖x(t)‖ ≤ ‖u(t)‖ = Kβ t−t0‖p‖ = λ‖ϕ‖[−τ ,0]

× 1
min{pi, i ∈ n}β

t−t0‖p‖ = Mβ t−t0‖ϕ‖[−τ ,0],

for all t ≥ t0, as was to be shown. This completes the proof. �

In the case of time-invariant systems, Theorem 2.5 implies
the following delay-independent characterisation of exponen-
tial stability which is easier to verify than (10).

Corollary 2.6: Let F(t, u1, . . . , um+1) ≡ F(u1, . . . , um+1),
G(t, s, u) ≡ G(s, u) for all t ≥ t0 ≥ 0. Suppose that for each s ∈
[−ĥ, 0], the functions F(·) and G(s, ·) are monotone and homo-
geneous on R

n(m+1)
+ and R

n+, respectively. If there exists a vector
p ∈ R

n+, p � 0, such that

F
(
p, . . . , p,

∫ 0

−ĥ
G(s, p) ds

)
� p, (18)

then the zero solution of time-invariant system (3)–(5) is GES
with non-negative initial conditions.

Proof: Since F and G are time-invariant, (18) implies that (10)
holds for λ = 1. Therefore, by homogeneity and continuity of
the functions F and G, one can choose a λ > 1 such that

F
(
p, . . . , p,

∫ 0

−ĥ
G(s, p) ds

)

≤ F
(

λĥ1p, λĥ2p, . . . , λĥmp,
∫ 0

−ĥ
G(s, λ−sp) ds

)
� p.

Since 0 < h(t) ≤ ĥ, 0 < hi(t) ≤ ĥi, t ≥ t0, i ∈ m, it follows that

F
(

λh1(t)p, λh2(t)p, . . . , λhm(t)p,
∫ 0

−h(t)
G(s, λ−sp) ds

)

≤ F
(

λĥ1p, λĥ2p, . . . , λĥmp,
∫ 0

−ĥ
G(s, λ−sp) ds

)
� p, ∀t ≥ t0,

implying that the system is GES with non-negative initial con-
ditions, by Theorem 2.5. �

Remark 2.7: The above result can be extended even for
unbounded delays hi(t), i ∈ m satisfying the condition limt→+∞
(t − hi(t)) = +∞ (see, e.g. Assumption 4.1 in Feyzmahdavian
et al., 2014a for a detailed similar reasoning).

Theorem 2.5 is a general result that includes or generalises
many known results related to exponential stability of positive
or monotone continuous-time difference systems. First, let F be
of the form

F(t, x1, . . . , xm, xm+1) =
m+1∑
i=1

fi(t, xi). (19)

Then it is clear that F is monotone and homogeneous on
R
n(m+1)
+ , for each t ≥ t0, if all fi are so on R

n+, i ∈ m + 1.

Therefore, as an immediate consequence of Theorem 2.5, we
have:

Theorem 2.8: Let fi : R × R
n �−→ R

n, i ∈ m + 1 and g : R ×
[−ĥ, 0] × R

n �−→ R
n be given continuous functions such that,

for each t ≥ t0, s ∈ [−ĥ, 0], fi(t, ·) and g(t, s, ·) are monotone and
homogeneous on R

n+. Assume, moreover, that there exist a vector
p ∈ R

n+, p � 0 and λ > 1, such that

m∑
i=1

fi(t, p)λhi(t) + fm+1

(
t,
∫ 0

−h(t)
g(t, s, p)λ−s ds

)
� p

∀t ≥ t0. (20)

Then, the zero solution of the nonlinear equation with delays

x(t) =
m∑
i=1

fi(t, x(t − hi(t)))

+ fm+1

(
t,
∫ 0

−h(t)
g(t, s, x(t + s)) ds

)
, t ≥ t0, (21)

is GES with non-negative initial conditions.

In particular, if h(t) ≡ ĥ, hi(t) ≡ ĥi, t ≥ t0, i ∈ m and fi, i ∈
m + 1, g are linear non-negative functions, that is, fi(t, x) =
Ai(t)x, g(t, s, x) = C(t, s)x, with Ai(t) ∈ R

n×n
+ and C(t, s) ∈

R
n×n
+ for all t ≥ 0, s ∈ [−ĥ, 0], then the above Theorem 2.8

implies immediately the following result given in Ngoc
and Huy (2015, Theorem 3(i)), noticing that for positive linear
systems, GES with non-negative initial conditions implies GES.

Corollary 2.9: The time-varying positive linear system with
time-invariant delays

x(t) =
m∑
i=1

Ai(t)x(t − ĥi) + Am+1(t)
∫ 0

−ĥ
C(t, s)x(t + s) ds,

t ≥ t0, (22)

is GES if there exists a vector p ∈ R
n+, p � 0 and λ > 1 such that( m∑

i=1
Ai(t)λĥi + Am+1(t)

∫ 0

−ĥ
C(t, s)λ−s ds

)
p � p ∀t ≥ t0.

(23)

Further, let us consider a more general situation than (19)
when F is of the form

F(t, x1, x2, . . . , xm+1) :=
r∑

i=1
fi(t, qi(x1, . . . , xm)) + fr+1(t, xm+1).

(24)
Here, a non-zero r ∈ Z+ is given and, for each i ∈ r, qi :
R
nm+ �−→ R

n is a continuous function given by

qi(x1, x2, . . . , xm) = m
H
j=1

xαij
j := xαi1

1 ◦ xαi2
2 ◦ · · · xαim

m , (25)

with αij ≥ 0, j ∈ m and ◦ denoting the Hadamard vector prod-
uct. Then, it follows readily from the definition of theHadamard
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vector product that qi is monotone on R
nm+ and homoge-

neous on R
n+ if

∑m
j=1 αij = 1. Moreover, it is obvious that

qi(p, . . . , p) = p, for any p ∈ R
n+. Therefore, as another conse-

quence of Theorem 2.5, we have:

Corollary 2.10: Consider the nonlinear continuous-time differ-
ence system

x(t) =
r∑

i=1
fi
(
t, qi(x(t − h1(t)), . . . , x(t − hm(t))))

+ fr+1

(
t,
∫ 0

−h(t)
g(t, s, x(t + s) ds)

)
, t ≥ t0, (26)

where the functions fi(t, ·), i ∈ r + 1 and g(t, s, ·) are monotone
and homogeneous functions on R

n+ and qi, i ∈ r, are defined
by (25) with

∑m
j=1 αij = 1. If there exist a vector p ∈ R

n+, p � 0
and λ > 1 such that

r∑
i=1

fi(t, p)λh1(t)αi1+···+hm(t)αim

+ fr+1

(
t,
∫ 0

−h(t)
g(t, s, p)λ−s ds

)
� p ∀t ≥ t0, (27)

then the zero solution x(t) ≡ 0 of the system (26) is GES with
non-negative initial conditions.

Specifically, when all functions fi, g are linear in x, the sys-
tem (26) takes the form

x(t) =
r∑

i=1
Ai(t)

m
H
j=1

xαij(t − hj(t))

+ Ar+1(t)
∫ 0

−h(t)
C(t, s)x(t + s) ds, t ≥ t0. (28)

In this case, Theorem 2.5 and Corollary 2.10 yield the follow-
ing result which gives some delay-dependent criteria of global
exponential stability for this class of nonlinear systems.

Theorem 2.11: Consider the time-varying nonlinear posi-
tive system with delay (28) where matrix functions Ai(t), i ∈
r + 1,C(t, s) are non-negative and αij ≥ 0,

∑m
j=1 αij = 1, i ∈ r.

Then, the zero solution of (28) is GES with non-negative initial
conditions if one of the following conditions holds:

(i) There exist a vector p ∈ R
n+, p � 0 and λ > 1, such that( r∑

i=1
Ai(t)λh1(t)αi1+···+hm(t)αim

+Ar+1(t)
∫ 0

−h(t)
C(t, s)λ−s ds

)
p � p ∀t ≥ t0.

(29)

(ii) There exists a Schur stable matrix D ∈ R
n×n
+ , such that( r∑

i=1
Ai(t) + Ar+1(t)

∫ 0

−h(t)
C(t, s) ds

)
≤ D ∀t ≥ t0.

(30)

(iii) There exists λ > 1, such that
r∑

i=1
‖Ai(t)‖λh1(t)αi1+···+hm(t)αim

+ ‖Ar+1(t)‖
∫ 0

−h(t)
‖C(t, s)‖λ−s ds < 1 ∀t ≥ t0.

(31)

Proof: First, it follows straightforwardly from Corollary 2.10
that if (i) holds then the nonlinear system (28) is GES with non-
negative initial conditions. We show that (ii) implies (i). Since
D ∈ R

n×n
+ , ρ(D) < 1, there is a vector p ∈ R

n, p � 0 such that
Dp � p, see, e.g. Ngoc and Hieu (2013, Theorem 1.2). By con-
tinuity, one can choose λ > 1, with λ − 1 sufficiently small such
that

λτDp � p. (32)

(recall that, by definition, τ := max{ĥ, ĥ1, ĥ2, . . . , ĥm} > 0.)
Since

∑m
j=1 αij = 1, i ∈ r, we deduce easily

( r∑
i=1

Ai(t)λh1(t)αi1+···+hm(t)αim + Ar+1(t)
∫ 0

−h(t)
C(t, s)λ−s ds

)
p

≤
( r∑

i=1
Ai(t)λĥ1αi1+···+ĥmαim + Ar+1(t)

∫ 0

−h(t)
C(t, s)λ−s ds

)
p

≤
( r∑

i=1
Ai(t)λτ [αi1+···+αim] + Ar+1(t)

∫ 0

−h(t)
C(t, s)λτ ds

)
p

= λτ

( r∑
i=1

Ai(t) + Ar+1(t)
∫ 0

−h(t)
C(t, s) ds

)
p

(30)≤ λτDp
(32)� p ∀t ≥ t0.

Thus, (i) holds. It remains to show that the system (28) is GES
with non-negative initial conditions, provided (iii) holds. To this
end, assuming (iii) and letting x(·) := x(·; t0,ϕ) be the solu-
tion of (28) with an arbitrary initial condition ϕ ∈ C+

t0 ,ϕ �= 0
we show that there existM> 0 and β ∈ (0, 1), such that

‖x(t)‖ ≤ M‖ϕ‖[−τ ,0]β
t−t0 ∀t ≥ t0. (33)

Without loss of generality, we assume that R
n is equipped with

the ∞-norm. Setting K := λ‖ϕ‖[−τ ,0] and β := λ−1 ∈ (0, 1), it
is straightforwardly verified that

‖x(t)‖ < Kβ t−t0 ∀t ∈ [−τ + t0, t0]. (34)

We will prove that

‖x(t)‖ ≤ Kβt−t0 ∀t ≥ t0, (35)

which immediately implies (33). Assume to the contrary that
there exists s0 > t0 such that ‖x(s0)‖ > Kβs0−t0 . Define

t1 := inf{s0| s0 > t0, ‖x(s0)‖ > Kβs0−t0}.
Then, by continuity of x(t), we have t1 > t0 and

‖x(t)‖ < Kβ t−t0 , ∀t ∈ [−τ + t0, t1) and

‖x(t1)‖ = Kβt1−t0 . (36)
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Therefore, we can deduce, by using the property of vector
Hadamard product and (28), (31) and (36),

‖x(t1)‖ ≤
∥∥∥∥∥

r∑
i=1

Ai(t1)
m
H
j=1

xαij(t1 − hj(t1))

+ Ar+1(t1)
∫ 0

−h(t1)
C(t1, s)x(t1 + s) ds

∥∥∥∥
≤

r∑
i=1

‖Ai(t1)‖
⎛
⎝ m∏

j=1
‖x(t1 − hj(t1))‖αij

⎞
⎠

+ ‖Ar+1(t1)‖
∫ 0

−h(t1)
‖C(t1, s)‖‖x(t1 + s)‖ ds

≤
r∑

i=1
‖Ai(t1)‖

⎛
⎝ m∏

j=1
(Kβ t1−hj(t1)−t0)αij

⎞
⎠

+ ‖Ar+1(t1)‖
∫ 0

−h(t1)
‖C(t1, s)‖Kβ t1+s−t0 ds

= Kβt1−t0
r∑

i=1
‖Ai(t1)‖

⎛
⎝ m∏

j=1
β−hj(t1)αij

⎞
⎠

+ Kβ t1−t0‖Ar+1(t1)‖
∫ 0

−h(t1)
‖C(t1, s)‖βs ds

= Kβt1−t0

( r∑
i=1

‖Ai(t1)‖γ h1(t1)αi1+···+hm(t1)αim

+ ‖Ar+1(t1)‖
∫ 0

−h(t1)
‖C(t1, s)‖γ −s ds

)
< Kβt1−t0 .

This, however, contradicts the equality in (36) and completes
the proof. �

Remark 2.12: In the particular case when r = m,αii = 1,αij =
0 (i �= j), i, j ∈ m, h(t) ≡ ĥ, hi(t) ≡ ĥi, t ≥ t0, i ∈ m, the sys-
tem (28) is reduced to linear system of the form (22) that was
considered in Ngoc and Huy (2015). Therefore, Theorem 2.11
can be considered as a generalisation of the main result (Ngoc
& Huy, 2015, Theorem 3) to the class of nonlinear positive
systems of the form (28).

Remark 2.13: Note that a discrete-time version of the nonlinear
equation of the form (28), but without distributed delays (i.e.
when Ar+1(·) = 0), has been considered in Nam et al. (2015)
where, as the main result, a sufficient condition for global
exponential stability similar to Corollary 2.10 has been estab-
lished. Therefore, Corollary 2.10 can be considered as a gen-
eralisation of the result in Nam et al. (2015) to the case of
continuous-time difference systems containing both discrete
and distributed delays. Our proof is, moreover, less involved
than Nam et al. (2015).

3. Exponential stability of general nonlinear systems

In this section, by using the comparison principle, we get the
extension of the main results of the previous section to general
nonlinear systems (3)–(5) without the assumption on positivity,
monotonicity and homogeneity of F and G.

Theorem 3.1: Consider the nonlinear continuous-time differ-
ence system (3)–(5) with continuous functions F, G. Let F∗ ∈
C(R+ × R

n(m+1)
+ ,Rn+) and G∗ ∈ C(R+ × [−ĥ, 0] × R

n+,Rn+)

be continuous functions such that for each t ≥ 0, s ∈ [−ĥ, 0],
F∗(t, ·) and G∗(t, s, ·) are monotone and homogeneous on
R
n(m+1)
+ and R

n+, respectively. Assume, moreover, that there
exists δ > 0 such that, for each t ≥ t0, s ∈ [−ĥ, 0] and each
x, xi ∈ Bn(δ), i ∈ m + 1,

|F(t, x1, x2, . . . , xm+1)| ≤ F∗(t, |x1|, |x2|, . . . , |xm+1|), (37)

|G(t, s, x)| ≤ G∗(t, s, |x|). (38)

Then, the zero solution of (3)–(5) is LES if there exist λ > 1 and
p ∈ R

n+, p � 0, satisfying

F∗
(
t, λh1(t)p, . . . , λhm(t)p,

∫ 0

−h(t)
G∗(t, s, λ−sp) ds

)
� p

∀t ≥ t0. (39)

If (37), (38) hold for δ = ∞, then the zero solution of (3)–(5) is
GES.

Proof: First, by the assumption on F∗,G∗ and (37) and (38),
it follows that the functions F, G satisfy (7) and hence the
system (3)–(5) admits the zero solution. Further, the proof is
divided into two steps.

Step 1: We show that there exist r0 > 0 such that, for any
solution x(t) = x(t, t0,ϕ) of (3)–(5),

‖x(t)‖ ≤ δ and
∥∥∥∥
∫ 0

−h(t)
G(t, s, x(t + s)) ds

∥∥∥∥ ≤ δ ∀t ≥ t0,

(40)
whenever ‖ϕ‖[−τ ,0] ≤ r0.

By the positivity, monotonicity and homogeneity of F∗ and
G∗, and assumption (39), it follows that supt≥t0 ‖ ∫ 0

−h(t) G∗(t, s,
p) ds‖ < ∞. Moreover, due to the homogeneity of F∗ and G∗,
it follows that (39) holds for any vector γ p ∈ R

n+, 0 < γ < ε,
with a small enough ε > 0. Therefore, we can assume, without
loss of generality, that p is chosen such that

‖p‖ ≤ δ and sup
t≥t0

∥∥∥∥
∫ 0

−h(t)
G∗(t, s, p) ds

∥∥∥∥ ≤ δ. (41)

Denote p := (p1, p2, . . . , pn)�. Since pi > 0, i ∈ n, we can
choose r0 > 0 so that 0 < r0 < min{pi, i ∈ n}. Since the norm
is monotonic, it follows that for any initial condition ϕ ∈ Ct0
with ‖ϕ‖[−τ ,0] ≤ r0 the corresponding solution satisfies |x(s +
t0)| = |ϕ(s)| � p, s ∈ [−τ , 0] and, therefore, |x(s)| � p, s ∈
[t0 − τ , t0]. We claim that |x(t)| ≤ p, t ≥ t0, or equivalently,

|xi(t)| ≤ pi, t ≥ t0, i ∈ n. (42)

Assume to the contrary that there exists I ⊂ n such that, for all
i ∈ I, there exist si > t0, |xi(si)| > pi. By continuity, it follows
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that

∃s∗i ∈ (t0, si) : |xi(s∗i )| = pi, i ∈ I. (43)

Setting

t1 := min
i∈I inf{s∗ : s∗i > t0, (43) holds}, (44)

one has t1 > t0 and

|x(t)| ≤ p, t ∈ [t0 − τ , t1) and |xi0(t1)| = pi0 , (45)

where i0 is the index when the minimum (44) is attained.
Then, (38), (41) and (45) imply that∥∥∥∥
∫ 0

−h(t)
G(t, s, x(t + s)) ds

∥∥∥∥ ≤
∥∥∥∥
∫ 0

−h(t)
G∗(t, s, |x(t + s)|) ds

∥∥∥∥
≤
∥∥∥∥
∫ 0

−h(t)
G∗(t, s, p) ds

∥∥∥∥ ≤ sup
t≥t0

∥∥∥∥
∫ 0

−h(t)
G∗(t, s, p) ds

∥∥∥∥ (41)≤ δ,

t ∈ [t0, t1). (46)

On the other hand, (3), (37)–(39), (45) and (46) imply that

|xi0(t1)| ≤ F∗i0

(
t1, |x(t1 − h1(t))|, . . . , |x(t1 − hm(t))|,

∫ 0

−h(t)
G∗(t1, s, |x(t1 + s)|) ds

)
(45),(46)≤ F∗i0

(
t1, p, . . . , p,

∫ 0

−h(t)
G∗(t1, s, p) ds

)

≤ F∗i0

(
t1, λh1(t)p, . . . , λhm(t)p,

∫ 0

−h(t)
G∗(t1, s, λ−sp) ds

)
pi0 ,

conflicting with (45). Thus, we get |x(t)| ≤ p and, by mono-
tonicity of the vector norm and (41),

‖x(t)‖ ≤ ‖p‖ ≤ δ, t ≥ t0, (47)

as to be shown. The second inequality in (40) is obtained by the
following reasoning:∥∥∥∥
∫ 0

−h(t)
G(t, s, x(t + s)) ds

∥∥∥∥ (47)≤
∥∥∥∥
∫ 0

−h(t)
G∗(t, s, |x(t + s)|) ds

∥∥∥∥ ,
(40)≤

∥∥∥∥
∫ 0

−h(t)
G∗(t, s, p) ds

∥∥∥∥ (41)≤ sup
t≥t0

∥∥∥∥
∫ 0

−h(t)
G∗(t, s, p) ds

∥∥∥∥ ≤ δ,

t ≥ t0.

Step 2: We show that there existM> 0 and β ∈ (0, 1) such that

‖x(t)‖ ≤ Mβ t−t0‖ϕ‖[−τ ,0], t ≥ t0, (48)

for any ϕ ∈ Ct0 , ‖ϕ‖[−τ ,0] ≤ r0. The proof is similar to that of
Theorem 2.5 (essentially based on (39) and (40), with some
minor modifications) and hence is omitted. Therefore, the zero

solution of (3)–(5) is LES. Finally, if (37)–(38) hold for δ = ∞,
then the proof of Step 2 also shows that

‖x(t)‖ ≤ Mβ t−t0‖ϕ‖[−τ ,0] ∀t ≥ t0,

for any ϕ ∈ Ct0 . Therefore, the zero solution of (3)–(5) is GES.
This completes the proof. �

The functions F∗ and G∗ in Theorem 3.1 are called upper
bound of F and G, respectively.

Remark 3.2: Roughly speaking, Theorem 3.1 means that if
the nonlinear system (3) is upper bounded by a time-varying
nonlinear positive monotone homogeneous system

x(t) = F∗(t, |x(t − h1(t))|, . . . , |x(t − hm(t))|,∫ 0

−h(t)
G∗(t, s, |x(t + s)|) ds), t ≥ t0, (49)

whose the zero solution is LES (or, equivalently, GES, due to
homogeneity of F∗,G∗) then so is the zero solution of (3)–(5).
Note that in the recent work (Tian & Sun, 2020), a similar result
has been proved for a class of time-varying differential equations
with mixed delays which are assumed to be upper-bounded
by a positive time-invariant monotone homogeneous system.
Therefore, our result is more general, giving less restrictive
delay-dependent criteria for exponential stability.

Combining Theorem 3.1 with the results obtained in the pre-
vious section for nonlinear positive monotone homogeneous
systems will lead to different criteria for exponential stability
of the zero solution of the system (3)–(5). In particular, the
combination of Theorems 3.1 and 2.11 yields immediately the
following:

Theorem 3.3: Consider the nonlinear continuous-time differ-
ence system (3)–(5) with continuous functions F, G. Assume that
there exist δ > 0, r ∈ N, Ai(·) ∈ C(R,Rn×n

+ ), i ∈ r + 1, C(·, ·) ∈
C(R × [−ĥ, 0],Rn×n

+ ) and αij ∈ [0, 1],
∑m

j=1 αij = 1, i ∈ r, j ∈
m such that

|F(t, x1, x2, . . . , xm+1)| ≤
r∑

i=1
Ai(t)

m
H
j=1

|xj|αij + Ar+1(t)|xm+1|,

(50)∣∣G(t, s, x)| ≤ C(t, s)|x|, (51)

for all t ≥ t0, s ∈ [−ĥ, 0], x, xj ∈ Bn(δ), j ∈ m + 1. Then the zero
solution of (3)–(5) is LES provided that one of the conditions
(i), (ii), (iii) of Theorem 2.11 holds for the non-negative matrix
functions Ai(·), i ∈ r + 1 and C(·, ·).

In addition, if (50) and (51) hold for δ = ∞, then the zero
solution of (3)–(5) is GES.

Particularly, if r = m,αii = 1,αij = 0 (i �= j), i, j ∈ m, then
Theorem 3.3 implies the following corollary.
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Corollary 3.4: Assume that the continuous functions F, G satisfy

∣∣F(t, x1, x2, . . . , xm+1)|

≤
m+1∑
i=1

Ai(t)|xi|, |G(t, s, x)| ≤ C(t, s)|x|, (52)

for all t ≥ t0, s ∈ [−ĥ, 0], x, xi ∈ R
n, i ∈ m + 1. Then the zero

solution of (3)–(5) is GES provided that one of the conditions
(i), (ii), (iii) of Theorem 2.11 holds for the non-negative matrix
functions Ai(·), i ∈ m + 1 and C(·, ·).

Remark 3.5: The above corollary is a generalisation of
Theorem 2.2 in Ngoc and Hieu (2013) where a similar, but
delay-independent, criterion has been proved for the class of
nonlinear discrete-time systems.

In particular, from Corollary 3.4 and Theorem 2.11(ii), it
follows immediately the following corollary.

Corollary 3.6: Assume that there exist Ai ∈ R
n×n
+ , i ∈ m + 1

and C(·) ∈ C([−ĥ, 0],Rn×n
+ ) such that

∣∣F(t, x1, x2, . . . , xm+1)| ≤
m+1∑
i=1

Ai|xi|, |G(t, s, x)| ≤ C(s)|x|,
(53)

for all t ≥ t0, s ∈ [−ĥ, 0], x, xi ∈ R
n, i ∈ m + 1. Then the zero

solution of (3)–(5) is GES provided that the non-negative matrix
D := ∑m

i=1 Ai + Am+1
∫ 0
−h C(s) ds is Schur stable, i.e. ρ(D) < 1.

We provide now an application of the above result to deal
with an existing example in the literature (Pepe, 2014). Consider
the scalar nonlinear continuous-time difference equation

x(t) =
p∑

i=1
λi tanh(x(t − �i)), t ≥ 0, (54)

with the initial condition x(s) = x0(s), s ∈ [−�, 0). Here, λi ∈
R,�i ∈ (0,�], i ∈ p;� is a positive real number. In Pepe (2014,
Example 1), under the assumption that x0 is piece-wise con-
tinuous function, it has been shown, by using the Lyapunov
approach, that the zero solution of (54) is globally asymptoti-
cally stable if

∑p
i=1 |λi| ≤ 1. The proof needs a lot of computa-

tions.
Let x0 ∈ C([−�, 0],R). Since | tanh(x)| ≤ |x|, for any x ∈ R,

it follows immediately, by Corollary 3.6, that the zero solution
of (54) is GES provided

∑p
i=1 |λi| < 1. Additionally, it is impor-

tant to note that our above conclusion also holds when the
delays in (54) are bounded time-varying delays �i(t), i ∈ p, t ∈
R+.

Below, we present some simple nonlinear examples to illus-
trate the effectiveness of our results. Notice that the stabil-
ity criteria obtained in Damak et al. (2015, 2016), Melchor-
Aguilar (2016) and Ngoc and Huy (2015), for linear systems are
not applicable to deal with these examples.

Example 3.7: Consider a scalar nonlinear continuous-time dif-
ference equation

x(t) =
√
a2(t)|x(t − h1(t))x(t − h2(t))| + [b(t)x(t − h2(t))]2

+
∫ 0

−h(t)

c es−t2

1 + t2
x(t + s) ds, t ≥ 0. (55)

Here, h(·), h1(·), h2(·) : R+ → R+ are continuous functions,
0 < h1(t) ≤ ĥ1, 0 < h2(t) ≤ ĥ2, 0 < h(t) ≤ ĥ, for some ĥ1 >

0, ĥ2 > 0, ĥ > 0; a(·), b(·) : R+ → R are bounded continuous
functions; c is a real number. Note that xe = 0 is an equilibrium
point of (55). Let

F(t, x1, x2, x3) :=
√
a2(t)|x1x2| + b2(t)x22 + x3 and

G(t, s, x) := c es−t2x
1 + t2

,

with t ∈ R+, s ∈ [−ĥ, 0], x1, x2, x3, x ∈ R. One has

|F(t, x1, x2, x3)| ≤ |a(t)| · |x1|1/2|x2|1/2 + |b(t)| · |x2| + |x3|
∀t ∈ R+, x1, x2, x3 ∈ R,

and

|G(t, s, x)| ≤ |c| es|x| ∀t ∈ R+, s ∈ [−ĥ, 0], x ∈ R.

By Theorem 3.3(iii), the zero solution of (55) is GES if

sup
t∈R+

|a(t)| + sup
t∈R+

|b(t)| +
∫ 0

−ĥ
|c| es ds < 1,

or equivalently,

sup
t∈R+

|a(t)| + sup
t∈R+

|b(t)| + |c| (1 − e−ĥ) < 1. (56)

Figure 1 shows the simulated trajectories of the solutions x(t)
of (55), corresponding, respectively, to the initial functions

φ1(s) = 3s2 + 0.5s + 0.5, s ∈ [−1, 0],

φ2(s) =
{

−8s − 8, s ∈ [−1,−0.5],
10s + 1, s ∈ (−0.5, 0],

when a(t) = b(t) = 1
4 , c = 0, h1(t) = 1, h2(t) = 0.5, h(t) =

ĥ = 1, t ∈ R+. Then, supt∈R+ |a(t)| + supt∈R+ |b(t)| = 1
4 +

1
4 = 1

2 < 1 and hence, (56) holds. The initial functions φ1,φ2
satisfy the matching condition

φi(0) =
√

1
16

|φi(−1)φi(−0.5)| + 1
16

(φi(−0.5))2, i = 1, 2.
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Figure 1. The zero solution of (55) is GES if (56) holds.

Example 3.8: Consider a nonlinear time-varying continuous-
time difference system in R

2 given by

x(t) = H(t, x(t − h1(t)), x(t − h2(t)))

+
∫ 0

−2
G(t, s, x(t + s)) ds, t ≥ 0. (57)

Here, h1(t) = | sin(t)| + 0.5, h2(t) = cos2(t) + 1; H(·, ·, . . . , ·)
and G(·, ·, ·) are defined by

H(t, x1, x2) :=
(

1
8x11e

−t2x211 + 1
8x21 + 1

4(1+t2)x22
x11 sin t + 1

16 ln(1 + |x12 + x22|)

)
,

with t ∈ R+ and xi := (xi1, xi2)� ∈ R
2, i = 1, 2 and

G(t, s, y1) :=
( 1

8e
−t2s2 sin y11
3
64 s

2y12

)
,

t ∈ R+, s ∈ [−2, 0], y1 := (y11, y12)� ∈ R
2.

Let F(t, x1, x2, x3) := H(t; x1, x2) + x3. One has⎧⎪⎨
⎪⎩

|F(t, x1, x2, x3)| ≤ A1|x1| + A2|x2| + A3|x3|
∀t ∈ R+, x1, x2 ∈ R

2,
|G(t, s, y)| ≤ G(s)|y| ∀t ∈ R+, s ∈ [−2, 0], y ∈ R

2,

with

A1 :=
( 1

8 0
1 1

16

)
, A2 :=

( 1
8

1
4

0 1
16

)
, A3 = I2 and

G(s) :=
( 1

8 0
0 3

64 s
2

)
, s ∈ [−2, 0].

Thus, the inequality (50)–(51) hold with the vector xe = 0. On
the other hand, we have∫ 0

−2
G(s) ds =

( 1
4 0
0 1

8

)

and

ρ

(
A1 + A2 + A3

∫ 0

−2
G(s) ds

)

= ρ

( 1
2

1
4

1 1
4

)
= 3 + √

17
8

< 1.

Therefore, the zero solution of (57) is GES, by Corollary 3.6.

Finally, as another application of our approach, we inves-
tigate stability of a simple linear continuous-time difference
system of the form

x(t + h) = Ax(t) +
∫ t

t−h
Bx(s) ds, t ≥ t0 − h, (58)

where, t0 ≥ 0, h > 0, A ∈ R
n×n,B ∈ R

n×n are given.
Let u = t + h, then (58) becomes x(u) = Ax(u − h) +∫ u−h

u−2h Bx(s) ds, u ≥ t0 or, equivalently,

x(u) = Ax(u − h) +
∫ 0

−h
Bx(u − h + w) dw, u ≥ t0. (59)

By a similar proof as that of Theorems 2.5 and 3.1, it can be
shown that (59) is GES if there is λ > 1 such that |A|λhp +∫ 0
−h |B|λh−sp ds � p, for some p ∈ R

n, p � 0. The last inequal-
ity implies (|A| + ∫ 0

−h |B|dw)p � p, or equivalently, the non-
negative matrix D := |A| + h|B| = |A| + ∫ 0

−h |B| d w is Schur
stable, see, e.g. Ngoc and Hieu (2013, Theorem 1.2).

Our approach can be applied similarly for nonlinear
systems more general than (58), for example, x(t + h) =
F(t, x(t),

∫ t
t−h Bx(s) ds), t ≥ t0, where F(t, ·) is monotone and

homogeneous on R
n+ × R

n+ or F(t, ·) is ‘bounded above’ by
a monotone homogeneous function F∗(t, ·) on R

n+ × R
n+, for

each t ≥ t0.

4. Concluding remark

By using the comparison principle, we present several explicit
criteria for exponential stability of the zero solution for a gen-
eral class of nonlinear delay continuous-time difference systems.
The obtained results are shown to include or extend many
known results proved previously either for linear time-invariant
difference systems or nonlinear discrete-time systems.
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