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Abstract

We investigate the numerical approximation of integrals over Rd equipped with the stan-
dard Gaussian measure γ for integrands belonging to the Gaussian-weighted Sobolev spaces
Wα

p (Rd, γ) of mixed smoothness α ∈ N for 1 < p < ∞. We prove the asymptotic order of
the convergence of optimal quadratures based on n integration nodes and propose a novel
method for constructing asymptotically optimal quadratures. As for related problems, we
establish by a similar technique the asymptotic order of the linear, Kolmogorov and sam-
pling n-widths in the Gaussian-weighted space Lq(Rd, γ) of the unit ball of Wα

p (Rd, γ) for
1 ≤ q < p <∞ and q = p = 2.
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1 Introduction

We investigate numerical approximation of integrals

I(f) :=

∫
Rd

f(x) γ(dx) =

∫
Rd

f(x)g(x) dx (1.1)

for functions f belonging to the Gaussian-weighted Sobolev spaces Wα
p (Rd, γ) of mixed smooth-

ness α ∈ N for 1 < p < ∞ (see Section 2 for the definition), where γ(dx) = g(x)dx is the
d-dimensional standard Gaussian measure on Rd with the density

g(x) := (2π)−d/2 exp
(
−|x|2/2

)
, x ∈ Rd.
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To approximate this integral we use a (linear) quadrature defined by

In(f) :=
n∑
i=1

λif(xi) (1.2)

with the convention I0(f) = 0, where {x1, . . . ,xn} ⊂ Rd are given integration nodes and
(λ1, . . . , λn) the integration weights. For convenience, we assume that some of the integra-
tion nodes may coincide. Let W α

p (Rd, γ) be the unit ball of Wα
p (Rd, γ). The optimality of

quadratures for W α
p (Rd, γ) is measured by the quantity

Intn(W
α
p (Rd, γ)) := inf

In
sup

f∈Wα
p (Rd,γ)

|I(f)− In(f)|. (1.3)

We are interested in the asymptotic order of this quantity when n → ∞, as well as in
constructing asymptotically optimal quadratures. We do not investigate the dependence on the
dimension and the problem of tractability. The problem of multivariate numerical integration
(1.1)–(1.2) has been studied in [12, 13, 7] for functions in certain Hermite spaces, in particular,
the space Hd,α in [7] which coincides with Wα

2 (Rd, γ) in terms of norm equivalence. So far the
best result on this problem is

n−α(log n)
d−1
2 ≪ Intn

(
W α

2 (Rd, γ)
)
≪ n−α(log n)

d(2α+3)
4

− 1
2 ,

which has been proven in [7]. Moreover, the upper bound is achieved by a translated and scaled
quasi-Monte Carlo (QMC) quadrature based on Dick’s higher order digital nets. We note the
related work [14] which studied weighted integration via a change of variables for functions on
Rd from non-weighted spaces of mixed smoothness.

The aim of this paper is to prove the asymptotic order of Intn
(
W α

p (Rd, γ)
)
. Let us briefly

describe the main results.

For α ∈ N and 1 < p < ∞, we construct an asymptotically optimal quadrature Iγn of the
form (1.2) which gives the asymptotic order of the convergence

sup
f∈Wα

p (Rd,γ)

∣∣∣∣ ∫
Rd

f(x)γ(dx)− Iγn(f)

∣∣∣∣ ≍ Intn
(
W α

p (Rd, γ)
)
≍ n−α(log n)

d−1
2 . (1.4)

In constructing Iγn , we propose a novel method assembling an asymptotically optimal quadrature
for the related Sobolev spaces on the unit d-cube to the integer-shifted d-cubes which cover Rd.
The asymptotically optimal quadrature Iγn is based on very sparse integration nodes contained
in a d-ball of radius

√
log n.

As for related problems with a similar approach, we establish the asymptotic orders of linear
n-widths λn, Kolmogorov n-widths dn, and sampling n-widths ϱn of the set W α

p (Rd, γ) in the

Gaussian-weighted space Lq(Rd, γ) (see Section 3 for definitions). For α ∈ N and 1 ≤ q < p <∞
we prove that

λn ≍ dn ≍ n−α(log n)(d−1)α, (1.5)

and with the additional condition q = 2,

ϱn ≍ n−α(log n)(d−1)α. (1.6)
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For α ∈ N and q = p = 2, we prove that

λn = dn ≍ n−
α
2 (log n)

(d−1)α
2 , (1.7)

and with the additional condition α ≥ 2,

ϱn ≍ n−
α
2 (log n)

(d−1)α
2 . (1.8)

The asymptotic orders (1.5)–(1.8) show very different approximation results between the cases
q < p and q = p = 2. We conjecture that the asymptotic orders (1.7) and (1.8) still hold true
for p, q with the restrictions p = q ̸= 2 and 1 < p < ∞. The case 1 ≤ p < q < ∞ of these
n-widths is excluded from the consideration caused by the natural reason that in this case we
do not have a continuous embedding of Wα

p (Rd, γ) into Lq(Rd, γ). For example, the function

f(x) =
∏d
i=1

(
1 + x2i

)−m
exp

(
|x|2/(2p)

)
belongs to Wα

p (Rd, γ) if m > 1/2 + α. However, this

function does not belong to Lq(Rd, γ) when q > p.

The paper is organized as follows. In Section 2, we prove the asymptotic order of
Intn

(
W α

p (Rd, γ)
)
and construct asymptotically optimal quadratures. Section 3 is devoted to

the proof of the asymptotic order of linear n-widths λn and Kolmogorov n-widths dn for the
cases q < p and q = p = 2 and the construction of asymptotically optimal linear approximations.
In this section we also give asymptotic order of sampling n-widths for the cases q = 2 < p and
q = p = 2. In Section 4, we illustrate our integration nodes in comparison with those used in [7]
and give a numerical test for the results obtained in Section 2.

Notation. We write R1 := {x ∈ R : x ≥ 1}. For a Banach space E, denote by the bold symbol
E the unit ball in E. The letter d is always reserved for the underlying dimension of Rd, Nd, etc.
Vectors in Rd are denoted by boldface letters. For x ∈ Rd, xi denotes the ith coordinate, i.e.,

x := (x1, . . . , xd). If 1 ≤ p ≤ ∞, we write |x|p :=
(∑d

i=1 |xi|p
)1/p

with the usual modification
when p = ∞. When p = 2 we simply write |x|. For the quantities An and Bn depending on n in
an index set J we write An ≪ Bn if there exists some constant C > 0 independent of n such that
An ≤ CBn for all n ∈ J , and An ≍ Bn if An ≪ Bn and Bn ≪ An. General positive constants
or positive constants depending on parameters α, d, . . . are denoted by C or Cα,d,..., respectively.
Values of constants C and Cα,d in general, are not specified except in the cases when they are
precisely given, and may be different in various places. Denote by |G| the cardinality of the
finite set G.

2 Numerical integration

In this section, based on a quadrature on the d-cube Id :=
[
− 1

2 ,
1
2

]d
for numerical integration

of functions from classical Sobolev spaces of mixed smoothness on Id, by assembling we con-
struct a quadrature on Rd for numerical integration of functions from γ-weighted Sobolev spaces
Wα
p (Rd, γ) which preserves the convergence rate. As a consequence, we prove the asymptotic

order of Intn
(
W α

p (Rd, γ)
)
.

2.1 Assembling quadratures

We first introduce γ-weighted Sobolev spaces of mixed smoothness. Let 1 ≤ p < ∞ and Ω be
a Lebesgue measurable set on Rd. We define the γ-weighted space Lp(Ω, γ) to be the set of all
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functions f on Ω such that the norm

∥f∥Lp(Ω,γ) :=

(∫
Ω
|f(x)|pγ(dx)

)1/p

=

(∫
Ω
|f(x)|pg(x)dx

)1/p

< ∞.

For α ∈ N, we define the γ-weighted space Wα
p (Ω, γ) to be the normed space of all functions

f ∈ Lp(Ω, γ) such that the weak (generalized) partial derivative Drf of order r belongs to
Lp(Ω, γ) for all r ∈ Nd0 satisfying |r|∞ ≤ α. The norm of a function f in this space is defined by

∥f∥Wα
p (Ω,γ) :=

( ∑
|r|∞≤α

∥Drf∥pLp(Ω,γ)

)1/p

. (2.1)

The space Wα
p (Ω) is defined as the classical Sobolev space by replacing Lp(Ω, γ) with Lp(Ω)

in (2.1), where as usual, Lp(Ω) denotes the Lebesgue space of functions on Ω equipped with
the usual p-integral norm. For technical convenience we use the conventions Intn := Int⌊n⌋ and
In := I⌊n⌋ for n ∈ R1.

For numerical approximation of integrals IΩ(f) :=
∫
Ω f(x)dx over the set Ω, we need natural

modifications IΩn (f) for functions f on Ω, and IntΩn (F ) for a set F of functions on Ω, of the
definitions (1.2) and (1.3). For simplicity we will drop Ω from these notations if there is no
misunderstanding.

Let α ∈ N, 1 < p <∞ and a > 0, b ≥ 0. Assume that for the quadrature

Im(f) :=
m∑
i=1

λif(xi), {x1, . . . ,xm} ⊂ Id, (2.2)

holds the convergence rate∣∣∣∣ ∫
Id
f(x)dx− Im(f)

∣∣∣∣ ≤ Cm−a(logm)b∥f∥Wα
p (Id), f ∈Wα

p (Id). (2.3)

Then based on Im, we will construct a quadrature on Rd which approximates the integral I(f)
with the same convergence rate for f ∈Wα

p (Rd, γ).

Our strategy is as follows. The integral I(f) can be represented as the sum of component
integrals over the integer-shifted d-cubes Idk by

I(f) =
∑
k∈Zd

∫
Idk
fk(x)gk(x)dx, (2.4)

where for k ∈ Zd, Idk := k + Id and for a function f on Rd, fk denotes the restriction of f to
Idk. For a given n ∈ R1, we take “shifted” quadratures Ink

of the form (2.2) for approximating
the component integrals in the sum in (2.4). The integration nodes in Ink

, k ∈ Zd, are taken so
that they become sparser as |k| gets larger and∑

k∈Zd

⌊nk⌋ ≤ n.

In the next step, we “assemble” these shifted integration nodes to form a quadrature Iγn for
approximating I(f). Let us describe this construction in detail.
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It is clear that if f ∈Wα
p (Rd, γ), then fk(·+ k) ∈Wα

p (Id), and

∥fk(·+ k)∥Wα
p (Id) =

( ∑
|r|∞≤α

∥Drfk(·+ k)∥p
Lp(Id)

)1/p

=

( ∑
|r|∞≤α

∥Drfk∥pLp(Idk)

)1/p

=

( ∑
|r|∞≤α

(2π)d/2
∫
Idk
e

|x|2
2 |Drfk(x)|pg(x)dx

)1/p

.

(2.5)

When x ∈ Idk we have e
|x|2
2 ≤ e

|k+(signk)/2|2
2 , where signk := (sign k1, . . . , sign kd) and signx := 1

if x ≥ 0, and signx := −1 otherwise for x ∈ R. Therefore,

∥fk(·+ k)∥Wα
p (Id) ≤ (2π)

d
2p e

|k+(signk)/2|2
2p ∥f∥Wα

p (Rd,γ). (2.6)

We have

∥gk(·+ k)∥Wα
p (Id) =

( ∑
|r|∞≤α

∥Drg∥p
Lp(Idk)

)1/p

.

A direct computation shows that for r ∈ Nd0 we have Drg(x) = Pr(x)g(x) where Pr(x) is
a polynomial of order |r|1 of x. Moreover, we have −|x|2 ≤ 1

2 − |k − (sign k)/2|2 for x ∈
[−1

2 ,
1
2 ] + k, k ∈ Z. Therefore for x ∈ Idk we get

|Drg(x)| =
∣∣∣(2π)−d/2Pr(x)e

− |x|2
2

∣∣∣ ≤ Ce−
|x|2
2τ ′ ≤ Ce−

|k−(signk)/2|2
2τ ′ ≤ Ce−

|k|2
2τ

for some τ ′ and τ such that 1 < τ ′ < τ < p <∞. This implies that

∥gk(·+ k)∥Wα
p (Id) ≤ Ce−

|k|2
2τ (2.7)

with C independent of k ∈ Zd. Since Wα
p (Id) is a multiplication algebra (see [15, Theorem

3.16]), from (2.6) and (2.7) we have that

fk(·+ k)gk(·+ k) ∈Wα
p (Id), (2.8)

and
∥fk(·+ k)gk(·+ k)∥Wα

p (Id) ≤ C∥fk(·+ k)∥Wα
p (Id) · ∥gk(·+ k)∥Wα

p (Id)

≤ Ce
|k+(signk)/2|2

2p
− |k|2

2τ ∥f∥Wα
p (Rd,γ).

(2.9)

For 1 < τ < p <∞, we choose δ > 0 so that

max

{
e
− |k−(signk)/2|2

2

(
1− 1

p

)
, e

|k+(signk)/2|2
2p

− |k|2
2τ

}
≤ Ce−δ|k|

2
(2.10)

for k ∈ Zd, and therefore,

∥fk(·+ k)gk(·+ k)∥Wα
p (Id) ≤ Ce−δ|k|

2∥f∥Wα
p (Rd,γ), k ∈ Zd. (2.11)
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We define for n ∈ R1,

ξn =
√
δ−12a(log n) , (2.12)

and for k ∈ Zd,

nk =

{
ϱne−

δ
2a

|k|2 if |k| < ξn,

0 if |k| ≥ ξn,
(2.13)

where ϱ := 2−d
(
1− e−

δ
2a

)d
. We have ∑

|k|<ξn

nk ≤ n. (2.14)

Indeed, ∑
|k|<ξn

nk =
∑

|k|<ξn

ϱne−
δ
2α

|k|2 ≤ 2dϱn

⌊ξn⌋∑
s=0

(
s+ d− 1

d− 1

)
e−

δ
2a
s2

≤ 2dϱn
∞∑
s=0

(
s+ d− 1

d− 1

)
e−

δ
2a
s ≤ n,

where in the last estimate we used the well-known formula

∞∑
j=0

xj
(
j + k

k

)
= (1− x)−k−1, k ∈ N0, x ∈ (0, 1). (2.15)

We define

In(f) :=
∑

|k|<ξn

Ink
(fk(·+ k)gk(·+ k)) =

∑
|k|<ξn

⌊nk⌋∑
j=1

λjfk(xj + k)gk(xj + k), (2.16)

or equivalently,

In(f) :=
∑

|k|<ξn

⌊nk⌋∑
j=1

λk,jf(xk,j) (2.17)

as a quadrature for the approximate integration of γ-weighted functions f on Rd, where xk,j :=
xj + k and λk,j := λjgk(xj + k) (here for simplicity, with an abuse of notation the dependence
of integration nodes and weights on the quadratures Ink

is omitted). The integration nodes of
the quadrature In are

{xk,j : |k| < ξn, j = 1, . . . , ⌊nk⌋} ⊂ Rd, (2.18)

and the integration weights

(λk,j : |k| < ξn, j = 1, . . . , ⌊nk⌋).

Due to (2.14), the number of integration nodes is not greater than n. From the definition
we can see that the integration nodes are contained in the ball of radius ξ∗n :=

√
d/2 + ξn,

i.e., {xk,j : |k| < ξn, j = 1, . . . , ⌊nk⌋} ⊂ B(ξ∗n) :=
{
x ∈ Rd : |x| ≤ ξ∗n

}
. The density of the

integration nodes is exponentially decreasing in |k| to zero from the origin of Rd to the boundary
of the ball B(ξ∗n), and the set of integration nodes is very sparse because of the choice of nk as
in (2.13).
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Theorem 2.1 Let α ∈ N, 1 < p < ∞ and a > 0, b ≥ 0. Assume that for any m ∈ R1, there
is a quadrature Im of the form (2.2) satisfying (2.3). Then for the quadrature In defined as in
(2.17) we have∣∣∣∣ ∫

Rd

f(x)γ(dx)− In(f)

∣∣∣∣≪ n−a(log n)b∥f∥Wα
p (Rd,γ), f ∈Wα

p (Rd, γ). (2.19)

Proof. Let f ∈ Wα
p (Rd, γ) and m ∈ R1. For the quadrature Im for functions on Id in the

assumption, from (2.3) and (2.11) we have∣∣∣∣ ∫
Id
fk(x+ k)gk(x+ k)dx− Im(fk(·+ k)gk(·+ k))

∣∣∣∣≪ m−a(logm)be−δ|k|
2∥f∥Wα

p (Rd,γ).

(2.20)
From (2.4) and (2.16) it follows that∣∣∣∣ ∫

Rd

f(x)γ(dx)− In(f)

∣∣∣∣ ≤ ∑
|k|<ξn

∣∣∣∣ ∫
Idk
fk(x)gk(x)dx− Ink

(fk(·+ k)gk(·+ k))

∣∣∣∣
+
∑

|k|≥ξn

∣∣∣∣ ∫
Idk
fk(x)gk(x)dx

∣∣∣∣.
For each term in the first sum by (2.20) we derive the estimates∣∣∣∣ ∫

Idk
fk(x)gk(x)dx− Ink

(fk(·+ k)gk(·+ k))

∣∣∣∣
=

∣∣∣∣ ∫
Id
fk(x+ k)gk(x+ k)dx− Ink

(fk(·+ k)gk(·+ k))

∣∣∣∣
≪ n−ak (log nk)

be−δ|k|
2∥f∥Wα

p (Rd,γ)

≪ (ne−
δ
2a

|k|2)−a(log n)be−δ|k|
2∥f∥Wα

p (Rd,γ)

= n−a(log n)be−
|k|2δ

2 ∥f∥Wα
p (Rd,γ).

Hence,∑
|k|<ξn

∣∣∣∣ ∫
Idk
fk(x)gk(x)dx− Ink

(fk(·+ k)gk(·+ k))

∣∣∣∣≪ ∑
|k|<ξn

n−a(log n)be−
|k|2δ

2 ∥f∥Wα
p (Rd,γ)

≪ n−a(log n)b∥f∥Wα
p (Rd,γ).

For each term in the second sum we get by Hölder’s inequality and (2.10),∣∣∣∣ ∫
Idk
fk(x)gk(x)dx

∣∣∣∣ ≤ (∫
Idk
|fk(x)|pgk(x)dx

) 1
p
(∫

Idk
gk(x)dx

)1− 1
p

≪ e
− |k−(signk)/2|2

2
(1− 1

p
)∥f∥Wα

p (Rd,γ)

≪ e−δ|k|
2∥f∥Wα

p (Rd,γ),
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which implies∑
|k|≥ξn

∣∣∣∣ ∫
Idk
fk(x)gk(x)dx

∣∣∣∣≪ ∑
|k|≥ξn

e−δ|k|
2∥f∥Wα

p (Rd,γ)

≤ 2d
∞∑

s=⌈ξn⌉

e−s
2δ

(
s+ d− 1

d− 1

)
∥f∥Wα

p (Rd,γ)

≤ 2de−ξ
2
nδ(1−ε)

∞∑
s=⌈ξn⌉

e−s
2εδ

(
s+ d− 1

d− 1

)
∥f∥Wα

p (Rd,γ)

≪ e−ξ
2
nδ(1−ε)

∞∑
s=0

e−sεδ
(
s+ d− 1

d− 1

)
∥f∥Wα

p (Rd,γ)

(2.21)

with ε ∈ (0, 1/2). Using (2.15) we get∑
|k|≥ξn

∣∣∣∣ ∫
Idk
fk(x)gk(x)dx

∣∣∣∣≪ e−2a(1−ε) logn∥f∥Wα
p (Rd,γ) ≪ n−a(log n)b∥f∥Wα

p (Rd,γ). (2.22)

Summing up, we have proven (2.19).

Some important quadratures such as the Frolov quadrature and the QMC quadrature based
on Fibonacci lattice rules (d = 2) are constructively designed for functions on Rd with support
contained in the unit d-cube or for 1-periodic functions. To employ them for constructing a
quadrature for functions on Rd we need to modify those constructions.

Assume that there is a quadrature Im of the form (2.2) with the integration nodes

{x1, . . . ,xm} ⊂
(
−1

2 ,
1
2

)d
and weights (λ1, . . . , λm) such that the convergence rate∣∣∣∣ ∫

Id
f(x)dx− Im(f)

∣∣∣∣ ≤ Cm−a(logm)b∥f∥Wα
p (Id), f ∈ W̊α

p (Id) (2.23)

holds, where W̊α
p (Id) denotes the space of functions in Wα

p (Rd) with support contained in Id.
Then based on the quadrature Im, we propose two constructions of quadratures which approxi-
mate the integral

∫
Rd f(x)γ(dx) with the same convergence rate for f ∈Wα

p (Rd, γ).

The first method is a preliminary change of variables to transform the quadrature Im into a
quadrature for functions in Wα

p (Id) which gives the same convergence rate, and then apply the
construction as in (2.17). Let us describe it. Let k ∈ N and ψk be the function defined by

ψk(t) =


Ck
∫ t
0 (

1
4 − ξ2)k dξ, t ∈ [−1

2 ,
1
2 ],

1
2 , t > 1

2 ,

−1
2 , t < −1

2 ,

(2.24)

where Ck =
( ∫ 1/2

−1/2(
1
4 − ξ2)k dξ

)−1
. Observe that ψk is a one-to-one mapping on [−1

2 ,
1
2 ] and ψ

′
k

has compact support on [−1
2 ,

1
2 ]. If f ∈Wα

p (Id), a change of variable yields that∫
Id
f(x)dx =

∫
Id

(
Tψk

f
)
(x)dx,

where (
Tψk

f
)
(x) := ψ′

k(x1) · . . . · ψ′
k(xd)f

(
ψk(x1), . . . , ψk(xd)

)
, x ∈ Id.

8



Observe that the function Tψk
f has support contained in Id. If Tψk

f belongs to W̊α
p (Id), then

a quadrature with the integration nodes {x̃1, . . . , x̃m} ⊂ Id and weights (λ̃1, . . . , λ̃m) for the
function f can be defined as

Ĩm(f) := Im(Tψk
f) =

m∑
j=1

λ̃jf(x̃j),

where x̃j = (ψk(xj,1), . . . , ψk(xj,d)) and λ̃j = λjψ
′
k(xj,1) · . . . ·ψ′

k(xj,d). Hence, our task is finding
a condition on k so that the mapping

f 7→ Tψk
f

is a bounded operator from Wα
p (Id) to W̊α

p (Id). A first result was proved by Bykovskii [2] where

he showed that Tψk
is bounded in Wα

2 (Id) if k ≥ 2α + 1. This result has been extended by
Temlyakov, see [22, Theorem IV.4.1], to Wα

p (Id) under the condition k ≥
⌊ αp
p−1

⌋
+ 1 . A recent

improvement k > α+ 1 was obtained in [16].

The second method is to decompose functions in Wα
p (Rd, γ) into a sum of functions on Rd

having support contained in integer translations of the d-cube Idθ :=
[
− θ

2 ,
θ
2

]
for a fixed θ > 1.

Then the quadrature for Wα
p (Rd, γ) is the sum of integer-translated dilations of Im. Details of

this construction are presented below.

First observe that

Rd =
⋃

k∈Zd

Idθ,k,

where Idθ,k := Idθ + k. It is well-known that one can constructively define a partition of unity
{φk}k∈Zd such that

(i) φk ∈ C∞
0 (Rd) and 0 ≤ φk(x) ≤ 1, x ∈ Rd, k ∈ Zd;

(ii) suppφk are contained in the interior of Idθ,k, k ∈ Zd;

(iii)
∑

k∈Zd φk(x) = 1, x ∈ Rd;

(iv) ∥φk∥Wα
p (Idθ,k)

≤ Cα,d,θ, k ∈ Zd,

(see, e.g., [18, Chapter VI, 1.3]). By the items (ii) and (iii) the integral
∫
Rd f(x)γ(dx) can be

represented as ∫
Rd

f(x)γ(dx) =
∑
k∈Zd

∫
Idθ,k

fθ,k(x)gθ,k(x)φk(x)dx, (2.25)

where fθ,k and gθ,k denote the restrictions of f and g on Idθ,k, respectively. The quadrature (2.2)
induces the quadrature

Iθ,m(f) :=
m∑
i=1

λθ,if(xθ,i), (2.26)

for functions f on Idθ, where xθ,i := θxi and λθ,i := θλi.

9



Denote by W̊α
p (Idθ) the subspace of functions in Wα

p (Rd) with support contained in Idθ. From
(2.23) the error bound ∣∣∣∣ ∫

Idθ
f(x)dx− Iθ,m(f)

∣∣∣∣≪ m−a(logm)b∥f∥Wα
p (Idθ)

holds for every f ∈ W̊α
p (Idθ). Let f ∈Wα

p (Rd, γ). It is clear that fθ,k(·+k) ∈Wα
p (Idθ) and similar

to (2.5) and (2.6) we get

∥fθ,k(·+ k)∥Wα
p (Idθ)

≪ e
|k+(θsignk)/2|2

2p ∥f∥Wα
p (Rd,γ), f ∈Wα

p (Rd, γ), k ∈ Zd.

Similarly to (2.8) and (2.9), by additionally using the items (ii) and (iv) we have that

fθ,k(·+ k)gθ,k(·+ k)φk(·+ k) ∈ W̊α
p (Idθ),

and

∥fθ,k(·+ k)gθ,k(·+ k)φk(·+ k)∥Wα
p (Idθ)

≪ e
|k+(θsignk)/2|2

2p
− |k|2

2τ ∥f∥Wα
p (Rd,γ),

where τ is a fixed number satisfying the inequalities 1 < τ < p <∞. We choose δ > 0 so that

max

{
e
− |k−(θsignk)/2|2

2
(1− 1

p
)
, e

|k+(θsignk)/2|2
2p

− |k|2
2τ

}
≤ Ce−δ|k|

2
, k ∈ Zd.

For n ∈ R1, let ξn and nk be given as in (2.12) and (2.13), respectively. Noting (2.25) and
(2.26), we define

Iθ,n(f) :=
∑

|k|<ξn

Iθ,nk

(
fθ,k(·+ k)gθ,k(·+ k)φk(·+ k)

)
,

or equivalently,

Iθ,n(f) :=
∑

|k|<ξn

⌊nk⌋∑
j=1

λθ,k,jf(xθ,k,j) (2.27)

as a linear quadrature for the approximate integration of γ-weighted functions f on Rd where
xθ,k,j := xθ,j+k and λθ,k,j := λθ,jgk(xθ,k,j)φk(xθ,k,j). The integration nodes of the quadrature
Iθ,n are

{xθ,k,j : |k| < ξn, j = 1, . . . , ⌊nk⌋} ⊂ Rd, (2.28)

and the weights
(λθ,k,j : |k| < ξn, j = 1, . . . , ⌊nk⌋).

Due to (2.14), the number of integration nodes is not greater than n. Moreover, from the
definition we can see that the integration nodes are contained in the ball of radius ξ∗θ,n :=

θ
√
d/2 + ξn, i.e.,

{xθ,k,j : |k| < ξ∗θ,n, j = 1, . . . , ⌊nk⌋} ⊂ B(ξ∗θ,n) :=
{
x ∈ Rd : |x| ≤ ξ∗θ,n

}
.

Notice that the set of integration nodes (2.28) possesses similar sparsity properties as the set
(2.18).

In a way similar to the proof of Theorem 2.1 we derive
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Theorem 2.2 Let α ∈ N, 1 < p < ∞ and a > 0, b ≥ 0, θ > 1. Assume that for any m ∈ R1,

there is a quadrature Im of the form (2.2) with {x1, . . . ,xm} ⊂
(
−1

2 ,
1
2

)d
satisfying (2.23). Then

for the quadrature Iθ,n defined as in (2.27) we have∣∣∣∣ ∫
Rd

f(x)γ(dx)− Iθ,n(f)

∣∣∣∣≪ n−a(log n)b∥f∥Wα
p (Rd,γ), f ∈Wα

p (Rd, γ). (2.29)

As noticed in Introduction, we do not study the dimension dependence for error estimates
of integration. Hence the hidden constant in the bound (2.29) may depend on the dimension d
and may increase exponentially in d. Therefore, for very large d, the resulting algorithm may
not be practical.

2.2 Asymptotic order of optimal numerical integration

In this subsection, we prove the asymptotic order of optimal numerical integration as formulated
in (1.4) based on Theorem 2.2 and known results on numerical integration for functions from
Wα
p (Id).

Theorem 2.3 Let α ∈ N and 1 < p < ∞. Then one can construct an asymptotically optimal
family of quadratures of the form (2.27)

(
Iγn
)
n∈R1

such that

sup
f∈Wα

p (Rd,γ)

∣∣∣∣ ∫
Rd

f(x)γ(dx)− Iγn(f)

∣∣∣∣ ≍ Intn
(
W α

p (Rd, γ)
)
≍ n−α(log n)

d−1
2 . (2.30)

Proof. Let IF,m be the Frolov quadrature for functions in W̊α
p (Id) (see, e.g., [4, Chapter 8] for

the definition) in the form (2.2) with {x1, . . . ,xm} ⊂
(
−1

2 ,
1
2

)d
. It was proven in [10] for p = 2,

and in [17] for 1 < p <∞ that∣∣∣∣ ∫
Id
f(x)dx− IF,m(f)

∣∣∣∣ ≤ Cm−α(logm)
d−1
2 ∥f∥W̊α

p (Id), f ∈ W̊α
p (Id). (2.31)

For a fixed θ > 1, we define Iγn := Iθ,n as the quadrature described in Theorem 2.2 for a = α and
b = d−1

2 , based on Im = IF,m. By Theorem 2.2 and (2.31) we prove the upper bound in (2.30).

Since for f ∈ W̊α
p (Id)

∥f∥Wα
p (Rd,γ) ≤ (2π)

− d
2p ∥f∥W̊α

p (Id),

we get

Intn
(
W α

p (Rd, γ)
)
≫ Intn(W̊

α
p (Id)).

Hence the lower bound in (2.30) follows from the lower bound Intn(W̊
α
p (Id)) ≫ n−α(log n)

d−1
2

proven in [20].

Besides Frolov quadratures, there are many quadratures for efficient numerical integration
for functions on Id to list. We refer the reader to [4, Chapter 8] for bibliography and historical
comments as well as related results, in particular, the asymptotic order

Intm
(
W α

p (Id)
)
≍ m−α(logm)

d−1
2
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for 1 < p < ∞. We recall only some of them, especially those which give asymptotic order of
optimal integration.

A quasi-Monte Carlo (QMC) quadrature based on a set of integration nodes {x1, . . . ,xm} ⊂
Id is of the form

Im(f) =
1

m

m∑
i=1

f(xi).

In [5, 6] for a prime number q the author introduced higher order digital nets over the finite field
Fq := {0, 1, . . . , q − 1} equipped with the arithmetic operations modulo q. Such digital nets can
achieve the convergence rate m−α(logm)dα with m = qs for functions from Wα

2 (Id), see [8]. In
the recent paper [11], the authors have shown that the asymptotic order of Intm

(
W α

2 (Id)
)
can

be achieved by Dick’s digital nets {x∗
1, . . . ,x

∗
qs} of order (2α+ 1). Namely, they proved that∣∣∣∣ ∫

Id
f(x)dx− 1

m

m∑
i=1

f(x∗
i )

∣∣∣∣ ≤ Cm−α(logm)
d−1
2 ∥f∥Wα

2 (Id), f ∈ Wα
2 (Id), m = qs. (2.32)

In the case d = 2 the QMC quadrature Im = IΦ,m based on Fibonacci lattice rules (d = 2) is
also asymptotically optimal for numerical integration of periodic functions in W̃α

p (I2), that is,∣∣∣∣ ∫
I2
f(x)dx− IΦ,m(f)

∣∣∣∣ ≤ Cm−α(logm)
1
2 ∥f∥Wα

p (I2), f ∈ W̃α
p (I2), (2.33)

where W̃α
p (I2) denotes the subspace of Wα

p (I2) of all functions which can be extended to the
whole R2 as 1-periodic functions in each variable. The estimate (2.33) was proven in [1] for
p = 2 and in [21] for 1 < p < ∞. The QMC quadrature Im = IΦ,m based on Fibonacci lattice
rules (d = 2) is defined by

IΦ,m(f) :=
1

bm

bm∑
i=1

f

({ i

bm

}
− 1

2
,
{ ibm−1

bm

}
− 1

2

)
,

where b0 = b1 = 1, bm := bm−1+bm−2 are the Fibonacci numbers and {x} denotes the fractional
part of the number x.

Therefore, from Theorems 2.1–2.3 and (2.32), (2.33) it follows that the QMC quadratures
based on Dick’s digital nets of order (2α + 1) and Fibonacci lattice rules (d = 2) can be used
for assembling asymptotically optimal quadratures Iγn and Iγθ,n of the forms (2.17) and (2.27) for

Intn
(
W α

p (Rd, γ)
)
, in the particular cases p = 2, d ≥ 2, and 1 < p <∞, d = 2, respectively.

The sparse Smolyak grid SG(ξ) in Id is defined as the set of points:

SG(ξ) :=
{
xk,s := 2−ks ∈ Zd : |k|1 ≤ ξ, |si| ≤ 2ki−1, i = 1, . . . , d

}
, ξ ∈ R1.

For a given m ∈ R1, let ξm be the maximal number satisfying |SG(ξm)| ≤ m. Then we can
constructively define a quadrature Im = IS,m based on the integration nodes in SG(ξm) so that∣∣∣∣ ∫

Id
f(x)dx− IS,m(f)

∣∣∣∣ ≤ Cm−α(logm)(d−1)(α+1/2)∥f∥Wα
p (Id), f ∈Wα

p (Id). (2.34)

To understand this quadrature let us recall a detailed construction from [3, page 760]. In-
deed, from the well-known embedding of Wα

p (Id) into the Besov space of mixed smoothness

12



Bα
p,max(p,2)(I

d) (see, e.g., [4, Lemma 3.4.1(iv)]), and the result on B-spline sampling recovery of
functions from the last space it follows that one can constructively define a sampling recovery
algorithm of the form

Rm(f) :=
∑

xk,s∈SG(ξm)

f(xk,s)ϕk,s

with certain B-splines ϕk,s, such that

∥f −Rm(f)∥L1(Id) ≤ Cm−α(logm)(d−1)(α+1/2)∥f∥Wα
p (Id), f ∈Wα

p (Id).

Then the quadrature IS,m can be defined as

IS,m(f) :=
∑

xk,s∈SG(ξm)

λk,sf(xk,s), λk,s :=

∫
Id
ϕk,s(x)dx,

and (2.34) is implied by the obvious inequality
∣∣ ∫

Id f(x)dx − IS,m(f)
∣∣ ≤ ∥f −Rm(f)∥L1(Id).

Therefore, from Theorem 2.1 and (2.34) we can see that the Smolyak quadrature IS,m can be
used for assembling a quadrature IS,n of the form (2.17) with “double” sparse integration nodes
which gives the convergence rate∣∣∣∣ ∫

Rd

f(x)γ(dx)− IS,n(f)

∣∣∣∣≪ n−α(log n)(d−1)(α+1/2), f ∈ W α
p (Rd, γ).

3 Approximation

In this section we study the linear approximation and sampling recovery in Lq(Rd, γ) of functions
from Wα

p (Rd, γ), and the asymptotic optimality in terms of Kolmogorov n-widths and the linear
n-widths and sampling n-widths for 1 ≤ q < p <∞ and p = q = 2.

Let n ∈ N and let X be a Banach space and F a central symmetric compact set in X. Then
the Kolmogorov n-width of F is defined by

dn(F,X) := inf
Ln

sup
f∈F

inf
g∈Ln

∥f − g∥X ,

where the left-most infimum is taken over all subspaces Ln of dimension ≤ n in X. The linear
n-width of the set F is defined by

λn(F,X) := inf
An

sup
f∈F

∥f −An(f)∥X ,

where the infimum is taken over all linear operators An in X with rankAn ≤ n. Notice that if
X is a Hilbert space, then λn(F,X) = dn(F,X).

Let Ω be a domain in Rd. Let n ∈ N and let X be a Banach space of functions on Ω and
F a compact set in X. Given {xi}ni=1 ⊂ Ω, to approximately recover f ∈ F from the sampled
values {f(xi)}ni=1 we use a (linear) sampling algorithm defined by

Rn(f) :=

n∑
i=1

f(xi)φi, (3.1)
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where {φi}ni=1 is a collection of n functions in X. For convenience, we assume that some points
from {xi}ni=1 ⊂ Ω and some functions from {φi}ni=1 may coincide. For n ∈ N we define the
sampling n-width of the set F in X as

ϱn(F,X) := inf
x1,...,xn∈Ω,
φ1,...,φn∈X

sup
f∈F

∥f −Rn(f)∥X ,

where Rn(f) is given by (3.1). Obviously, we have the inequalities

dn(F,X) ≤ λn(F,X) ≤ ϱn(F,X). (3.2)

There are other popular n-widths in approximation theory like the entropy n-widths,
Gel’fand n-widths and Bernstein n-widths, etc. In particular, for optimality of numerical algo-
rithms, the Gel’fand n-widths are very important, since optimal algorithms could be non-linear
(for detail, see, e.g., [4, Section 6 and Section 9.6]). However, these n-widths are not in the
scope of consideration of the present paper.

For technical convenience we use the conventions An := A⌊n⌋, Rn := R⌊n⌋, dn(F,X) :=
d⌊n⌋(F,X), λn(F,X) := λ⌊n⌋(F,X) and ϱn(F,X) := ϱ⌊n⌋(F,X) for n ∈ R1.

For given α and p, q, we make use of the abbreviations:

λn := λn(W
α
p (Rd, γ), Lq(Rd, γ)), dn := dn(W

α
p (Rd, γ), Lq(Rd, γ)),

ϱn := ϱn(W
α
p (Rd, γ), Lq(Rd, γ)).

We prove the asymptotic orders of λn, dn and ϱn as well as constructively define asymptotically
optimal linear approximation methods which are very different for the cases 1 ≤ q < p <∞ and
q = p = 2.

3.1 The case 1 ≤ q < p < ∞

Let α ∈ N, 1 ≤ q < p < ∞ and a > 0, b ≥ 0. Denote by L̃q(Id) and W̃α
p (Id) the subspaces

of Lq(Id) and Wα
p (Id), respectively, of all functions f which can be extended to the whole Rd

as 1-periodic functions in each variable (denoted again by f). Let Am be a linear operator in
L̃q(Id) of rank ≤ m. Assume it holds that

∥f −Am(f)∥L̃q(Id) ≤ Cm−a(logm)b∥f∥W̃α
p (Id), f ∈ W̃α

p (Id). (3.3)

Then based on Am, we will construct a linear operator Aγm in Lq(Rd, γ) which approximates
f ∈ Wα

p (Rd, γ) with the same convergence rate. Our strategy is similar to the problem of
numerical integration considered in Subsection 2.1.

Fix a number θ with θ > 1. Denote by L̃q(Idθ) and W̃α
p (Idθ) the subspaces of Lq(Idθ) and

Wα
p (Idθ), respectively, of all functions f which can be extended to the whole Rd as θ-periodic

functions in each variable (denoted again by f). A linear operator Am induces the linear operator
Aθ,m in L̃q(Idθ), defined for f ∈ L̃q(Idθ) by Aθ,m(f) := Am(f(·/θ)).

From (3.3) it follows that

∥f −Aθ,m(f)∥L̃q(Idθ)
≤ Cm−a(logm)b∥f∥W̃α

p (Idθ)
, f ∈ W̃α

p (Idθ).
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Since q < p, we can choose a fixed δ > 0 such that

e
|k+(θsignk)/2|2

2p
− |k−(θsignk)/2|2

2q ≤ Ce−δ|k|
2
, k ∈ Zd. (3.4)

For n ∈ R1, let ξn and nk be given as in (2.12) and (2.13). Recall that we write Idθ,k := k + Idθ
for k ∈ Zd, and fθ,k the restriction of f on Idθ,k for a function f on Rd. Let {φk}k∈Zd be the
partition of unity satisfying items (i)–(iv), introduced in Subsection 2.1. Similarly to (2.8) and
(2.9), by additionally using the items (ii) and (iv) we have that if f ∈Wα

p (Rd, γ), then

fθ,k(·+ k)φk(·+ k) ∈ W̃α
p (Idθ),

and it holds that

∥fθ,k(·+ k)φk(·+ k)∥W̃α
p (Idθ)

≪ e
|k+(θsignk)/2|2

2p ∥f∥Wα
p (Rd,γ). (3.5)

We define the linear operator Aγθ,n in Lq(Rd, γ) of rank ≤ n by(
Aγθ,nf

)
(x) :=

∑
|k|<ξn

(
Aθ,nk

f̃θ,k

)
(x− k), (3.6)

where f̃θ,k(x) = fθ,k(x+ k)φk(x+ k). Indeed, by (2.14),

rankAγθ,n ≤
∑

|k|<ξn

rankAθ,nk
≤
∑

|k|<ξn

nk ≤ n.

Theorem 3.1 Let α ∈ N, 1 ≤ q < p < ∞ and a > 0, b ≥ 0, θ > 1. Assume that for any
m ∈ R1, there is a linear operator Am in L̃q(Id) of rank ≤ m such that the convergence rate
(3.3) holds. Then for any n ∈ R1, based on this linear operator one can construct the linear
operator Aγθ,n in Lq(Rd, γ) of rank ≤ n as in (3.6) so that

∥f −Aγθ,n(f)∥Lq(Rd,γ) ≤ Cn−a(log n)b∥f∥Wα
p (Rd,γ), f ∈Wα

p (Rd, γ). (3.7)

Proof. The proof of this theorem is analogous to that of Theorem 2.2 with certain modifications.
We give a short description of it. From the items (ii) and (iii) in Subsection 2.1 it is implied
that

f =
∑
k∈Zd

fθ,kφk.

Hence we have

∥f −Aγθ,n(f)∥Lq(Rd,γ) ≤
∑

|k|<ξn

∥∥∥fθ,kφk −
(
Aθ,nk

f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k,γ)

+
∑

|k|≥ξn

∥fθ,kφk∥Lq(Idθ,k,γ)
.

(3.8)

From (2.13), (3.3) and (3.5) we derive the estimates∥∥∥fθ,kφk −
(
Aθ,nk

f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k,γ)

≪ e
− |k−(θsignk)/2|2

2q

∥∥∥fθ,k(·+ k)φk(·+ k)−Aθ,nk
f̃θ,k

∥∥∥
L̃q(Idθ)

≪ e
− |k−(θsignk)/2|2

2q n−ak (log nk)
b∥f(·+ k)φk(·+ k)∥W̃α

p (Idθ)

≪ e
|k+(θsignk)/2|2

2p
− |k−(θsignk)/2|2

2q

(
ne−

δ
2a

|k|2
)−a

(log n)b∥f∥Wα
p (Rd,γ).
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Using (3.4) we get∥∥∥fθ,kφk −
(
Aθ,nk

f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k,γ)

≪ e−
δ
2
|k|2n−a(log n)b∥f∥Wα

p (Rd,γ),

which implies∑
|k|<ξn

∥∥∥fθ,kφk −
(
Aθ,nk

f̃θ,k

)
(· − k)

∥∥∥
Lq(Idθ,k,γ)

≪
∑

|k|<ξn

e−
δ
2
|k|2n−a(log n)b∥f∥Wα

p (Rd,γ)

≪ n−a(log n)b∥f∥Wα
p (Rd,γ).

Similar to (2.21) and (2.22), we have for a fixed ε ∈ (0, 1/2),∑
|k|≥ξn

∥fθ,kφk∥Lq(Idθ,k,γ)
≪

∑
|k|≥ξn

e
− |k−(θsignk)/2|2

2q
+

|k+(θsignk)/2|2
2p ∥f∥Wα

p (Rd,γ)

≪
∑

|k|≥ξn

e−δ|k|
2∥f∥Wα

p (Rd,γ) ≪ e−δ(1−ε)ξ
2
n∥f∥Wα

p (Rd,γ)

= e−2a(1−ε) logn∥f∥Wα
p (Rd,γ) ≪ n−a(log n)b∥f∥Wα

p (Rd,γ).

From the last two estimates and (3.8) we obtain (3.7).

Lemma 3.2 Let α ∈ N and 1 ≤ q < p <∞. Then we have

dm(W̃
α
p (Id), L̃q(Id)) ≍ m−α(logm)(d−1)α.

Moreover, truncations on certain hyperbolic crosses of the Fourier series form an asymptotically
optimal linear operator Am in L̃q(Id) of rank ≤ m such that

∥f −Am(f)∥L̃q(Id) ≪ m−α(logm)(d−1)α∥f∥W̃α
p (Id), f ∈ W̃α

p (Id). (3.9)

For details on this lemma see, e.g., in [4, Theorems 4.2.5, 4.3.1 & 4.3.7] and related comments
on the asymptotic optimality of the hyperbolic cross approximation.

We are now in the position to prove the main result in this section.

Theorem 3.3 Let α ∈ N and 1 ≤ q < p < ∞. Then for any n ∈ R1, based on the linear
operator Am in Lemma 3.2 one can construct the linear operator Aγn in Lq(Rd, γ) of rank ≤ n
as in (3.6) so that

sup
f∈Wα

p (Rd,γ)

∥f −Aγn(f)∥Lq(Rd,γ) ≍ λn ≍ dn ≍ n−α(log n)(d−1)α. (3.10)

Moreover, with the additional condition q = 2,

ϱn ≍ n−α(log n)(d−1)α. (3.11)

Proof. For a fixed θ > 1, we define Aγn := Aγθ,n as the linear operator described in Theorem 3.1.
The upper bounds in (3.10) follow from (3.9) and Theorem 3.1 with a = α, b = (d− 1)α.
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If f is a 1-periodic function on Rd and f ∈ W̃α
p (Id), then

∥f∥Wα
p (Rd,γ) =

(
(2π)−d/2

∑
|r|∞≤α

∫
Rd

|Drf(x)|pe−
|x|2
2 dx

)1/p

= (2π)
− d

2p

( ∑
|r|∞≤α

∑
k∈Zd

∫
Id
|Drf(x+ k)|pe−

|x+k|2
2 dx

)1/p

≪

( ∑
|r|∞≤α

∫
Id
|Drf(x)|pdx

∑
k∈Zd

e−
|k−(signk)/2|2

2

)1/p

≪ ∥f∥W̃α
p (Id),

and

∥f∥L̃q(Id) =

(
(2π)

d
2

∫
Id
|f(x)|qe

|x|2
2 g(x)dx

)1/q

≤ (2π)
d
2q e

d
8q ∥f∥Lq(Rd,γ).

Hence we get

λn ≥ dn ≫ dn(W̃
α
p (Id), L̃q(Id)).

Now Lemma 3.2 implies the lower bounds in (3.10).

We now prove (3.11). Assume q = 2. The lower bound of (3.11) follows from (3.2) and
(3.10). Let us verify the upper one. By (3.10) we have that

dn ≪ n−α(log n)(d−1)α. (3.12)

Notice that the separable normed space Wα
p (Rd, γ) is continuously embedded into L2(Rd, γ),

and the evaluation functional f 7→ f(x) is continuous on the space Wα
p (Rd, γ) for each x ∈ Rd.

This means that W α
p (Rd, γ) satisfies Assumption A in [9]. By [9, Corollary 4] and (3.12) we

prove the upper bound:
ϱn ≪ dn ≪ n−α(log n)(d−1)α.

3.2 The case q = p = 2

Our approach to this case, which is completely different from the one in the case 1 ≤ q < p <
∞, is similar to the hyperbolic cross trigonometric approximation in the Hilbert space L̃2(Id)
of periodic functions from the Sobolev space W̃α

2 (Id) (see, e.g., [4] for details). Here, in the
approximation, the trigonometric polynomials are replaced by the Hermite polynomials.

For k ∈ N0, the normalized probabilistic Hermite polynomial Hk of degree k on R is defined
by

Hk(x) :=
(−1)k√
k!

exp

(
x2

2

)
dk

dxk
exp

(
−x

2

2

)
.

For every multi-degree k ∈ Nd0, the d-variate Hermite polynomial Hk is defined by

Hk(x) :=
d∏
j=1

Hkj (xj), x ∈ Rd.
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It is well-known that the Hermite polynomials {Hk}k∈Nd
0
constitute an orthonormal basis of the

Hilbert space L2(Rd, γ) (see, e.g., [19, Section 5.5]). In particular, every f ∈ L2(Rd, γ) can be
represented by the Hermite series

f =
∑
k∈Nd

0

f̂(k)Hk with f̂(k) :=

∫
Rd

f(x)Hk(x)γ(dx) (3.13)

converging in the norm of L2(Rd, γ), and in addition, there holds Parseval’s identity

∥f∥2L2(Rd,γ) =
∑
k∈Nd

0

|f̂(k)|2. (3.14)

For α ∈ N0 and k ∈ Nd0, we define

ρα,k :=
d∏
j=1

(kj + 1)α .

Lemma 3.4 Let α ∈ N0. Then we have that

∥f∥2Wα
2 (Rd,γ) ≍

∑
k∈Nd

0

ρα,k|f̂(k)|2, f ∈Wα
2 (Rd, γ). (3.15)

Proof. This lemma in an implicit form has been proven in [7, pages 687–688]. Let us prove it
for completeness. From the formula for the rth derivative of the Hermite polynomial Hk

H
(r)
k =

{√
k!

(k−r)! Hk−r, if k ≥ r,

0, otherwise,

we deduce that for f ∈Wα
2 (R, γ) and r ≤ α,

f (r) =
∑
k≥r

√
k!

(k − r)!
f̂(k)Hk−r,

and hence,

∥f∥2Wα
2 (Rd,γ) =

α∑
r1=0

∑
k1≥r1

k1!

(k1 − r1)!
· · ·

α∑
rd=0

∑
kd≥rd

kd!

(kd − rd)!
|f̂(k1, . . . , kd)|2. (3.16)

From the last equality and the relation k!
(k−r)! ≍ ρr,k, k ∈ N0, it is easy to derive (3.15) for the

case d = 1. In the case d ≥ 2, (3.15) can be proven by induction on d with the help of the
equality (3.16).

We extend the space Wα
2 (Rd, γ) to any α > 0. Denote by Hα the space of all functions

f ∈ L2(Rd, γ) represented by the Hermite series (3.13) for which the norm

∥f∥Hα :=

∑
k∈Nd

0

ρα,k|f̂(k)|2
1/2

(3.17)
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is finite. With this definition, we identify Wα
2 (Rd, γ) with Hα for α ∈ N.

For functions f ∈ Hα, we construct a hyperbolic cross approximation based on truncations
of the Hermite series (3.13). For the hyperbolic cross G(ξ) :=

{
k ∈ Nd0 : ρ1,k ≤ ξ

}
, ξ ∈ R1, the

truncation Sξ(f) of the Hermite series (3.13) on this set is defined by

Sξ(f) :=
∑

k∈G(ξ)

f̂(k)Hk.

Notice that Sξ is a linear projection from L2(Rd, γ) onto the linear subspace L(ξ) spanned by
the Hermite polynomials Hk, k ∈ G(ξ), and dimL(ξ) = |G(ξ)|.

Recall that according to the section on notation in the introduction Hα denotes the unit
ball in Hα.

Theorem 3.5 Let α > 0. Then we can construct a sequence {ξn}∞n=2 with |G(ξn)| ≤ n so that

sup
f∈Hα

∥f − Sξn(f)∥L2(Rd,γ) ≍ λn(Hα, L2(Rd, γ)) = dn(Hα, L2(Rd, γ)) ≍ n−
α
2 (log n)

(d−1)α
2 .

(3.18)
Moreover, with the additional condition α > 1,

ϱn(Hα, L2(Rd, γ)) ≍ n−
α
2 (log n)

(d−1)α
2 . (3.19)

Proof. Since L2(Rd, γ) is a Hilbert space, we have the equality λn(Hα, L2(Rd, γ)) =
dn(Hα, L2(Rd, γ)) in (3.18). To prove the upper bounds in (3.18) it is sufficient to construct a
sequence {ξn}∞n=2 so that |G(ξn)| ≤ n and

sup
f∈Hα

∥f − Sξn(f)∥L2(Rd,γ) ≪ n−
α
2 (log n)

(d−1)α
2 . (3.20)

From Parseval’s identity (3.14) and Lemma 3.4 we have that for every f ∈ W α
2 (Rd, γ) and ξ > 1,

∥f − Sξ(f)∥2L2(Rd,γ) =
∑

k/∈G(ξ)

f̂(k)2 ≪ ξ−α
∑

k/∈G(ξ)

ρα,kf̂(k)
2 ≪ ξ−α ∥f∥Wα

2 (Rd,γ) ≤ ξ−α. (3.21)

Let {ξn}∞n=2 be the sequence of ξn defined as the largest number satisfying the condition |G(ξn)| ≤
n. From the relation |G(ξn)| ≍ ξn(log ξn)

d−1, see, e.g., [22, page 130], we derive that ξ−αn ≍
n−α(log n)(d−1)α which together with (3.21) yields (3.20).

To show the lower bounds of (3.18) we need Tikhomirov’s theorem [23, Theorem 1] which
states that if X is a Banach space and Un+1(λ) the ball of radius λ > 0 in a linear n + 1-
dimensional subspace of X, then dn(Un+1(λ), X) = λ. Further, if

U(ξ) :=
{
f ∈ L(ξ) : ∥f∥L2(Rd,γ) ≤ 1

}
and f ∈ U(ξ), then by Parseval’s identity (3.14) and the definition of Hα, similarly to (3.21), we
deduce that ∥f∥Hα ≪ ξα/2. This means that Cξα/2U(ξ) ⊂ Hα for some C > 0. Let {ξ′n}

∞
n=2 be

the sequence of ξ′n defined as the smallest number satisfying the condition |G(ξ′n)| ≥ n+1. Then
dimL(ξ′n) = |G(ξ′n)| ≥ n+1, and similarly as in the upper estimation, (ξ′n)

−α ≍ n−α(log n)(d−1)α.
By Tikhomirov’s theorem for the smallest quantity dn in (3.18) we have that

dn(Hα, L2(Rd, γ)) ≥ dn(Cξ
α/2U(ξ′n+1), L2(Rd, γ)) ≫ (ξ′n)

−α ≍ n−
α
2 (log n)

(d−1)α
2 .
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Let us prove (3.19). The lower bound of (3.19) follows from (3.18) and the inequality
ϱn(Hα, L2(Rd, γ)) ≥ λn(Hα, L2(Rd, γ)). We verify the upper one. By (3.18),

dn(Hα, L2(Rd, γ)) ≪ n−
α
2 (log n)

(d−1)α
2 . (3.22)

Notice that for α > 1, Hα is a separable reproducing kernel Hilbert space with the reproducing
kernel

K(x,y) =
∑
k∈Nd

0

ρ−1
α,kHk(x)Hk(y). (3.23)

From the orthonormality of the system {Hk}k∈Nd
0
it is easily seen that K(x,y) satisfies the finite

trace assumption ∫
Rd

K(x,x)γ(dx) < ∞. (3.24)

Hence by [9, Corollary 2] we obtain ϱn(Hα, L2(Rd, γ)) ≪ dn(Hα, L2(Rd, γ)). This and (3.22)
prove the upper bound of (3.19).

In the case when α ∈ N, Theorem 3.5 yields the following result on sampling n-widths of the
Sobolev class W α

2 (Rd, γ) of mixed smoothness α.

Corollary 3.6 Let α ∈ N. Then we can construct a sequence {ξn}∞n=2 with |G(ξn)| ≤ n so that

sup
f∈Wα

2 (Rd,γ)

∥f − Sξn(f)∥L2(Rd,γ) ≍ λn = dn ≍ n−
α
2 (log n)

(d−1)α
2 . (3.25)

Moreover, with the additional condition α ≥ 2,

ϱn ≍ n−
α
2 (log n)

(d−1)α
2 . (3.26)

We stress that the assumption α > 1 for (3.19) is vital since it is a necessary and sufficient
condition forHα to be a separable reproducing kernel Hilbert space with the finite trace condition
(3.24) and therefore, the result [9, Corollary 2] can be applied. We conjecture that the consequent
asymptotic order (3.26) still holds true for α = 1. Here it may require a different technique.

4 Numerical comparison with other quadratures

We illustrate the integration nodes of the quadratures constructed in the present paper, in
comparison with the integration nodes used in [7]. Assume that {x1, . . . ,xn} are the integration
nodes for an optimal quadrature In for functions in Wα

p (I2). Then the integration nodes in [7]
are just a dilation of these nodes to the cube [−C

√
log n,C

√
log n]2. Hence these nodes are

distributed similarly on this cube. Differently, the integration nodes in our construction are
formed from certain integer-shifted dilations of {x1, . . . ,xm} and contained in the ball of radius
C
√
log n. These nodes are dense when they are near the origin and getting sparser as they are

farther from the origin. The illustration is given in Figure 1.

The following is a numerical test of our result for the cases d = 1 and α = 1, 2, 3. We consider
the algorithm for the space Wα

2 (R). For numerical integration of functions in W̊α
2 (I) we use the

Smolyak point set. Observe that these nodes give the optimal convergence rate since d = 1,
see Section 2.2. In this test δ in (2.10) is chosen as δ = 1

6 . We apply the method of change

20



-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

Point set of Dick et al. [7] (512 points) Point set of our construction (560 points)

Figure 1: Distribution of integration nodes in [7] and in this paper.

of variable by ψ3 to get asymptotically optimal integration nodes and weights for functions in
Wα

2 (I) where the function ψ3 is defined as in (2.24). From these nodes and weights we get the
optimal quadrature {x1, . . . , xn} and {λ1, . . . , λn} for Wα

2 (R, γ) as described in Section 2.1. The
error of this quadrature is given by

err =

((
1−

n∑
i=1

λi

)2

+
∞∑
k=1

ρα,k

( n∑
i=1

λiHk(xi)

)2
)1/2

,

see, e.g., [7, Section 4].

For the numerical computation this error is replaced by the truncated version

errm =

((
1−

n∑
i=1

λi

)2

+
m∑
k=1

ρα,k

( n∑
i=1

λiHk(xi)

)2
)1/2

.

In our test we choose m = 105. Our result is given in Figure 2 which shows that the worst-case
errors of the assembled quadratures for α ∈ {1, 2, 3} have convergence rate O(n−α). It has been
observed in [7] that the interlaced Sobol’ sequence also gives the optimal convergence rates for
numerical integration of Wα

2 (R, γ). The numerical result reaffirms the theory in this paper.
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