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ON THE HANG–YANG CONJECTURE FOR GJMS EQUATIONS ON S
n

ALI HYDER AND QUỐC ANH NGÔ

Abstract. This work concerns a Liouville type result for positive, smooth solution v to
the following higher-order equation

P
2m
n (v) =

n−2m

2
Q2m
n (εv + v−α )

on S
n with m ≥ 2, 3 ≤ n < 2m, 0 < α ≤ (2m + n)/(2m − n), and ε > 0. Here P

2m
n is

the GJMS operator of order 2m on S
n and Q2m

n = (2/(n− 2m))P2mn (1) is constant. We
show that if ε > 0 is small and 0 < α ≤ (2m + n)/(2m − n), then any positive, smooth
solution v to the above equation must be constant. The same result remains valid if
ε = 0 and 0 < α < (2m + n)/(2m − n). In the special case n = 3, m = 2, and α = 7,
such Liouville type result was recently conjectured by F. Hang and P. Yang (Int. Math.
Res. Not. IMRN, 2020). As a by-product, we obtain the sharp (subcritical and critical)
Sobolev inequalities

(∫

Sn
v1−αdµSn

) 2
α−1

∫

Sn
vP2mn (v)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)
|Sn |

α+1
α−1

for the GJMS operator P
2m
n on S

n under the conditions n ≥ 3, n = 2m − 1, and α ∈
(0,1) ∪ (1,2n + 1]. A log-Sobolev type inequality, as the limiting case α = 1, is also
presented.

1. Introduction

Let n ≥ 3 be an odd integer, 2m > n, and 0 < α ≤ (n+ 2m)/(2m − n). In this work,
we consider the following equation

P
2m
n (v) =

n− 2m

2
Q2m
n (εv + v−α) in S

n. (1.1)ε

Here P
2m
n is the well-known GJMS operator on S

n equipped with the standard metric
gSn , which is given as follows

P
2m
n :=

m−1∏

i=0

(
−∆gSn − (i +

n

2
)(i −

n

2
+1)

)
,

see [GJMS92], and

Q2m
n :=

2

n− 2m
P
2m
n (1) =

2

n− 2m

Γ(n/2+m)

Γ(n/2−m)

is a non-zero constant representing the so-called Q-curvature of (Sn,gSn ), namely

P
2m
n = (−∆gSn )

m +
∑

1≤k≤m−1

ck(−∆gSn )
k +

n− 2m

2
Q2m
n

for suitable constants ck with 1 ≤ k ≤m− 1. A special case of the operator P
2m
n , which

has often been studied over the last two decades, is the well-known Paneitz operator,
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2 A. HYDER AND Q.A. NGÔ

which is of fourth order. This example of a higher-order conformal operator gains
interest because of its role in conformal geometry; see [CGY02, HY16]. On (S3,gS3),
the Paneitz operator is given by

P
4
3 = ∆

2
g
S3

+
1

2
∆g

S3
−
15

16
,

and therefore Q4
3 = −2Γ(7/2)/Γ(−1/2) = 15/8. Using the above recursive formula for

P
2m
n we can compute higher dimensional cases, for example

P
6
3 = −∆

3
gSn
−
23

4
∆
2
gSn
−
27

16
∆gSn +

315

64
on (S3,gS3)

with Q6
3 = −105/32 and

P
6
5 = −∆

3
gSn

+
13

4
∆
2
gSn

+
93

16
∆gSn −

945

64
on (S5,gS5)

with Q6
5 = 945/32. One should pay attention on the sign difference of Q6

3 and Q6
5 .

Our motivation of working on the equation (1.1)ε traces back to a recent conjecture
by F. Hang and P. Yang in [HY20] that we are going to describe now. This conjecture
concerns the following sharp critical Sobolev inequality on S

3

‖φ−1‖2
L6(S3)

∫

S3

[
(∆g

S3
φ)2 −

1

2
|∇g

S3
φ|2 −

15

16
φ2

]
dµS3 ≥ −

15

16
|S3|4/3 (1.2)

for any φ ∈H2(S3) with φ > 0, which was already proved in [YZ04] by symmetrization
argument and in [HY04] by variational argument. Apparently, the inequality (1.2) can
be rewritten as follows

‖φ−1‖2
L6(S3)

∫

S3
φP

4
3(φ)dµS3 ≥ −

15

16
|S3|4/3 (1.3)

for any 0 < φ ∈H2(S3), because the integral in (1.2) is nothing but
∫
S3 φP

4
3(φ)dµS3 . In

(1.3) and what follows, |Sn| denotes the surface area of Sn. Besides, by Morrey’s theorem,
functions in H2(S3) are continuous and therefore the condition φ > 0 is understood in
pointwise sense. By direct calculation, one can easily verify that equality in (1.3) occurs
if φ is any positive constant. This tells us that the Paneitz operator P

4
3 on the standard

sphere S
3 is no longer positive; see [XY02] for the assumption on the positivity of the

Paneitz operator on closed 3-manifolds.

In an effort to provide a new proof for (1.3) with the sharp constant, the authors in
[HY20] propose a new way to prove the above Sobolev inequality by considering the
following minimizing problem

inf
0<φ∈H2(S3)

‖φ−1‖2
L6(S3)

[∫

S3
φP

4
3(φ)dµS3 + ε

∫

S3
φ2dµS3

]
(1.4)

for small ε > 0. Thanks to the small perturbation ε‖φ‖2
L2(S3)

, it is standard and straight-

forward to verify that the extremal problem (1.4) has a minimizer. Such a minimizer,
denoted by vε, eventually solves

P
4
3(vε) + εvε = −v

−7
ε

on S
3, up to a constant. Here is the key observation: if the above equation only admits

constant solution for small ε > 0, namely vε ≡ const., then one immediately has

‖φ−1‖2
L6(S3)

[∫

S3
φP

4
3(φ)dµS3 + ε

∫

S3
φ2dµS3

]
≥ |S3|1/3

[∫

S3
P
4
3(1)dµS3 + ε|S3|

]

for any 0 < φ ∈H2(S3). Having this and as P
4
3(1) = −(1/2)Q

4
3 = −15/16, letting εց 0

yields (1.3). The novelty of this new approach is that it automatically implies the sharp
form of (1.3) with the precise sharp constant.
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The above observation leads Hang and Yang to propose the following conjecture.

The Hang–Yang conjecture ([HY20, page 3299]). Let ε > 0 be a small number. If v is
a positive smooth solution to

P
4
3(v) + εv = −v

−7

on S
3, then v must be a constant function.

In a recent work Zhang [Zha21] provides an affirmative answer to the above conjec-
ture. The idea behind Zhang’s proof is first to transfer the differential equation on S

3 to
some differential equation on R

3 and then to classify solutions to that equation on R
3.

More precisely, let πN : S3 → R
3 be the stereographic projection from the north pole

N ; see subsection 2.1 below. The pullback (π−1N )∗ enjoys

(π−1N )∗(gS3) =
( 2

1+ |x|2

)2
dx2

and for any smooth solution v on S
3 there holds

P
4
3(v) ◦π

−1
N =

( 2

1+ |x|2

)−7/2
∆
2
(( 2

1+ |x|2

)−1/2
v ◦π−1N

)
.

(Here and in the sequel, ∆ is the usual Laplacian on Euclidean spaces.) Setting

u(x) :=
(1+ |x|2

2

)1/2(
v ◦π−1N

)
(x), (1.5)

we see that if v solves P
4
3(v) + εv = −v

−7 in S
3, then u solves

∆
2u(x) + ε

( 2

1+ |x|2

)4
u(x) = −u−7(x) in R

3.

Via a dedicated argument based on the method of moving planes and techniques from
potential theory, which are rather involved, it is proved that u is radially symmetric.
Finally, with the help of a Kazdan–Warner type identity, the function v must be constant.

Inspired by the work of Zhang described above, we are interested in Hang–Yang’s
conjecture in higher dimensional cases, namely we want to seek for a suitable Liouville
type result for positive, smooth solution to equations involving GJMS operators. This
leads us to investigate solutions to (1.1)ε . Very similar to situation studied by Hang and
Yang, our motivation to study the equation (1.1)ε comes from the higher-order sharp
critical Sobolev inequality; see Theorem 1.2 below. Using the perturbation approach
introduced in [HY20], we are able to establish a Liouville type result for solutions to
(1.1)ε .

Toward a suitable Liouville type result, let us first describe some preliminary results
on (1.1)ε . Our first observation concerns the admissible range for ε. As the perturbation
approach is being used, we require the condition ε ≥ 0; see the proof of Lemma 5.1.
Now, by integrating both sides of (1.1)ε over S

n and as 2m − n > 0 and Q2m
n , 0 we

conclude that

(1− ε)

∫

Sn
vdµSn =

∫

Sn
v−αdµSn .

This immediately tells us that ε < 1. Thus, the admissible range for ε is 0 ≤ ε < 1.
Having this, let us now state the main result of this paper.

Theorem 1.1. Let n ≥ 3 be odd and m > n/2. Then there exists ε∗ ∈ (0,1) such that
under one of the following conditions

(1) either ε ∈ (0,ε∗) and 0 < α ≤ (n+2m)/(2m− n)
(2) or ε = 0 and 0 < α < (n+2m)/(2m− n)

any positive, smooth solution to (1.1)ε must be constant.
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We have the following remarks:

• The above result again confirms the Hang–Yang conjecture for the Paneitz oper-
ator on S

3, and generalizes the result of Zhang in the critical setting in higher
dimensional cases.

• Theorem 1.1 can be compared with the Liouville type results obtained by Bidaut-
Véron and Véron in [BVV91, Theorem 6.1] for the Emden equation, see also the
work of Gidas and Spruck in [GS81]. Note that the condition α < (n+2m)/(2m−
n) is sharp for ε = 0 as the result does not hold if α = (n+ 2m)/(2m − n). This
is because in this limiting case the equation (1.1)0 is conformally invariant; see
section 3.

• The threshold ε∗ is given in Lemma 4.3.
• Although for any 0 ≤ ε < 1, equation (1.1)ε always admits the trivial solution

vε ≡ (1 − ε)−1/(α+1), but it is not clear whether or not the above Liouville type
result still holds for ε ∈ [ε∗,1). This seems to be an interesting open question.

To prove Theorem 1.1, we adopt the strategy used by Zhang. Such strategy can be
formulated as the following two main steps: first to transfer (1.1)ε in S

n to the equation
(1.8)ε and the corresponding integral equation in R

n, then to study symmetry properties
of solutions to these equations for small ε > 0. However, to be able to handle higher-
order cases, our approach is significantly different from Zhang. One major reason is
that less results is known for the higher-order cases compared to the case m = 2. For
example, we do not know if the preliminary results of Hang and Yang mentioned in
[Zha21, section 2] are available for m ≥ 3. Because of this difficulty, instead of the
differential equation (1.8)ε, we mainly work on the corresponding integral equation on
R
n, and directly prove compactness results and symmetry properties of solutions. As

pays off, our analysis is much simpler, and could handle higher-order cases efficiently.

As the operator P
2m
n is conformally covariant, for any smooth function ϕ on S

n we
have the following identity (π denotes the stereographic projection from S

n to R
n with

respect to either the north or the south pole)

P
2m
n (ϕ) ◦π−1 =

( 2

1+ |x|2

)− n+2m2 (−∆)m
(( 2

1+ |x|2

) n−2m
2 ϕ ◦π−1

)
;

see e.g. [Han07, Section 2]. Then, similar to (1.5), by setting

u(x) :=
( 2

1+ |x|2

) n−2m
2

(
v ◦π−1

)
(1.6)

and

Fε,u (x) := ε
( 2

1+ |x|2

)2m
u(x) +

( 2

1+ |x|2

) n+2m
2 +α n−2m

2 u(x)−α (1.7)

we see that u satisfies

(−∆)mu =
n− 2m

2
Q2m
n Fε,u in R

n. (1.8)ε

In view of (1.6), we know that the function u on R
n has exact growth |x|2m−n at infinity.

This additional information allows us to transfer the differential equation (1.8)ε into the
following integral equation

u(x) = γ2m,n

∫

Rn
|x − y|2m−nFε,u (y)dy on R

n

for some constant γ2m,n > 0; see Theorem 2.2 below. Notice that in general there
might be more solutions to (1.8)ε than the above integral equation, see e.g. [HW19] and
[DN22].
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Let us emphasize that transferring to an equivalent integral equation on R
n also ap-

pears in the work of Zhang, but the proof provided in [Zha21] does not seem to work
in our case. Similar integral representation in the fractional setting also appears in
[FKT22]. In our work, by exploiting some nice structures on S

n as well as some in-
triguing properties of the stereographic projection, we offer a completely new argument,
which is surprisingly simpler; see section 2.

Having the above integral equation in hand, we use a variant of the method of mov-
ing planes in the integral form to show that any positive smooth solution u to the
above integral equation with exact growth |x|2m−n at infinity must be radially symmet-
ric. The symmetry of solutions to the integral equation helps us to conclude that the
corresponding function v, appeared as in (1.6), must be constant. The strategy we just
describe seems to be very simple and straightforward at the first glance, but there are
two major difficulties that we want to highlight. First, it is worth emphasizing that the
method of moving planes and its variants work well in the case of equations with pos-
itive exponents; unfortunately, our equations, both differential and integral forms, have
a negative exponent. Second, by analyzing the form of Fε,u in (1.7), one immediately
notices that because of our special choice of perturbation, there are two powers of u,
whose exponents have opposite sign. Unless ε = 0, otherwise to run the method of
moving planes, one needs to establish certain compactness result for solutions to (1.1)ε
for suitable small ε, which costs us some energy.

Concerning classification of solutions to (1.8)ε with ε = 0 and with the RHS depending
only on u, that is equation of the form (−∆)mu = cu−α we refer to [HW19, Ngo18, Li04]
and the references therein.

Finally, to illustrate our finding on a Liouville type result for solutions to (1.1)ε, we
revisit the sharp critical Sobolev inequality for P

2m
n on S

n proved in [Han07]. In fact,
we offer both critical and subcritical inequalities at once.

Theorem 1.2. Let n ≥ 3 be an odd integer and m = (n + 1)/2. Then, for any φ ∈
Hm(Sn) with φ > 0 and any α ∈ (0,1) ∪ (1,2n + 1], we have the following sharp
Sobolev inequality

(∫

Sn
φ1−αdµSn

) 2
α−1

∫

Sn
φP

2m
n (φ)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)
|Sn|

α+1
α−1 . (1.9)

Moreover, the equality occurs if φ is any positive constant.

Let us have some comments on Theorem 1.1 above.

Remark 1.3.

• Although the condition n = 2m−1 is not required in Theorem 1.1, but in our proof
of (1.9) we heavily use it as in this case we have the advantage of Q-curvature
Q2m
n being positive. In general, the inequality (1.9) is not true for n < 2m−3, see

e.g. [FKT22].
• Apparently, by chosing α = (n + 2m)/(2m − n) = 2n + 1, our inequality (1.9)

includes the following critical Sobolev inequality

(∫

Sn
φ−

2n
2m−n dµSn

) 2m−n
n

∫

Sn
φP

2m
n (φ)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)
|Sn|

2m
n , (1.10)

which was already proved in [Han07], see also [HY04] and [FKT22].
• The case α = 1 is excluded in Theorem 1.2 due to the presence of the term

1/(α − 1). For α = 1, by a limiting argument one obtains the inequality (1.11)
below.
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• Our last comment concerns the order of the inequality (1.9) as α varies. It turns
out that the subcritical case 0 < α < 2n+1 can be obtained from the critical case
α = 2n+1, see Section 5 for more details.

Note that our inequality (1.9) can be rewritten as

(?
Sn
φ1−αdµSn

) 2
α−1
?
Sn
φP

2m
n (φ)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)
,

where
>
Sn

:= |Sn|−1
∫
Sn

denotes the average. Using this new form one can easily compute
the limit as αց 1 to obtain an inequality in the limiting case as shown in the following
corollary.

Corollary 1.4. Let n ≥ 3 be an odd integer and m = (n+1)/2. Then, for any φ ∈Hm(Sn)
with φ > 0, we have the following sharp Sobolev inequality

exp
(
− 2

?
Sn

logφdµSn
)?

Sn
φP

2m
n (φ)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)
. (1.11)

Moreover, the equality occurs if φ is any positive constant.

It turns out that without using any limit process, one can still obtain (1.11) directly
from (1.9); see Proposition 5.2. As such, we omit the proof of (1.11). Without using
averages, (1.11) can be rewritten as follows

exp
(
−

2

|Sn|

∫

Sn
logφdµSn

)∫

Sn
φP

2m
n (φ)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)
|Sn|.

To the best of our knowledge, the above inequality (or the inequality (1.11)) seems to be
new.

Our final comment concerns a possible generalization to the fractional setting. In-
deed, it seems that part of our argument can be quickly extended to the case of fractional
operators of order 2s > n instead of GJMS operators of integer order 2m > n. However,
to maintain our work in a reasonable length, we leave this future research.

Before closing this section, let us mention the organization of the paper.
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2. Some auxiliary results

2.1. Basics of the stereographic projection. As routine, we denote by πN and πS the
stereographic projections from the north pole N and from the south pole S of the sphere
S
n respectively. If we denote by (x,xn+1) a general point in R

n+1 = R
n ×R, then we

have the following expressions for πN

πN (x,xn+1) =
x

1− xn+1
, π−1N (x) =

(
2x

|x|2 +1
,
|x|2 − 1

|x|2 +1

)
.

Likewise, we also have similar expressions for πS . But these expressions for πS can be
derived quickly from those for πN by changing the sign of the last coordinate. In this
sense, we arrive at

πS (x,xn+1) =
x

1+ xn+1
, π−1S (x) =

(
2x

|x|2 +1
,−
|x|2 − 1

|x|2 +1

)
.

The following observation plays some role in our analysis.

Lemma 2.1. There holds

π−1N (x) = π−1S
( x
|x|2

)
, π−1S (x) = π−1N

( x

|x|2

)

in R
n \ {0}.

Proof. These identities follows from the above expressions for πN and πS .

R
n

xn+1
N

x

S

π−1N (x) ≡ πS (
x
|x|2

)

x
|x|2

Figure 1. Relation between π−1N and πS .

We leave the details for interested readers; also see Figure 1 above. �

2.2. From differential equations to integral equations. Let v be a positive, smooth
solution to (1.1)ε . Recall from (1.8)ε that the projected function u, defined by (1.6), solves

(−∆)mu =
n− 2m

2
Q2m
n Fε,u in R

n.

The main result of this subsection is to show that u actually solves the corresponding
integral equation (2.1). To achieve this goal, we need certain preparation including the
introduction of a uniform constant that we are going to describe now.

Since n is an odd integer, for some dimensional constant c2m,n , 0 we have

(−∆)m
(
c2m,n |x|

2m−n
)
= δ0,
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where δ0 is the Dirac measure at the origin. For convenience, we also set

γ2m,n := c2m,n
n− 2m

2
Q2m
n .

For simplicity, throughout the paper, we often denote by C a generic constant whose
value could vary from estimate to estimate. We now state our main result in this sub-
section.

Theorem 2.2. We have
γ2m,n > 0

and

u(x) = γ2m,n

∫

Rn
|x − y|2m−nFε,u (y)dy (2.1)

where Fε,u is given by (1.7).

Notice that the integral in (2.1) is well-defined everywhere in R
n. Indeed, as v is

positive everywhere on S
n, we have from (1.6) that u(x) ≈ |x|2m−n for |x| ≫ 1, and hence

(1 + |x|2m−n)Fε,u (x) ≤
C

1+ |x|2n
. (2.2)

In order to prove the above theorem we define the following functions associated with
the projections πN and πS :

uN (x) :=
(1+ |x|2

2

) 2m−n
2 (v ◦π−1N )(x)

and

uS (x) :=
(1+ |x|2

2

) 2m−n
2 (v ◦π−1S )(x)

in R
n. In view of the integral equation (2.1), we denote

ũN (x) := γ2m,n

∫

Rn
|x− y|2m−nFε,uN (y)dy

and

ũS (x) := γ2m,n

∫

Rn
|x − y|2m−nFε,uS (y)dy

in R
n. Our aim is to show that uN ≡ ũN and that γ2m,n > 0. This will be done through

several steps. Our first observation is as follows.

Lemma 2.3. We have

uS (x) = |x|
2m−nuN

( x
|x|2

)
, uN (x) = |x|

2m−nuS
( x
|x|2

)

in R
n \ {0}.

Proof. This is elementary. Indeed, let us compute uS . Clearly, with the help of Lemma
2.1, we have

uS (x) =
(1+ |x|2

2

) 2m−n
2 v

(
π−1S (x)

)

=
(1+ |x|2

2

) 2m−n
2 v

(
π−1N

( x
|x|2

))

= |x|2m−n
(1+ |x/ |x|2|2

2

) 2m−n
2 v

(
π−1N

( x
|x|2

))

= |x|2m−nuN
( x
|x|2

)
,
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which gives the desired formula for uS . The identity for uN can be verified similarly. �

Our next observation is similar to that in Lemma 2.3.

Lemma 2.4. We have

ũS (x) = |x|
2m−nũN

( x
|x|2

)
, ũN (x) = |x|

2m−nũS
( x
|x|2

)

in R
n \ {0}.

Proof. This is also elementary but rather involved. Indeed, let us verify the first identity.
With a change of variable y = z/ |z|2 and by Lemma 2.3 we easily get

|x|2m−nũN
( x
|x|2

)
= γ2m,n |x|

2m−n
∫

Rn

∣∣∣∣
x

|x|2
− y

∣∣∣∣
2m−n

Fε,uN (y)dy

= γ2m,n |x|
2m−n

∫

Rn

∣∣∣∣
x

|x|2
−
z

|z|2

∣∣∣∣
2m−n

Fε,uN (
z

|z|2
)
dz

|z|2n

= γ2m,n

∫

Rn
|x− z|2m−nFε,uS (z)dz

= ũS (x),

where in the second last equality we have used the following facts:
∣∣∣∣∣
x

|x|2
−
z

|z|2

∣∣∣∣∣ =
|x− z|

|x||z|
, Fε,uN (

z

|z|2
) = |z|2m+nFε,uS (z).

The second identity can be verified similarly. �

Now we are able to examine uN − ũN and uS − ũS .

Lemma 2.5. The following functions

PN := uN − ũN , PS := uS − ũS

are polynomials in R
n of degree at most 2m− n.

Proof. Before proving, we see that both PN and PS are well-defined everywhere in R
n.

Now it follows from (2.2) that the function ũN satisfies

ũN (x) ≤ C(1 + |x|
2m−n) for x ∈ Rn.

This together with the growth of uN implies that |PN (x)| ≤ C(1 + |x|
2m−n). Since

∆
mPN = ∆

muN −∆
mũN = 0,

we conclude that PN is a polynomial in R
n of degree at most 2m − n; see [Mar09,

Theorem 5]. A similar argument applies to PS yielding the same conclusion for PS . �

Finally, we are in a position to prove Theorem 2.2, which simply follows from the
next two lemmas.

Lemma 2.6. There hold uN ≡ ũN and uS ≡ ũS everywhere.

Proof. As

uS (x) = |x|
2m−nuN

( x
|x|2

)
, ũS (x) = |x|

2m−nũN
( x

|x|2

)

we obtain

PS (x) = |x|
2m−nPN

( x
|x|2

)
,
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which is a polynomial (of degree at most 2m − n). Surely, as n is odd, this is impossible
because |x|2m−n cannot be a polynomial unless PN ≡ PS ≡ 0, which implies that uN ≡ ũN
and uS ≡ ũS . This completes the proof. �

Lemma 2.7. There hold γ2m,n > 0.

Proof. The claim γ2m,n > 0 follows trivially by seeing its definition

γ2m,n = c2m,nQ
2m
n .

Note that Q2m
n > 0 and that c2m,n > 0 because n < 2m and n is odd. However, the claim

can also be seen from the fact that v ≡ 1 is a solution to (1.1)0. More precisely, making
use of v ≡ 1 and (1.6) one has the following identity

( 2

1+ |x|2

) n−2m
2 = γ2m,n

∫

Rn
|x − y|2m−n

( 2

1+ |y|2

) n+2m
2 dy

everywhere in R
n. �

We conclude this subsection by noting that our approach to prove Theorem 2.2 can
be used for the case of equations with positive exponent. For example, without using
any super polyharmonic property, as in [CLS22], our new approach offers a very simple
and straightforward proof to convert differential equations on S

n to the corresponding
integral equations on R

n, detail will appear elsewhere.

2.3. Pohozaev-type identity. Our last auxiliary result is a Pohozaev-type identity,
which shall be used in the proof of a compactness type result; see section 3 below.
For simplicity, we let

cα := α
2m− n

2
−
2m+ n

2
≤ 0. (2.3)

For future usage, let us state our Pohozaev-type identity in a more general framework.

Lemma 2.8. Let Q ∈ C1(Rn) be such that

|Q(x)| . (1 + |x|)−n+(α−1)(2m−n)−δ,

for some δ > 0. Let u be a positive, regular solution to

u(x) =

∫

Rn
|x − y|2m−nQ(y)u−α(y)dy, (2.4)

where u satisfies
u & (1 + |x|)2m−n if α > 1

and that
u . (1 + |x|)2m−n if 0 < α < 1.

Then, for α , 1, there holds
∫

Rn
(x · ∇Q)u1−αdx = cα

∫

Rn
Qu1−αdx,

provided (x · ∇Q)u1−α ∈ L1(Rn).

Proof. The proof given below is more or less standard. As x = (1/2)(x + y + x− y) and

∇x(|x− y|
2m−n) = (2m− n)|x − y|2m−n−2(x − y),
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by differentiating under the integral sign in (2.4), we obtain

x · ∇u(x) =
2m− n

2
u(x) +

2m− n

2

∫

Rn

|x|2 − |y|2

|x − y|n+2−2m
Q(y)u−α(y)dy.

Multiplying the above identity by Q(x)u−α(x), and then integrating the resultant on BR
we arrive at

1

1−α

∫

BR

Q(x · ∇u1−α)dx =
2m− n

2

∫

BR

Qu1−α

+
2m− n

2

∫

BR

Q(x)u−α(x)
(∫

Rn

|x|2 − |y|2

|x − y|n+2−2m
Q(y)u−α(y)dy

)
dx.

Integration by parts leads to
∫

BR

Q(x · ∇u1−α)dx =−

∫

BR

(x · ∇Q)u1−αdx− n

∫

BR

Qu1−αdx

+R

∫

∂BR

Qu1−αdx.

Hence,

R

1−α

∫

∂BR

Qu1−αdσ −
2m− n

2

∫

BR

∫

Rn

|x|2 − |y|2

|x− y|n+2−2m
Q(y)u−α(y)Q(x)u−α (x)dydx

=
1

1−α

[
(2m+ n)−α(2m− n)

2

∫

BR

Qu1−αdx +

∫

BR

(x · ∇Q)u1−αdx
]
.

(2.5)
Thanks to the decay assumption on Q and the growth of u, we easily get

lim
R→∞

(
R

∫

∂BR

Qu1−αdσ
)
= 0,

and clearly ∫

Rn

∫

Rn

|x|2 − |y|2

|x − y|n+2−2m
Q(y)u−α(y)Q(x)u−α (x)dydx = 0

due to the antisymmetry of the integrand. Furthermore, under the assumptions on Q
and on u, there holds Qu1−α ∈ L1(Rn). Hence, by sending Rր +∞, we conclude that
the LHS of (2.5) vanishes, giving the desired identity. This completes the proof. �

Let us now discuss how to use our Pohozaev-type identity in the current setting.
Recall that the solution v to (1.1)ε is positive and smooth on S

n. Thanks to (1.6) we
deduce that u enjoys the upper and lower growths as in Lemma 2.8. Hence, we have a
Pohozaev-type identity for u whenever α , 1. We shall use this identity in the proof of
Lemma 3.2 below.

3. Compactness results

This section is devoted to a compactness type result for solutions to (1.1)ε, which is of
interest itself; see Theorem 3.1 below. Heuristically, one should study the compactness
result for fixed ε and α. However, to derive useful estimates for our analysis, one needs
certain compactness result which is independent of ε; see the proof of Lemmas 4.2 and
4.3 below.

Theorem 3.1. Let ε∗ ∈ (0,1) and α ∈ (0, (2m + n)/(2m − n)] be arbitrary but fixed.
Assume that vk = vεk is a sequence of positive regular solutions to (1.1)εk for some εk ∈
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(0,ε∗). Then there exists C = C(ε∗) > 0 such that

1

C
≤ vk ≤ C in S

n

for all k. The same conclusion holds true for εk ∈ [0,ε
∗) if α ∈ (0, (2m+ n)/(2m− n)).

It is worth noting that the above compactness fails for solutions to (1.1)0 in the case
α = (n + 2m)/(2m − n) due to the conformally invariant property of the underlying
equation. More specifically, fixing any solution v to

P
2m
n (v) =

n− 2m

2
Q2m
n v

n+2m
2m−n in S

n

and let

vφ = (v ◦φ)|det(dφ)|−
1
2n ,

where φ is any conformal transformation on S
n. Then, it is well-known that vφ solves

the same equation in S
n. Hence, if one choose a sequence of φ in such a way that

|det(dφ)| ց 0, then the sequence vφ is unbounded in S
n.

In order to prove the above theorem we first need to rule out the possibility that the
sequence vk will eventually touch zero. This in particular implies the lower estimate in
the theorem.

Lemma 3.2. Under the hypothesis of Theorem 3.1 we have

inf
k≥1

min
Sn

vk > 0.

Proof. We assume by contradiction that the lemma is false. Then, up to a subsequence,
we assume that

min
S3

vk → 0 as k→∞.

Without loss of generality we can further assume that the minimum of vk is attained at
the south pole. Let uk be defined by (1.6) using πN , and let Fk := Fεk ,uk as in (1.7). In
view of (1.6) and 2m > n, the function uk achieves its minimum at 0. By Theorem 2.2,
the function uk satisfies

uk(x) = γ2m,n

∫

Rn
|x− y|2m−nFk (y)dy. (3.1)

To show that this is also not the case, we use the Pohozaev-type identity of Lemma 2.8
and the role played by εk and α. Indeed, as Fk > 0 we first obtain

uk (0) = γ2m,n

∫

Rn
|y|2m−nFk(y)dy = o(1)k→∞. (3.2)

Using this one can show that

lim
k→∞

uk(x) =∞ for each x ∈ Rn \ {0}. (3.3)

Indeed, by way of contradiction suppose that there is some x0 ∈ R
n \ {0} such that

uk(x0) =O(1)k→∞. As

uk (x0)

γ2m,n
=

∫

Rn
|x0 − y|

2m−nFk(y)dy

≥ 2−2m+n+1
∫

Rn
|x0|

2m−nFk(y)dy −

∫

Rn
|y|2m−nFk(y)dy

we obtain ∫

Rn
Fk(y)dy =O(1)k→∞,
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thanks to uk (0) =O(1)k→∞. Hence
∫

Rn
(1 + |y|2m−n)Fk(y)dy =O(1)k→∞. (3.4)

Consequently, for any x ∈ Rn, one can estimate

uk(x)

γ2m,n
=

∫

Rn
|x − y|2m−nFk(y)dy ≤ 22m−n−1

∫

Rn
(|x|2m−n + |y|2m−n)Fk (y)dy,

which leads to

uk (x) ≤ C(1 + |x|
2m−n) in R

n

for some constant C > 0. Having this, one can bound Fk from below near the origin.
For example, for any x ∈ B2, we easily get

Fk(x) ≥
( 2

1+ |x|2

)−cα
uk(x)

−α ≥
1

Cα

( 2

1+ |x|2

) n+2m
2 ≥

1

Cα

(
2

5

) n+2m
2
,

thanks to uk(x) ≤ C(1 + |x|
2)(2m−n)/2 in R

n. However, this violates the fact that uk(0) =
o(1)k→∞. Indeed,

uk (0)

γ2m,n
≥

∫

B2\B1

|y|2m−nFk(y)dy ≥
1

Cα

(
2

5

) n+2m
2

∫

B2\B1

|y|2m−ndy > 0

for all k. Thus, no such a point x0 could exist, and hence (3.3) must hold. Notice that
the above proof also reveals the fact that

lim
k→∞

∫

Rn
Fk(y)dy =∞, (3.5)

otherwise by (3.2) one would again have (3.4) and again this leads to a contradiction.
Now we normalize uk and Fk as follows

ũk :=
uk

γ2m,n
∫
Rn
Fkdy

, F̃k :=
Fk∫

Rn
Fkdy

.

Then

ũk(x) =

∫

Rn
|x− y|2m−nF̃k(y)dy,

∫

Rn
F̃kdy = 1.

Having (3.5), it is clear that ũk (0)→ 0 and

|∇ũk(x)| ≤ (2m− n)

∫

Rn
|x− y|2m−n−1F̃k(y)dy ≤ C(1 + |x|

2m−n−1) in R
n.

Notice that because of (3.5) for large k there holds F̃k(x) ≤ Fk(x) everywhere. This and
(3.2) now implies the following

lim
k→∞

∫

Rn\Bδ

F̃k(y)dy→ 0 for any fixed δ > 0.

Once we have the above limit in hand and seeing ũ as a convolution, by standard
argument, we get that

ũk → ũ := |x|2m−n in C0
loc(R

n) (3.6)

and at the same time

1

C
|x|2m−n ≤ ũk ≤ C |x|

2m−n in R
n \B1 (3.7)

for some C > 0. Notice that we can write Fk as

Fk =
(
εkf

2mu1+αk + f −cα
)
u−αk =: Qku

−α
k ,
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where we denote

f (x) :=
2

1+ |x|2
.

By the Pohozaev-type identity in Lemma 2.8, we get
∫

Rn
(x · ∇Qk)u

1−α
k dx = cα

∫

Rn
Qku

1−α
k dx. (3.8)

(Here, the multiplicative constant γ2m,n , 0 cancels out from the both sides, thanks to
Theorem 2.2.) Let us first compute

∇
(
εkf

2mu1+αk

)
= 2mεkf

2m−1u1+αk ∇f +
1+α

2
εkf

2muα−1k ∇u2k

and

∇(f −cα ) = −cαf
−cα−1∇f ,

leading us to

x · ∇Qk =
[(
2mεkf

2m−1u2k − cαf
−cα−1u1−αk

)
(x · ∇f ) +

1+α

2
εkf

2m(x · ∇u2k )
]
uα−1k .

Therefore, from (3.8) we get

cα

∫

Rn

[
εkf

2mu2k + f
−cαu1−αk

]
dx =

∫

Rn

[
2mεkf

2m−1u2k − cαf
−cα−1u1−αk

]
(x · ∇f )dx

+
1+α

2
εk

∫

Rn
f 2m(x · ∇u2k )dx

=

∫

Rn
mεk (1−α)f

2m−1u2k (x · ∇f )dx

+

∫

Rn
εk

1+α

2
u2k (x · ∇f

2m)dx

− cα

∫

Rn
f −cα−1u1−αk (x · ∇f )dx

+
1+α

2
εk

∫

Rn
f 2m(x · ∇u2k )dx.

By integration by parts, we note that
∫

Rn

[
u2k (x · ∇f

2m) + f 2m(x · ∇u2k )
]
dx

= lim
R→∞

n∑

i=1

[∫

BR

[
− u2k f

2m
]
dx +

1

R

∫

∂BR

x2i f
2mu2k dσ

]

= lim
R→∞

[
− n

∫

BR

u2k f
2mdx+R

∫

∂BR

f 2mu2k dσ
]

= −n

∫

Rn
f 2mu2k dx.

Putting the above estimates together we arrive at

εk

∫

Rn
f 2m−1u2k

[
m(1−α)(x · ∇f )−

(
n(1 +α)

2
+ cα

)
f
]
dx

= cα

∫

Rn
f −cα−1u1−αk (x · ∇f + f )dx.

(3.9)

Since

x · ∇f + f = f
1− |x|2

1+ |x|2
,
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and

m(1−α) + n
1+α

2
+ cα = 0,

the identity (3.9) can be rewritten as

εkm(1−α)

∫

Rn
f 2mu2k

1− |x|2

1+ |x|2
dx = cα

∫

Rn
f −cαu1−αk

1− |x|2

1+ |x|2
dx. (3.10)

Our next step is to show that for large k, the two integrals in (3.10) are non-zero with
different sign.

Estimate of the LHS of (3.10). Concerning the integral on the LHS of (3.10), a simple
calculation shows that

1

M2
k

∫

Rn
f 2m(x)u2k (x)

1− |x|2

1+ |x|2
dx

=

∫

Rn

( 2

1+ |x|2

)2m
ũ2k (x)

1− |x|2

1+ |x|2
dx

=

∫

B1

( 2

1+ |x|2

)2m 1− |x|2

1+ |x|2

(
ũ2k (x)− |x|

4m−2nũ2k
( x

|x|2

))
dx,

here we have converted the integral on R
n \B1 into B1 using Kelvin’s transformation. In

B1 \ {0}, it follows from (3.6) and (3.7) that

ũ2k (x)− |x|
4m−2nũ2k

( x
|x|2

)
→ |x|4m−2n − 1 ≤ 0 as k→∞.

Notice that

lim
k→∞

∫

B1

( 2

1+ |x|2

)2m 1− |x|2

1+ |x|2

(
ũ2k (x)− |x|

4m−2nũ2k
( x

|x|2

))
dx

=

∫

B1

( 2

1+ |x|2

)2m 1− |x|2

1+ |x|2

(
|x|4m−2n − 1

)
dx < 0.

This and εk > 0 imply that the LHS of (3.10) is strictly negative for large k.

Estimate of the RHS of (3.10). Reasoning as in the previous step we should have

1

M1−α
k

∫

Rn
f −cα (x)u1−αk (x)

1− |x|2

1+ |x|2
dx

=

∫

B1

( 2

1+ |x|2

)−cα 1− |x|2

1+ |x|2

(
ũ1−αk (x)− |x|−2cα−2nũ1−αk

( x
|x|2

))
dx.

In B1, it follows from (3.6) that

ũ1−αk (x)− |x|−2cα−2nũ1−αk

( x
|x|2

)
→ |x|(2m−n)(1−α)− 1 ≥ 0 as k→∞.

Now observe that for α > 1
∫

B1

( 2

1+ |x|2

)−cα 1− |x|2

1+ |x|2

(
|x|(2m−n)(1−α)− 1

)
dx > 0,

which imply that the the RHS of (3.10) is strictly positive for large k (for certain α > 1,
the preceding integral could be infinity). Now going back to (3.10), we easily obtain a
contradiction for α > 1. Indeed, we have two possible cases. First, if εk > 0 for large k,
then as εkm(1−α) < 0, the LHS of (3.10) becomes strictly positive. However, as cα ≤ 0,
the RHS of (3.10) becomes non-positive. This is a contradiction. In contrary, we have
εk = 0 for a sequence of k. However, under εk = 0 the LHS of (3.10) vanishes but as
cα < 0 the RHS of (3.10) becomes strictly negative. This is again a contradiction. And
this completes our proof of the compactness for α > 1.
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Finally we consider the case 0 < α ≤ 1. We set

ηk(x) :=
uk(rkx)

uk (0)
, rk := uk(0)

1+α
2m → 0.

Then ηk satisfies ηk ≥ ηk(0) = 1, and

ηk(x) = γ2m,n

∫

Rn
|x− y|2m−n

(
εkr

2m
k f 2m(rky)ηk(y) +

f −cα (rky)

ηαk (y)

)
dy. (3.11)

Then it follows that∫

Rn
|y|2m−n

(
εkr

2m
k f 2m(rky)ηk(y) +

f −cα (rky)

ηαk (y)

)
dy =

ηk(0)

γ2m,n
≤ C, (3.12)

and together with ηk ≥ 1,
∫

Rn

(
1+ |y|2m−n

) f −cα (rky)
ηαk (y)

dy ≤ C. (3.13)

Therefore,

ηk(x) = γ2m,nεkr
2m
k

∫

B1

|x − y|2m−nf 2m(rky)ηk(y)dy +O(1) for x ∈ B1.

Integrating the above identity with respect to x in B1, and using that f (rky) = 2 + o(1)
on B1, we obtain ∫

B1

ηk(x)dx = o(1)

∫

B1

ηk(y)dy +O(1),

and hence ∫

B1

ηkdx ≤ C.

Combining the above estimates
∫

Rn

(
1+ |y|2m−n

)(
εkr

2m
k f 2m(rky)ηk(y) +

f −cα (rky)

ηαk (y)

)
dy ≤ C. (3.14)

This yields

|∇ηk(x)| ≤ C(1 + |x|
2m−n−1),

1

C

(
1+ |x|2m−n

)
≤ ηk(x) ≤ C

(
1+ |x|2m−n

)
. (3.15)

Hence, up to a subsequence,

ηk → η in C0
loc(R

n).

From Fatou’s lemma, we get that
∫

Rn

|y|2m−n

ηα(y)
dy <∞,

thanks to (3.15). Since η satisfies the second estimate in (3.15), we necessarily have that

(α − 1)(2m− n) > n,

a contradiction to 0 < α ≤ 1. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Since εk ∈ [0,ε
∗) and 0 < ε∗ < 1, integrating (1.1) on S

n we get that

0 ≤

∫

Sn
vkdµSn ≤

1

1− ε∗

∫

Sn
v−αk dµSn =O(1)k→∞,

thanks to Lemma 3.2. Therefore, we arrive at

P
2m
n (vk)− εk

n− 2m

2
Q2m
n vk =O(1)k→∞ in S

n
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with ‖vk‖L1(Sn) =O(1)k→∞. The theorem follows from standard elliptic estimates. �

4. Moving plane arguments and proof of the main result

This section is devoted to the proof of Theorem 1.1. To obtain the symmetry of
solutions, our approach is based on the method of moving planes with some new ingre-
dients. The major difficulty is how to handle the negative exponent. As far as we know,
although the method of moving planes can be effectively applied to nonlinear equations
with positive exponents, see [CL91, WX99, CLO06, CLS22] and the references therein,
its applications to equations with negative exponents are very rare.

Let us recall some notation and convention often used in the method of moving
planes; see Figure 2 below. For λ ∈ R we set

Σλ := {x ∈ R
n : x1 > λ}, Tλ := ∂Σλ.

Also for any λ ∈ R we let xλ be the reflection of x ∈ Rn about the plane Tλ, namely

xλ := (2λ− x1,x2,x3, . . . ,xn).

Also for any function f we let fλ be the reflection of f about the plane Tλ, namely

fλ(x) := f (x
λ) = f (2λ− x1,x2,x3, . . . ,xn).

x1

Tλ
R
n−1

xλ1

xλ x

x1

y

yλ

Σλ

Figure 2. Reflection in the method of moving planes

Throughout this section we let u = uε > 0 be a (smooth) solution to (2.1) with Fε :=
Fε,u as in (1.7) for fixed 0 < α ≤ (n+2m)/(2m−n) and fixed 0 ≤ ε < ε∗ with an additional
assumption that α < (n+2m)/(2m− n) if ε = 0. For simplicity, we set

wε,λ(x) := uε(x)− uε(x
λ) for all x ∈ Rn.

To start moving planes, the following lemma is often required.

Lemma 4.1. There hold

wε,λ(x) = γ2m,n

∫

Rn

[
|x− y|2m−n − |xλ − y|2m−n

]
Fε(y)dy (4.1)

and

wε,λ(x) = γ2m,n

∫

Σλ

[
|xλ − y|2m−n − |x− y|2m−n

]
[Fε(y

λ)− Fε(y)]dy (4.2)

for any λ ∈ R.
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Proof. The first identity is obvious from the definition of wε,λ . The second identity
follows from variable changes. Indeed, one can write

uε(x) =
(∫

Σλ

+

∫

Rn\Σλ

)
|x − y|2m−nFε(y)dy

=

∫

Σλ

|x− y|2m−nFε(y)dy +

∫

Σλ

|x− yλ|2m−nFε(y
λ)dy

=

∫

Σλ

|x− y|2m−nFε(y)dy +

∫

Σλ

|xλ − y|2m−nFε(y
λ)dy.

Similarly, one has

uε(x
λ) =

∫

Σλ

|xλ − y|2m−nFε(y)dy +

∫

Σλ

|x − y|2m−nFε(y
λ)dy.

By putting the above identities together we arrive at the second identity. �

Our next step is to show that the method of moving planes can start from a very
large λ0 > 0, where λ0 is independent of ε.

Lemma 4.2. Let ε∗ ∈ (0,1) be fixed. Then there exists λ0 ≫ 1 such that for every
ε ∈ [0,ε∗] we have

wε,λ(x) ≥ 0 in Σλ

for λ ≥ λ0.

Proof. We start the proof by observing the existence of some constant C > 0 such that
for each ε ∈ [0,ε∗] we have

1

C

1

1+ |y|2m+n
≤ Fε(y) ≤ C

1

1+ |y|2m+n
in R

n; (4.3)

see (2.2) for a similar estimate. In the case ε > 0, this simply follows from the uniform
bound for vε with respect to ε ∈ (0,ε∗] as given by Theorem 3.1. In the case ε = 0,
the above estimate is trivial because u(x) ≈ |x|2m−n for |x| ≫ 1. By a simple algebraic
computations we have

|x − y|2m−n − |xλ − y|2m−n =
|x − y|2 − |xλ − y|2

|x − y|2m−n + |xλ − y|2m−n
P̃λ(x,y),

where the function P̃λ is given by

P̃λ(x,y) :=
2m−n−1∑

k=0

|x− y|2(2m−n−1−k)|xλ − y|2k .

(It is clear that P̃λ ≡ 1 if 2m− n = 1.) Using (4.1) and

|x− y|2 − |xλ − y|2 = 4(x1 −λ)(λ− y1)

we can write

|x|2+n−2m
wε,λ(x)

x1 −λ
=

∫

Rn
(λ− y1)Pλ(x,y)Fε(y)dy =: Uε(x),

where

Pλ(x,y) := 4γ2m,n
|x|2+n−2m

|x− y|2m−n + |xλ − y|2m−n
P̃λ(x,y). (4.4)
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For later use, we note that for x,y ∈ Σλ there holds

Pλ(x,y) ≤ C |x|
2+n−2m |x− y|

2(2m−n−1) + |xλ − y|2(2m−n−1)

|x − y|2m−n + |xλ − y|2m−n

≤ C



|x|

|x − y|
for 2m− n = 1

1+ |x|2+n−2m|y|2m−n−2 for 2m− n ≥ 3

(4.5)

≤ C



|x|

|x − y|
for 2m− n = 1

|y|2m−n−2 for 2m− n ≥ 3.

To conclude the lemma, it suffices to show the existence of λ0≫ 1 such that

Uε(x) > 0 for any x ∈ Σλ ∪Tλ

and for every λ ≥ λ0. With the help of (4.3) we can roughly estimate

Uε(x) =

∫

B1

(λ− y1)Pλ(x,y)Fε(y)dy +

∫

Rn\B1

(λ− y1)Pλ(x,y)Fε(y)dy

≥
1

C

∫

B1

(λ− y1)Pλ(x,y)dy +

∫

y1>λ
(λ− y1)Pλ(x,y)Fε(y)dy

≥
1

C

∫

B1

(λ− y1)Pλ(x,y)dy −C

∫

y1>λ

Pλ(x,y)

1 + |y|2m+n−1
dy

=: I1(x)− I2(x).

Here to get the term I2 we have used the estimates 0 ≤ y1 −λ ≤ y1 ≤ |y| in the region
{y ∈ Rn : y1 > λ} and

|y|

1+ |y|2m+n
≤

2

1+ |y|2m+n−1
for all y.

Next, we estimate I1 from below and I2 from above. For I1, we note that

Pλ(x,y) ≥
1

C
for y ∈ B1, x ∈ Σλ, λ ≥ λ0≫ 1.

From this we deduce

I1(x) ≥
λ

C
.

We now estimate I2. For 2m− n ≥ 3 and as

|y|2m−n−2

1+ |y|2m+n−1
≤

2

1+ |y|2n+1
for all y

and |y| ≥ y1 > λ we can estimate

I2(x) ≤ C

∫

y1>λ

|y|2m−n−2dy

1+ |y|2m+n−1
≤ C

∫

y1>λ

dy

1+ |y|2n+1
≤

C

λn+1
≤ C.

For 2m− n = 1, we split {y1 > λ} as follows

{y1 > λ} ⊂ A1 ∪A2 ∪A3

where
A1 :=

{
y : λ < |y| ≤ |x|/2

}
, A2 := B2|x| \B|x|/2, A3 := R

n \B2|x|.

(Although |x| > λ as x ∈ Σλ, the set A1 could be empty if |x| < 2λ, but it is not
important.) Since |x− y| ≥ |x|/2 on A1 ∪A3 and again |y| ≥ y1 > λ, we can estimate

∫

A1∪A3

|x|

|x − y|

dy

1+ |y|2m+n−1
≤

C

λ2m−1
.
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On the remaining set A2 as |x|/2 ≤ |y| ≤ 2|x| we easily get
∫

A2

|x|

|x− y|

dy

1+ |y|2m+n−1
≤

C

|x|2m+n−2

∫

A2

dy

|x− y|
≤

C

|x|2m−1
≤

C

λ2m−1
≤ C.

Putting the above estimate together, we arrive at

Uε(x) ≥ I1(x)− I2(x) ≥
λ

C
−C

for some constant C > 0. Thus, the lemma follows by letting λ0 large enough. �

In Lemma 4.2, we have compared uε(x) and uε(x
λ), via wε,λ(x), in Σλ. As there was

no restriction on ε∗ ∈ (0,1), our comparison requires large λ > 0 to hold. In the next
lemma, we compare Fε(x) and Fε(x

λ) in Σλ. As there will be no restriction on λ > 0,
our comparison now requires small ε > 0, and this is the place where the constant ε∗
appears. Due to the form of Fε to achieve the goal we need the compactness result
established earlier; see section 3.

Lemma 4.3. There exists ε∗ ∈ (0,ε
∗) small enough such that for arbitrary λ ∈ (0,λ0]

but fixed, the conclusion if
wε,λ ≥ 0 in Σλ, (4.6)

then
Fε(x)− Fε(x

λ) ≤ 0 in Σλ (4.7)

holds for each ε ∈ [0,ε∗). In addition, if the inequality (4.6) is strict, then so is the
inequality (4.7).

Proof. Let us first be interested in the existence of ε∗ and ε ∈ (0,ε∗). As |xλ| < |x| for
λ > 0 and x ∈ Σλ, we obtain

Fε(x)− Fε(x
λ) = ε

( 2

1+ |x|2

)2m
uε(x)− ε

( 2

1+ |xλ|2

)2m
uε(x

λ)

+
( 2

1+ |x|2

)−cα 1

uαε (x)
−
( 2

1+ |xλ|2

)−cα 1

uαε (xλ)

≤ ε
( 2

1+ |x|2

)2m
(uε(x)− uε(x

λ))

+
( 2

1+ |x|2

)−cα( 1

uαε (x)
−

1

uαε (xλ)

)
,

where the constant cα ≤ 0 is already given in (2.3). Hence, to prove (4.7) in Σλ, it suffices
to prove that

uαε (x)− u
α
ε (x

λ)

uε(x)− uε(xλ)

1

uαε (x)u
α
ε (xλ)

≥ ε
( 2

1+ |x|2

)(2m−n) 1+α2 in Σλ, (4.8)

where we have used that

2m+ cα = (2m− n)
1 +α

2
.

To this end, for some R ≫ 1 to be specified later, we first split Σλ into two parts as
follows:

Σλ =
[
Σλ ∩BR

]
∪

[
Σλ \BR

]
.

In the region Σλ \BR, there exists some ε1 > 0 such that (4.8) holds. To see this we need
to use uniform bounds with respect to ε > 0, see Theorem 3.1, to obtain

uαε (x)− u
α
ε (x

λ)

uε(x)− uε(xλ)
≥ ε1

( 2

1+ |x|2

)(2m−n) 1−α2



ON THE HANG–YANG CONJECTURE FOR GJMS EQUATIONS ON S
n 21

and
1

uαε (x)u
α
ε (xλ)

≥ ε1
( 2

1+ |x|2

)α

for some small ε1 ∈ (0,1). This is mainly because when R is large enough, we have
|x| ≈ |xλ| for |x| > R and λ ∈ (0,λ0]. In the region Σλ ∩ BR, by the smoothness of uε ,
there exists some small ε2 ∈ (0,1) such that

uαε (x)− u
α
ε (x

λ)

uε(x)− uε(xλ)

1

uαε (x)u
α
ε (xλ)

≥ ε2
( 2

1+ |x|2

)(2m−n) 1+α2 (4.9)

for any x ∈ BR. Hence, combining (4.8) and (4.9) yields the desired estimate (4.7) with

ε∗ =
1

2
min{ε1,ε2}.

Now we consider the remaining case ε = 0. However, this case is trivial because

F0(x)− F0(x
λ) =

( 2

1+ |x|2

)−cα( 1

uα0 (x)
−

1

uα0 (x
λ)

)
≤ 0

whenever w0,λ(x) = u0(x) − u0(x
λ) ≥ 0. Finally, from the above calculation, it is clear

that if the inequality (4.6) is strict, then the inequality (4.7) is also strict. Hence, the
lemma is proved. �

Thanks to Lemma 4.2, for each ε > 0 we can set

λε := inf
{
λ > 0 : wε,µ ≥ 0 in Σµ for every µ ≥ λ

}
.

Then, still by Lemma 4.2, we necessarily have

0 ≤ λε ≤ λ0.

Our goal is to show that λε = 0. This can be done through two steps. First we show that

if λε > 0, then we must have wε,λε ≡ 0 in Σλε
; see Lemma 4.5. Finally, we show that

λε = 0; see Lemma 4.6.

Our next lemma is of importance to achieve the first step as it allows us to move λ
to the left.

Lemma 4.4. Let ε ∈ [0,ε∗) and λ̄ ∈ (0,λ0] be such that

0 . wε,λ̄ ≥ 0 in Σλ̄.

Then, there exist R≫ 1 and δ > 0 small, both may depend on wε,λ̄, such that for every
λ ∈ (λ̄− δ, λ̄) we have

wε,λ > 0 in Σλ \BR.

Proof. Using the representation (4.2), and as in the first part of the proof of Lemma 4.2,
we have

wε,λ(x)
|x|2+n−2m

x1 −λ
=

∫

Σλ

(y1 −λ)Pλ(x,y)[Fε(y
λ)− Fε(y)]dy, (4.10)

where Pλ is given by (4.4). In view of (4.10), it suffices to show that its RHS is positive in
Σλ \BR for suitable R > 0. For convenience, we recall the following formula for Pλ

Pλ(x,y) = 4γ2m,n
|x|2+n−2m

|x − y|2m−n + |xλ − y|2m−n

2m−n−1∑

k=0

|x− y|2(2m−n−1−k)|xλ − y|2k .

Hence, there exists some θ > 0 such that for every R1 > 0 fixed

Pλ(x,y)⇒ θ uniformly in y ∈ BR1
(4.11)
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as |x| →∞. This is because |x| ≈ |x− y| ≈ |xλ − y| for large |x|. From (4.7) we know that

0 . Fε(y
λ̄)− Fε(y) ≥ 0 for y ∈ Σλ̄,

which implies ∫

Σλ̄

(y1 − λ̄)[Fε(y
λ̄)− Fε(y)]dy ≥ 2c0 > 0,

for some small constant c0 > 0. Thus, by the dominated convergence theorem, we can
find some δ > 0 such that

∫

Σλ

(y1 −λ)[Fε(y
λ)− Fε(y)]dy ≥ c0 > 0, (4.12)

for every |λ− λ̄| < δ. To obtain the positivity of the right hand side of (4.10), we split the
integral

∫
Σλ

into two parts as follows

∫

Σλ

=

∫

Σλ\BR2

+

∫

Σλ∩BR2

for some R2 > 0 to be determined later and estimate these integrals term by term; see
the two estimates (4.14) and (4.15) below. Our aim is to show that the integral

∫
Σλ\BR2

is

negligible.

We assume for a moment that such a constant R2 exists. We now estimate the integral∫
Σλ\BR2

. First we choose a R0 ≫ 1 in such a way that |y1 − λ| < 2|y| for all |y| ≥ R0.

Then we find some R1≫ R0 such that in Σλ \BR1
we have

∫

Σλ\BR1

dy

1+ |y|2m+n−1
≤
θc0
16C

(4.13)

and

Fε(y) + Fε(y
λ) ≤

C

1+ |y|2m+n

for some C > 0 because |y| ≈ |yλ|. By the estimate (4.5) for Pλ, we now claim that there
are some R3≫ 1 and R2≫ R1 such that

∫

Σλ\BR2

(y1 −λ)Pλ(x,y)[Fε(y
λ) + Fε(y)]dy ≤

θc0
4

(4.14)

for |x| ≥ R3. To see this, for clarity, we consider the two cases 2m−n = 1 and 2m−n ≥ 3
separately.

Case 1. Suppose 2m − n = 1. In this case our estimate for Pλ becomes Pλ(x,y) ≤
C |x|/ |x− y|. Consequently, there holds

∫

Σλ\BR2

(y1 −λ)Pλ(x,y)[Fε(y
λ) + Fε(y)]dy ≤ C

∫

Σλ\BR2

|x|

|x − y|

|y|

1+ |y|2m+n
dy.

For |x| ≥ R3≫ 2R2 to be determined later, we now split
∫
Σλ\BR2

as follows

∫

Σλ\BR2

=

∫

[Σλ\BR2 ]∩[B|x|/2∪(R
n\B2|x|)]

+

∫

[Σλ\BR2 ]\[B|x|/2∪(R
n\B2|x|)]

.

Thanks to (4.13), we get

C

∫

[Σλ\BR2 ]∩[B|x|/2∪(R
n\B2|x|)]

|x|

|x− y|

|y|

1+ |y|2m+n
dy <

θc0
8
.
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For the remaining integral on [Σλ \ BR2
] \ [B|x|/2 ∪ (Rn \ B2|x|)] which is a subset of

B2|x| \B|x|/2 because |x| ≥ 2R2, we estimate as follows

C

∫

[Σλ\BR2 ]\[B|x|/2∪(R
n\B2|x|)]

≤
C |x|2

1+ |x|2m+n

∫

B2|x|\B|x|/2

dy

|x− y|
.

Since the last integral is of order |x|n and m ≥ 2 we can find some R3≫ 1 such that

C |x|2

1+ |x|2m+n

∫

B2|x|\B|x|/2

dy

|x− y|
≤
θc0
8

for all x ∈ Σλ∩BR3
. Combining the two estimates above gives (4.14). This completes the

first case.

Case 2. Suppose 2m − n ≥ 3. This case is easy to handle. Recall that our estimate for
Pλ becomes Pλ(x,y) ≤ C |y|

2m−n−2. Consequently, there holds
∫

Σλ\BR2

(y1 −λ)Pλ(x,y)[Fε(y
λ) + Fε(y)]dy ≤ C

∫

Σλ\BR2

|y|2m−n−1

1+ |y|2m+n
dy.

Seeing (4.13) or as in the proof of Lemma 4.2, we easily obtain the desired estimate.

Hence, up to this point, we have already shown that there are some R2 ≫ 1 and
R3 ≫ 1 such that the estimate (4.14) holds for |x| ≥ R3. Now we estimate the integral∫
Σλ∩BR2

. Keep using the constant R2. By the uniform convergence in (4.11), we can

choose R4≫ R2 such that

Pλ(x,y) ≥
1

2
θ for |x| ≥ R4 and |y| ≤ R2.

This and (4.12) imply that
∫

Σλ∩BR2

(y1 −λ)Pλ(x,y)[Fε(y
λ)− Fε(y)]dy ≥

θc0
2

(4.15)

for |x| ≥ R4. We conclude the lemma by combing the two estimates (4.14) and (4.15) and
choosing R =max{R3,R4}. �

We are now in a position to complete the first step, namely, to show that λε = 0. To

this purpose, we must rule out the case λε > 0 and this is the content of the next two

lemmas. First, we characterize the function wε,λε in case λε > 0.

Lemma 4.5. If λε > 0 for some ε ∈ [0,ε∗), then wε,λε ≡ 0 in Σλε . In other words, the

function uε is symmetric with respect to the hyperplane {x ∈ R
n : x1 = λε}.

Proof. Let λε > 0 for some ε ∈ [0,ε∗) and assume by contradiction that wε,λε . 0 in

Σλε
. This and the definition of λε imply that

0 . wε,λε ≥ 0 in Σλε
.

By Lemma 4.4, there exist R≫ 1 and δ > 0 small enough such that

wε,λ > 0 in Σλ \BR for every λ ∈ (λε − δ,λε).

Then there exists a sequence µk ր λε such that wε,µk is negative somewhere in Σµk .
Since outside BR, the function wε,µk is strictly positive, for each k there is some xk ∈

Σµk ∩BR such that

wε,µk (xk) = min
Σµk

wε,µk < 0.
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In particular, there holds
wε,µk (xk )

(xk )1 − µk
< 0.

Obviously, the sequence (xk ) is bounded as xk ∈ BR. Also note that Σλε ⊂ Σµk and

Σµk ց Σλε
as kր +∞. Therefore, up to a subsequence, we have

Σλε
∪Tλε ∋ x∞ := lim

k→∞
xk .

In particular, by passing to the limit as k →∞, there holds wε,λε (x∞) ≤ 0. This and

(4.10) implies that

0 ≥ wε,λε (x∞)
|x∞|

2+n−2m

(x∞)1 −λε
=

∫

Σλε

(y1 −λε)Pλε (x∞,y)[Fε(y
λε )− Fε(y)]dy ≥ 0,

thanks to |x∞| > 0 and Fε(y
λε ) ≥ Fε(y) in Σλε

by Lemma 4.3. Thus, we must have

Fε(y
λ̄ε)− Fε(y) = 0 for any y ∈ Σλε ,

which, by (4.10), now yields wε,λε ≡ 0 in Σλε
. However, this is a contradiction. Once

we have wε,λε ≡ 0 in Σλε
, the symmetry of uε follows from the definition of wε,λε . The

proof is complete. �

From the characterization of wε,λε in the case λε > 0 and the role of the size of ε and

α, we are able to show that in fact the case λε > 0 cannot happen.

Lemma 4.6. Let ε ∈ [0,ε∗). There holds λε = 0. In particular, the function uε is
symmetric with respect to the hyperplane {x ∈ Rn : x1 = 0}.

Proof. By way of contradiction, assume that λε > 0. In view of Lemma 4.5, we must
have

0 = wε,λε (x) = uε(x)− uε(x
λε )

in Σλε
. This and (4.2) tell us that

∫

Σλε

[
|xλε − y|2m−n − |x− y|2m−n

]
[Fε(y

λε )− Fε(y)]dy = 0

for any x ∈ Σλε , thanks to γ2m,n , 0, see Theorem 2.2. But this cannot happen because

|x− y| ≤ |xλε − y| for any x,y ∈ Σλε and

Fε(x)− Fε(x
λε ) = ε

[( 2

1+ |x|2

)2m
−
( 2

1+ |xλε |2

)2m]
uε(x)

+
[( 2

1+ |x|2

)−cα
−
( 2

1+ |xλε |2

)−cα ] 1

uαε (x)

< 0,

everywhere in Σλε
, thanks to the estimates uε > 0, −cα ≥ 0, and |x| ≤ |xλε | in Σλε

. (Here

we also use the fact that if ε = 0, then α < (n + 2m)/(2m − n) in order to guarantee

−cα > 0.) Thus, we must have λε = 0. In particular, we have from the definition of λε
the following

uε(x1,x2, ...,xn) ≥ uε(−x1,x2, ...,xn).

We now apply the method of moving planes in the opposite direction, namely λ < 0, to
get

uε(x1,x2, ...,xn) ≤ uε(−x1,x2, ...,xn).
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Hence

uε(x1,x2, ...,xn) = uε(−x1,x2, ...,xn).

This establishes the symmetry of uε with respect to the hyperplane {x ∈ Rn : x1 = 0}.
The proof is now complete. �

We now have a quick note. In the proof of Lemma 4.6 above, we crucially use the
hypothesis that either ε > 0 and α ≤ (n+2m)/(n−2m) or ε = 0 and α < (n+2m)/(n−2m).

For the latter case, if ε = 0 and α = (n+2m)/(n−2m), then we cannot claim that λ0 = 0.
Therefore, we could only claim that u0 is radially symmetric with respect to some point
not necessarily the origin. This leads to explicit form of non-trivial solutions to (1.1)0 in
the conformaly invariant case.

As a consequence of Lemma 4.6 above, we obtain a Liouville type result for positive,
smooth solution to (1.1)ε for small ε > 0, hence proving Theorem 1.1.

Lemma 4.7. Any positive, smooth solution vε to (1.1)ε for small ε must be constant.

Proof. Let ε ∈ [0,ε∗) be arbitrary. From Lemma 4.6 we know that the corresponding
solution uε is symmetric with respect to the hyperplane {x ∈ Rn : x1 = 0}. This together
with the relation

uε(x) =
(
1+ |x|2

2

) 2m−n
2 (

vε ◦π
−1
N

)
(x)

tells us that vε depends only on the last coordinate xn+1. However, as the xn+1-axis is
freely chosen, we conclude that vε must be constant. This completes the proof. �

Before closing this section, we have a remark. To obtain the symmetry of solutions to
(1.1)ε for small ε, our approach is based on the method of moving planes in the integral
form. A natural question is weather or not one can use the method of moving spheres;
see [LZ95, Li04]. Due to the presence of the weight 2/(1 + |x|2) in (1.7), it is natural to
ask whether or not the method of moving spheres can still be used. Toward a possible
answer to this question, we refer the reader to the work [JLX08].

5. Application to the sharp Sobolev inequality

This section is devoted to a proof of Theorem 1.2 which concerns a sharp (critical or
subcritical) Sobolev inequality. Let ε ∈ (0,1) and inspired by (1.4) consider the following
variational problem

Sε = inf
0<φ∈Hm(Sn)

(∫

Sn
φ1−αdµSn

) 2
α−1

∫

Sn

[
φP

2m
n (φ)− ε

n− 2m

2
Q2m
n φ2

]
dµSn (5.1)

with m = (n + 1)/2 and α ∈ (0,1) ∪ (1,2n + 1]. We note that although the constant
(n−2m)/2 becomes −1/2 in the present case, we intent to keep it in various calculation
below for convenience. Similar convention also applies for P

2m
n instead of Pn+1n , etc.

Now as

P
2m
n (1)− ε

n− 2m

2
Q2m
n = (1− ε)

n− 2m

2
Q2m
n , 0

by testing (5.1) with constant functions we conclude from (5.1) that

Sε ≤ (1− ε)
n− 2m

2
Q2m
n |S

n|
α+1
α−1 < 0,

however, Sε could be −∞. Next we show that Sε is finite and is achieved by some
smooth positive function.
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Lemma 5.1. Assume that m = (n+1)/2 and α ∈ (0,1)∪(1,2n+1]. Then, the constant
Sε in (5.1) is finite and there exists some vε ∈ C

∞(Sn) such that vε > 0 and
(∫

Sn
v1−αε dµSn

) 2
α−1

∫

Sn

[
vεP

2m
n (vε)− ε

n− 2m

2
Q2m
n v2ε

]
dµSn = Sε.

In particular, vε solves

P
2m
n (vε)− ε

n− 2m

2
Q2m
n vε = Sεv

−α
ε

in S
n with

Sε =
Sε

‖v−1ε ‖
α+1
Lα−1(Sn)

.

Proof. Let (vk)k be a positive, smooth minimizing sequence in H2m(Sn), that is

(∫

Sn
v1−αk dµSn

) 2
α−1

∫

Sn

[
vkP

2m
n (vk)− ε

n− 2m

2
Q2m
n v2k

]
dµSn ցSε

as k→∞. By the scaling invariant we can assume maxSn vk = 1 which then yields

‖vk‖
2
L2(Sn)

≤ |Sn|.

As P
2m
n is a monic polynomial of −∆gSn , the coefficient of the highest degree is equal to

1, it is easy to get that
∫

Sn
vk P

2m
n (vk)dµSn ≥ c1‖vk‖

2
Hm(Sn) − c2‖vk‖

2
L2(Sn)

≥ c1‖vk‖
2
Hm(Sn) − c2|S

n|

for some c1 > 0 and c2 > 0. Note that Sε < 0 and Q2m
n > 0 would imply

∫

Sn
vk P

2m
n vkdµSn < 0.

Therefore, the previous estimate leads to

c1‖vk‖
2
Hm(Sn) ≤ c2|S

n|,

giving the boundedness of the sequence (vk) in Hm(Sn). Hence, after passing to a
subsequence if necessary, there exists some vε ∈H

m(Sn) such that

vk → vε ≥ 0 uniformly in C(Sn)

by Morrey’s inequality and the Arzelà–Ascoli lemma, and

vk ⇀vε weakly in Hm(Sn).

In particular, there holds maxSn vε = 1. As vε ≥ 0, there are two possibilities. First,
let us assume that vε vanishes somewhere on S

n. By assuming this we shall obtain a
contradiction, therefore we must have vε > 0. Indeed, as n = 2m − 1, we can make use
of [Han07, Corollary 3.1] to conclude that

∫

Sn
vεP

2m
n (vε)dµSn ≥ 0.

This together with ε n−2m2 Q2m
n < 0 and

∫
Sn
v2ε dµSn > 0 help us to get

0 <

∫

Sn

[
vεP

2m
n (vε)− ε

n− 2m

2
Q2m
n v2ε

]
dµSn

≤ liminf
kր+∞

∫

Sn

[
vk P

2m
n (vk)− ε

n− 2m

2
Q2m
n v2k

]
dµSn .
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This is a contradiction to Sε < 0. Thus, vε > 0 everywhere. Then, this allows us to gain

v−1k → v−1ε uniformly in C(Sn)

and consequently ∫

Sn
v1−αk dµSn →

∫

Sn
v1−αε dµSn .

Putting these facts together, we obtain

Sε ≤

(∫

Sn
v1−αε dµSn

) 2
α−1

∫

Sn

[
vεP

2m
n (vε)− ε

n− 2m

2
Q2m
n v2ε

]
dµSn

≤ liminf
kր+∞

[(∫

Sn
v1−αk dµSn

) 2
α−1

∫

Sn

[
vk P

2m
n (vk)− ε

n− 2m

2
Q2m
n v2k

]
dµSn

]

= Sε.

(5.2)

Hence, on one hand implies that Sε must be finite, on the other hand, yields that vε is
a minimizer for (5.1). Rest of the proof follows immediately. �

Now we are in a position to give a proof of Theorem 1.2.

Proof of Theorem 1.2. Let ε > 0 and α ∈ (0,1)∪ (1,2n+ 1]. By Lemma 5.1, there is some
positive, smooth function vε satisfying∫

Sn
v1−αε dµSn = 1

and ∫

Sn

[
vε P

2m
n (vε)− ε

n− 2m

2
Q2m
n v2ε

]
dµSn = Sε.

Then, up to a constant multiple, vε solves (1.1)ε in S
n. Therefore, for small ε > 0, it

follows from Theorem 1.1 that vε is constant. Keep in mind that α , 1. Hence, on one
hand, as ((n− 2m)/2)Q2m

n = P
2m
n (1), we can compute to get

Sε = (1− ε)
n− 2m

2
Q2m
n |S

n|
α+1
α−1 ,

on the other hand, by the definition of Sε we get

(∫

Sn
φ1−αdµSn

) 2
α−1

∫

Sn

[
φP

2m
n (φ)− ε

n− 2m

2
Q2m
n φ2

]
dµSn

≥ (1− ε)
n− 2m

2
Q2m
n |S

n|
α+1
α−1

for any φ ∈Hm(Sn) with φ > 0. Now letting εց 0 we obtain

(∫

Sn
φ1−αdµSn

) 2
α−1

∫

Sn
φP

2m
n (φ)dµSn ≥

n− 2m

2
Q2m
n |S

n|
α+1
α−1 .

Recall that
n− 2m

2
Q2m
n = P

2m
n (1) =

Γ(n/2+m)

Γ(n/2−m)
.

This completes the proof of Theorem 1.2. �

Before closing this section, let us revisit the last comment in Remark 1.3. For conve-
nience, let us relabel (1.9) as follows

(∫

Sn
φ1−αdµSn

) 2
α−1

∫

Sn
φP

2m
n (φ)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)
|Sn|

α+1
α−1 . (5.3)α

We shall establish the following, which has its own interest.
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Proposition 5.2. There holds

(5.3)2n+1 −→ (5.3)β with β ∈ (1,2n+1) −→ (1.11) −→ (5.3)α with α ∈ (0,1),

where the notation A −→ B means we can obtain B from A.

Before proving Proposition 5.2 we observe that, as Γ(n/2 +m)/Γ(n/2 −m) < 0, if
n = 2m− 1, our related inequalities are only meaningful if

∫

Sn
φP

2m
n (φ)dµSn < 0. (5.4)

Therefore, from now on we always assume the above inequality. Besides, one can
simplify the computation below by normalizing the measure on S

n in such a way that
|Sn| = 1. However, we intend to keep it for clarity.

Proof of Proposition 5.2. Let us establish all −→ each by each.

Proof of (5.3)2n+1 −→ (5.3)β with β ∈ (1,2n + 1). Let β ∈ (1,2n + 1) be arbitrary but
fixed. We wish to derive (5.3)β from (5.3)2n+1 . Thanks to 0 < β − 1 < 2n, we can apply
Hölder’s inequality in the following way

∫

Sn

(
φ−1

)β−1
dµSn ≤ |S|

2n+1−β
2n

(∫

Sn

(
φ−1

)2n
dµSn

) β−1
2n

to get
(∫

Sn
φ1−βdµSn

) 2
β−1
≤ |S|

2n+1−β
n(β−1)

(∫

Sn
φ−2ndµSn

) 1
n
.

From this and (5.4) one immediately obtains

(∫

Sn
φ1−βdµSn

) 2
β−1

∫

Sn
φP

2m
n (φ)dµSn

≥ |Sn|
2n+1−β
n(β−1)

(∫

Sn
φ−2ndµSn

) 1
n
∫

Sn
φP

2m
n (φ)dµSn .

With help of (5.3)2n+1 and the identity

2n+1− β

n(β − 1)
+
2m

n
=
β +1

β − 1

we obtain (5.3)β as claimed. (Keep in mind that 2m = n + 1.) This shows the first −→
from the left.

Proof of (5.3)β with β ∈ (1,2n + 1) −→ (1.11). We now consider arbitrary but fixed
β ∈ (1,2n +1) and we wish to derive (1.11) from (5.3)β . By Jensen’s integral inequality of
the form

1

|Sn|

∫

Sn
logψdµSn ≤ log

(
1

|Sn|

∫

Sn
ψdµSn

)
(5.5)

we know by choosing ψ = φ−γ that

exp
(
−

2

|Sn|

∫

Sn
logφdµSn

)
≤

(
1

|Sn|

∫

Sn
φ−γ dµSn

)2/γ
(5.6)

for any γ ∈ R. In (5.6) we choose γ = β − 1 and together with (5.4) we eventually get

exp
(
−

2

|Sn|

∫

Sn
logφdµSn

)∫

Sn
φP

2m
n (φ)dµSn

≥ |Sn|
2

1−β

(∫

Sn
φ1−β dµSn

) 2
β−1

∫

Sn
φP

2m
n (φ)dµSn .
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With help of (5.3)β we quickly obtain the inequality (1.11). Hence we have the second −→
from the left. (We should point out that the above argument works for any β > 1 as
long as (5.3)β is available. In particular, it works for β = 2n+1. However, we intend to
keep β < 2n + 1 since we want to show that the limiting case can be derived from the
subcritical case.)

Proof of (1.11) −→ (5.3)α with α ∈ (0,1). Let us now consider arbitrary but fixed
α ∈ (0,1) and we wish to derive (5.3)α from (1.11). Indeed, still by Jensen’s integral
inequality (5.5) applied for ψ = φγ , we obtain

exp
(

2

|Sn|

∫

Sn
logφdµSn

)
≤

(
1

|Sn|

∫

Sn
φγ dµSn

)2/γ
(5.7)

for any γ ∈ R. In (5.7) we choose γ = 1−α and reverse the resulting inequality to get

exp
(
−

2

|Sn|

∫

Sn
logφdµSn

)
≥

(
1

|Sn|

∫

Sn
φ1−α dµSn

) 2
α−1
.

Combining this with (5.4) gives

(∫

Sn
φ1−α dµSn

) 2
α−1

∫

Sn
φP

2m
n (φ)dµSn

≥ |Sn|
2
α−1 exp

(
−

2

|Sn|

∫

Sn
logφdµSn

)∫

Sn
φP

2m
n (φ)dµSn .

With the help of (1.11) we are now able to obtain the inequality (5.3)α . This establishes
the last −→ from the left, hence completes our proof. �

Again we should point out that the above argument for the last −→ from the left
works for any α < 1, namely we have the following sharp inequality?

Sn
φP

2m
n (φ)dµSn ≥

Γ(n/2+m)

Γ(n/2−m)

(?
Sn
φγdµSn

)2/γ

for any γ := 1−α > 0. This makes sense because Γ(n/2+m)/Γ(n/2−m) < 0.

In the final discussion, we show that we can actually compare the two inequalities
(5.3)β with β ∈ (1,2n+1) and (5.3)α with α ∈ (0,1) without using the limiting inequality
(1.11). Indeed, by decomposing the constant 1 as

1 = φ
(1−α)(β−1)

β−α φ
−
(1−α)(β−1)

β−α

and applying Hölder’s inequality in the following way

|Sn| ≤

(∫

Sn
φ1−αdµSn

) β−1
β−α

(∫

Sn
φ1−βdµSn

) 1−α
β−α

we arrive at (∫

Sn
φ1−αdµSn

) 1
α−1
≤ |S|

α−β
(β−1)(1−α)

(∫

Sn
φ1−βdµSn

) 1
β−1
.

Combining (5.3)β with (5.4) and the identity

β +1

β − 1
+

2(α − β)

(β − 1)(1−α)
=
α +1

α − 1

gives (5.3)α .
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