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Abstract This paper aims at studying global approximations in terms of variational convergence of

set-valued quasi-variational inequalities and traffic network problems with arc capacity constraints, set-

valued travel costs, and elastic demands depending on equilibrium flows. We consider two types of quasi-

variational inequalities, the weak and the usual strong variants, and the above traffic problem. We propose

some weak types of epi/hypo- and lopsided convergence, new concepts of approximate solutions, new

definitions of saturatedness of arcs and paths, and new notions of equilibrium flows. By defining a suitable

bifunction for each case and basing on suitable types of variational convergence of such a bifunction, we

obtain the set convergence of approximate global solutions of the approximating problems in question.

This is the first attempt to consider global approximations of the aforementioned problems. Hence, the

novelty of the results is high and also suggests further developments of the topic.
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1 Introduction

Approximations are met in any mathematical problem. One of the major reasons is that although math-

ematical models greatly simplify real-world problems, they are often very difficult to deal with so require

approximation methods for consideration. Local approximations have been intensively studied with va-

riety applications in many problem classes, see e.g., the books [6,27,29]. Variational or quasi-variational

inequalities and traffic network problems are among the most important optimization-related models

(variational inequalities are also involved in research of partial differential equations). The former encom-

passes many significant particular cases and the latter reflects interesting real-world situations. The reader

is referred to the book [22] by two of the pioneers in variational inequality studies, the coherent and com-

prehensive books [12,13], and papers [4,5,9,14,19,20,26] among a huge number of contributions. Traffic

network problems constitute one of the most important special cases of quasi-variational inequalities. The

history of traffic network problems may be sketched as follows. The classical network problem is of seeking

to determine the users’ paths of minimal cost from origins to destinations in a congested transportation

network. It appeared in 1920 in the work of Pigou and was developed by Knight in 1924. In 1952, Wardrop

[35] introduced a notion of equilibrium flows for transportation network problems, which has been the

basis for predicting traffic equilibria of urban transportation and various kinds of “transportation” in en-

gineering, economics, management, etc. Smith [32] converted these problems to variational inequalities in

1979 and started a substantial number of contributions to applications of variational inequalities to traffic

networks; see, e.g., [7,9,19–21,26,34] among others. The works [15,37] extended the notion of Wardrop

equilibrium depending on the pattern equilibrium flow to the vector case. The papers [9,26] proposed to

consider the costs as multifunctions of the flows to make the traffic model more elastic and suitable for di-

verse practical situations. Developing this idea, the contributions [19,20] extended the Wardrop definition

of equilibrium to models with multivalued costs. In [24,25], traffic networks with arc constraints (instead

of path constraints) were studied. We can observe that the aforementioned works on quasi-variational

inequalities and traffic networks mainly consider global issues and global solutions. However, to the best

of our knowledge, there have not been contributions to global approximations of these problems. On the

other hand, variational convegence is a powerful tool for global approximations, especially for global sotu-

tions. Variational convegence is not a particular type of convergence, but a common name for the types of

convergence of a sequence of functions or bifunctions (i.e., bivariate/component functions) which preserve
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variational properties of these functions or bifunctions. Here, variational properties means those related to

extremality/optimality such as being an infimum or supremum, a minimizer of maximizer, a minsup-value

or maxinf-value, a minsup-point or maxinf-point, a saddle point, etc. Epi-convergence of functions was

introduced in [36]. For bifunctions, epi/hypo-convergence was proposed in [2] and lopsided convergence

appeared first in [3]. These three concepts are the basic types of variational convergence. Approxima-

tions in terms of variational convergence have been investigated for many classes of optimization-related

problems such as quasi-equilibrium problems, generalized Nash equilibria, multiobjective minimization

problems, Walras equilibria, consistency of approximate statistical estimators, problems of optimization

under stochastic ambiguity, see [10,11,17,18,30,31]. The above observations ensure the importance of a

study of such approximations of quasi-variational inequalities and traffic network problems in this paper.

Besides the novelty in the topic, our paper also contains a number of other significant newnesses.

Namely, additionally to the basic types being epi/hypo- and lopsided convergence, we propose inside

and weak types for both of them to have more tools for approximation research. Since the present work

focuses on approximations of chosen problems, we limit the explanation to simply saying that these

new concepts are indeed effective tools in establishing new approximation results under assumptions

lighter than the known basic types of variational convergence, see Propositions 4.1 - 4.3, Theorem 4.1,

and Corollaries 5.1 - 5.3. We also introduce new concepts of approximate solutions to quasi-variational

inequalities and of sateratedness of arcs and paths as well as equilibrium notions for traffic problems.

We would like to specifically mention that by the end of Sect. 4, we study for the first time so-called

second-level approximations of optimization problems in our research context (Propositions 4.4 and 4.5).

So, our results are new and no comparisons with the known ones are needed.

The layout of the paper is simple. In Sect. 2, the used standard notation is briefly presented and

then the variational convergence concepts are provided including some new notions. They are the main

tools for approximation investigations. Section 3 is devoted to the formulation of the quasi-variational

inequality and its weak variant together with definitions of approximate solutions and their properties.

Approximations of the above two quasi-variational inequalities are studied in Sect. 4. In Sect. 5, the

definitions of the considered traffic networks and their properties are presented followed by their approxi-

mations in terms of types of variational convergence. The final short Sect. 6 contains concluding remarks

about what are the achievements of the paper and what are the perspectives for further developments of

the obtained results.
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2 Preliminaries

Throughout the paper, N,R,R+, Rm, Rm+ , and (Rm)∗ denote the set of the natural numbers, the set of

the real numbers, the nonnegative numbers, an m-dimensional space, the m-positive orthant, and the

dual space of Rm, respectively (resp). Set R̄ := R∪ {+∞}. For M ⊂ Rm, clM and convM are its closure

and convex hull. If M is convex and x ∈M , the normal cone of M at x is

N(M,x) := {p ∈ (Rm)∗|〈p, y − x〉 ≤ 0,∀y ∈M}.

For a sequence rk ∈ R, its upper and lower limits are

limsupk→+∞r
k := limp→+∞supk>pr

k, liminfk→+∞r
k := limp→+∞infk>pr

k, resp.

Let X be a metric space, A ⊂ X, and h : A→ R̄. The epigraph and hypograph of h are

epih := {(x, r) ∈ X × R | h(x) ≤ r}, hypoh := {(x, r) ∈ X × R | h(x) ≥ r}.

For function ϕ : A→ R, define ζϕ : X → R ∪ {+∞} by

ζϕ(x) :=


ϕ(x) if x ∈ A,

+∞ otherwise

and regard points (x,+∞) as belonging to epiζϕ when x 6∈ A. Then, define epiϕ := epiζϕ. The hypograph

of ϕ can be defined similarly.

Now recall some notions of set-valued analysis. For a metric space X and Mk ⊂ X, the outer/upper

limit (inner/lower limit, resp) of the sequence Mk is

Limsupk→+∞Mk := {x ∈ X | ∃xkj ∈Mkj , xkj → x}

(Liminfk→+∞Mk := {x ∈ X | ∃xk ∈Mk, xk → x}, resp).

Obviously, an inner limit of a set sequence is a subset of its outer limit and even outer limits may be empty.

Mk are said to Painlevé-Kuratowski converge to M , denoted by Mk P−K→ M or M = Limk→+∞M
k, iff

Limsupk→+∞Mk = Liminfk→+∞Mk = M.

For brevity, later on we usually use the abbreviations lsk, lik, Lsk, Lik, and Limk for limsupk→+∞,

liminfk→+∞, Limsupk→+∞, Liminfk→+∞, Limk→+∞, resp. For metric spaces X,Y and a set-valued map

G : X ⇒ Y , its domain and graph are defined as

domG := {x ∈ X | G(x) 6= ∅}, gphG := {(x, y) ∈ X × Y | y ∈ G(x)}, resp.
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Finally, let us speak about variational convergence of functions and bifunctions. Let X be a metric

space. For k ∈ N, let Ak, A ⊂ X be nonempty, ϕk : Ak → R, and ϕ : A→ R. The following two definitions

are taken from [11].

Definition 2.1 (types of epi-convergence) ϕk are said to epi-converge to ϕ, denoted by ϕk
e→ ϕ or ϕ =

e-limkϕ
k, iff

(a) for all subsequences xkj ∈ Akj → x, lijϕ
kj (xkj ) ≥ ϕ(x) if x ∈ A and ϕkj (xkj )→ +∞ if x /∈ A;

(b) for all x ∈ A, there exist points xk ∈ Ak → x such that lskϕ
k(xk) ≤ ϕ(x).

Omitting the case that x /∈ A with the infinity condition, one has inside epi-convergence which is

denoted by ϕk
i−e→ ϕ or ϕ = i-e-limkϕ

k.

Recall the well-known geometric reformulation of the concept of epi-convergence: condition (a) of ϕ =

e-limkϕ
k means that Lsk(epiϕk)⊂ epiϕ and its condition (b) is equivalent to epiϕ ⊂ Lik(epiϕk).

Definition 2.2 (types of hypo-convergence) ϕk are said to hypo-converge (inside hypo-converge, resp)

to ϕ, denoted by by ϕk
h→ ϕ or ϕ = h-limkϕ

k (ϕk
i−h→ ϕ or ϕ = i-h-limkϕ

k, resp), iff −ϕk epi-converge

(i-epi-converge) to −ϕ.

Now let A,Ak, B,Bk ⊂ Rm, Dk : Ak ⇒ Bk, D : A ⇒ B, Ψk : gphDk → R, and Ψ : gphD → R.

Assume, without loss of generality, that Dk and D are defined on the entire Ak and A, resp, and surjective.

Definition 2.3 (types of epi/hypo-convergence) Bifunctions Ψk are said to inside epi/hypo converge

(i-e/h-converge) to Ψ (wrt gphDk and gphD), denoted by Ψk
i−e/h→ Ψ or Ψ = i-e-limkΨ

k, iff

(a) for any subsequence xkj ∈ Akj → x ∈ A and y ∈ D(x), there exists a subsequence ykj ∈ Dkj (xkj )→ y

such that lijΨ
kj (xkj , ykj ) ≥ Ψ(x, y);

(b) for any subsequence ykj ∈ Bkj → y ∈ B and x ∈ D−1(y), there exists a subsequence xkj ∈

(Dkj )−1(ykj )→ x such that lsjΨ
kj (xkj , ykj ) ≤ Ψ(x, y).

Bifunctions Ψk are called e/h-convergent to Ψ , denoted by Ψk
e/h→ Ψ or Ψ = e-limkΨ , iff additionally

the following infinity conditions are fulfilled: for any subsequence xkj ∈ Akj → x /∈ A, there exists a

subsequence ykj ∈ Dkj (xkj ) such that Ψkj (xkj , ykj )→ +∞, and for any subsequence ykj ∈ Bkj → y /∈ B,

there exists a subsequence xkj ∈ (Dkj )−1(ykj ) such that Ψkj (xkj , ykj )→ −∞.
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Bifunctions Ψk are weak e/h-convergent (w-e/h-convergent) or weak inside e/h-convergent (w-i-e/h-

convergent), resp, iff in the above statements, all the subsequences are replaced by the corresponding

(whole) sequences.

For brevity, instead of writing “Bifunctions Ψk are ...”, “there exist points yk”, etc, we simply write

“Ψk are ...”, “there exist yk”, etc, since from the indices k, the plural form is clear.

Remark 2.1 (i) In the above definition, the weak convergence concepts are newly proposed, while the

others are taken from [11]. To see that the weak e/h-convergence is really weaker than the e/h-convergence,

consider a simple example with Dk(x) = Bk for all x ∈ Ak and D(x) = B for all x ∈ A. Let Ak be equal

to {0, 1} for the odd k’s and to {0} for the even k’s, A = {0}, Bk = B = {1} for all k, Φk(x, y) = 0 for

all k ∈ N, (x, y) ∈ Ak × Bk, and Φ(x, y) = 0 for all (x, y) ∈ A × B. Then, direct verification shows that

Φk do not e/h-converge to Φ as the infinity condition in (a) of Definition 2.3 is violated. But, we have

all the other three weaker types: inside e/h, weak e/h-, and inside weak e/h-convergence. Sects. 4 and 5

will provide approximation results under these types of convergence, including the types weaker than the

e/h-convergence.

(ii) Each type of e/h-convergence is symmetric in the sense that conditions (a) and (b) are symmetric

(wrt x and y, liminf and limsup, etc). Furthermore, if we insist on minxmaxy and only change the order of

the two operations, then e/h-convergence is also symmetric in the sense that bifunctions (x, y) 7→ Ψk(x, y)

e/h-converge to (x, y) 7→ Ψ(x, y) if and only if bifunctions (x, y) 7→ Ψk(y, x) h/e-converge to (x, y) 7→

Ψ(y, x). So, h/e-convergence may be considered to coincide with e/h-convergence (with condition (b)

coming before (a)). For the weaker types of e/h-convergence, we have the same situation.

(iii) In Sections 4 and 5, we will see that the considerations in this paper employ largely the types

of variational convergence of bifunctions −Ψk to −Ψ due to our problem formulations. However, to be

consistent with the previous publications in the literature, we keep the terminology as in Definition 2.3.

Note that a type of convergence of −Ψk to −Ψ corresponds to maxxminy and we do not call it the

hypo/epi-convergence of Ψk to Ψ .

The second basic type of variational convergence of bifunctions is lopsided convergence (lop-convergence).

Unlike the e/h-convergence, from the definition below, it is clear that the lop-convergence is not sym-

metric. Hence, we must have two concepts given in the following two definitions. Moreover, similar to

e/h-convergence, in fact, we have two groups of the corresponding types of lop-convergence.
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Definition 2.4 (types of mis-lop convergence) We say that Ψk mis-lop converge to Ψ ([31]) iff

(a) ∀xkj ∈ Akj → x ∈ A, ∀y ∈ D(x), ∃ykj ∈ Dkj (xkj )→ y, lijΨ
kj (xkj , ykj ) ≥ Ψ(x, y), and ∀xkj ∈ Akj →

x /∈ A, ∃ykj ∈ Dkj (xkj ), Ψkj (xkj , ykj )→ +∞;

(b) ∀x ∈ A, ∃xkj ∈ Akj → x, ∀ykj ∈ Dkj (xkj ) → y, lsjΨ
kj (xkj , ykj ) ≤ Ψ(x, y) if y ∈ D(x), and

Ψkj (xkj , ykj )→ −∞ if y /∈ D(x).

We use the notation Ψk
mis−lop→ Ψ or Ψ = mis-lop-limkΨ

k. If we consider only x ∈ A in (a) and y ∈ D(x)

in (b) (and omit the infinity conditions), Ψk is called inside mis-lop convergent and we have “i-” added

to the notation.

Replacing the subsequences in the above definitions by the corresponding sequences, we have the

concepts of weak mis-lop convergence and weak inside mis-lop convergence, resp. Similar to the w-e/h-

convergence, we use the notation “w-mis-lop convergence”.

Note that condition (a) in Definition 2.4 is the same as (a) in Definition 2.3, but in the former

definition, condition (b) is different from (b) in Definition 2.3, so it is not symmetric to (a). This leads to

various differences in properties and applications of the two types of convergence. These differences also

confirm the usefulness of both the convergence types.

In [31] only mis-lop convergence is discussed and called simply lop-convergence (the above three

weaker variants are not involved). However, in studies related to duality phenomena, we need to clearly

distinguish the following parallelism and its weaker variants.

Definition 2.5 (types of mai-lop convergence) Ψk are called mai-lop convergent to Ψ iff

(a) ∀ykj ∈ Bkj → y ∈ B, ∀x ∈ D−1(y), ∃xkj ∈ (Dkj )−1(ykj ) → x, lsjΨ
kj (xkj , ykj ) ≤ Ψ(x, y); ∀ykj ∈

Bkj → y /∈ B, ∃xkj ∈ (Dkj )−1(ykj ), Ψkj (xkj , ykj )→ −∞;

(b) ∀y ∈ B, ∃ykj ∈ Bkj → y, ∀xkj ∈ (Dkj )−1(ykj ) → x, lijΨ
kj (xkj , ykj ) ≥ Ψ(x, y) if x ∈ D−1(y), and

Ψkj (xkj , ykj )→ +∞ if x /∈ D−1(y).

We denote this convergence by Ψk
mai−lop→ Ψ or Ψ = mai-lop-limkΨ

k. The inside mai-lop can be defined

and denoted similarly, with the infinity conditions being removed.

Also by replacing the subsequences by the corresponding sequences, we have weak lop-convergence

with a similar notation.
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Now, we concentrate on approximation studies for our chosen optimization problems. Note that in

fact, the above concepts can be defined for more general underlying spaces, but we provide them just for

the context of this paper.

Example 2.1 (mis-lop convergence holds; w-mai-lop and w-e/h-convergence fail) Let Ak = A = (0, e− 1],

Bk = B = (0, 1], Dk(x) = D(x) = [ln(x + 1), 1], and Ψk(x, y) = Ψ(x, y) = ln(y/x). We verify first

condition (a) of the mis-lop convergence. As Ψk form a constant sequence, we work with sequences

instead of subsequences. For all xk ∈ Ak → x and y ∈ D(x), we take in Dk(xk)

yk =


y if 0 < xk ≤ x,

y + γk such that γk → 0+ and ln(xk + 1) ≤ y + γk ≤ 1 if x < xk ≤ e− 1.

Then, limkΨ
k(xk, yk) = Ψ(x, y) by the continuity of Ψk ≡ Ψ . For all xk ∈ Ak → 0 /∈ A, yk ≡ 1 ∈ Dk(xk)

satisfy Ψk(xk, yk)→ +∞.

For condition (b), with any x ∈ A, we take xk ≡ x to get that, for all yk ∈ Dk(xk) → y ∈ D(x),

lskΨ
k(xk, yk) = Ψ(x, y). Furthermore, for all x ∈ A = (0, e−1], taking arbitrary xk ∈ Ak → x, there is no

yk ∈ Dk(xk) = D(x) tending to a point outside D(x). Hence, (b) is fulfilled and the mis-lop convergence

holds.

We show that condition (a) of the weak mai-lop convergence is not satisfied. The “inside part” of (a)

is checked since for any yk ∈ Bk → y and x ∈ D−1(y), we pick in (Dk)−1(yk) the points

xk =


x+ γk such that γk → 0+ and x+ γk ≤ eyk − 1 if 0 < yk ≤ y,

x if y < yk ≤ 1

to see that limkΨ
k(xk, yk) = Ψ(x, y) (by the continuity). But, the infinity condition is violated since for any

yk ∈ Bk → 0 /∈ B, taking xk = ey
k − 1 ∈ (Dk)−1(yk), one sees that Ψk(xk, yk) ≥ ln(yk(ey

k − 1)−1)→ 0,

not −∞ as required. So, Ψk do not w-mai-lop converge to Ψ . Condition (b) of the i-mai-lop convergence

is satisfied by the continuity and so the i-mai-lop convergence holds.

Moving on to the weak e/h-convergence, let yk ∈ Bk → 0 /∈ B and xk be in (Dk)−1(yk). Then,

xk ≤ ey
k − 1 and Ψk(xk, yk) ≥ ln(yk(ey

k − 1)−1) → 0, not −∞ as required. So, Ψk do not weakly

e/h-converge to Ψ .

It should be noted that in the rectangular case (i.e., the domain of Ψ is a constant map: D(x) = B for

all x ∈ A), condition (b) of the mis-lop convergence is properly stronger than (b) of the e/h-convergence.
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But, in this nonrectangular case, the mis-lop convergence does not imply the e/h-convergence. So, the need

of using both types of convergence is clearer. Note also that in this paper we consider quasi-inequalities

and traffic networks with elastic demands. So the types variational convergence of bifunctions on general

(nonrectangular) domains are needed since the bifunctions with rectangular domains cannot describe

these quasi-variational problems.

3 Set-Valued Quasi-Variational Inequalities

3.1 Primal Problems

Given two nonempty-set-valued maps T : Rm ⇒ (Rm)∗ with compact values and K : Rm ⇒ Rm, the

so-called weak set-valued quasi-variational inequality is

(wQVI) find x̄ ∈ K(x̄) such that ∀y ∈ K(x̄), ∃t̄y ∈ T (x̄), 〈t̄y, y − x̄〉 ≥ 0.

Clearly, x̄ ∈ K(x̄) means that x̄ ∈ fixK, the fixed-point set of K. We also denote this quasi-variational

inequality by (wQVI(T ,K)) to make the data clear, and its solution set by Sol(wQVI). This style of

notation is always adopted later for various problems.

To consider approximations of (wQVI(T ,K)), we use the following bifunction Φ : Rm × Rm

Φ(x, y) := maxt∈T (x)〈t, y − x〉,

which is equivalent to

Φ(x, y) := maxt∈convT (x)〈t, y − x〉. (1)

Hence, when considering (wQVI(T ,K)) via Φ, we can always assume that T is convex-valued (but, in

the general problem setting, T may be nonconvex-valued). Moreover, Φ(x, ·) is convex for any x ∈ Rm.

Recall that for a convex function h : Rm → R̄, its subdifferential at x is defined by ∂h(x) = {t ∈ (Rm)∗ |

h(y)−h(x) ≥ 〈t, y−x〉 ∀y ∈ Rm}. If x ∈ domh := {x ∈ Rm | h(x) ∈ R}, then ∂h(x) is nonempty, closed,

and convex (see [28], Theorem 23.4).

Lemma 3.1 (the subdifferential of Φ in terms of T ) Let T : Rm ⇒ (Rm)∗ be nonempty-compact-convex-

valued and Φ defined by (3.1). Then, ∂Φ(x, ·)(x) = T (x) for all x ∈ Rm.
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Proof Since Φ(x, x) = 0, by the definition of Φ, Φ(x, y) − Φ(x, x) = Φ(x, y) ≥ 〈t, y − x〉 for all t ∈ T (x)

and y ∈ Rm. Hence, T (x) ⊂ ∂Φ(x, ·)(x). For the reverse inclusion, suppose t0 /∈ T (x). The separation

theorem gives ȳ ∈ (Rm)∗ such that maxt∈T (x)〈t, ȳ〉 < 〈t0, ȳ〉. Setting ȳ = y0 − x yields

Φ(x, y0)− Φ(x, x) < 〈t0, y0 − x〉,

and so t0 /∈ ∂Φ(x, ·)(x). It follows that ∂Φ(x, ·)(x) ⊂ T (x). Consequently ∂Φ(x, ·)(x) = T (x). �

We denote the fixed-point set of K by A := fixK and its image by B := K(A), and always assume

that A 6= ∅ (there have been a huge number of results about such a nonemptiness in the literature,

see, e.g., [1,23]). We only focus on approximation studies and so we also always assume that the quasi-

variational inequalities under consideration have solutions. Furthermore, clearly we can restrictK as a map

K : A⇒ B, and so K is surjective. Then, (wQVI(T ,K)) is equivalent to the following quasi-equilibrium

problems

(QEP(Φ,K)) find x̄ ∈ A such that for all y ∈ K(x̄), Φ(x̄, y) ≥ 0.

We also consider the following so-called strong set-valued quasi-variational inequality, which is usually

considered in the literature,

(sQVI) find x̄ ∈ K(x̄) such that ∃t̄ ∈ T (x̄), ∀y ∈ K(x̄), 〈t̄, y − x̄〉 ≥ 0.

Proposition 3.1 (relationship between (sQVI) and (wQVI)) Sol(sQVI) ⊂ Sol(wQVI) always holds.

Moreover, under the condition that (T is compact-convex-valued and) K is closed-convex-valued, Sol(wQVI) ⊂

Sol(sQVI), i.e., the two problems are equivalent.

Proof By definition, if x̄ ∈ Sol(wQVI), then supy∈K(x̄)mint∈T (x̄)〈t, y − x̄〉 ≥ 0. By the closed-convex-

valuedness of K, due to Sion’s minimax theorem ([33], Corollary 3.3), that inequality is equivalent to

mint∈T (x̄)supy∈K(x̄)〈t, y − x̄〉 ≥ 0. Therefore, there exists t̄ ∈ T (x̄) such that 〈t̄, y − x̄〉 ≥ 0, i.e., x̄ ∈

Sol(sQVI). �

The following example shows that the inclusion in Proposition 3.1 may be proper.

Example 3.1 ((sQVI) is properly stronger than (wQVI)) Let m = 2, K(x) = {γx | γ ≥ 0}, and T (x) =

{(−1,−1), (1, 1)} for all x ∈ R2. Then, fixK = R2. We first consider Sol(sQVI). Let x = (x1, x2) ∈

fixK = R2. For the case x1 > x2, t = (−1,−1) is not appropriate since infy∈{γx|γ≥0}(1−γ)(x1+x2) = −∞.

The situation with t = (1, 1) is similar since the corresponding infimum is less than 0. Hence, x with
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x1 > x2 do not belong to Sol(sQVI). Now it suffices to show that such points x belong to Sol(wQVI). We

have to check two cases for y ∈ {γx | γ ≥ 0}. If γ ∈ [0, 1], one takes t = (−1,−1) to see that the above

infimum is nonnegative. If γ > 1, one takes t = (1, 1) to have that this infimum is positive. Hence, x with

x1 > x2 do belong to Sol(wQVI).

Example 3.2 ((sQVI) is properly stronger than (wQVI) even with convex-valued T ) Assume that m = 2,

T (x) = {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 ∈ [x1, 1] ∩ [0.1, 1]}, and

K(x) =


{(0, 0), (−1, 0.5), (1,−1)} if x ∈ R2

+,

R2 \ R2
+ otherwise.

Then, fixK = {(0, 0)} ∪ (R2 \ R2
+). We first consider x = (0, 0) ∈ fixK for (sQVI). Clearly, there does

not exist t ∈ T (0, 0) such that infy∈K(0,0)〈t, y − (0, 0)〉 ≥ 0, so x = (0, 0) 6∈ Sol(sQVI). However, this

point is a solution of (wQVI) since for each y ∈ K(0, 0), there obviously exists t ∈ T (0, 0) such that

〈t, y − (0, 0)〉 ≥ 0. Therefore, Sol(sQVI) is properly smaller than Sol(wQVI).

Example 3.3 (Proposition 3.1 provides a sufficient condition, not a necessary one) Assume that m = 1,

T (x) = {−1, 1} for all x ∈ R, and

K(x) =



{0} if x ∈ [0, 1),

{1} if x ∈ [1,+∞),

{−1} if x ∈ (−∞, 0].

Then, fixK = {−1} ∪ {0} ∪ {1}. To have Sol(wQVI) = Sol(sQVI)), we show that Sol(sQVI) = fixK. For

x = −1, we take t = −1 to obtain infy∈K(−1)[−(−1− (−1))] = 0, and so x = −1 is a strong solution. For

x = 0, we take t = 1 to obtain the same infimum value and so x = 0 is a strong solution. For x = 1, since

K(1) = {1}, the corresponding minimum is equal to 0 for any t ∈ {−1, 1}. Therefore, Sol(sQVI) = fixK

and is evidently equal to Sol(wQVI).

In many cases, exact solutions of a problem do not exist or are difficult to compute. Hence, approximate

solutions play a crucial role.

Definition 3.1 (approximate solutions) Let ε ≥ 0.

(i) A point x̄ ∈ fixK is called an ε-solution of (QEP(Φ,K)), denoted by x̄ ∈ ε-Sol(QEP(Φ,K)), iff

∀y ∈ K(x̄), Φ(x̄, y) ≥ −ε. Later on, we adopt this writing style for any ε-solution set.
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(ii) A point x̄ ∈ fixK is called an ε-solution of (wQVI(T ,K)) iff ∀y ∈ K(x̄), ∃t̄y ∈ T (x̄), 〈t̄y, y−x̄〉 ≥ −ε.

(iii) A point x̄ ∈ fixK such that ∃t̄ ∈ T (x̄), ∀y ∈ K(x̄), 〈t̄, y − x̄〉 ≥ −ε is said to be an ε-solution of

(sQVI).

Proposition 3.2 (relationships between approximate solutions)

(i) If x̄ ∈ ε-Sol(QEP(Φ,K)), then for all ε1 > ε, x̄ ∈ ε1-Sol(wQVI(T ,K)). Conversely, if x̄ ∈ ε-

Sol(wQVI(T ,K)), then x̄ ∈ ε-Sol(QEP(Φ,K)).

(ii) x̄ ∈ ε-Sol(QEP(Φ,K)) if and only if −ε ≤ infy∈K(x̄)Φ(x̄, y) ≤ 0. This implies that x̄ is in ε-

argminK(x̄)Φ(x̄, ·) := {ȳ ∈ K(x̄) | Φ(x̄, ȳ) ≤ infy∈K(x̄)Φ(x̄, y) + ε}.

(iii) Assume that K is closed-convex-valued. Then, x̄ ∈ ε-Sol(QEP(Φ,K)) if and only if x̄ ∈ ε-Sol(sQVI(T ,K))

if and only if x̄ ∈ ε-Sol(wQVI(T ,K)).

Proof (i) By definition, x̄ ∈ ε-Sol(QEP) means that maxt∈T (x̄)〈t, y − x̄〉 ≥ −ε for all y ∈ K(x̄). For any

ε1 > ε, set ε2 := ε1 − ε. Then, we have that ∀y ∈ K(x̄), ∃t̄y ∈ T (x̄),

〈t̄y, y − x̄〉 ≥ maxt∈T (x̄)〈t, y − x̄〉 − ε2 ≥ −ε− ε2 = −ε1.

Hence, x̄ ∈ ε1-Sol(wQVI).

Conversely, x̄ ∈ ε-Sol(wQVI) implies that ∀y ∈ K(x̄), maxt∈T (x̄)〈t, y − x̄〉 ≥ −ε, i.e., x̄ ∈ ε-Sol(QEP).

(ii) x̄ ∈ ε-Sol(QEP) means that x̄ ∈ K(x̄) and infy∈K(x̄)Φ(x̄, y) ≥ −ε. Since Φ(x̄, x̄) = 0, the assertion

follows. Then, the required inclusion is evident.

(iii) x̄ ∈ ε-Sol(QEP(Φ,K)) means that infy∈K(x̄)maxt∈T (x̄)〈t, y − x̄〉 ≥ −ε. In view of Sion’s minimax

theorem, that is equivalent to maxt∈T (x̄)infy∈K(x̄)〈t, y − x̄〉 ≥ −ε, i.e., there exists t̄ ∈ T (x̄) such that

infy∈K(x̄)〈t, y − x̄〉 ≥ −ε. This means that x̄ ∈ ε-Sol(sQVI(T ,K)). �

Observe that in Proposition 1(iii) of [8], Sion’s minimax theorem was applied for a similar result in

the special case of variational inequalities (not “quasi-variational”, i.e., with K(x) = K for all x ∈ Rm).

3.2 Dual Problems

The dual problem (DwQVI(T ,K)) of (wQVI(T ,K)) is defined in a natural way:

(DwQVI(T ,K)) find ȳ ∈ K(fixK) such that ∀x ∈ K−1(ȳ),∃t̄ ∈ T (ȳ), 〈t̄, ȳ − x〉 ≤ 0.
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This problem can be reformulated as

(DwQVI(T ,K)) find ȳ ∈ K(fixK) such that ∀x ∈ K−1(ȳ), mint∈T (ȳ)〈t, ȳ − x〉 ≤ 0.

This reformulation means that (DwQVI(T ,K)) is just (DQEP(Φ̂,K)) for

Φ̂(x, y) := mint∈T (y)〈t, y − x〉,

which is the dual of (QEP(Φ̂,K)), not of (QEP(Φ,K)) as in the Stampacchia-Minty duality scheme

for quasi-equilibrium problem (QEP(Φ,K)). It should be noted that if T = t, a single-valued map, then

(DwQVI(t,K)) collapses to the classical Minty quasi-variational inequality. The mentioned mismath when

expressing our dual couple in terms of quasi-equilibrium problems (intermediate problems) is due to the

set-valuedness of the quasi-variational inequalities. This note also holds for the dual strong problems

defined as follows.

The dual problem (DsQVI) of (sQVI) is

(DsQVI) find ȳ ∈ K(fixK) such that ∃t̄ ∈ T (ȳ),∀x ∈ K−1(ȳ), 〈t̄, ȳ − x〉 ≤ 0.

Proposition 3.3 (relationships between convex problems (DsQVI) and (DwQVI)) It always holds that

Sol(DsQVI) ⊂ Sol(DwQVI). Moreover, under the condition that (T is compact-convex-valued and) K−1

is closed-convex-valued, one has that ȳ ∈ fixK−1 and ȳ ∈ Sol(DwQVI) imply that ȳ ∈ Sol(DsQVI).

Proof By the definitions of the solutions, clearly Sol(DsQVI) ⊂ Sol(DwQVI). Now impose the value condi-

tion and that ȳ ∈ fixK−1. By definition, ȳ ∈ Sol(DwQVI) means that for all x ∈ K−1(ȳ), supK−1(ȳ)Φ̂(·, ȳ) ≤

0. As ȳ ∈ fixK−1 and Φ(ȳ, ȳ) = 0, this means that ȳ ∈ argminK−1(ȳ)(−Φ̂(·, ȳ)). By Lemma 3.1, this implies

that 0 ∈ T (ȳ) +N(K−1(ȳ), ȳ), i.e., ȳ ∈ Sol(DsQVI). �

Definition 3.2 (approximate dual solutions) Let ε ≥ 0.

(i) A point ȳ ∈ B ≡ K(fixK) is called an ε-solution of (DQEP(Φ̂,K)), denoted by ȳ ∈ ε-Sol(DQEP(Φ̂,K)),

iff ∀x ∈ K−1(ȳ), Φ̂(x, ȳ) ≤ ε.

(ii) A point ȳ ∈ B is called an ε-solution of (DwQVI(T ,K)) iff ∀x ∈ K−1(ȳ), ∃t̄ ∈ T (ȳ), 〈t̄, ȳ− x〉 ≤ ε.

(iii) A point ȳ ∈ K(fixK) such that ∃t̄ ∈ T (ȳ), ∀x ∈ K−1(ȳ), 〈t̄, ȳ − x〉 ≤ ε is said to be an ε-solution

of (DsQVI).

Proposition 3.4 (relationships between approximate dual solutions)
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(i) ȳ ∈ ε-Sol(DQEP(Φ̂,K)) implies that ȳ ∈ ε1-Sol(DwQVI(T ,K)) for all ε1 > ε. Conversely, if

ȳ ∈ ε-Sol(DwQVI(T ,K)), then ȳ ∈ ε-Sol(DQEP(Φ̂,K))

(ii) Assume that ȳ ∈ K−1(ȳ). Then, ȳ ∈ ε-Sol(DQEP(Φ̂,K)) if and only if 0 ≤ supx∈K−1(ȳ)Φ̂(x, ȳ) ≤ ε.

The latter implies that ȳ belongs to ε-argmaxK−1(ȳ)Φ̂(·, ȳ).

(iii) Assume that K−1 is closed-convex-valued and ȳ ∈ K−1(ȳ). Then, ȳ ∈ ε-Sol(DQEP(Φ̂,K)) if and

only if ȳ ∈ ε-Sol(DsQVI).

Proof The proofs of (i) and (ii) are similar/symmetric to those of Proposition 3.2.

(iii) Impose the additional assumptions. ȳ ∈ ε-Sol(DQEP(Φ̂,K)) means that supx∈K−1(ȳ)mint∈T (ȳ)〈t, ȳ−

x〉 ≤ ε. By Sion’s minimax theorem, this is equivalent to mint∈T (ȳ)supx∈K−1(ȳ)〈t, ȳ − x〉 ≤ ε, i.e., ȳ ∈ ε-

Sol(DsQVI). �

Definition 3.3 (second-kind approximate solutions) Assume that θ : Rm → R satisfies θ(x) > 0 for

x 6= 0 and ε ≥ 0.

(i) A point x̄ ∈ fixK is called an εθ-solution of (QEP) iff Φ(x̄, y) ≥ −εθ(x̄− y) for all y ∈ D(x̄).

(ii) A point x̄ ∈ fixK is called an εθ-solution of (wQVI) iff ∀y ∈ K(x̄), ∃t̄y ∈ T (x̄), 〈t̄y, y − x̄〉 ≥

−εθ(x̄− y).

Proposition 3.5 (relationship between second-kind approximate solutions) If x̄ ∈ ε1θ-Sol(QEP(Φ,K)),

then for all ε > ε1, x̄ ∈ εθ-Sol(wQVI(T ,K)). Conversely, if x̄ ∈ εθ-Sol(wQVI(T ,K)), then x̄ ∈ εθ-

Sol(QEP(Φ,K)).

Proof The proposition can be verified analogously to Proposition 3.2(i). �

With a reference to Definition 3.3 and Propositions 3.4 and 3.5, we easily have the statement about

the corresponding relationship between second-kind dual approximate solutions.

4 Approximations of Set-Valued Quasi-Variational Inequalities

In this section we consider the variants of set-valued quasi-variational inequalities presented in Sect. 3.

Assume that we have sequences of problems approximating our problems defined by T k : Rm ⇒ (Rm)∗

with compact values, Kk : Rm ⇒ Rm, and Φk : gphKk → R defined by Φk(x, y) := maxt∈T k(x)〈t, y − x〉.

(When considering quasi-variational inequalities and without connections with subdifferentials, view Φ
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and Φk as bifunctions on gphK and gphKk, resp, not on Rm × Rm.) Similar to K, we regard Kk as a

set-valued map from the whole Ak := fixKk and onto Bk := Kk(fixKk). So, (QEP(Φk,Kk)) is the problem

of finding x̄ ∈ Ak such that for all y ∈ Kk(x̄), Φk(x̄, y) ≥ 0. The other approximating problems under our

consideration are stated in the same way.

We propose the following notion. For F k : Ak ⊂ X ⇒ Y and F : A ⊂ X ⇒ Y , we say that gphF

is said to be strongly included in Lik(gphF ), denoted by gphF @ Lik gphF k, if for (x, y) ∈ gphF and

subsequence {kj}j , each type of the convergence xkj ∈ Akj → x and ykj ∈ F kj (xkj ) → y implies the

other one.

Proposition 4.1 (convergence of approximate solutions of (wQVIk)) Let εk, ε ≥ 0, εk → ε, and ε1 > ε.

(i) If −Φk i-e/h- or i-mis-lop converge to −Φ, then A ∩ Lsk(εk-Sol(wQVIk))⊂ ε1-Sol(wQVI). If −Φk

e/h- or mis-lop converge to −Φ, then Lsk(εk-Sol(wQVIk))⊂ ε1-Sol(wQVI).

(ii) If gphK @ Lik(gphKk) and the i-e- or e-convergence of −Φk to −Φ (as unifunctions on Rm×Rm)

replaces the convergence of −Φk assumed in (i), then the conclusion of (i) is still valid.

(iii) If −Φk w-e/h- or w-mis-lop converge to −Φ and xk ∈ εk-Sol(wQVIk)→ x, then x ∈ ε1-Sol(wQVI).

Proof (i) Because of similarity, we only consider in detail the case when −Φk e/h→ −Φ. Let x̄ ∈ Lsk(εk-

Sol(wQVIk)) ⊂ Lsk(εk-Sol(QEPk)) (by Proposition 3.2(i)), i.e., there exists a sequence {xkj}j in εkj -

Sol(QEPkj ) converging to x̄. If x̄ ∈ A, then for all y ∈ K(x̄), condition (a) of the e/h-convergence

yields ykj ∈ Kkj (xkj ) → y such that lij(−Φkj (xkj , ykj )) ≥ −Φ(x̄, y), i.e., lsjΦ
kj (xkj , ykj ) ≤ Φ(x̄, y). As

Φkj (xkj , ykj ) ≥ −εkj , for all ykj ∈ Kkj (xkj ), it holds Φ(x̄, y) ≥ −ε. Suppose that x̄ 6∈ A. Again condition

(a) gives ykj ∈ Kkj (xkj ) such that Φkj (xkj , ykj )→ −∞, contradicting the inequality Φkj (xkj , ykj ) ≥ −εkj

for all ykj ∈ Kkj (xkj ). Hence, x̄ ∈ ε-Sol(QEP) and so x̄ ∈ ε1-Sol(wQVI) also by Proposition 3.2(i). Thus,

Lsk(εk-Sol(wQVIk) ⊂ ε1-Sol(wQVI). The assertion for the mis-lop convergence is automatic since the

above reasoning only utilizes the common condition (a) of the e/h- and mis-lop convergence.

(ii) As argued in (i), x̄ ∈ Lsk(εk-Sol(wQVIk)) implies that there exist {xkj}j in εkj -Sol(QEPkj ) tending

to x̄. Suppose that x̄ 6∈ A. Then, for all ykj ∈ Kkj (xkj ) → y, (x̄, y) 6∈ gphK. Hence, condition (a) of the

epi-convergence ensures that Φkj (xkj , ykj ) → −∞, which contradicts the fact that Φkj (xkj , ykj ) ≥ −εkj

for all ykj ∈ Kkj (xkj ). So, x̄ ∈ A. The proposition mentioned in (i) shows that it suffices to verify

that Φ(x̄, y) ≥ −ε for each y ∈ K(x̄). Since (x̄, y) ∈ gphK, by the assumed strong inclusion of gphK

in Lik(gphKk), there exist ykj ∈ Kkj (xkj ) → y. Then, condition (a) of the epi-convergence implies that
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lsjΦ
kj (xkj , ykj ) ≤ Φ(x̄, y). As Φkj (xkj , ykj ) ≥ −εkj , Φ(x̄, y) ≥ −ε. The assertion for the remaining case

−Φk i−e→ −Φ is clear.

(iii) xk ∈ εk-Sol(wQVIk) implies that xk ∈ εk-Sol(QEPk) by Proposition 3.2(i), i.e., Φk(xk, yk) ≥ −εk

for all yk ∈ Kk(xk). If x ∈ A, then for all y ∈ K(x), condition (a) of the w-e/h-convergence yields

yk ∈ Kk(xk) → y such that lskΦ
k(xk, yk) ≤ Φ(x, y). The rest of the argument is similar to that in (i)

with sequences replacing subsequences. The case of w-mis-lop convergence is automatic as only a common

condition of the two types of convergence is used. �

Proposition 4.2 (convergence of approximate solutions of (DwQVIk)) Let εk, ε ≥ 0, εk → ε, and ε1 > ε.

(i) If −Φ̂k i-e/h- or i-mai-lop converge to −Φ̂, then B ∩ Lsk(εk-Sol(DwQVIk))⊂ ε1-Sol(DwQVI). If

−Φ̂k e/h- or mai-lop converge to −Φ̂, then Lsk(εk-Sol(DwQVIk))⊂ ε1-Sol(DwQVI).

(ii) If gphK @ Lik(gphKk) and the types of convergence of −Φ̂k to −Φ̂ in (i) is replaced by the inside

hypo- or hypo-convergence, then one also has the conclusion in (i).

(iii) If −Φ̂k w-e/h- or w-mai-lop converge to −Φ̂ and yk ∈ εk-Sol(DwQVIk) → y, then y ∈ ε1-

Sol(DwQVI).

Proof (i) We only discuss the case −Φ̂k e/h→ −Φ̂. In view of Proposition 3.4(i), ȳ ∈ Lsk(εk-Sol(DwQVIk))

implies that ȳ ∈ Lsk(εk-Sol(DQEPk(Φ̂,K))), i.e., there exist ykj ∈ εkj -Sol(DQEPkj )→ ȳ. If ȳ ∈ B, then

condition (b) of the e/h-convergence gives that, for all x ∈ K−1(ȳ), there exist xkj ∈ (Kkj )−1(ykj ) → x

such that lijΦ̂
kj (xkj , ykj ) ≥ Φ̂(x, ȳ). Since Φ̂kj (xkj , ykj ) ≤ εkj for all xkj ∈ (Kkj )−1(ykj ), Φ̂(x, ȳ) ≤ ε.

Suppose ȳ 6∈ B. Then, for all x ∈ K−1(ȳ), the above condition (b) yields xkj ∈ (Kkj )−1(ykj ) such that

Φ̂kj (xkj , ykj ) → +∞, which is a contradiction as Φ̂kj (xkj , ykj ) ≤ εkj for all xkj ∈ (Kkj )−1(ykj ). Hence,

ȳ ∈ ε-Sol(DQEP(Φ̂,K)), so ȳ ∈ ε1-Sol(DwQVI) by Proposition 3.4(i).

(ii) The proof is similar to (ii) of the preceding proposition with condition (a) of the epi-convergence

replaced by condition (a) of the hypo-convergence.

(iii) The proof is similar to (i) (cf. (iii) in the proof of the preceding proposition). �

Theorem 4.1 (convergence of couples of approximate solutions of (wQVIk)-(DwQVIk)). Assume that

εk, ε ≥ 0, εk → ε, and ε1 > ε.

(i) If −Φk e/h- or mis-lop converge to −Φ and Φ̂k e/h- or mai-lop converge to −Φ̂, then

Lsk[(εk-Sol(wQVIk))×(εk-Sol(DwQVIk))]⊂ (ε1-Sol(wQVI))×(ε1-Sol(DwQVI)).
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(ii) If gphK @ LikgphKk, −Φk epi-converge to −Φ, and −Φ̂k hypo-converge to −Φ̂, then the same

conclusion as in (i) holds.

(iii) If −Φk w-e/h- or w-mis-lop converge to −Φ, −Φ̂k w-e/h- or w-mai-lop converge to −Φ̂, xk ∈ εk-

Sol(wQVIk)→ x, and yk ∈ εk-Sol(DwQVIk)→ y, then (x, y) ∈ (ε1-Sol(wQVI))×(ε1-Sol(DwQVI)).

Proof (i) Since the Limsup of a product of sets is equal to the product of the Limsups of these sets,

applying Propositions 4.1(i) and 4.2(i) leads to the conclusion.

(ii) This assertion follows from Propositions 4.1(ii) and 4.2(ii).

(iii) This assertion follows from Propositions 4.1(iii) and 4.2(iii). �

For second-kind approximate solutions, we have the following corresponding results.

Proposition 4.3 (convergence of second-kind approximate solutions of (wQVIk)) Let εk, ε ≥ 0, εk → ε,

ε1 > ε, and θ be as defined in Definition 3.3.

(i) If −Φk i-e/h- or i-mis-lop converge to −Φ, then A ∩ Lsk(εkθ-Sol(wQVIk))⊂ ε1θ-Sol(wQVI). If

−Φk e/h- or mis-lop converge to −Φ, then Lsk(εkθ-Sol(wQVIk))⊂ ε1θ-Sol(wQVI).

(ii) If gphK @ Lik(gphKk) and the i-e- or e-convergence of −Φk to −Φ in (i) replaces the types of

convergence of −Φk in (i), then the conclusion in (i) is still valid.

(iii) If −Φk w-e/h- or w-mis-lop converge to −Φ and xk ∈ εkθ-Sol(wQVIk)→ x, then x ∈ ε1θ-

Sol(wQVI).

The proof is similar to that of Proposition 4.1. Furthermore, we also have the convergence of second-

kind approximate solutions of (DwQVIk) similar to Proposition 4.2.

Now move on to discuss approximations for strong set-valued quasi-variational inequalities. Clearly,

we are only interested in the case with nonconvex-valued K, since the approximate solution set of a

strong inequality with K closed-convex-valued coincides with that of the corresponding weak inequality

as we saw above. (Hence, Propositions 4.1, 4.2, and Theorem 4.1 are also about approximations of strong

set-valued quasi-variational inequalities when K is closed-convex-valued.) For such a nonconvex case,

an inconvenience is that bifunctions (like Φ in (3.1)) cannot be used and so variational convergence of

bifunctions is still inapplicable. However, we can go deeper into concepts of approximations as follows.

Solving our strong problem (sQVI) consists of finding two elements: a solution x̄ ∈ fixK together with a

point t̄ ∈ T (x̄). Hence, one can be interested in the following “second-level” approximations of (sQVI)

associated with a sequence {xk}k of its εk-solutions and an ε-solution x̄, where εk, ε ≥ 0 and εk → ε.
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Assume that xk ∈ εk-Sol(sQVI), i.e., we have a problem of finding tk solving maxt∈T (xk)infy∈K(xk)

〈t, y−xk〉 ≥ −εk, and that x̄ ∈ ε-Sol(sQVI), i.e., we have a problem of finding t̄ solving maxt∈T (x̄)infy∈K(x̄)

〈t, y − x̄〉 ≥ −ε. Setting Ak := T (xk), Bk := K(xk), and F k(t, y) := 〈t, y − xk〉 for t ∈ (Rm)∗

and y ∈ Rm, we have a set-valued strong equilibrium problem (not “quasi-”!) (sEP(F k, Ak, Bk)) (the

following definition of strong equilibrium problems was given in [11]) of finding tk ∈ Ak to solve

maxt∈Ak infy∈Bk〈t, y − xk〉 ≥ −εk (hence tk is necessarily a maxinf-point of F k on Ak × Bk). Similarly,

with A := T (x̄), B := K(x̄), and F (t, y) := 〈t, y−x̄〉, we have that t̄ is a maxinf-point of F on A×B and it

solves problem (sEP(F,A,B)): maxt∈T (x̄)infy∈K(x̄)〈t, y − x̄〉 ≥ −ε. Now we have new bifunctions F k and

F , so we can employ variational convergence to investigate global approximations of (sEP(F k, Ak, Bk))

and (sEP(F,A,B)), which can be viewed as second-level approximations for (sQVI). It should be empha-

sized that in the following study of second-level approximations of strong quasi-variational inequalities,

we do not impose neither compactness nor convexity assumptions. We only need approximate solutions

of our approximating problems exist. We recall some facts needed in this investigation, for a metric space

X, Ak, A,Bk, B ⊂ X, F k : Ak ×Bk → R, and F : A×B → R.

A function η : A→ R defined by η(t) := infy∈BF (t, y) for t ∈ A is called the inf-projection of F .

The following notion of tightness modifies the corresponding one in [11] for our current research

context.

Definition 4.1 (ancillary tightness for convergence of−F k) Assume thatX is a metric space,Ak, A,Bk, B ⊂

X, F k : Ak ×Bk → R, and F : A×B → R. Iff −F k e/h-converge (mis-lop converge or mai-lop converge,

resp) to −F and for all t ∈ A, there exist points tk ∈ Ak → t such that lik(ηk(tk)) ≥ η(t), then we say

that −F k e/h-converge (mis-lop converge or mai-lop converge, resp) t-ancillary tightly to −F .

Proposition 4.4 (second-level approximations of (sQVI)) Assume that εk, ε ≥ 0, εk → ε, xk ∈ εk-

Sol(sQVI), and x̄ ∈ ε-Sol(sQVI). If −F k e/h- or mis-lop or mai-lop converge t-ancillary tightly to −F ,

then Lsk(εk-Sol(sEP(F k, Ak, Bk))) ⊂ ε-Sol(sEP(F,A,B)).

Proof (i) Let t̄ ∈ Lsk(εk-Sol(sEP(F k, Ak, Bk))). Then, there exist tkj ∈ εkj -Sol(sEP(F kj , Akj , Bkj ))→ t̄

as j → +∞. Assume the t-ancillary tight e/h-convergence of −F k to −F . If t̄ ∈ A, then for all y ∈ B, by

condition (a) of the assumed e/h-convergence, there exist ykj ∈ Bkj → y such that lij(−F kj (tkj , ykj )) ≥

−F (t̄, y). As tkj is an εkj -solution of (sEP(F kj , Akj , Bkj )), F kj (tkj , ykj )) ≥ −εkj . So, F (t̄, y) ≥ −ε, i.e.,
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t̄ ∈ ε-Sol(EP(F,A,B)). Suppose t̄ 6∈ A. Then, the above condition (a) says that there exist ykj ∈ Bkj

such that −F kj (tkj , ykj )→ +∞, contradicting the fact that tkj is an εkj -solution as aforementioned.

It suffices now to show that t̄ is a maxinf-point of F on A × B. The first step is to ensure that

Lsk(hypoηk)⊂ hypoη. Assume that (t, α) ∈ Lsk(hypoηk), i.e., there exist tkj ∈ domηkj and αkj ≤ ηkj (tkj )

such that (tkj , αkj )→ (t, α). If t 6∈ A, then by condition (a) of the assumed e/h-convergence, there exist

ykj ∈ Bkj such that−F kj (tkj , ykj )→ +∞. Since αkj ≤ ηkj (tkj ) ≤ F kj (tkj , ykj ), it holds that αkj → −∞,

which is a contradiction as αkj → α. So, t ∈ A. If t 6∈ domη, then one has y ∈ B with F (t, y) ≤ α− 1. By

the above (a), there are ykj ∈ Bkj → y such that lij(−F kj (tkj , ykj )) ≥ −F (t, y). Hence,

α = limjα
kj ≤ lsjη

kj (tkj ) ≤ lsj(F
kj (tkj , ykj )) ≤ F (t, y) ≤ α− 1,

which is impossible. Consequently, t must be in domη. For any positive ε, take yε ∈ B such that F (t, yε) ≤

η(t) + ε. Again by condition (a) of the e/h-convergence, one has ykj ∈ Bkj → yε ∈ B such that

lsjη
kj (tkj ) ≤ lsjF

kj (tkj , ykj ) ≤ F (t, yε) ≤ η(t) + ε.

Therefore,

α = limαkj ≤ lsjη
kj (tkj ) ≤ η(t) + ε

and so (t, α) ∈ hypoη as ε is arbitrary.

The second step is to verify that hypoη ⊂ Lik(hypoηk). By the assumed ancillary tightness, for all

t ∈ A, there exist points tk ∈ Ak → t such that lik(ηk(tk)) ≥ η(t), i.e., lsk(−ηk(tk)) ≤ −η(t). This is

equivalent to condition (b) of the epi-convergence of −ηk to −η, whose geometric formulation is epi(−η) ⊂

Lik(epi(−ηk)). The last inclusion is equivalent to hypoη ⊂ Likhypoηk.

The conclusion for the t-ancillary case of these types of convergence is clearly also verified because

both the mis-lop and mai-lop convergence are stronger than the e/h-convergence of bifunctions defined on

rectangles (i.e., the domains of the form A×B). (Although these types of convergence are incomparable

for (general) bifunctions defined on domains of the form gphD as in Definitions 2.3-2.5.) �

Now consider dual strong problem (DsQVI). Assume that yk ∈ εk-Sol(DsQVI), i.e., we have the

problem of finding tk solving problem mint∈T (yk)supx∈K−1(yk)〈t, yk − x〉 ≤ εk, and ȳ ∈ ε-Sol(DsQVI),

i.e., we have the problem of finding t̄ solving mint∈T (ȳ)supx∈K−1(ȳ)〈t, ȳ − x〉 ≤ ε. Setting Ck := T (yk),

Dk := K−1(yk), Gk := 〈t, yk − x〉, C := T (ȳ), D := K−1(ȳ), G := 〈t, ȳ − x〉, the above two problems

become dual strong set-valued equilibrium problems (DsEP(Gk, Ck, Dk)) and (DsEP(G,C,D)), resp.
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Global approximations of them in terms of variational convergence of Gk and G can be viewed as second-

level global approximations of (DsQVI). For these problems, we need the following notions.

A function ξ : C → R defined by ξ(t) := supx∈DG(t, x) for t ∈ A is called the sup-projection of G.

Definition 4.2 (ancillary tightness for convergence ofGk) Assume thatX is a metric space, Ck, C,Dk, D ⊂

X, Gk : Ck ×Dk → R, and G : C ×D → R. If Gk e/h-converge (mis-lop converge or mai-lop converge,

resp) to G and for all t ∈ C, there exist points tk ∈ Ck → t such that lsk(ξk(tk)) ≤ ξ(t), then we say that

Gk e/h-converge (mis-lop converge or mai-lop converge, resp) t-ancillary tightly to G.

Proposition 4.5 (second-level approximations of (DsQVI)) Assume that εk, ε ≥ 0, εk → ε, yk ∈ εk-

Sol(DsQVI), and ȳ ∈ ε-Sol(DsQVI). If Gk e/h- or mis-lop or mai-lop converge t-ancillary tightly to G,

then Lsk(εk-Sol(DsEP(Gk, Ck, Dk))) ⊂ ε-Sol(DsEP(G,C,D)).

The proof is similar to that of Proposition 4.4 and omitted.

5 Approximations of Traffic Networks with Set-Valued Costs and Elastic Demands

Depending on Equilibrium Flows

5.1 Traffic Networks with Set-Valued Costs and Elastic Demands Depending on Equilibrium Flows

Assume for traffic network N that N is the set of nodes, L is that of directed arcs (also called links),

W is the set of origin-destination pairs (O/D pairs) of nodes. Assume further that O/D pair w ∈ W

is connected by set Pw of paths, P = ∪w∈WPw, and m = |P | (the number of paths in the network).

Let F := (F1, . . . , Fm) = (Fp)p=1,...,m denote a vector flow (also briefly called flow). Let the capacity

restriction on arc ` ∈ L be c` > 0. So, any arc flow v` on ` needs to satisfy 0 ≤ v` ≤ c` for ` ∈ L.

Expressing in terms of vector flow F , v` takes the form

v` =
∑
w∈W

∑
p∈Pw

δ`pFp, where δ`p =


1 if arc ` is contained in path p,

0 otherwise.

Then, the set of the vector flows satisfying the arc capacity constraints is

{F ∈ Rm+ |
∑
w∈W

∑
p∈Pw

δ`pFp ≤ c` for all ` ∈ L}.

If the (fixed) demand of O/D pair w is dw, then the set of feasible vector flows is

K = {F ∈ Rm+ |
∑
w∈W

∑
p∈Pw

δ`pFp ≤ c` for all ` ∈ L and
∑
p∈Pw

Fp = dw for all w ∈W}.
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Assume that the cost of vector flow F is t(F ) := (t1(F ), ..., tm(F )), i.e, we have the cost map t : Rm+ →

(Rm)∗. When a given F is clear, we also write simply t := (t1, ..., tm).

Definition 5.1 (types of approximate saturated arcs and approximate saturated paths) Let F ∈ K.

(i) For an ` ∈ L and a pair k, j ∈ {1, ...,m}, assume that 0 < ε
tj−tk ≤ c`. Iff v` ≥ c` − ε

tj−tk , then ` is

said to be a (k, j)-ε-saturated arc of F ; iff 0 ≤ v` < c`− ε
tj−tk , then ` is a (k, j)-ε-nonsaturated arc

of F .

When ε = 0, (k, j)-0-nonsaturatedness is called simply (k, j)-nonsaturatedness and iff v` = c`,

then ` is called a (k, j)-saturated arc.

(ii) For ε ≥ 0, iff there exists a (k, j)-ε-saturated arc ` in the vector flow F such that ` belongs to path

p, then p is called a (k, j)-ε-saturated path of F , otherwise it is a (k, j)-ε-nonsaturated path of F .

(iii) Assume that θ : Rm → R satisfies θ(F ) > 0 for all vector flows F 6= 0. Iff, for a pair k, j ∈ {1, ...,m},

it holds v` ≥ c` − εθ(Fk−Fj)
tj−tk , then arc ` is termed (k, j)-εθ-saturated; iff 0 ≤ v` < c` − εθ(Fk−Fj)

tj−tk ,

then ` is a (k, j)-εθ-nonsaturated arc.

(iv) For θ, assume the same as in (iii). Iff there exists a (k, j)-εθ-saturated arc in path p, then p is said

to be a (k, j)-εθ-saturated path.

Iff ε = 0 in the above three statements, we remove “ε” and “εθ” in the names.

Definition 5.2 (Wardrop approximate equilibrium flows for (TP(t,K))) Consider the above traffic net-

work with fixed demands. Let ε ≥ 0.

(i) Vector flow H ∈ K is called an ε-equilibrium flow iff for all w ∈ W and k, j ∈ Pw, tk <

tj implies that 0 ≤ Hj ≤ ε
tj−tk or path k is a (k, j)-ε-saturated path of vector flow H.

(ii) Assume that θ : Rm → R satisfies θ(F ) > 0 for all vector flows F 6= 0. Vector flow H ∈ K is called

an εθ-equilibrium flow iff for all w ∈ W and k, j ∈ Pw, tk < tj implies that 0 ≤ Hj ≤ εθ(Fk−Fj)
tj−tk or

path k is a (k, j)-εθ-saturated path of vector flow H.

Iff ε = 0, we remove “ε” and “εθ” in the names.

The traffic equilibrium problem (briefly, traffic problem), denoted by (TP(t,K)), is to find equilibrium

flows or approximate equilibrium flows in the above sense.

It is well-known that H is a vector equilibrium flow of (TP(t,K)) if H is a solution of the variational

inequality: find H ∈ K such that for all F ∈ K, 〈t(H), F −H〉 ≥ 0. But, to the best of our knowledge,

there are no contributions to approximate equilibrium flows in the sense of Definition 5.2.
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In this paper, our traffic problem is more general than (TP(t,K)) (to suit diverse practical situations)

as follows. Assume that the cost T (F ) of vector flow F is a compact subset of (Rm+ )∗, i.e., one has a

compact-set-valued map T : Rm+ ⇒ (Rm+ )∗. Assume further that each demand dw depends on equilibrium

costs, or more directly, on equilibrium pattern flows H, i.e., we have a map dw : Rm+ → R+, which

is assumed to be continuous. Moreover, we are interested in the following case with a tolerance of the

demands. Let β : Rm+ → R be a continuous function. The feasible path follows are defined as

K(H) := {F ∈ Rm+ |
∑
w∈W

∑
p∈Pw

δ`pFp ≤ c` for all ` ∈ L

and
∑
p∈Pw

Fp ∈ [dw(H)− β(H), dw(H) + β(H)] for all w ∈W}.

Then, K(H) is clearly a closed, compact, and convex set for each H. Definition 5.1 of approximate

saturateness applies also to our traffic problem with the only replacement of K by K. The Wardrop

approximate equilibrium concepts are extended as follows.

Definition 5.3 (Wardrop concepts for the case of elastic demands and costs depending on equilibrium

flows) Let ε ≥ 0.

(i) Iff vector flow H ∈ K(H) such that ∀w ∈W , ∀k, j ∈ Pw, ∃t ∈ T (H) such that

tk < tj ⇒ 0 ≤ Hj ≤
ε

tj − tk
or k is a (k, j)− ε− saturated path,

then H is called a weak ε-equilibrium flow

(ii) Iff for H ∈ K(H), ∃t ∈ T (H) such that ∀w ∈W , ∀k, j ∈ Pw,

tk < tj ⇒ 0 ≤ Hj ≤
ε

tj − tk
or k is a (k, j)− ε− saturated path,

then H is called an ε-equilibrium flow.

(iii) Assume that θ : Rm → R satisfies θ(F ) > 0 for all vector flows F 6= 0. Iff vector flow H ∈ K(H)

satisfies that ∀w ∈W , ∀k, j ∈ Pw, ∃t ∈ T (H) such that

tk < tj ⇒ 0 ≤ Hj ≤
εθ

tj − tk
or k is a (k, j)− εθ − saturated path,

then H is called a weak εθ-equilibrium flow

Iff ε = 0 in the above statements, H is said to be a weak equilibrium flow or an equilibrium flow, resp.

The traffic problem of finding equilibrium or approximate equilibrium flows in the sense given in

Definition 5.3 is denoted by (TP(T ,K)). We also use the simple notation (TP) for this problem since

hereafter we always deal with this general model.
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Using a modification of traditional techniques, we demonstrate the following relationship between our

traffic problem with elastic demands and a set-valued quasi-variational inequality.

Theorem 5.1 (approximate solutions of (wQVI(T ,K)) or (sQVI(T ,K)) are approximate weak equilib-

rium or approximate equilibrium, resp, flows of (TP(T ,K)))

(i) Vector flow H is a weak ε-equilibrium flow of (TP) if H is an ε-solution of the weak set-valued

quasi-variational inequality

(wQVI(T ,K)) find H ∈ K(H) such that ∀F ∈ K(H),∃tF ∈ T (H), 〈tF , F −H〉 ≥ −ε.

(ii) H is an ε-equilibrium flow of (TP) if H is an ε-solution of the set-valued quasi-variational inequality

(sQVI).

(iii) Vector flow H is a weak εθ-equilibrium flow of (TP) if H is an εθ-solution of the weak set-valued

quasi-variational inequality

find H ∈ K(H) such that ∀F ∈ K(H),∃tF ∈ T (H), 〈tF , F −H〉 ≥ −εθ(H − F ).

If ε = 0 in the above statements, then they are about a weak equilibrium flow or an equilibrium flow,

resp.

Proof (i) Assume that H ∈ ε-Sol(wQVI(T ,K)) and that for all w ∈ W and k, j ∈ Pw, there exists

t ∈ T (H) such that tk < tj and k is a (k, j)-ε-nonsaturated path of flow H. We need to verify that

0 ≤ Hj ≤ ε
tj−tk . Arguing by contradiction, suppose that Hj >

ε
tj−tk . Let

δ := min{Hj −
ε

tj − tk
,min`∈k(c` −Hk)(tj − tk)− ε}.

Since k is (k, j)-ε-nonsaturated, (c` −Hk)(tj − tk)− ε > 0 for all ` ∈ k. Hence, δ > 0.

Consider the following vector flow F = (Fi)i=1,...,m

Fi =



Hi if i 6= k, i 6= j,

Hj − δ+ε
tj−tk if i = j,

Hk + δ+ε
tj−tk if i = k.

It is not hard to check that

0 ≤
∑

i6=j,i 6=k

Hi + δ`k(Hk +
δ + ε

tj − tk
) + δ`j(Hj −

δ + ε

tj − tk
) ≤ c`,
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for all ` ∈ L, i.e., F is a feasible vector flow: F ∈ K(H). We have

〈t, F −H〉 =

m∑
i=1

ti(Fi −Hi) = tk(Fk −Hk) + tj(Fj −Hj) = −δ − ε < −ε,

which is a contradiction.

(ii) The proof for ε-solutions of the two problems under consideration is almost the same as that of

(i) (with some clear modifications).

(iii) Assume that H ∈ εθ-Sol(wQVI(T ,K)) and for all w ∈ W and k, j ∈ Pw, there exists t ∈ T (H)

with tk < tj and k being a (k, j)-εθ-nonsaturated path of flow H. We need to verify that 0 ≤ Hj ≤

εθ(Fk−Fj)
tj−tk . Suppose to the contrary that Hj >

εθ(Fk−Fj)
tj−tk . Set

δ := min{Hj −
εθ(Fk − Fj)
tj − tk

,min`∈k(c` −Hk)(tj − tk)− εθ(Fk − Fj)},

Fi =



Hi if i 6= k, i 6= j,

Hj − δ+εθ(Fk−Fj)
tj−tk if i = j,

Hk +
δ+εθ(Fk−Fj)

tj−tk if i = k.

Similar to part (i), we have that F ∈ K(H) and

〈t, F −H〉 =

m∑
i=1

ti(Fi −Hi) = tk(Fk −Hk) + tj(Fj −Hj) = −δ − εθ(Hk −Hj) < −εθ(Hk −Hj).

This contradiction with the assumption that H ∈ εθ-Sol(wQVI(T ,K)) ends the proof. �

5.2 Approximations of Traffic Networks

In this subsection, we will apply the results of Sects. 3 and 4 for approximations of quasi-variational

inequalities to approximations of traffic networks. Hence, the following bifunction on Rm+ × Rm+

Φ(F1, F2) := maxt∈T (F1)〈t, F2 − F1〉 (2)

will be in use.

Assume that we have maps T k : Rm+ ⇒ (Rm+ )∗ with compact values, which approximate T , and Φk :

gphKk → R defined by Φk(F1, F2) := maxt∈T k(F1)〈t, F2 − F1〉, which approximate Φ. Here, the map Kk

is produced by approximations of dkw(·) as follows

Kk(H) := {F ∈ Rm+ | 0 ≤ v` ≤
∑
w∈W

∑
p∈Pw

δ`pFp for all ` ∈ L
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and
∑
p∈Pw

Fp ∈ [dkw(H)− β(H), dkw(H) + β(H)] for all w ∈W}.

We now investigate the set convergence of the weak approximate equilibrium flows of approximating

problems (TPk(T k,Kk)), which are usually briefly written as (TPk), in terms of variational convergence

of Φk.

We also denote the set of weak ε-equilibrium and ε-equilibrium flows, resp, of problem (TP), by

ε-weq(TP) and ε-eq(TP).

Corollary 5.1 (convergence of approximate weak equilibria) Assume that εk, ε ≥ 0, εk → ε, and ε1 > ε.

(i) If −Φk i-e/h- or i-mis-lop converge to −Φ, then fixK∩Lsk(εk-Sol(wQVIk))⊂ ε1-weq(TP). If −Φk

e/h- or mis-lop converge to −Φ, then Lsk(εk-Sol(wQVIk))⊂ ε1-weq(TP).

(ii) If −Φk e→ −Φ and gphK @ Lik(gphKk), then

Lsk(εk-Sol(wQVIk))⊂ ε1-weq(TP).

If −Φk i−e→ −Φ replaces the above epi-convergence, then

fixK∩Lsk(εk-Sol(wQVIk))⊂ ε1-weq(TP).

(iii) If −Φk w-e/h- or w-mis-lop converge to −Φ and Hk ∈ εk-Sol(wQVIk)→ H, then H ∈ ε1-weq(TP).

Proof (i) Consider the case of i-e/h-convergence. In virtue of Proposition 4.1(i), fixK∩Lsk(εk-Sol(wQVIk)) ⊂

ε1-Sol(wQVI). By Theorem 5.1(i), ε1-Sol(wQVI)⊂ ε1-weq(TP) as what we need to verify. The other cases

of assertion (i) can be proved similarly.

(ii) The verification of this assertion is similar to that of (i), with the use of (ii) in Proposition 4.1

instead of (i).

(iii) The proof is also analogous, using (iii) of Proposition 4.1 instead of (ii). �

Corollary 5.2 (convergence of approximate equilibria) Assume that εk, ε ≥ 0, εk → ε.

(i) If −Φk e/h- or mis-lop converge to −Φ, then Lsk(εk-Sol(QVIk))⊂ ε-eq(TP). If the above types of

convergence reduce to the inside ones, then fixK ∩ Lsk(εk-Sol(QVIk))⊂ ε-eq(TP)

(ii) If −Φk epi- or i-epi-converge to −Φ and gphK @ LikgphKk, then one has the same inclusion as in

(i).

(iii) If −Φk w-e/h- or w-mis-lop converge to −Φ and Hk ∈ εk-Sol(QVIk)→ H, then H ∈ ε-eq(TP).

Proof Apply Propositions 3.2, 4.1, and Theorems 5.1(ii). �
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Corollary 5.3 (convergence of second-kind approximate weak equilibria) Assume that εk, ε ≥ 0, εk → ε,

and ε1 > ε.

(i) If −Φk i-e/h- or i-mis-lop converge to −Φ, then fixK ∩ Lsk(εkθ-Sol(wQVIk))⊂ ε1θ-weq(TP). If

−Φk e/h- or mis-lop converge to −Φ, then Lsk(εkθ-Sol(wQVIk))⊂ ε1θ-weq(TP).

(ii) If gphK @ Lik(gphKk) and the i-e- or e-convergence of −Φk to −Φ replaces the assumed types of

convergence of −Φk in (i), then the conclusion in (i) holds as well.

(iii) If −Φk w-e/h- or w-mis-lop converge to −Φ and Hk ∈ εkθ-Sol(wQVIk)→ H, then H ∈ ε1θ-

weq(TP).

Proof The argument is similar to that for Corollary 5.1, but now we employ Proposition 4.3 and Theorem

5.1(iii).

6 Concluding Remarks

This paper is the first attempt to study global approximations of quasi-variational inequalities and traffic

networks in terms of variational convergence. Weak and usual strong variants of quasi-variational inequal-

ities and traffic problems with arc capacity constraints, set-valued costs, and elastic demands depending

on the pattern equilibrium flow are the research objects. The inside and weak types of epi/hypo- and

lopsided convergence are introduced and used as tools for approximation studies. New concepts of approx-

imate solutions of quasi-variational inequalities and saturatedness of arcs and paths together with new

notions of equilibrium flows of traffic network problems are also proposed. The obtained approximation

results are novel.

Since this is only the first step of the research topic, we can expect a significant possibility for a

continuation of this paper. For instance, approximations of the above problems but direct in terms of the

problem data, not via the associated bifunction Φ, and a definition and study of dual traffic problems

following the research in the paper for quasi-variational inequalities are perspectives.
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