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Abstract. In this paper, we show that the average size of 2-Selmer groups of hyperelliptic
curves with a marked Weierstrass point and a marked non-Weierstrass point over function
fields is 6.

Introduction

This paper and [9] are of a series of the study on 2-Selmer groups of odd hyperelliptic curves
over function fields. More precisely, in this paper, we will compute the average size of 2-Selmer
groups of Jacobians of hyperelliptic curves with two marked points: one Weierstrass point and
one non-Weierstrass point. Recall that in [9], we consider the family of hyperelliptic curves
with a marked Weierstrass point.

One of the reasons that we consider this family comes from Vinberg theory.
Before introducing the main result, we talk a little about the contribution of this work:
First, this build up a machinery method that could potentially apply for other cases such

as. In this machine, we deal with higher genus case which is more chalengent due to numerious
equations and relations we need to consider. Moreover, in this paper, we also handle the case
with two Kostant sections (see ??), and highlight the contributions of Kostants sections to the
average size. The author hope that

Secondly, from the geometric point of view, we may see that some results in function fields
setting is stronger than the one in number fields case. Hence, people may look back the number
fields case and strengthen the result.

Lastly, from the result of average size of 2-Selmer groups, we can deduce the information of
the rank of the Modell-Weil group, which may be thought as the motivation of this work.

Over Q, this problem was studied vastly by Bhargava and coauthors in series of papers (??).
To the author best knowledge, their method can not be applied directly here. So instead, we
use the approach of [4], which is more geometric. In order to go from the genus 1 case to the
general case (higher genus), we need to go over some technical difficulities. Moreover, a new
idea is needed in the counting sections problem (see section) in order to ”cut off the points at
infinity” and see the contribution of the Kostant sections to the average size.

0.1. Notations. Let C be a geometrically irreducible projective curve of genus g over the
finite field Fq. We also denote K(C) to be the function field of C. We also assume that the
characteristic of Fq = p > 2n.

1. Weierstrass equation and height

In this section, we will consider the family of Hyperelliptic curves with a marked Weierstrass
point and a marked non-Weierstrass point over a function field. By introducing the integral
model of these hyperelliptic curves, we will able to define the height of hyperelliptic curves.
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The height will help us to order hyperelliptic curves and then we can state our main results
where we take the average over this family of hyperelliptic curve. Furthermore, we can use the
integral model to interpret each hyperelliptic curve as a C−point of a quotient stack.

Given a smooth hyperelliptic curve H of genus m ≥ 2 over the function field K of the
smooth curve C, assume that H has a marked rational Weierstrass point P1 and a marked
rational non-Weierstrass point P2. Without loss of generality, we may assume that under the
natural map H → P1, P1 maps to ∞ ∈ P1(K), and P2 maps to 0 ∈ P1(K). Therefore, we have
an affine Weierstrass equation of H:

(1.1) y2 = f(x) = x2m+1 + a1x
2m + · · ·+ a2mx+ e2,

where ai ∈ K and e ∈ K× such that the discriminant ∆(a1, . . . , a2m, e) of the polynomial f(x)
is non-zero. Denote the multi-set (a1, . . . , a2m, e) by a. Then a is unique up to the following
identification:

(a1, · · · , a2m, e) ≡ (λ2a1, · · · , λ4ma2m, λ
2m+1e) λ ∈ K×.

Now we define the minimal integral model of a given hyperelliptic curve H as follows (c.f.
[1]). First of all, we choose an affine Weierstrass equation of H with a1, a2, . . . , a2m, e ∈ K as
above. Then for each point v ∈ |C|, we can choose an integer nv which is the smallest integer
satisfying that: the tuple

($2nv
v a1, $

4nv
v a2, · · · , $4mnv

v a2m, $
(2m+1)nv
v e)

has coordinates in OKv . Given (nv)v∈|C|, we define the invertible sheaf LH ⊂ K whose sections
over a Zariski open U ⊂ C are given by

LH(U) = K ∩
( ∏
v∈U

$−nvv OKv

)
.

Then it is easy to see that ai ∈ H0(C,L ⊗2i
H ) and e ∈ H0(C,L ⊗2m+1

H ). Furthermore, the
stratum (LH , a) is minimal in the sense that there is no proper subsheaf M of LH such
that ai ∈ H0(C,M⊗2i) and e ∈ H0(C,M⊗2m+1). Conversely, given a minimal strata (L , a)
satisfying that ∆(a) 6= 0, we consider a subscheme of P2(L 2m+1 ⊕L 2 ⊕ OC) that is defined
by

Z2m−1Y 2 = X2m+1 + a1ZX
2m + · · ·+ a2mZ

2mX + e2Z2m+1.

This is a flat family of curves H → C, and the generic fiber H is a hyperelliptic curve over
K(C) with a marked rational Weierstrass point P1 = [0 : 1 : 0] and a marked rational non-
Weierstrass point P2 = [0 : e : 1]. Furthermore, the associated minimal data of H is exactly
(L , a). Hence, we have just shown the surjectivity of the following map φL with a given line
bundle L over C:

φL : {minimal tuples (L , a)} → {Hyperelliptic curves (H,P1, P2)|LH
∼= L }/ ∼ .

Moreover, the sizes of fibers of φL can be calculated as follows

Proposition 1.1. Given a line bundle L over C, the map φL defined as above is surjective,

and the preimage of any curve (H,P1, P2) is of size
|F×q |

|Aut(H,P1,P2)| , where Aut(H,P1, P2) denotes

the subset of all elements in Aut(H) which preserve the marked points P1 and P2.

Proof. Suppose that (H,P1, P2) is a hyperelliptic curve with the associated minimal data
(L , a). The tuple of sections a is well-defined upto the following identification:

a ≡ λ.a = (λ2a1, . . . , λ
4ma2m, λ

2m+1e), λ ∈ F×q .

In the other words, there is a transitive action of F×q on the fiber φ−1
L (H). Furthermore, the

stabilizer of any element in φ−1
L (H) is exactly Aut(H,P1, P2). Hence, the size of φ−1

L (H;P1, P2)

is
|F×q |

|Aut(H,P1,P2)| . �
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Definition 1.2. (Height of hyperelliptic curve) The height of the hyperelliptic curve
(H,P1, P2) is defined to be the degree of the associated line bundle LH .

Remark 1.3. Given d ∈ Z, there are finitely many isomorphism classes of hyperelliptic curves
over K whose height are less than d.

Now we are able to state the main theorem of this section. Recall that the 2-Selmer group
of a given hyperelliptic curve H over K(C) is the 2-Selmer group of the Jacobian E of H, and
by definition it is the kernel of β ◦ α : H1(K,E[2]) →

∏
v∈|C|H

1(Kv, E), where α, and β are

natural maps in the following diagram:

0 E(K)/2E(K) H1(K,E[2]) H1(K,E)[2] 0

0
∏
v E(Kv)/2E(Kv)

∏
vH

1(Kv, E[2])
∏
vH

1(Kv, E)[2] 0

α

β

Theorem 1.4. Assume that q > 16
m2(2m+1)

2m−1 , then

lim sup
deg(L )→∞

∑
Hyperelliptic H

L (H)∼=L

|Sel2(H)|
|Aut(H)|

∑
Hyperelliptic H

L (H)∼=L

1
|Aut(H)|

≤ 4
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m − 2|k(v)|(2m+1)2

)
+ 2 + f(q),

where limq→∞ f(q) = 0, and ci are constants which only depend on m and p = char(Fq).

By Proposition 1.1, the above theorem is equivalent to

Theorem 1.5. With the same hypothesis as in the previous theorem, we have that

lim sup
deg(L )→∞

∑
minimal (L , a)

∆(a)6=0

|Sel2(Ha)|

∑
minimal (L , a)

∆(a)6=0

1
≤

4.
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m − 2|k(v)|(2m+1)2

)
+ 2 + f(q),

where Ha is the hyperelliptic curve that is corresponding to the tuple of sections a, limq→∞ f(q) =
0, and c1, . . . , c2m−1 are constants which only depend on m and p.

If we order the set of hyperelliptic curves over K by height, the following corollary of the
above theorem give an upper bound for the average size of 2-Selmer groups:

Corollary 1.6. Assume that q > 16
m2(2m+1)

2m−1 , then

lim sup
d→∞

∑
(L , a) is minimal
∆(a)6=0;deg(L )≤d

|Sel2(Ha)|

∑
(L , a) is minimal
∆(a) 6=0;deg(L )≤d

1

≤ 4.
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m − 2|k(v)|(2m+1)2

)
+ 2 + f(q),

where limq→∞ f(q) = 0, and c1, . . . , c2m−1 are constants which are only depended on m and p.
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The above error term f(q) can be removed and the limsup becomes the normal limit if we
take the average over the set of transversal hyperelliptic curves. The transversality can be
defined as follows:

Definition 1.7. Let H be a hyperelliptic curve over K with an associated minimal data (L , a).

Then H is said to be transversal if the discriminant ∆(a) ∈ H0(C,L 4m(2m+1)) is square-free.

If we compute the average on the family of transversal hyperelliptic curves then we could

remove the restriction q > 16
m2(2m+1)

2m−1 and actually obtain the limit:

Theorem 1.8.

lim
d→∞

∑
(L , a) is transversal

deg(L≤d

|Sel2(Ha)|

∑
(L , a) is transversal

deg(L≤d

1
= 6.

Remark 1.9. If we set S = Spec(k[a1, . . . , a2m, e]) ∼= A2m+1, then any tuple (L , a) can be
seen as a C−point of the quotient stack [S/Gm], where the action of Gm on S is given by
λ.(a1, . . . , a2m, e) = (λ2a1, . . . , λ

4ma2m, λ
2m+1e).

Over S = A2m+1, the universal curve HS is defined to be the subscheme of P3(S):

Z2m−1Y 2 = X2m+1 + a1ZX
2m + · · ·+ a2mZ

2mX + e2Z2m+1,

where a = (ai, e) ∈ S. This is a flat family of integral projective curves over S, hence,
there exists the relative Jacobian JS = Pic0

HS/S
which is a group scheme locally of finite type

over S. The next section will provide a close relation between BJS [2] and 2-Selmer groups.
Consequently, we will be able to restate our main theorems in the stack language.

2. 2-torsion group and 2-Selmer group

This section is almost identical to Section ?? in section ??. We will state the main results
and then give sketchy proofs if required.

Given a hyperelliptic curve (H,P1, P2) over the function field K(C), let denote H → C
be the minimal integral model of H. We also have the relative generalized Jacobian J of
H whose generic fiber is the Jacobian J of H. Recall that the set of isomorphism classes
of J [2]−torsors over C can be identified with the étale cohomology group H1(C,J [2]). By
restriction to the generic fiber of C, we obtain a homomorphism

(2.1) H1(C,J [2])→ H1(K,J [2]).

We obtain the following results:

Proposition 2.1. The homomorphism (2.1) factors through the 2-Selmer group Sel2(J).

And now in the transversal case, Sel2(J) can be identified with H1(C,J [2]) via the above
map.

Proposition 2.2. If the hyperelliptic curve H is transversal, then

|Sel2(J)| = |H1(C,J [2])|

Proof. C.f. Proposition ??. �

In general case, the size of Sel2(J) and H1(C,J [2]) can be compared as follows:
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Proposition 2.3. We have that

|Sel2(J)| ≤ |H1(C,J [2])|, when J [2](K) = 0,

|Sel2(J)| ≤ 22m−1|H1(C,J [2])|, otherwise.

To summarize, in general, |Sel2(J)| is bounded by |H1(C,J [2]| except in the case our Jaco-
bian J has a 2-torsion K−rational point. However, if we make an assumption that the size of
our base field q is large enough, then the contribution to the average of Sel2(J) in this case is
zero. More precisely, we have

Lemma 2.4. If q > 16
m2(2m+1)

2m−1 , then the contribution of the case J [2](K) 6= 0 to the average
is zero. In the other words, we have the following limit:

lim sup
deg(L )→∞

∑
a∈H0(C,L 2⊕···⊕L 4m⊕L 2m+1)

Ja[2](K)6={0}

|H1(C,Ja[2])|

∑
a∈H0(C,L 2⊕···⊕L 4m⊕L 2m+1)

1
= 0

Proof. Let H be the hyperelliptic curve over C defined by (L , a), then the smooth locus C ′

of the map H → C is determined by the condition ∆(a) 6= 0, where ∆ ∈ H0(C,L 4n(2n+1)).
Denote by J the corresponding Jacobian of H. Then by the smoothness of H over C ′, any
Kv−points of J can be extended as C ′v−points. By using the Selmer condition, we deduce that
any element in the 2-Selmer group of J can be lifted to J [2]−torsors over C ′. Consequently,
we get

|Sel2(J)| ≤ |H1(C ′,J [2])|.
When J [2](C) 6= 0, there exists a section c ∈ H0(C,L ⊗2) such that the (x, z)− polynomial
defining H has a factorization:

x2m+1 + a1x
2mz + · · ·+ a2mxz

2m + e2z2m+1

= (x− cz)(x2m + b1x
2m−1z + b2x

2m−2z2 + · · ·+ b2mz
2m).

It means that a can be expressed in terms of c and {bj}1≤j≤2m, where bj ∈ H0(C,L 2j), for all
j, and −c.b2m is the square of a section in H0(C,L 2m+1). If d = deg(L ) is large enough, then
by using the Riemann-Roch theorem, the number of multiple sets a in this case is bounded
above by

q2d+(2+4+···+4m−2+2m+1)d+(2m+1)(1−g) = q(4m2+3)d+(2m+1)(1−g).

Now we consider the following interpretation for J [2]−torsors: any J [2]−torsors over C ′ can
be considered as tame étale covers of C ′ of degree 22m. Hence, there is a natural map:

φ : H1(C ′,J [2])→ {tame étale covers of C ′ of degree 4m}.
The number |C − C ′| of points where Hα is singular is bounded by the degree of ∆(Hα), so
|C−C ′| ≤ 4m(2m+ 1)d. As a consequence, the number of topological generators of πtame1 (C ′)
is less than 2g+ 4m(2m+ 1)d. The size of H1(C ′,J [2]) can be estimated if we understand the
fiber of φ. Let M is a degree 4m étale cover of C ′, then giving M the structure of J [2]−torsor
is equivalent to giving an action map:

ψ : J [2]×C′ M −→M

which is compatible with the structure maps to C ′ and which satisfies the condition that the
following natural map

J [2]×C′ M −→ M ×C′ M
(g,m) 7→ (ψ(g,m),m)
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is an isomorphism.
Since J [2] and M are proper and flat over C ′, the map ψ is totally defined by the map

ψK(C′) : (J [2]×C′ M)K(C′) →MK(C′)

on generic fibers. As K(C ′)−vector spaces, dim(MK(C′) = 22m and

dim(J [2]×C′ M)K(C′) = 24m.

Hence, the number of maps giving M the structure of a J [2]−torsors is bounded by q26m .

Thus, the size of any fiber of φ is also bounded by q26m .
The above discussion deduces that the average in case J [2](C) 6= 0 is bounded by:

q26m .4m(2g+4m(2m+1)d).q(4m2+3)d+(2m+1)(1−g)

q(2m+1)2d+(2m+1)(1−g) =
a.4m(4m(2m+1)d)

q(4m−2)d
,

where a is a constant independent of d. This goes to zero as d goes to infinity if q4m−2 >

44m2(2m+1), or equivalently q > 16
m2(2m+1)

2m−1 . The lemma is proved. �

From now on, we will assume that q > 16
m2(2m+1)

2m−1 if we work in the general case, and there are
no assumptions for the transversal case. Hence, we may assume that |Sel2(Ja)| ≤ |H1(C,J [2]|
for any tuples a, and |Sel2(Ja)| = |H1(C,J [2]| if a is transversal. We now restate our main
theorem in stack language as follows.

1. Recall that S = Spec(k[a1, . . . , a2m, e]) ∼= A2m+1. Then any tuple (L , a) can be seen
as a C−point of the quotient stack [S/Gm], where the action of Gm on S is given by
λ.(a1, . . . , a2m, e) = (λ2a1, . . . , λ

4ma2m, λ
2m+1e). We set A = Hom(C, [S/Gm]). Then

A (k) classifies the tuples (L , a).
2. Since the universal Jacobian JS is a group scheme over S, similar to the argument in

Section ??, there is a natural induced action of Gm on JS . Observe that we have a
natural map of quotient stacks

[BJS [2]/Gm]
ψ−→ [S/Gm].

Given a morphism α : C → [S/Gm], as in the step 1, we obtain a family of curve
Hα → C. Denote Jα = α∗JS , then Jα is exactly the relative Jacobian of Hα over C. A
Jα[2]−torsor over C can be seen as a morphism β : C → [BJS [2]/Gm] that fits in the
following commutative diagram:

C [BJS [2]/Gm]

[S/Gm]

β

α
ψ

Hence, if we set

M = Hom(C, [BJS [2]/Gm]),

then we have a natural map induced by ψ

b : M → A

whose fiber Mα over α ∈ A (k) classifies isomorphism classes of Jα[2]−torsors over C.



2-SELMER GROUP OF ODD HYPERELLIPTIC CURVES OVER FUNCTION FIELDS-II 7

3. Notice that the natural map M → A is compatible with base maps to Hom(C,BGm),
i.e., we have a commutative diagram:

M
b //

πM

&&

A
πA

xx

Hom(C,BGm)

This implies that for any line bundle L over C,

|ML (k)| =
∑

α∈AL (k)

|H1(C, Jα[2])|.

For each line bundle L , we denote A min
L (k) to be the set of a = (a1, . . . , a2m, e)in H

0(S×GmL )
satisfying that (L , a) is minimal, e 6= 0, and ∆(a) 6= 0. If we set Mmin

L (k) to be the preimage
b−1(A min

L (k)), then our main theorem 1.4 can be rewritten as

Theorem 2.5. Suppose that q > 16
m2(2m+1)

2m−1 . Then we have that

lim sup
deg(L )→∞

|Mmin
L (k)|

|A min
L (k)|

≤ 4.
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m

)
+ 2 + f(q),

where limq→∞f(q) = 0, and ci are constants which depend only on m and p. If p > 2m + 1,
then ci depends only on m.

Similarly, let A trans(k) be the subset of transversal elements (L , a) in A (k) such that
e 6= 0, and M trans(k) be the preimage of A trans(k) under the natural map M → A . Then in
transversal case, we have the following limit:

Theorem 2.6.

lim
deg(L )→∞

|M trans
L (k)|

|A trans
L (k)|

= 6.

One of the main ingredients in the proof of the above theorems is the close relationship
between the 2-torsion subgroups of the Jacobians of our hyperelliptic curves and the stabilizer
group schemes of a representation of SO(2m + 1) × SO(2m + 1) that appears in the Vinberg
theory of θ−groups. In the next sections, we are going to introduce the relevant representation
and then explain the above mentioned connection to 2-torsion subgroups of Jacobians.

3. Vinberg representation of SO(V1)× SO(V2)

Let (V1, < | >1) and (V2, < | >2) be split (2m + 1)−dimensional orthogonal spaces over k
of discriminant 1 and −1 respectively. Then we can find a basis {f1, f2, . . . , f2m+1} of V1 such
that the Gram matrix of < | >1 is

B =


1

1
. . .

1
1

 .

Similarly, there exists a basis {f ′1, f ′2, . . . , f ′2m+1} of V2 such that the Gram matrix of < | >2 is
−B. Now we can define the special orthogonal groups Gi that corresponds to V1 and V2 :

Gi := SO(Vi) =

{
T ∈ GL(Vi) | T ∗.T = I; det(T ) = 1

}
,



2-SELMER GROUP OF ODD HYPERELLIPTIC CURVES OVER FUNCTION FIELDS-II 8

where T ∗ ∈ GL(V ) denotes the adjoint transformation of T which is uniquely determined by
the formula

〈Tv,w〉i = 〈v, T ∗w〉i.
Notice that the matrix of T ∗ with respect to our standard basis (for both V1 and V2) can be
obtained by taking the reflection about anti-diagonal of the matrix of T . Set G = G1 × G2,
V = V1 ⊕ V2 and consider the following representation of G

W =

{
self-adjoint operators T : V → V with block diagonal zero

}
=

{
T =

(
0 A
−A∗ 0

)
; A : V2 → V1; −A∗ : V1 → V2

}
≡ V1 ⊗ V2,

where G acts on W by conjugation. For each element T ∈W, the corresponding characteristic
polynomial is of the form

gT (x) = fT (x2) = x2n + a1x
2n−2 + · · ·+ an−1x

2 + e2,

where n = 2m + 1, e = det(A), and fT (x) is the characteristic polynomial of −A.A∗. The
functions a1, a2, . . . , an−1, e are homogenousG−invariant functions onWof degree 2, 4, . . . , 2n−
2 and n respectively. We have a G−equivariant map

π : W −→ S:= Spec
(
k[a1, a2, . . . , an−1, e]

)
,

where the action of G on S is trivial.

3.0.1. Regular locus and two Kostant sections.

Definition 3.1. (Kostant section) A Kostant section of (W,G) is a linear subvariety κ of W
for which the restriction of function k[W ]G → k[κ] is an isomorphism.

From Vinberg theory in characteristic 0, there are exactly two Kostant sections (up to
conjugation) in our case. For positive characteristic, Paul Levi [5] made it available with the
assumption that char(Fq) is good (p > 3 in our case). Notice that the number of Kostant

sections (up to conjugation), by construction, equals to the number of G(k)−orbits of the
nilpotent regular locus. In our case, we give the precise description of Kostant sections as
follows: for each point c = (a1, a2, . . . , an−1, e) ∈ S, we define an associated element Tc in W :

(3.1) Tc =

(
0 Ac
−A∗c 0

)
where

(3.2) Ac =



b2m · · · bm+1 e 0 0 · · · 0
0 · · · 0 0 0 0 · · · 1
...

... 0 0 0 1
... 0

bm · · · b1 0 1 0 · · · 0
0 · · · 1 0 0 0 · · · 0
...

... 0 0 0 0
... 0

1 · · · 0 0 0 0 · · · 0


where bi =

(−1)i−1ai
2

. It could be checked that π(Tc) = c, so that we have defined a section of

the invariant map π:

κ1 : S −→W

c −→ Tc
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Similarly, we define

(3.3) T ′c =

(
0 A′c
−A′∗c 0

)
where

(3.4) A′c =



b2m 0 · · · bm 0 0 · · · 1
...

... · · ·
...

...
...

. . .
...

bm+2 0 · · · b2 0 1 · · · 0
bm+1 0 · · · b1 1 0 · · · 0
e 0 · · · 0 0 0 · · · 0
0 0 · · · 1 0 0 · · · 0
...

...
. . .

...
...

...
...

...
0 1 · · · 0 0 0 · · · 0


.

Then we will obtain the second section of π:

κ2 : S −→W

c −→ T ′c

Now recall the definition of regularity:

Definition 3.2. An element T in W (k) is called to be regular if its stabilizer StabGk(T ) is
finite. The condition of being regular is open, and we write W reg for the open subscheme of
regular elements of W .

Proposition 3.3. Over an algebraic closed field k, any element in W reg(K) is conjugate by
G(k) to an element in one of two Kostant sections κi.

Proof. This is a consequence of Theorem 0.14 in [5]. �

The following proposition gives us a necessary condition of being regular, it will be very
helpful in the counting section.

Proposition 3.4. Let T =

(
0 A
−A∗ 0

)
∈ W be a regular element, then at least one of two

matrices A.A∗ and A∗.A is regular (here, regularity of a matrix in GLn means that its minimal
polynomial and its characteristic polynomial coincide).

Proof. This result can be shown by a direct calculation. In fact, without loss of generality, we
may assume that T ∈ κ1. Then it is easy to see that the product A.A∗ belongs to the Kostant
section κ of the representation we considered in the last section (see Section ??). Hence, A.A∗

is regular. �

Let F/k be a field extension. Given a regular operator T ∈W (F ), we consider two quotient
rings L = F [x]/(f(x)), and M = F [x]/(g(x)) ∼= F [T ], where g(x) = f(x2) is the characteristic
polynomial of T . We have an embedding of F−algebras: L ↪→M by x 7→ x2. We can describe
the stabilizer of T under the action of G as follow:

Proposition 3.5. The stabilizer StabG(T )(F ) of a regular operator T ∈W whose characteris-
tic polynomial is g(x) = f(x2) is isomorphic to the kernel of the norm map ResL/F (µ2)→ µ2,
where L = F [x]/(f(x)). In particular, the finite group scheme StabG(T ) has order 2r over F ,
where r + 1 is the number of distinct roots of f(x) in the separable closure F s.

Proof. Any elements in the stabilizer of T =

(
0 A
−A∗ 0

)
is of the form

(
B 0
0 C

)
, where

B,C ∈ SO(n) satisfying that BAC∗ = A. By squaring T , we deduce that the submatrices
B and C commute with the matrix AA∗ and A∗A respectively. Without loss of generality,
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we may assume that our matrix T lies in the first Kostant section. Thus the matrix A.A∗ is
regular in GL(V1), and if we denote its characteristic is f(x), we can identify L with F [A.A∗].
As in section 1, we know that the stabilizer of AA∗ in SO(V1) can be identified with

{h ∈ L = F [x]/(f(x))|h2 = 1, NmL/F (h) = 1} ∼= Ker{ResL/F (µ2)
Nm−−→ µ2}.

Hence, given

(
B 0
0 C

)
∈ StabG(T ), there exist uniquely an element h(x) ∈ L such that

B = h(AA∗). For any polynomial P (x) ∈ F [x] and two square matrices D and E, we can
prove that det(P (D.E)) = det(P (E.D)). In fact, if we express P (D.E) as D.H + aI, for
some square matrix H, then P (E.D) = H.D + aI. Combining with the well-known equality
det(I + B.C) = det(I + C.B), we have completed the proof of det(P (D.E)) = det(P (E.D)).
Applying this observation to the case D = A∗ and E = A, we observe that det(h(A∗A)) = 1.
On the other hand, since f(x) is also the characteristic polynomial of A∗A, we deduce that
h(A∗A)2 = In (the identity matrix). We have just seen that h(A∗A) ∈ SO(V2). Since

B.A.h(A∗A)∗ = h(AA∗).A.h(A∗A) = h(AA∗).h(AA∗).A = A,

the matrix

(
h(AA∗) 0

0 h(A∗A)

)
stabilizes T . We will now prove that C = h(A∗A). First of

all, by setting C = h(A∗A) + C1, the matrix C1 needs to satisfy that C1.A
∗ = 0. If A∗ is

invertible then C1 = 0. Otherwise, by elementary computation, we can see that the entries of
C1: Cij = 0 for all (i, j) : i 6= m. Since the determinant of A is 0, we have that:

A =



b2m · · · bm+1 0 0 0 · · · 0
0 · · · 0 0 0 0 · · · 1
...

... 0 0 0 1
... 0

bm · · · b1 0 1 0 · · · 0
0 · · · 1 0 0 0 · · · 0
...

... 0 0 0 0
... 0

1 · · · 0 0 0 0 · · · 0


,

thus all entries in the middle row and column of the product A∗A are zeros. This implies that
the central entry of C1 is uniquely determined by the condition det(C1+h(A∗A)) = 1, and hence
it must be equal to zero. By the above discussion, the central entry of (C1 + C∗1 )h(A∗A) is 0,
and every entries except the central one of C1C

∗
1 are zeros. On the other hand, by decomposing

the product C.C∗, the condition C ∈ SO(V2) is equivalent to (C1 + C∗1 )h(A∗A) + C1.C
∗
1 = 0.

This equality implies that C1.C
∗
1 = 0, thus C1 + C∗1 = 0, and hence C1 = 0. We have just

proven the claim that C = h(A∗A).
For the case T ∈ κ2, similarly, by using the fact that A∗.A is regular in GL(V2), we also can

identify StabG(T ) with a subset of L as above. And if T belongs to both sections, we can just
need to choose one of them to start with.

The proof of the Proposition is completed. �

We can also compute the infinitesimal stabilizer as follows: the induced action of g = Lie(G)

on W is: for any element X =

(
X1 0
0 X2

)
∈ g = so(V1) × so(V2) and T ∈ W (F ), then

X ∗ T = [X,T ] = XT − TX. If T is regular, let assume that T ∈ κ1, then X1 = 0 since
X1 = X∗1 (this is a consequence of the fact that any matrix that commutes with A.A∗ is of
the form h(AA∗) for some polynomial h(x) ∈ F [x]). We deduce that X2.A

∗ must be the zero
matrix. Using the trivial computation and the fact that X2 = −X∗2 , we can show that X2 = 0.
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Thus, Stabg(T ) is trivial. This implies that the action map

G×S W reg −→ W reg ×S W reg

(g, v) 7→ (g.v, v)

is étale, and the universal stabilizer I of the action of G on W reg

I = (G×S W reg)×W reg×SW reg W reg,

where W reg →W reg×W reg is the diagonal map, is a quasi-finite étale group scheme over W reg

(base change of an étale map is étale).

Proposition 3.6. There exists a unique group scheme IS over S equipped with a G−equivariant
isomorphism π∗IS → I over W reg. Moreover, there is a Gm− equivariant isomorphism of stacks
[BIS ] ∼= [W reg/G], where BIS is the relative classifying stack of IS over S.

Proof. By Proposition 3.5, we obtain an isomorphism of the following group scheme over S:

(3.5) φ : κ∗2I
∼=−→ κ∗1I.

We will show that the group scheme IS := κ∗1I satisfies our condition.
Firstly, by considering the action map

fi : Wi := G× κi(S)→W reg, i = 1, 2,

we obtain an étale covering of W reg. We will see that there is a canonical isomorphism from
π∗IS to I over this covering. In fact, over W1, for any (g1, κ1(s1)) ∈ W1, we have a natural
morphism:

(f∗1 I)(g1,κ1(s1)) = StabG(g1.κ1(s1).g∗1) −→ (π∗κ∗1I)(g1,κ1(s1)) = StabG(κ1(s1))

a 7−→ g∗1.a.g1

Over W2, the isomorphism from π∗IS to I is given by

(f∗1 I)(g2,κ2(s2)) = StabG(g2.κ2(s2).g∗2) −→ (π∗κ∗1I)(g2,κ2(s2)) = StabG(κ1(s2))

a 7−→ φ(g∗2.a.g2),

where φ is the isomorphism (3.5), for any (g2, κ2(s2)) ∈W2.
The above isomorphism descends to an isomorphism over W reg since it is a morphism of

covering descent data, i.e., for each (g1, κ(s)) = (g2, κ2(s)) ∈ W1 ×W reg W2, the following
diagram:

(3.6)

StabG(g1κ1(s)g∗1) StabG(κ1(s))

StabG(g2κ2(s)g∗2) StabG(κ1(s))

ad(g∗1)

Id Id

φ◦ad(g∗2)

is commutative. In fact, we can describe the morphism φ in this case as follows: let g ∈ G be
any element such that gκ2(s)g∗ = κ1(s). Then φ is given by

StabG(κ2(s)) −→ StabG(κ1(s))

a 7−→ g.a.g∗.

This description does not depend on the choice of g due to the fact that I is commutative.
Hence, we may choose g to be g∗1g2. It is now easy to check that our diagram (3.6) is com-
mutative. Moreover, we can see from the above construction that the morphism π∗IS → I is
G−equivariant.

The second statement can be shown by using the above construction and a similar argument
as in the proof of Proposition ??. �
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4. Stabilizer group scheme and Jacobian of hyperelliptic curve

For each element T ∈ W reg, let fT (x2) be the characteristic polynomial of T , we consider
the projective curve in P3 with the affine equation: y2 = fT (x). As a result, we obtain a flat
family HW reg of integral projective curves over W reg. By the representability of the relative
Picard functor, we obtain the scheme PicHW reg/Wreg

locally of finite type over W reg, and also

the relative Jacobian JW reg = Pic0
HW reg/Wreg

over W reg. Over S, recall that the universal curve

HS is defined to be the subscheme of P3(S):

Z2m−1Y 2 = X2m+1 + a1ZX
2m + · · ·+ a2mZ

2mX + e2Z2m+1.

This is a flat family of integral projective curves over S, hence we also can define the relative
Jacobian JS = Pic0

HS/S
. By definition, we obtain a canonical isomorphism

JW reg → JS ×S W reg.

Now we will see the connection between the 2-torsion subgroup JW reg [2] and the stabilizer
IW reg .

Proposition 4.1. There is a canonical isomorphism of étale group schemes over W reg:

IW reg ∼= JW reg [2]

Proof. Let W reg = W1∪W2, where Wi is the orbit of the Kostant section κi. Thus, it is enough
to show that there is a canonical isomorphism IW reg |Wi

∼= JW reg [2]|Wi . Let do it over W1 and
the case of W2 will be similar.

Denote B1 and B2 the bilinear forms associated to the quadratic spaces V1 and V2. For each

T =

(
0 A
−A∗ 0

)
∈W1, the matrix T1 = −A.A∗ ∈ GL(V1) is regular. We define B1,T1(v1, w1) =

B1(v1, T1w1) for v1, w1 ∈ V1. Then denote Q1 and Q1,T1 the corresponding quadratic forms
on V1. Define P to be the pencil of quadrics on the projective space P(V1) spanned by Q1

and Q1,T1 , and set B to be the base locus of P. In [10] Section 3, X. Wang showed that
both IT and JT [2] act simply transitively on the Fano variety of B whose points are projective
(n − 1)−planes contained in the smooth part of B. By varying T , we obtain that IW1 and
JW1 [2] share a common principal homogeneous space. Furthermore, by using the fact that
these two actions commute, we obtain a canonical isomorphism of étale group schemes IW1

and JW1 [2] (see Proposition ??). �

Remark 4.2. The previous isomorphism IW reg → JW reg [2] is G−equivariant by construction.
Hence, it descends to an isomorphism of group schemes over S: IS → JS [2]. By Proposition
3.6, we have a Gm−equivariant isomorphism of quotient stacks

BJS [2] ∼= [W reg/G]

This provides another interpretation of M (k) as promised (for the definition of M , see the
discussion before Theorem 2.5): from the isomorphism

M ∼= Hom(C, [W reg/G×Gm]),

we see that ML (k) classifies tuples (E , s) where E is a principal G−bundle and s is a global
section of the vector bundle (W reg×G E )⊗L . In the next section, we will try to estimate the
size of H0(C, (W reg ×G E )⊗L ) for a given G−bundle E .
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5. Density of regular locus

To prove our theorem, we need to estimate the number of regular global sections of some
vector bundles. It is not easy to calculate it directly. Instead, we will firstly estimate the total
number of global sections. Then the results in ([4] section 5) tell us that we will be able to
estimate the number of regular global sections if we know the density of the regular locus W reg

in W . The next subsection will help us to compute the local density.

5.0.1. Orbits over finite fields via Galois cohomology. The content of this section is based on the
paper of Bhargava and Gross [2] where they described rational orbits with a fixed invariant via
Galois cohomology. We adopt their arguments in our case to estimate the number of rational
orbits and then the size of regular locus over finite fields.

Let ks denote a separable closure of the finite field k. If M (respectively J) is a commu-
tative finite étale group scheme (a smooth algebraic group) over k, we denote H1(k,M) =
H1(Gal(ks/k),M(ks)) (H1(k, J) = H1(Gal(ks/k), J(ks)) respectively) to be the correspond-
ing Galois cohomology group (pointed set of first cohomology classes). By Lang’s theorem, we
have that

H1(k,G) = H1(k, SO(V1)× SO(V2)) = 0.

For the rest of this section, we assume that k is a finite field. Let T ∈W reg(k) be a regular
self-adjoint operator with the invariant a = (a1, . . . , a2m, e) ∈ S(k), and let GT ⊂ G be the
finite étale subgroup stabilizing T . For any self-adjoint operator L in W (k) that is in the
same orbit as T over ks, we have L = gTg−1 for some g ∈ G(ks). This defines an element
in H1(k,GT ) as follows: for any σ ∈ Gal(ks/k), the element cσ = g−1gσ lies in GT (ks), and
the map σ → cσ defines a 1−cocycle on the Galois group with values in GS(ks), and hence
defines an element in H1(k,GT ). It can be checked that the cohomology class of that 1−cocycle
depends only on the G(k)−orbit of T . Conversely, given a 1−cocycle cσ, then it has the form
g−1gσ since H1(k,G) = 0. So we obtain an associated operator L = gTg−1 that is defined
over k since σ(L) = L for all σ ∈ Gal(ks/k) by the definition of the cocycle cσ. We have just
proved the statement i) of the following proposition: (c.f. [2])

Proposition 5.1. i) Given an operator T ∈W reg(k), there is a bijection between the set
of G(k)−orbits in W reg(k) ∩G(ks).T and the set H1(k,GT ).

ii) For any a = (a1, . . . , a2m, e) ∈ S(k), the size of W reg
a (k) is bounded above by 2.|G(k)|.

Proof. For ii), firstly recall that the action of G(ks) on W reg
a (ks) has at most two orbits. Hence,

there exist T1 and T2 (they could be the same) in W reg
a (k) such that W reg

a (k) ⊂ (G(ks).T1 ∪
G(ks).T2). We will finish the proof by proving that the size of W reg

a (k) ∩G(ks).T1 is equal to
|G(k)|. In fact, by Proposition 3.19, if we set f(x) = x2m+1+a1x

2m+· · ·+a2mx+e2 and denote
L = k[x]/(f(x)), then GT (k) is isomorphic to the kernel of the norm map: ResL/k(µ2)→ µ2.

By i) and Kummer theory, the number of G(k)−orbits in W reg(k) equals to |(L∗/L∗2)N≡1| =
|L∗[2]N=1| = |GT (k)|. Hence, we can finish the proof of ii) by using the Orbit-Stabilizer
theorem. �

5.0.2. Regular locus in the transversal case. Recall that in Section ?? we have computed the
density of regular sections and also transversal regular sections by using the results of Poonen
(see [6]). By looking back to our method there, we can see that it is essentially based on the
fact that any regular vectors with the same invariant are conjugate over algeraic closed field.
It is no longer true in our current situation where we have two Kostant sections. But if we
restrict to the transversal part, we still have:

Proposition 5.2. Denote k = Fq a finite field and k its algeraic closure. Let f(x) ∈ k[x]

satisfy the condition that the order of its roots in k is at most 2, and if x divides f(x) then
x2 - f(x). Then the action of G(k) on V reg

f (k) is transitive.
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Proof. In [7], a similar result for a separable characteristic polynomial f(x) (the regular semi-
simple case) is given. Here we will try to generalize the result for f(x) with some conditions
which later on can be seen to be closely related to the transversal condition. Given two elements
X and T in V reg

f (k), without loss of generality, we may assume that X ∈ κ1 and T ∈ κ2, or

precisely :

X = κ1(f) =

(
0 A1

−A∗1 0

)
T = κ2(f) =

(
0 A2

−A∗2 0

)
,

such that A1A
∗
1 and A∗2A2 are regular in GLn. Since −A1A

∗
1 is regular, f(x) is also the minimal

polynomial of −A1A
∗
1. Equivalently, for each root λi of f(x) of order ni, the vector space of

generalized eigenvectors of −A1A
∗
1 corresponding to λi has dimension ni. By the hypothesis

of f(x), we have 4 cases of roots as follows:

Case 1: If λ 6= 0 is a simple root of f(x), then ±
√
λ are single roots of f(x2) the characteristic

polynomial of X. If v√λ is the unique (up to scalar) non-zero
√
λ−eigenvector of X,

then it will have the form

v√λ =

(
vλ

−1√
λ
A∗1vλ

)
,

where vλ is the unique λ−eigenvector of −A1A
∗
1. Similarly, for (−

√
λ), we can choose

an eigenvector as follows:

v−
√
λ =

(
vλ

1√
λ
A∗1vλ

)
.

Case 2: If λ = 0 is a simple root of f(x), then (up to scalar) we denote v0 and v∗0 to be the
unique non-zero 0−eigenvector of A1 and A∗1 respectively. In that case, a basis of the
2−dimensional vector space of 0−eigenvectors of H is{(

0
v0

)
;

(
v∗0
0

)}
Case 3: If λ 6= 0 is a double root of f(x) and the eigenspace V1,λ of −A1A

∗
1 corresponding to λ

has dimension 2. Then we can choose an orthogonal basis {v1, v2} of V1,λ with respect
to the quadratic form (V1, Q1). Then the product in (V,Q):

〈(v1, A
∗v1); (v2, A

∗v2)〉 = 〈v1, v2〉+ 〈A∗v1, A
∗v2〉 = 0 + 〈AA∗v1, v2〉 = 0.

This helps us to define an orthogonal basis of V√λ ⊕ V−√λ ⊂ V :{(
v1

1√
λ
A∗1v1

)
;

(
v2

1√
λ
A∗1v2

)
;

(
v1

−1√
λ
A∗1v1

)
;

(
v2

−1√
λ
A∗1v2

)}
Case 4: If λ 6= 0 is a double root of f(x) and the eigenspace V1,λ of −A1A

∗
1 corresponding to λ

has dimension 1. Then there are an eigenvector and an generalized eigenvector of X in
V that is corresponding to

√
λ, we denote them by v1 and v2 respectively. Then firstly,

as in case 1, we obtain two eigenvectors of X corresponding to the eigenvalues ±
√
λ:

v√λ =

(
v1

−1√
λ
A∗1v1

)
, v−
√
λ =

(
v1

1√
λ
A∗1v1

)
.

Moreover, the following vector is a generalized eigenvector in V√λ:(
v2

−1√
λ
A∗1v2 + 1

λA
∗
1v1

)
.
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By replacing v2 by v2 +c.v1 in the above formula, we still get a generalized eigenvector.
Therefore we can choose the constant c to get an orthogonal basis for V√λ. From that
we also obtain an orthogonal basis for V−

√
λ:{(

v1
1√
λ
A∗1v1

)
;

(
v2

1√
λ
A∗1v2 + −1

λ A
∗
1v1

)}
The upshot is that we have just constructed an orthogonal basis of (V,Q) that consists of
generalized eigenvectors of X such that: for each root λ 6= 0 of f(x), we will have one (or two)
pair (pairs) of eigenvectors w±

√
λ of X such that w√λ+w−

√
λ ∈ V1 and w√λ−w−√λ ∈ V2. If λ

is as in case 4, we also have a pair of generalized eigenvectors gw±
√
λ with the same properties.

If λ = 0, then we will have two eigenvector w1,0 and w2,0 satisfying wi,0 ∈ Vi.
Similarly, we can also construct an orthogonal basis {w′±√λ,

g w′±
√
λ
, w′1,0, w

′
2,0} that consists

of generalized eigenvectors of T having the same properties as above (here we write down all
possible generalized eigenvectors; for a specific case they may not appear in that orthogonal
basis). Since 〈w√λ + w−

√
λ, w

√
λ − w−√λ〉 = 0, we have that Q(w√λ) = Q(w−

√
λ). Similarly,

two vectors in all of these pairs gw±
√
λ, w

′
±
√
λ
,g w±

√
λ have the same norm w.r.t Q. By scaling,

we may assume that Q(w±
√
λ) = Q(w′±

√
λ
); Q(gw±

√
λ) = Q(gw′±

√
λ
) and if f(0) = 0 we also

assume that Q(wi,0) = Q(w′i,0) for i = 1, 2.
From the above construction, the linear map g : V → V taking the w±

√
λ,
g w±

√
λ, and wi,0

(if we have) to w′±
√
λ
,g w′±

√
λ
, and w′i,0 respectively, is orthogonal, and conjugation by g takes

T to X. Using the properties that

{w√λ + w−
√
λ; gw√λ + gw−

√
λ;w1,0}λ

span V1 and
{w√λ − w−√λ; gw√λ −

gw−
√
λ;w2,0}λ

span V2 (similar for the orthogonal basis related to T ) , we see that g preserves V1 and V2.
Hence, g ∈ O(V1) × O(V2). Conjugating a matrix by g multiplies the Pfaffian of that matrix
by the determinant of g. Hence, if the Pfaffian of X (also of T ) is non-zero, we implies
that det(g) = 1. It means that g ∈ Hθ := {h ∈ O(V1) × O(V2)|det(h) = 1}. Since G is
the connected component of Hθ containing the identity, Hθ/G ∼= {I2n,−I2n}, and −I2n acts
trivially on W ∼= V1 ⊗ V2, we implies that W//Hθ = W//G. As a result, H and T are
conjugated by an element in G.

If det(X) = det(T ) = 0 and det(g) = −1, then by considering g′ that is exactly the same as
g except that g′ map w1,0 to −w′1,0, we still have that X and T are conjugated by g′, and note

that det(g′) = 1. The same arguments as above will now finish the proof. �

We also need the following lemma:

Lemma 5.3. Let k = Fq denote a finite field, and f ∈ S(k[[t]]) is a polynomial of degree n with
coefficients in the complete local ring k[[t]]. Assume that ordt(∆(f)) < 2, then any element of
Wf (k[[t]]) is regular, i.e., for any T ∈Wf (k[[t]]), the image T = x(mod t) is in W reg(k).

Proof. Denote f ∈ S(k) to be f (mod t). If ∆(f) is a unit in k[[t]] then ∆(f) = ∆(f) =
∆(f)mod t is non-zero in k. Hence, by [7] (in case f(0) 6= 0)and the previous Proposition (in
case f(0) = 0), G(k) acts transitively on Wf (k), and consequently Wf (k) ⊂W reg(k).

Suppose ordt(∆(f)) = 1, and we assume that T = T (mod t) ∈ W (k) is not regular. In
this case, by Definition 3.2 of regularity and the proof of Proposition 5.2, we can deduce that

both A.A∗ ∈ GL(V1) and A∗.A ∈ GL(V2) are not regular, where T =

(
0 AT
A∗T 0

)
∈ Wf (k[[t]],

and A = AT (mod t). Now A.A∗ is not regular as an element in GL(V1)(k) is equivalent
to that the dimension of the centralizer of A.A∗ in gk := Lie(GL(V1))k is not equal to the
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rank of GL(V1), and hence it is at least rank(GL(V1)) + 2 (see [8] III. 3.25). By setting
c = Centgk((t))(ATA

∗
T ) ∩ gk[[t]], we define an adjoint map

g := ad(AT .A
∗
T ) : gk[[t]]/c→ gk[[t]]/c.

Then we have that det(g) = ∆(AT .A
∗
T ) = ∆(f), up to units in k[[t]]. Since A.A∗ is not regular,

g = gmod (t) has kernel of dimension at least 2, hence ordt(det(g) ≥ 2, a contradiction. �

Now we can compute the density of regular locus in the transversal case:

Proposition 5.4. For any v ∈ |C|, we define

αv =
|{f ∈ S(OKv/($

2
v))|∆(f) ≡ 0 mod($2

v)}|
|k(v)2n|

and

βv =
|{x ∈W (OKv/($

2
v))|∆(x) ≡ 0 mod($2

v)}|
|k(v)2n2 |

,

Then we have the following equalities

1.

lim
deg(L )→∞

|Γ(C,L ⊗2 ⊕L ⊗4 ⊕ · · · ⊕L ⊗2n−2 ⊕L ⊗n)sf |
|Γ(C,L ⊗2 ⊕L ⊗4 ⊕ · · · ⊕L ⊗2n−2 ⊕L ⊗n)|

=
∏
v∈|C|

(1− αv).

2.

lim
deg(L )→∞

|Γ(C,W reg(E ,L ))sf |
|Γ(C,W (E ,L ))|

=
∏
v∈|C|

(1− βv)

3. ∏
v∈|C|(1− βv)∏
v∈|C|(1− αv)

=
∏
v∈|C|

|G(k(v))|
|k(v)|n2−n

Here the upper script ”sf” stands for ”square free”, i.e. Γ()sf is the set of sections whose
invariants are transversal to the discriminant locus.

Proof. The first two equalities can be shown by using the results in [4] Section 5 and notice
that by the previous lemma, any element in Wa(OKv), where ∆(a) 6≡ 0 mod($2

v), is regular.
Now we will prove the last equality by showing that locally:

(5.1)
1− βv
1− αv

=
|G(k(v))|
|k(v)|n2−n .

To do that, for a given transversal element a = (a1, . . . , an−1, e) ∈ S(R), we will count the
size of W reg

a (R), where R = k(v)[ε]/(ε2). Set T = T + εH ∈ W reg
a (R) and a = a + εb, where

T ,H ∈ W (k(v)) and a, b = (b2 + . . . , b2n+1) ∈ S(k(v)). By Proposition 5.2, we firstly observe
that there are |G(k(v))| choices of T such that π(T ) = a. With a fixed T , by considering H and
b as elements in the tangent spaces of W reg and S, respectively, we can see that the tangent
map:

dπ : TTV
reg → TaS

will map H to b. Since π : V reg → S is smooth, the number of choices of H will be the size of
the fiber of dπ at b, and it is equal to

|k(v)|dimk(v)(TTW
reg)−dimk(v)(TaS) = |k(v)|n2−n.

By taking the sum over a ∈ Strans(R) we will obtain the equality (5.1). �
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5.0.3. Regular locus in the general case. Now we consider the general case (without the transver-
sal property).

Proposition 5.5. 1. We have the following limit

lim
deg(L )→∞

|Γ(C,W reg(E ,L ))|
|Γ(C,W (E ,L ))|

=
∏
v∈|C|

cv

|k(v)|n2 ,

where cv = |W reg(k(v)|.
2. The above limit is bounded above by

ζC(2)−2 . . . ζC(2m)−2.
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m

)
,

where ci, for all i, is a constant which depends only on m and p. If p > 2m + 1 then
ci only depends only on m.

Proof. The first statement is the consequence of Proposition 5.1.1 in [4] and a note that the
subset that contains all of non-regular elements of W , is of codimensional 2. To prove the
second part, for each element a ∈ S(k(v)), we will bound the size of W reg

a (k(v)). We have two
cases:

Case 1: If a satisfies the hypothesis in the Proposition 3.24, then by Proposition 3.24, |W reg
a (k(v))| =

|G(k(v))|.
Case 2: If a does not satisfy the hypothesis in the Proposition 3.24, then by Proposition 3.23

ii), |W reg
a (k(v))| ≤ 2|G(k(v))|.

Our job now is to calculate the number of invariants a = (a1, . . . , a2m, e) in the second case
above. We also have several cases as follows:

Case 1: If the corresponding polynomial fa(x) is divided by x2, then a2m = 0 and e = 0. Hence,
the total number of a’s in this case is |q2m−1|, where q = |k(v)|.

Case 2: If fa(x) has a root α of order e > 2 in k(v), we denote mα(x) the minimal polynomial
of α over k(v), then

fa(x) = mα(x)e.g(x) if mα(x) is separable,

fa(x) = mα(x).g(x),where mα(x) = h(xp
t
) for some t ∈ N

In both cases, a is defined by the coefficients of mα(x) and g(x). In the former case,
if we set the degree of mα and g by m1 and m2 respectively, then a can be defined by
m1 +m2 = 2m+ 1− (e− 1)m1 coordinates. Hence, the total number of a in this case

is bounded by q2m+1−(e−1)m1 . In the later case, we also easily deduce that a is defied
by at most 2m + 1 − p − 1 coordinates, thus, the total number of a’s is bounded by
q2m+1−p−1. Note that we only have finite ”types” of mα (”type” here means the choice

of the degree of mα in the former case and the choice of h(xp
t
) in the later case). So

the total number of a ∈ S(k(v)) satisfying the corresponding fa(x) has a root in k(v)
of order at least 3 is bounded by

2m−1∑
i=1

ciq
i,

where ci are constants that are only depended on m and p.

The upper bound of the limit in 1) is the consequence of the above calculation. �
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5.0.4. Regular locus in minimal case. To take the average over the set of hyperelliptic curves,
we need to consider the minimal data (L , a). Note that the transversal condition implies the
minimal condition. Furthermore, the results in [4] Section 5 also help us to see that the density
of the minimal locus is the product of local densities. The local condition for a minimal data
is that at a closed point v ∈ |C|, the tuple of sections a does not come from L (−v). Thus,
when deg(L ) >> 0, the density of tuples a that come from L (−v) is

|H0
(
C,L (−v))⊗2⊕···⊕(L (−v))⊗4m⊕(L (−v))⊗2m+1

)
|

|H0
(
C,L⊗2⊕···⊕L⊗4m⊕L⊗2m+1

)
|

(5.2)

= 1

|k(v)|(2m+1)2
(5.3)

We have just proved the following result:

Proposition 5.6. Given a line bundle of sufficiently large degree, the density of minimal tuples
a ∈ H0

(
C,L ⊗2 ⊕ · · · ⊕L ⊗4m ⊕L ⊗2m+1

)
is ζC((2m+ 1)2)−1.

By using similar argument as in the previous subsection, we obtain the following estimate:

Proposition 5.7. Given principal G−bundle E , we denote the set of sections of W reg(E ,L )
whose associated data (L , a) is minimal by Γ(C,W reg(E ,L ))min. Similarly for the notation
Γ(C,L 2 ⊕ · · · ⊕L 4m ⊕L 2m+1)min - the set of minimal tuples a. Then

lim
deg(L )→∞

|Γ(C,W reg(E ,L ))min|
|Γ(C,W (E ,L ))|

|Γ(C,L ⊗2 ⊕L ⊗4 ⊕ · · · ⊕L ⊗2n−2 ⊕L ⊗n)min|
|Γ(C,L ⊗2 ⊕L ⊗4 ⊕ · · · ⊕L ⊗2n−2 ⊕L ⊗n)|

≤ ζC(2)−2 . . . ζC(2m)−2.
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m

−2|k(v)|(2m+1)2
)
,

where ci is the same as the one in Proposition 5.5.

6. Counting

Let’s recall some notations: V1 and V2 are orthogonal spaces over k = Fq of dimension
n = 2m + 1, G = SO(V1) × SO(V2) is split, and W = V1 ⊗ V2 a representation of G. We can
see each element in W as a skew-self adjoint matrix whose diagonal blocks are 0:

W (k) =

{(
0 A
−A∗ 0

) ∣∣A ∈Mn(k)

}
where A∗ is a matrix obtained from A by taking the transpose via the anti diagonal. The goal
of this section is to estimate the following limit:

(6.1) lim
deg(L )→∞

∑
E∈BunG(k)

|H0(C, (E ×GW reg)⊗L )|
|Aut(E )|.|AL (k)|

.

The denominator in the above limit can be easily calculated (using the similar arguments as
those in section 1). In fact, AL (k) classifies hyperelliptic curves over C whose coefficients in
their affine Weierstrass equation as in Section 3.1 all come from L . This implies that when
deg(L ) is sufficiently large, we have

|AL (k)| = |H0(C,L ⊗2 ⊕ · · · ⊕L ⊗2n−2 ⊕L ⊗n)| = qn
2d+n(1−g)

where d is the degree of L and g denotes the genus of the curve C.
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6.0.1. Automorphism group of a G-bundle. If E is a G−bundle, then E can be expressed
as the product E1 × E2, where Ei are SO(Vi)−bundles. Hence, AutG(E ) = AutSO(V1)(E1) ×
AutSO(V2)(E2), and then we could apply the results in Section ?? to estimate the size of auto-
morphism groups. Suppose that the bundle E1 has the canonical reduction (P1, σ1), and the
parabolic subgroup P1 has the Levi quotient given by

L1
∼= GL(r1)×GL(r2)× · · · ×GL(rt)× SO(r0),

where r0 +2
∑h

i=1 ri = n = 2m+1. In the other words, there exists a flag of isotropic subspaces

0 = V1,0 ⊂ V1,1 ⊂ · · · ⊂ V1,h ⊂ V ⊥1,h ⊂ · · · ⊂ V ⊥1,1 ⊂ V1,

where dim(V1,i/V1,i−1) = ri for 1 ≤ i ≤ h and dim(V ⊥1,t/V1,h) = r0. From that we obtain a

filtration of the vector bundle E1 ×SO(V1) V1 :

0 = E1P1
×P1 V1,0 ⊂ · · · ⊂ E1P1

×P1 V1,h ⊂ E1P1
×P1 V ⊥1,h ⊂ · · · ⊂ E1P1

×P1 V ⊥1,1 ⊂ E1 ×SO(V1) V1

such that the quotient bundles

Xi = E1P1
×P1 V1,i/E1P1

×P1 V1,i−1 for 1 ≤ i ≤ h and

X0 = E1P1
×P1 V ⊥1,h/E1P1

×P1 V1,h

are semistable (the semistable property comes from [3] Proposition 6.9 and our assumption on
the characteristic of Fq, see Section ??). If we denote the slope of the vector bundle Xi by xi,
then by definition of the canonical reduction, we deduce that x1 > x2 > · · · > xh > x0 = 0.

Similarly, for the SO(V2)−bundle E2 we associate it with a unique parabolic subgroup P2 of
SO(V2) and a set of semistable vector bundles Yi for 0 ≤ i ≤ l satisfying

t0 + 2

l∑
i=1

ti = n,

y1 > y2 > · · · > yl > y0 = 0,

where ti and yi denote the rank and the slope of vector bundle Yi, respectively. With these
notations, we can estimate the size of the automorphic group as follows:

Proposition 6.1. (i) There exists a constant c that depends only on n and g such that
for any G−bundles E with canonical reduction to P , we have

−c ≤ dim(AutG(E ))− dim(AutL(EL))−
t∑
i=1

(
h0(∧2Xi) + h0(Xi ⊗X0)

)
−

−
∑

t≥j>i>0

(
h0(Xi ⊗Xj) + h0(Xi ⊗X∗j )

)
−

l∑
i=1

(
h0(∧2Yi) + h0(Yi ⊗X0)

)
−

−
∑

l≥j>i>0

(
h0(Yi ⊗ Yj) + h0(Yi ⊗ Y ∗j )

)
≤ c

(ii) In particular, if xi − xi+1 > 2g − 2 for all i and yj − yj+1 > 2g − 2 for all j, then the
constant c in (i) can be taken to be 0.

Proof. See Proposition ??. �
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6.0.2. General setting. Given a G−bundle E as above (with the canonical reduction to P and
associated vector bundles Xi for 0 ≤ i ≤ t, and Yj for 0 ≤ j ≤ l), we firstly assume that
xi − xi+1 for 0 ≤ i ≤ t, xt, yj − yj+1 for 0 ≤ j ≤ l, and yl are all bigger than 2g − 2. This
condition makes sure that the filtration associated with the canonical reduction of E is split.
Precisely, we can express the vector bundles Ei ×SO(Vi) Vi as direct sums:

E1 ×SO(V1) V1 = X0 ⊕
t⊕
i=1

(
Xi ⊕X∗i

)
,(6.2)

E2 ×SO(V2) V2 = Y0 ⊕
l⊕

j=1

(
Yj ⊕ Y ∗j

)
.(6.3)

As a result, any global sections of the vector bundle E ×GW is of the following matrix form:(
0 A
−A∗ 0

)
,

where A is the section of

(6.4)



X1 ⊗ Y1 X1 ⊗ Y2 · · · X1 ⊗ Y0 X1 ⊗ Y ∗l · · · X1 ⊗ Y ∗1
X2 ⊗ Y1 X2 ⊗ Y2 · · · X2 ⊗ Y0 X2 ⊗ Y ∗l · · · X2 ⊗ Y ∗1

...
...

...
...

...
...

...
X0 ⊗ Y1 X0 ⊗ Y2 · · · X0 ⊗ Y0 X0 ⊗ Y ∗l · · · X0 ⊗ Y ∗1
X∗t ⊗ Y1 X∗t ⊗ Y2 · · · X∗t ⊗ Y0 X∗t ⊗ Y ∗l · · · X∗t ⊗ Y ∗1

...
...

...
...

...
...

...
X∗1 ⊗ Y1 X∗1 ⊗ Y2 · · · X∗1 ⊗ Y0 X∗1 ⊗ Y ∗l · · · X∗1 ⊗ Y ∗1


In general, the above matrix defines the semi-stable filtration of our vector bundle E ×G W.
As a consequence, we obtain an upper bound of |H0(E ×G W )| by taking the product of the
numbers of global sections of semi-stable vector bundles that are entries of the matrix (6.4).
Moreover, in order to define a hyperelliptic curve with two remarked points, the global section

α =

(
0 A
−A∗ 0

)
of the vector bundle (E ×G W ) ⊗L need to satisfy the conditions that det(A) 6= 0 and the
discriminant ∆(Hα) of the associated curve Hα which is, by definition, is the discriminant of
the characteristic polynomial of A.A∗, is non-zero. The following Proposition will give some
necessary conditions on A to satisfy the above properties:

Proposition 6.2. Let α =

(
0 A
−A∗ 0

)
be an element of W (K). We denote Hα to be the

associated curve as in Section 4. Suppose that Hα is a hyperelliptic curve with two marked
points. Then

i) There is no zero bottom right i× (2m+ 2− i) blocks, for any 1 ≤ i < 2m+ 2, in Aα.
ii) For any 1 < i < 2m+ 1, the bottom right i× (2m+ 1− i) and (2m+ 1− i)× i blocks

in Aα are not both zero.

Proof. The first statement is easy to see from the condition that det(Aα) 6= 0. The observation is
a direct consequence of [7] lemma 7.5, and it corresponds to the condition that ∆(Hα) 6= 0. �

Before going to the detail computation, we list all of cases and their contribution to the
average in the table 1.
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Case Hypothesis Subcases Contr.

1
max{xi + yi}i,j > d

and t+ l < 2m

t = 0 or l = 0 0
t = l = 1 0

t > 1 or l > 1 0

2
t = l = m and

x1 + y1 > d

xi = yi + d = (2m− 2i+ 2)d ∀ 1 ≤ i ≤ m 1
yi = xi + d = (2m− 2i+ 2)d ∀ 1 ≤ i ≤ m 1

otherwise f(q)

3 max{xi + yj}i,j ≤ d
d− 2g + 2 ≤ max{xi + yj}i,j ≤ d 0
max{xi + yj}i,j < d− 2g + 2 4

Table 1. Contribution to the average.

6.0.3. Case 1: max{xi + yj}i,j > d and t + l < 2m. The contribution to the average, in this
case, is equal to zero. That is the corollary of the following proposition.

Proposition 6.3. Given a G−bundle E with the associated data {P, xi, yj}0≤i≤t
0≤j≤l

such that

max{xi + yj}i,j > d. If t 6= l or t = l 6= m, then

|{α ∈ H0(C, (E ×GW )⊗L )|Det(Aα) 6= 0,∆(Hα) 6= 0}|
|AutG(E )|.|AL (k)|

≤ c

|AutL(EL)|.qd
,

where d is the degree of the line bundle L , and c is a constant that depends only on g and n.

Proof. Let we consider some initial cases:
Case 1: If l = 0, or t = 0. Without loss of generality, we may assume that t = 0. Then

the condition max{xi + yj}i,j > d becomes y1 > d. This implies that the semi-stable vector
bundle X0 ⊗ Y ∗1 ⊗L has negative degree, thus, it has no non-trivial section. By Proposition
6.2 i), the set

{α ∈ H0(C, (E ×GW )⊗L )|Det(Aα) 6= 0,∆(Hα) 6= 0}
is empty, so obviously, our Proposition is true in this case.

Case 2: If t = l = 1, x1 > d, and y1 > d. In this case, the vector bundles X0 ⊗ Y ∗1 ⊗L ,
X∗1 ⊗Y1⊗L , and X∗1 ⊗Y ∗1 ⊗L have negative degrees. By Proposition ??, they have no global
section, hence, any sections α in H0(C, (E ×GW )⊗L ) will have the following form:

Aα =

A B C
D E 0
F 0 0

 ,

where A,C, F ∈ Mat(r1 × t1);B ∈ Mat(r1 × t0);D ∈ Mat(r0 × t1); and E ∈ Mat(r0 × t0).
This implies that

Aα.A
∗
α =

C.F ∗ B.E∗ + C.D∗ 2A.C∗ +B.B∗

0 E.E∗ B.E∗ + C.D∗

0 0 C.F ∗

 .

We deduce that ∆(Hα) = 0, thus, the generic fiber of Hα is not a hyperelliptic curve over
K(C).

Case 3: If t = l = 1, x1 > d, y1 ≤ d, and x1 − y1 ≤ d. In this case,

H0
(
(E ×GW )⊗L

)
=

H0(X1 ⊗ Y1 ⊗L ) H0(X1 ⊗ Y0 ⊗L ) H0(X1 ⊗ Y ∗1 ⊗L )
H0(X0 ⊗ Y1 ⊗L ) H0(X0 ⊗ Y0 ⊗L ) H0(X0 ⊗ Y ∗1 ⊗L )
H0(X∗1 ⊗ Y1 ⊗L ) 0 0

 .
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So for any section α with

Aα =

A B C
D E F
G 0 0

 ,

where G ∈ H0(C,X∗1 ⊗ Y1), to make sure that det(Aα) 6= 0, by Proposition 6.2, we need to
put an extra condition that r1 ≤ t1. Hence,

|H0(C, (E ×GW )⊗L )|
|Aut(E )|.|AL (k)|

=
qr1t0x1+r1t1(x1+y1)+d(n2−r1t0−r1t1)

|Aut(X1)×Aut(X0)×Aut(Y1)×Aut(Y0)|.qr1x1(r1−1+r0)+t1y1(t1−1+t0)+dn2

=
q−r1x1(t1−r1−1)−t1y1(t1−r1+t0−1)−dr1(t0+t1)

|Aut(X1)×Aut(X0)×Aut(Y1)×Aut(Y0)|

≤ 1

q−dr1+dr1(t0+t1)|Aut(X1)×Aut(X0)×Aut(Y1)×Aut(Y0)|.
This implies the Proposition.

Case 4: If t = l = 1, x1 ≤ d, y1 ≤ d, and x1+y1 > d. Then similar to the above calculations,
we obtain that

|H0(C, (E ×GW )⊗L )|
|Aut(E )|.|AL (k)|

=
qr1t1(x1+y1)+d(n2−r1t1)

|Aut(X1)×Aut(X0)×Aut(Y1)×Aut(Y0)|.qr1x1(r1−1+r0)+t1y1(t1−1+t0)+dn2

=
1

qr1x1(r1+r0−t1−1)+t1y1(t1−r1+t0−1)+dr1t1 |Aut(X1)×Aut(X0)×Aut(Y1)×Aut(Y0)|

≤ 1

qdr1t1 |Aut(X1)×Aut(X0)×Aut(Y1)×Aut(Y0)|.
To sum up, we have just proved the Proposition in the cases that t = 0 or l = 0 or t = l = 1.

Now we will prove this proposition by induction. Assume that the statement is true for all
pair (t′, l′), where t′ ≤ t, l′ ≤ l, and t′ + l′ < t+ l. Now having fixed numbers of Xi and Yj , we
will find (xi, ri, yj , tj)0≤i≤t;0≤j≤l such that the fractional expression:

A =
|{α ∈ H0(C, (E ×GW )⊗L )|Det(Aα) 6= 0,∆(Hα) 6= 0}|

|AutG(E )|.|AL (k)|
is ”maximal”.
Note that to prove our inequality, firstly we can make use of the semi-stable filtration associated
to the canonical reduction of E . Then we approximate the dimensions of each components in
that filtration by their degrees. More precisely, we can replace H0(C, (E ×GW ) ⊗L ) in the
numerator of A by

H0
(
(X1 ⊕ · · · ⊕Xt ⊕X0 ⊕X∗t ⊕ · · · ⊕X∗1 )⊗ (Y1 ⊕ · · · ⊕ Yl ⊕ Y0 ⊕ Y ∗l ⊕ · · · ⊕ Y ∗1 )⊗L

)
.

And the denominator of A can be replaced by:

|AutL(EL)|.q
∑t
i=1

(
rixi(ri−1+2ri+1+···+2rt+r0)

)
+
∑l
j=1

(
tjyj(tj−1+2tj+1+···+2tl+t0)

)
+n2

.

We now prove a stronger result: there exist a constant c that does not depend on d such that

|{α∈H0
(

(X1⊕···⊕Xt⊕X0⊕X∗t ⊕···⊕X∗1 )⊗(Y1⊕···⊕Yl⊕Y0⊕Y ∗l ⊕···⊕Y
∗
1 )⊗L

)
|α satisfies Proposition 6.2}|

q
∑t
i=1

(
rixi(ri−1+2ri+1+···+2rt+r0)

)
+
∑l
j=1

(
tjyj(tj−1+2tj+1+···+2tl+t0)

)
+n2

≤ c

qd
.
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We denote the above left hand side fraction by A′. Given the value of the slopes xi and yj , we
will find the rank ri and tj such that A′ is as large as possible. The main idea is the following:
we fix all of ri and tj except r1 and r2, and assume that the necessary conditions in Proposition
6.2 do not give any relations between ri and tj . Then r1 + r2 is a fixed number, so we could
consider r1 as the only variable in our fraction A′. The numerator of A′ is a power of q with
the power is a linear expression of r1, and the denominator is a power of q with the power is
a degree 2 polynomial of r1. Moreover, since

r1x1(r1 + 2r2 + · · ·+ 2rt + r0) + r2x2(r2 + 2r3 + · · ·+ 2rt + r0)

= x1r1(n− 1− r1) + x2r
2
2 + ax1 + b

= −(x1 − x2)r2
1 + a′x1 + b′,

where a′, b′ are some constants, we implies that A′ will obtain the maximal value at the extreme
values of r1 which we can choose as follows:

• If X2 + Y1 > d, we can take the extreme values of r1 to be 0 and r1 + r2. If r1 equals
to 0 or r1 + r2, we could apply the inductive hypothesis to prove our Proposition.
• If X1 + Y2 > d, then by applying a similar argument for t1 and t2, we may reduce the

value of l by choosing the extreme values of t1 to be 0 or t1 + t2.
• If X2 + Y1 ≤ d and X1 + Y2 ≤ d, then we choose the extreme values of r1 to be 1 and
r1 + r2, the extreme values of t1 to be 1 and t1 + t2. Thus, the induction could be
applied to all of cases here except the case when r1 = t1 = 1. We leave it to the end of
the proof where we will deal with the case r1 = t1.

Coming back to the general case: we will prove that if the values of xi, yj , for all i and j,
are fixed, A′ is maximal and it does not satisfy this Proposition, then r1 = t1. Firstly, we
assume that x1 ≥ y1 > d. Base on the necessary conditions in Proposition 6.2, we consider the
following subcases:

Case 1: There exist e and f bigger than 1 such that x1 − ye ≤ d, x1 − ye+1 > d, y1 − xf ≤ d,
and y1 − xf+1 > d. Then Proposition 6.2 implies that

t1 + t2 + · · ·+ te ≥ r1 + · · ·+ re′ ,

and
r1 + r2 + · · ·+ rf ≥ t1 + · · ·+ tf ′ ,

where e′ is the biggest number satisfying that xe′ − ye+1 > d, and similarly, f ′ is the
biggest number satisfying that yf ′ − xf+1 > d. If e′ > 1 then by fixing everything
except r1 and r2, we observe that A′ is maximal when r1 = 0 or r2 = 0. By induction,
A′ will satisfy this Proposition. Similarly for the case f ′ > 1, hence we can assume that
e′ = f ′ = 1. If r1 + r2 + · · ·+ rf ≥ t1 + t2 then by using the same argument as before,
we conclude that A′ is bigger if t1 = 0 or t2 = 0, thus A′ will satisfy this Proposition.
If r1 + r2 + · · ·+ rf < t1 + t2, then the condition t1 + t2 + · · ·+ te ≥ r1 can be ignored.
As a result, r1 and r2 will always go in pair in every inequalities that are implied by
Proposition 6.2. So A′ will satisfy this Proposition in this case.

Case 2 Without loss of generality, we assume that e = 1 and f > 1, then

t1 ≥ r1 + · · ·+ re′

r1 + r2 + · · ·+ rf ≥ t1 + · · ·+ tf ′ ,

where e′, f ′ are defined in the same way as above. Similar to the case 1, if e′ > 1 then
A′ will satisfy the Proposition.
If f ′ > 1, then A′ is maximal only if t1 = r1 or t1 = t1 + t2. So if A′ is maximal and
does not satisfy the Proposition then t1 = r1.
If f ′ = 1 and r1 + · · ·+ rf ≥ t1 + t2, then we will have the same conclusion as the case
f ′ > 1 above.
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If f ′ = 1 and r1 + · · ·+ rf < t1 + t2, then by considering the pair (t1, t2), we imply that
A′ is maximal only if t1 = x1 or t1 = x1 + · · ·xf . In the later case, we argue similarly
as the case e′ > 1 to conclude that A′ satisfies the Proposition.

Case 3 If e = f = 1, we can deduce that r1 = t1 from Proposition 6.2.

By removing all parts related to X1 and Y1, and then apply the same argument as above, it
can be seen that A′ is maximal and it does not satisfy the Proposition only if r2 = t2. Continue
this way we obtain that the only case we need to take care is the case h = l and ri = ti for
all 0 ≤ i ≤ t. In this case, we could also assume that x1 − y1 ≤ d, x1 − y2 > d, and let f
is the number between 2 and h satisfying y1 − xf ≤ d, and y1 − xf+1 > d (here we denote
xt+1 := x0 = 0), then the power of q related to X1 and Y1 in A′ can be approximated as
follows:

e =
t∑
i=1

(
h0(Xi ⊗ Y1 ⊗L ) + h0(X∗1 ⊗ Y1 ⊗L )

)
+ h0(X0 ⊗ Y1 ⊗L )+

+ h0(X1 ⊗ Y0 ⊗L ) +
t∑
i=2

(
h0(X1 ⊗ Yi ⊗L ) + h0(X1 ⊗ Y ∗i ⊗L )

)
−

−
t∑
i=2

(
h0(X1 ⊗Xi) + h0(X1 ⊗X∗i ) + h0(Y1 ⊗ Yi) + h0(Y1 ⊗ Y ∗i )

)
+

+

f∑
i=1

h0(Xi ⊗ Y ∗1 ⊗L )− h0(∧2X1)− h0(∧2Y1)− h0(X1 ⊗X0)−

− h0(Y1 ⊗ Y0)− 4(r1n− r2
1)

≈ r1x1(r1 + 2r2 + · · ·+ 2rt + r0) + r1y1(r1 + · · ·+ rf + 2rf+1 + · · ·+ 2rt + r0)

+ r1(r2x2 + · · ·+ rfxf )− r1d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

− r1(x1 + y1)(r1 − 1 + 2r2 + · · ·+ 2rt + r0)

= r1

(
x1 − y1(r2 + · · ·+ rf − 1) + (r2x2 + · · ·+ rfxf )− d(r1 + 3r2 + · · ·+ 3rf

+ 4rf+1 + · · ·+ 4rt + 2r0)
)

Additionally, the condition ∆(Hα) 6= 0 implies that xi and yi need to satisfy the following
conditions:

|xi − yi| ≤ d
|xi − xi+1| ≤ 2d

|yi − yi+1| ≤ 2d

xh ≤ d or yh ≤ d.
We now can analyze the above power e further as follows:

If y1 ≤ xf , ri 6= 1 for some i then

e/r1 ≈ x1 + y1 +

f∑
i=2

ri(xi − y1)− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ 2y1 + d+

f∑
i=2

rid− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ 2xf + d− d(r1 + 2r2 + · · ·+ 2rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ d(4t− 4f + 5)− d(4t− 2f + 2)

≤ −d
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If y1 ≤ xf , ri = 1 for all i then

e/r1 ≈ x1 + y1 +

f∑
i=2

ri(xi − y1)− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ 2xf + d+

f−1∑
i=2

rid− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ 2xf + d− d(r1 + 2r2 + · · ·+ 2rf−1 + 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ d(4t− 4f + 5)− d(4t− 2f + 2)

≤ −d

If there exist 2 ≤ h ≤ f − 1 such that xh ≥ y1 > xh+1, then

e/r1 ≈ x1 + y1 +

f∑
i=2

ri(xi − y1)− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ 2xh + d+ d(r2 + · · ·+ rh)− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ d(4t− 4h+ 5)− d(r1 + 2r2 + · · ·+ 2rh + 3rh+1 + · · ·+ 3rf + 4rf+1 + · · ·+
+ 4rt + 2r0)

≤ d(4t− 4h+ 5)− d(4t− 2h+ 2)

< −d

If y1 > x2, and f > 2, then

e/r1 ≈ x1 + y1 +

f∑
i=2

ri(xi − y1)− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ 2xf + 3d− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ d(4t− 4f + 7)− d(4t− f)

< −d

If y1 > x2, and f = 2, then

e/r1 ≈ x1 + y1 + r2(x2 − y1)− d(r1 + 3r2 + · · ·+ 3rf + 4rf+1 + · · ·+ 4rt + 2r0)

≤ x1 + x2 − d(4t− f + 1) (since there exists i such that ri 6= 1)

≤ d(4t− 4f + 6)− d(4t− f + 1)

= −d

We have just finished the proof under the assumption x1 ≥ y1 > d.
Now we consider the case x1 > d and y1 ≤ d. Proposition 6.2 implies that

t1 + · · ·+ te ≥ r1 + . . . re′ ,

where e is the biggest number satisfying that x1−ye ≤ d (e exists since x1−y1 ≤ d and x1 > d),
and e′ is the biggest number such that xe′ − ye+1 > d. Using exactly the same argument as
in the case y1 > d, we deduce that e = e′ = 1 is the necessary condition to make the value
of A′ maximal. Additionally, if we assume that A′ does not satisfy the Proposition, then by
induction and the same argument as the first case, we deduce that t = l and ri = ti for all i.
Now we will finish this case by considering the part related to X1 and Y1 in A′: let denote f
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be the biggest number such that y1 + xf > d, then the power of q related to x1 and y1 in A′ is

e =

t∑
i=1

(
h0(Xi ⊗ Y1 ⊗L ) + h0(X∗

1 ⊗ Y1 ⊗L )
)

+ h0(X0 ⊗ Y1 ⊗L ) + h0(X1 ⊗ Y0 ⊗L )+

+

t∑
i=2

(
h0(X1 ⊗ Yi ⊗L ) + h0(X1 ⊗ Y ∗

i ⊗L )
)

+

t∑
i=0

h0(Xi ⊗ Y ∗
1 ⊗L )+

+

t∑
i=f+1

h0(X∗
i ⊗ Y ∗

1 ⊗L )− h0(∧2X1)− h0(∧2Y1)− h0(X1 ⊗X0)− h0(Y1 ⊗ Y0)−

−
t∑

i=2

(
h0(X1 ⊗Xi) + h0(X1 ⊗X∗

i ) + h0(Y1 ⊗ Yi) + h0(Y1 ⊗ Y ∗
i )
)
− 4d(r1n− r21)

≈ r1x1(r1 + 2r2 + · · ·+ 2rt + r0) + r1y1(r1 + · · ·+ rf )+

+ r1(r2x2 + · · ·+ rfxf )− r1d(r1 + 3r2 + · · ·+ 3rf + 2rf+1 + · · ·+ 2rt + r0)

− r1(x1 + y1)(r1 − 1 + 2r2 + · · ·+ 2rt + r0)

= r1
(
x1 − y1(r2 + · · ·+ rf + 2rf+1 + · · ·+ 2rt + r0 − 1) + (r2x2 + · · ·+ rfxf )−

− d(r1 + 3r2 + · · ·+ 3rf + 2rf+1 + · · ·+ 2rt + r0)
)

< r1
(
2d+ 2d(r2 + · · ·+ rf )− d(r1 + 3r2 + · · ·+ 3rf + 2rf+1 + · · ·+ 2rt + r0)

)
≤ −d

By induction, we have just proved the Proposition in the case x1 > d and y1 ≤ d.
The last case we need to consider is x1 < d, y1 < d, and x1 + y1 > d. In this case, the

condition X becomes empty. Hence, if h is different than 1, by fixing the sum r1 +r2 and using
the same argument as above, we deduce that A′ satisfies the Proposition. Similar story for the
case l 6= 1. Thus we only need to consider the case t = l = 1, but we have already treated this
case at the beginning of this section.

The proof is completed. �

Remark 6.4. From the above discussion we can see that the case that could contribute a positive
portion to the average, is the case where all of ri and tj equal to 1, and also the differences
xi − xi+1 and yj − yj+1 are close to 2d. We have two ideas cases as follows:

Kostant 1: xi = 2m− 2i+ 2,yi = 2m− 2i+ 1 for all 1 ≤ i ≤ m;
Kostant 2: yi = 2m− 2i+ 2,xi = 2m− 2i+ 1 for all 1 ≤ i ≤ m.

The reason we named them Kostant is that they reflex the role of two Kostant sections in our
average. We will see those cases in the next subsection.

6.0.4. Case 2: P is the Borel subgroup and x1 + y1 > d. Based on the remark at the end of
the previous subsection, we divide the case 2 into some subcases as follows:

Case 1: If t = l = m, i.e. Xi and Yj are all line bundles, and (4m−3)d < x1+x2 < (4m−2)d.

In this case, the relating X1, Y1 part of A is
n1

d1
where

n1 =

m∏
i=2

(
|H0(Xi ⊗ Y1 ⊗L )|.|H0(X∗

i ⊗ Y1 ⊗L )|.|H0(X1 ⊗ Yi ⊗L )|.|H0(X1 ⊗ Y ∗
i ⊗L )|

)
× |H0(X1 ⊗ Y1 ⊗L )|.|H0(X0 ⊗ Y1 ⊗L )|.|H0(X1 ⊗ Y0 ⊗L )|.|H0(X1 ⊗ Y ∗

1 ⊗L )|
× |H0(X2 ⊗ Y ∗

1 ⊗L )|

= |H0(X∗
1 ⊗ Y1 ⊗L )|.|H0(X2 ⊗ Y ∗

1 ⊗L )|.qnx1+(n−2)y1+(2n−2)d+(2n−2)(1−g)

and

d1 = q(n2−(n−2)2)d+2(1−g)+x1(n−2)+y1(n−2)+(2n−4)(1−g).|Aut(X1)||Aut(Y1)|

= (q − 1)2q(4n−4)d+(2n−2)(1−g)+x1(n−2)+y1(n−2).
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Hence, the contribution of this range to the average is bounded above by

∑
d/2+x2<y1<d+x2

∑
y1≤x1<y1+d

n1(X1, Y1)

d1(X1, Y1)

=
∑

d/2+x2<y1<d+x2

∑
y1≤x1<y1+d

|H0(X∗1 ⊗ Y1 ⊗L )|.|H0(X2 ⊗ Y ∗1 ⊗L )|q2x1

(q − 1)2q(2n−2)d

≤
∑

d/2+x2<y1<d+x2

∑
y1≤x1<y1+d

T

(q − 1)2qx1+x2−(2n−4)d

≤
∑

d/2+x2<y1<d+x2

2T

(q − 1)2qy1+d−1+x2−(2n−4)d

≤ 2T

(q − 1)2
,

where T is a constant that depends only on C.
Case 2: If Xi and Yj are all line bundles, xi = 2m− 2i+ 2, yi = 2m− 2i for all 1 ≤ i ≤ m.

Then deg(X2 ⊗ Y ∗1 ⊗ L ) = 0, and therefore it will has no non-trivial global sections if it is
a non-trivial line bundle. And if H0(X2 ⊗ Y ∗1 ⊗L ) = 0, we can see that ∆(Hα) = 0 for all
α ∈ H0

(
(E ×GW )⊗L

)
. Hence, we can assume that X2 ⊗ Y ∗1 = L ∗. On the other hand, to

make sure that det(Aα) 6= 0, we need to have that X∗1 ⊗ Y1 = L ∗. Similarly, we will obtain
the following necessary conditions: Xi

∼= L 2m−2i+2, Yi ∼= L 2m−2i. We now will show that any
regular sections will factor through the first Kostant section. Firstly, let recall the form of Aα
for any α ∈ H0((E ×GW )⊗L ) satisfying det(Aα) 6= 0 and ∆(Hα) 6= 0:

(6.5) Aα =



∗ · · · ∗ ∗ ∗ ∗ · · · ∗
∗ · · · ∗ ∗ ∗ ∗ · · · c1
...

...
...

...
...

...
...

...
∗ · · · ∗ ∗ ∗ cm−1 · · · 0
∗ · · · ∗ ∗ cm 0 · · · 0
∗ · · · c′m 0 0 0 · · · 0
...

...
...

...
...

...
...

...
c′1 · · · 0 0 0 0 · · · 0



where ciand c′i are non-zero constants. Notice that the action of G on W is

(
B 0n
0n C

)
.

(
0n Aα
−A∗α 0n

)
.

(
B∗ 0n
0n C∗

)
=

(
0n BAαC

∗

−CA∗αB∗ 0n

)
.
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Since ci and c′i are non-zero, we can make them to be 1 as follows: take B to be a diagonal
matrix with the diagonal entries bii =, then we will have

A′α =



∏m
i=1(cic

′
i)

. . .

c′mcm
1

(c′mcm)−1

. . . (∏m
i=1(cic

′
i)
)−1


.Aα

=



∗ · · · ∗ ∗ ∗ ∗ · · · ∗
∗ · · · ∗ ∗ ∗ ∗ · · · b1
...

...
...

...
...

...
...

...
∗ · · · ∗ ∗ ∗ bm−1 · · · 0
∗ · · · ∗ ∗ bm 0 · · · 0
∗ · · · bm 0 0 0 · · · 0
...

...
...

...
...

...
...

...
b−1
1 · · · 0 0 0 0 · · · 0


.

After that we multiply the right hand side of Aα with

C = diag(b1, b2, · · · , bm, 1, b−1
m , · · · , b−1

1 ) ∈ SO(V2),

then the resulting matrix will have the property we mentioned before. Now we can assume
that in our matrix Aα, the entries ci and c′i are all equal to 1. We continue to multiply the left
and the right of Aα by some orthogonal matrices to transform it into Kostant form as follows:

Step 1: We firstly transfer the entries a1,i for m + 2 ≤ i ≤ n into zero by multiplying on the
left of Aα by the following special orthogonal matrix (upper triangular matrix)

(6.6) B =



1 −a1,n · · · −a1,m+3 −a1,m+2 0 · · · 0 −a2
1,m+2/2

0 1 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 1 0 · · · 0 a1,m+2
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 1 a1,n

0 0 · · · 0 0 0 · · · 0 1


.

Step 2: Transfer the entries aj,1, where m + 2 ≤ j ≤ n − 1, into zero. In this step we need to
multiply the right hand side of Aα by the following lower triangular matrix:

(6.7) C =



1 0 · · · 0 0 0 · · · 0 0
−an−1,1 1 · · · 0 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
−am+2,1 0 · · · 1 0 0 · · · 0 0

0 0 · · · 0 1 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 1 0
0 0 · · · 0 0 am+2,1 · · · an−1,1 1


.

Step 3: If n = 3 then we can skip this step and go directly to the step 4. Hence, by using
an inductive argument, we can assume that our statement is true for n small. More
precisely, if we consider the submatrix A′α obtained by removing the first column, the
first row, the last row, and the last column, then we can transfer it into the Kostant form
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by multiplying (canonically) on the left by some (upper triangular) special orthogonal
matrices, and on the right by some (lower triangular) special orthogonal matrices. From
this induction, by multiplying Aα by

B =

1
B′

1

 on the left, and

C =

1
C ′

1

 on the right,

where B′ and C ′ are appropriate upper and lower triangular matrices, respectively, Aα
will have the following form:

(6.8) Aα =



∗ ∗ · · · ∗ ∗ 0 0 · · · 0 0
∗ ∗ · · · ∗ ∗ 0 0 · · · 0 1
∗ 0 · · · 0 0 0 0 · · · 1 0
...

...
...

...
...

...
...

...
...

...
∗ 0 · · · 0 0 0 1 · · · 0 0
∗ ∗ · · · ∗ ∗ 1 0 · · · 0 0
0 0 · · · 1 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
1 0 · · · 0 0 0 0 · · · 0 0


.

We need to emphasise the upper and lower triangular properties here because they help
us to keep the entries of Aα considered in the previous steps to be equal to zero.

Step 4: Multiply on the right of Aα by

(6.9)



1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · 0 0
a2,m+1 0 · · · 0 1 0 · · · 0 0

...
...

...
...

...
...

...
...

...
a2,2 0 · · · 0 0 0 · · · 1 0

−a2
2,m+1/2 −a2,2 · · · −a2,m −a2,m+1 0 · · · 0 1


will make the entries a2,i for 2 ≤ i ≤ m+ 1 to be zero.

Step 5: Finally, multiply on the left of Aα by

(6.10)



1 0 · · · 0 am,1 · · · a2,1 0
0 1 · · · 0 0 · · · 0 −a2,1
...

...
...

...
...

...
...

...
0 0 · · · 1 0 · · · 0 −am,1
0 0 · · · 0 1 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 0 0 · · · 1 0
0 0 · · · 0 0 · · · 0 1


,

then the entries aj,1 for 2 ≤ j ≤ m will be zero. Thus, the matrix Aα is belong to the
first Kostant.
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Case 3: The same condition as in the previous case except that we switch from Xi to Yi, and
vice versa. Then we can prove that any regular sections of (E ×GW )⊗L will factor through
the second Kostant section. Hence, the contribution of this case to the average is 1.

6.0.5. Case 3: x1+y1 ≤ d. We are going to see that the contribution of this case to the average
is equal to the Tamagawa number of G. The main reason is that all of the entries in the matrix
filtration (6.4) have non-trivial global sections. Firstly, we may ignore a small case as follows:

Case 1: If d− 2g+ 2 ≤ x1 + y1 ≤ d. By Proposition ?? we are able to bound the dimension
of H0((E ×G V )⊗L ) as follows:

h0((E ×G V )⊗L )

≤
t∑
i=1

l∑
j=1

(
h0(Xi ⊗ Yj ⊗L ) + h0(X∗i ⊗ Yj ⊗L ) + h0(Xi ⊗ Y ∗j ⊗L )

+h0(X∗i ⊗ Y ∗j ⊗L )
)

+
l∑

j=1

(
h0(X0 ⊗ Yi ⊗L + h0(X0 ⊗ Y ∗i ⊗L )

)
+

t∑
i=1

(
h0(Xi ⊗ Y0 ⊗L ) + h0(X∗i ⊗ Y0 ⊗L )

)
+ h0(X0 ⊗ Y0 ⊗L )

≤ n2 + d.n2.

Furthermore, if we fix the rank r1 of the semi-stable vector bundle X1, there exists a constant
A1 such that for any integer d1 we have that |Bunsemi−stabler1,d1

(Fq)| ≤ A1. In fact, set d1 =

a.r1 + d2 for some 0 ≤ d2 < r1, then |Bunsemi−stabler1,d1
(Fq)| = |Bunsemi−stabler1,d2

(Fq)| because of the

assumption that our curve C has an Fq− rational point. Notice that |Bunsemi−stabler1,d2
(Fq)| is

finite for any d2, hence we can choose A1 to be the maximal number among |Bunsemi−stabler1,d2
(Fq)|

for 0 ≤ d2 < r1. We also can choose the common bound A1 for |Bunsemi−stabler1,d1
(Fq)| when r1

varies in the period [1,m].
Now we fix a parabolic subgroup P of G and denote the set of G−bundles whose canonical

reductions are reductions to P by BunP . Then the contribution of BunP to the average in this
case is: ∑

d−2g+2≤x1+y1≤d

∑
E∈BunPxi,yj

|H0
(
(E ×G V )⊗L

)
|

|AL (Fq)|
dE

≤ c.
∑

d−2g+2≤x1+y1≤d

A1.q
n2+d.n2

qr1x1(r1−1+···+2rt+r0)+t1y1(t1−1+···+2tl+t0).qn2d+n(1−g)

(c depends only on P, n and the genus g)

≤ b.
∑

d−2g+2≤x1+y1≤d

1

qr1x1+t1y1

≤ b.

d∑
t=d−2g+2

t− 1

qt
.

(b depends only on P, n and g)

By taking limit d → ∞, the above upper bound implies that the contribution of this case to
the average equals zero.

Case 2: The last case we need consider is x1 + y1 < d − 2g + 2, i.e. the slope of any
consecutive semistable quotient in the ”filtration” 6.4 of the vector bundle (E ×G V ) ⊗L is
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strictly bigger than 2g − 2. Consequently, we obtain the following equality:

h0((E ×G V )⊗L )

=
∑t

i=1

∑l
j=1

(
h0(Xi ⊗ Yj ⊗L ) + h0(X∗i ⊗ Yj ⊗L ) + h0(Xi ⊗ Y ∗j ⊗L )

+h0(X∗i ⊗ Y ∗j ⊗L )
)

+
∑l

j=1

(
h0(X0 ⊗ Yi ⊗L + h0(X0 ⊗ Y ∗i ⊗L )

)
+

+
∑t

i=1

(
h0(Xi ⊗ Y0 ⊗L ) + h0(X∗i ⊗ Y0 ⊗L )

)
+ h0(X0 ⊗ Y0 ⊗L )

= n2(1− g) + d.n2.

Notice that in case the G−bundle E is semistable, we also have the above equality because
deg(E ×G V ) = 0. Since the Tamagawa number of G is 4, by considering the counting measure
weighted by the size of automorphism groups on BunG(Fq) and using a similar argument in
the proof of equality (??) in section ??, we have that

|BunG(Fq)| :=
∑

E∈BunG(Fq)

1

|AutBunG(Fq)(E )|
= 4.q(4m2+2m)(g−1).

∏
x∈|C|

|κ(x)|dim(G)

|G(κ(x))|

= 4.q(4m2+2m)(g−1).ζC(2).ζC(4) . . . ζC(2m).(6.11)

Denote Bun<d−2g+2
G (Fq) to be the set of G−bundles whose associated datum

{xi, yj , ri, tj}1≤i≤t+1;1≤j≤l+1

satisfy the condition that x1 + y1 < d − 2g + 2. Then the contribution of the current case to
the average is:

lim
d→∞

∫
Bun<d−2g+2

G (Fq)

|ML,E (k)|
|AL(k)|

dE

= lim
d→∞

1

qn2d+n(1−g)

∫
Bun<d−2g+2

G (Fq)

|H0(C, V (E ,L )reg|dE

= lim
d→∞

|H0(C, V (E ,L ))|
qn2d+n(1−g)

∫
Bun<d−2g+2

G (Fq)

|H0(C, V (E ,L )reg|
|H0(C, V (E ,L ))|

dE

≤

qn
2d+n2(1−g)

∫
BunG(Fq)

m∏
i=1

ζC(2i)−2.
∏
v∈|C|

(
1 +

∑2m−1
j=1 cj |k(v)|−(2m+1−j))dE

qn2d+n(1−g)

(By Proposition 5.5)

= q(4m2+2m)(1−g).
∏
v∈|C|

(
1 +

2m−1∑
j=1

cj |k(v)|−(2m+1−j))|BunG(Fq)|.
m∏
i=1

ζC(2i)−2

= 4.
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m

)
,

where ci, for 1 ≤ i ≤ 2m− 1, is the constant defined in Proposition 5.5.

6.0.6. The transversal case. In this subsection, we consider a special family of hyperelliptic
curves, the transversal family. The purpose of this subsection is to show that in the transversal
case, we can exclude the case (4m − 3)d < x1 + x2 < (4m − 2)d in Subsection 6.0.4 above.
Then, the average in this case will not contain the rational function of q. In fact, it is just a
consequence of Lemma ?? as we can see now:
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Proposition 6.5. Assume that E is a G−bundle satisfying the conditions in the case 6 above,
i.e. Xi and Yj are line bundles for all i,j, and also (4m− 3)d < x1 +x2 < (4m− 2)d. Suppose
that s is a global section of (E ×G V ) ⊗ L . Then, for d sufficiently large, the discriminant
section ∆(s) is not square-free.

Proof. By definition, if s is of the form

(
0n A
−A∗ 0n

)
, then ∆(s) is the discriminant of A.A∗. It

is easy to see that A.A∗ is of the following matrix form:

∗ ∗ · · · ∗ ∗ ∗
x1 ∗ · · · ∗ ∗ ∗
0 x2 · · · ∗ ∗ ∗
...

...
. . .

...
...

...
0 0 · · · x2 ∗ ∗
0 0 · · · 0 x1 ∗


,

where xi ∈ H0(C, (X∗i ⊗ Xi+1) ⊗ L ⊗2) and here Xn+1 := X0. The necessary conditions of
det(s) 6= 0, combining with the hypothesis, imply that d < xi − xi+1 ≤ 2d for all i, and there
is at least one index i such that d < xi−xi+1 < 2d. Thus, Lemma ?? will help us to finish the
proof. �

Now we will consider the transversal version of the case x1 +y1 < d in Subsection 6.0.5. The
only difference here will come from the density of the regular locus as we can see as follows:

lim
d→∞

∫
Bun<d−2g+2

G (k)

|M trans
L ,E (k)|dE

|A trans
L (k)|

= lim
d→∞

∫
Bun<d−2g+2

G (k)

|H0(C, V reg(E ,L ))sf |dE

|A trans
L (k)|
|AL (k)|

.|AL (k)|

= lim
d→∞

|H0(C, V (E ,L ))|
qn2d+n(1−g) .

|AL (k)|
|A trans

L (k)|
.

∫
Bun<d−2g+2

G (k)

|H0(C, V reg(E ,L ))sf

|H0(C, V (E ,L ))|
|dE

= lim
d→∞

q(n2−n)(1−g).

∫
Bun<d−2g+2

G (k)

|H0(C, V reg(E ,L ))sf |
|H0(C, V (E ,L ))|
|A trans

L (k)|
|AL (k)|

dE

= q(n2−n)(1−g)
∫

BunG(Fq)

ζC(2)−2 . . . ζC(2m)−2dE (By Proposition 5.4)

= q(4m2+2m)(1−g)ζC(2)−2 . . . ζC(2m)−2.|BunG(Fq)|
= 4 (By 6.11).

7. Proof of main theorems 2.5 and 2.6

Firstly, it is easy to see that when deg(L ) goes to infinity, the volume of the set of elements
a = (a1, . . . , a2m, 0) ∈ AL (k) goes to zero. By [6] Lemma 4.1, we can also exclude all of
elements a with zero discriminant.

In the transversal case, Theorem 2.6 is a direct consequence of the previous section and the
above observations. Moreover, similar to section 2, we also obtain the lower bound for the
average size of 2-Selmer group as follows:
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Corollary 7.1.

lim inf
deg(L )→∞

∑
α∈[S/Gm](C)
L (Hα)∼=L

|Sel2(Eα)|

∑
α∈[S/Gm](C)
L (Hα)∼=L

1
≥ 6

∏
v∈|C|

(1− αv),

where αv =
|{x ∈ S(OKv/($

2
v))|∆(x) ≡ 0 mod($2

v)}|
|k(v)2n|

.

Proof. See Corollary ??. �

Theorem 2.5 for the general case also can be proved by the same manner as above. Notice

that in this theorem we need to put an extra condition on q, that is q > 16
m2(2m+1)

2m−1 , because
we only have the inequalities between |Sel2(J)| and |H1(C,J [2])| as in Proposition 2.3 but not
the equality as in the transversal case. Finally, to obtain the average size of 2-Selmer groups
of hyperelliptic curves, we need to take care of the minimal locus. By looking at the counting
section, we can see that if we restrict to the minimal locus, then we only have some changes as
follows: in the case 1 of Subsection 6.0.4, the fractional function of q will has an extra factor
ζC((2m+ 1)2). And in the case x1 + y1 < d− 2g + 2, we use Proposition 5.7 instead of 5.5.

To sum up, we have just proved the following theorem:

Theorem 7.2. Suppose that q > 16
m2(2m+1)

2m−1 . Then we have that

lim sup
deg(L )→∞

∑
H is hyperelliptic

L (H)∼=L

|Sel2(H)|
|Aut(H)|

∑
H is hyperelliptic

L (H)∼=L

1

|Aut(H)|

≤ 4.
∏
v∈|C|

(
1 + c2m−1|k(v)|−2 + · · ·+ c1|k(v)|−2m − 2|k(v)|(2m+1)2

)
+2 + f(q),

where f(q) is a rational function of q satisfying that limq→∞ f(q) = 0, and ci, for 1 ≤ i ≤
2m− 1, are constants which depend only on m.
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