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Abstract. For a strict henselian local ring R of equal characteristic 0, we establish an
equivalence between the categories of regular singular connections on the formal punc-
tured disk over R and on the puncture affine line over R. This generalizes the well-known
equivalence established be Deligne when R is a field.

1. Introduction

Let C be an algebraically closed field of characteristic 0 and x be a variable. The formal
punctured disk is the spectrum SpecC((x)). It is equipped with the logarithmic derivation

ϑ := x
d

dx
. In

Del87
[Del87, Proposition 13.35], Deligne establishes an interesting equivalence

between regular singular connections on the formal punctured disk and the punctured
affine line P1

C r {0,∞}. This equivalence is seen by Deligne as a prolongation of a regular
singular connection on the formal punctured disk to the affine line in oder to define the
tangential fiber functor.

Deligne’s equivalence was also considered by Katz in a more general settings
Kat87
[Kat87].

The analogues in characteristic p was essentially established by Gieseker in
Gie75
[Gie75] and

treated in more detail by Kindler in
Kin15
[Kin15]. There is also generalization to the p-adic

settings by Matsuda
Mat02
[Mat02], see also

And02
[And02].

Deligne’s equivalence has been established in
HdST22
[HdST22, Theorem 10.1] for the case that

the base field C is replaced by a complete local ring R. Their main idea is based on
the completeness of R to show that two mentioned categories are equivalent to two other
categories of limits. More precisely, they first identify each connection (morphism between
connections) with a projective limit of connections (morphisms) over C, here limit is over
Artin rings Rk := R/rkR, where r is the maximal ideal and k ∈ N. In fact

HdST22
[HdST22] shows

more, namely that the two categories of interest are equivalent to a third category, the
category of linear representations of the additive group Z in finiteR–modules. Although the
completeness assumption seems crucial for the last equivalence, it is expected that for the
original equivalence of Deligne one might require a milder assumption than completeness.

In this manuscript, we will deal with the case R is a noetherian henselian local C–algebra.
Our main observation is the following theorem which is Theorem

thm.20220623–01
4.1 and Corollary

cor.deligne.equivalence.hensel
4.2 in

this text:
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Theorem 1.1. The restriction functor

r : MCfree
rs (R[x±]/R) −→MCfree

rs (R((x))/R)

is an equivalence. If R is moreover a discrete valuation C–algebra then we have an equiv-
alence of the full categories

r : MCrs(R[x±]/R) −→MCrs(R((x))/R).

Here MCrs(∗/R) denotes the category of regular-singular connections on ∗ relatively over
R, and MCfree

rs (∗/R) denotes the full subcategory of objects with underlying modules being
flat modules over ∗.

Our approach is based on the results of
HdST22
[HdST22], i.e., we first base change to the

completion of R and then try to descend. The descend on the side of R((x)) is done by
using the faithful flatness of the map RJxK −→ R̂JxK, in particular we show that any R-flat
connection on R((x))/R is in fact free as an R((x))-module, Proposition

thm.230704
2.9. The descend

on the side of R[x±1] is carried out using Popescu’s theorem on presentation R̂ as limit of
smooth R–algebras.

Since the equivalence with ReprR(Z) is not available in our settings, we need a replace-
ment, which is the category EndR of finite R-modules with endomorphism. The latter
category can be seen as a Lie-algebra counterpart to ReprR(Z). Proposition

thm.2022070-8–01
2.12 shows

that the Euler functor

γeulRJxK : Endfree
R −→MCfree

rs (R((x))/R)

is faithful and essentially surjective. The similar statement for R[x±1] is given in Proposi-
tion

prop.20220607–03
3.5.

The paper is organized as follows. Section
sect.3
2 is devoted to the category of regular

singular connection on the formal relative punctured disk SpecR((x)). After reviewing
basic definition of relative connections with regular singularities we show the existence of
We show that each R((x))–free connection admits an Euler form

prop 3.9
2.11.

Section
sect.4
3 is devoted to the category of regular singular connections on the punctured

relative affine line. We show that a connection admits an Euler form, Proposition
prop.20220607–03
3.5. The

results obtained in these two sections are then used to proved the main theorem in Sectionsect.5
4.

NC
1.1. Notation and conventions.

C is a fixed an algebraically closed field of characteristic 0.
R is given noetherian henselian local C-algebra with maximal ideal r and residue field

isomorphic to C.
R((x)) denotes the ring of formal Laurent series with coeffients from R and RJxK be the

ring of formal power series. We have R((x)) = RJxK[x−1].
ϑ denotes the logarithmic derivative on R((x)):

ϑ
∑

anx
n = x

d

dx

∑
anx

n =
∑

nanx
n.

R̂ denotes the completion of R along the maximal ideal r.
Spϕ denotes the spectrum of the endomorphism ϕ : V → V of vector space over C.
τ denotes fixed a subset τ of C such that the natural map τ → C/Z is bijective.

EndR denotes the category of couples (V,A), consisting of a finite R-module V and a R-
linear endomorphism A : V → V , and arrows from (V,A) to (V ′, A′) are R-linear
morphisms ϕ : V → V ′ such that A′ϕ = ϕA.

Endfree
R denotes the full subcategory of EndR whose objects are free R−modules.
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2. Regular singular connections on a punctured formal disk
sect.3

The punctured formal disk over a ring R is defined to be Spec(R((x))). The aim of
this section is to describe those connections which are flat over R (where R is a henselian
local ring). In fact, it is known that, for a connection, being flat over R is equivalent to
being flat over R((x)) (cf.

HdST22
[HdST22, Theorem 8.18]). Our first main result, Propositionthm.230704

2.9, shows that an R-flat connection is in fact free over R((x)). This is done following the
idea of Drinfeld’s theory of infite vector bundles

Dr06
[Dr06]. The second main result is to show

that such an R((x))-free connection has the Euler form, see Proposition
thm.2022070-8–01
2.12.

2.1. Definitions and properties. Let C be an algebraically closed field of character-
istic zero. We review in this subsection the definitions and main properties of regular
singular connections on a relative formal punctured disk, that is Spec(R((x))), where (R, r)
is a noetherian henselian local C-algebra of residue field C. Our reference is

HdST22
[HdST22,

Section 8].

dfn.20220607–04 Definition 2.1 (Connections on the punctured formal disk). The category of connections
on the punctured formal disk over R or on R((x))/R, denoted MC(R((x))/R), has for
objects those couples (M,∇) consisting of a finite R((x))-module M and a R-linear endo-

morphism ∇ : M → M , called the derivation, satisfying Leibniz’s rule ∇(fm) =
ϑ(f)m+ f∇(m), and the

arrows from (M,∇) to (M ′,∇′) are R((x))-linear morphisms ϕ : M → M ′ such that
∇′ϕ = ϕ∇.

The R–flat connections on R((x))/R enjoy the following remarkable property.

Definition 2.2 (Logarithmic connections). The category of logarithmic connections, de-
noted MClog(RJxK/R), has for
objects those couples (M,∇) consisting of a finite RJxK-module and a R-linear endomor-

phism, called the derivation, ∇ : M → M satisfying Leibniz’s rule ∇(fm) =
ϑ(f)m+ f∇(m), and

arrows from (M,∇) to (M′,∇′) are RJxK-linear morphisms ϕ : M→M′ such that ∇′ϕ =
ϕ∇.

The two categories MC(R((x))/R) and MClog(RJxK/R) are abelian categories and there
is an evident R-linear functor

γ : MClog(RJxK/R) −→MC(R((x))/R).

dfn.20220607–05 Definition 2.3 (Regular singular connection).
(1) An object M ∈MC(R((x))/R) is said to be regular-singular if it is isomorphic to

a certain γ(M) for some M ∈ MClog(RJxK/R). The full subcategory of regular-
singular connections will be denoted by MCrs(R((x))/R).

(2) Given M ∈MCrs(R((x))/R), any object M ∈MClog(RJxK/R) such that γ(M) '
M is called a logarithmic model of M . In case the model M is RJxK–free, it is
called a logarithmic lattice of M .

ex.20220607–01 Example 2.4 (Euler connections). Let (V,A) ∈ EndR be given. The logarithmic connec-
tion associated to the couple (V,A) is defined by the couple (RJxK⊗R V,DA), where

DA(f ⊗ v) = ϑ(f)⊗ v + f ⊗Av.

This logarithmic connection is called an Euler connection associated to (V,A). Notation:
eul(V,A).
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The Euler connections yield a functor, denoted eul :

eul : EndR −→MClog(RJxK/R).

It is straightforward to check that this is an R-linear, exact and faithful tensor functor.
Combining eul with γ we have a functor

γeul : EndR −→MCrs(RJxK/R).

The ultimate aim of this section is to show that this functor yields an equivalence when
restricted to objects with exponents lying in a fixed τ ⊂ C (Proposition

thm.2022070-8–01
2.12). A crucial

role plays the exponents.
For a regular singular (M,∇), we consider a model (M,∇) ∈ MClog(RJxK/R). The

Leibniz rule implies that ∇(xM) ⊂ xM. Hence, we obtain an R-linear endormorphism

16.05.2020–216.05.2020–2 (1) res∇ : M/(x) −→M/(x),

given by

16.05.2020–316.05.2020–3 (2) res∇(m+ (x)) = ∇(m) + (x).

Further, taking residue modulo r we have the map

14.07.2022–114.07.2022–1 (3) res∇ : M/(r, x) −→M/(r, x).

28.06.2021–6 Definition 2.5 (Residue and exponents). Let (M,∇) be a regular singular con-
nection.

(1) The R-linear map (
16.05.2020–2
1) is called the residue of ∇.

(2) The eigenvalues of res∇ are called the (reduced) exponents of ∇. The set of ex-
ponents will be denoted by Exp(M,∇), Exp(∇) or Exp(M) if no confusion may
appear.

(3) If the exponents of ∆ do not differ from each other by non-zero integers, the model
is called Deligne-Manin.

We are going to show that any regular-singular connection over R has a Deligne-Manin
logarithmic model. We first need a lemma:

lem.202307-01 Lemma 2.6. Let (V, ϕ) ∈ EndR and {%1, . . . , %r} be the spectrum of ϕ the reduction
modulo r of ϕ. Let

V =

r⊕
i=1

ker
(
ϕ− %i

)ri
be the decomposition of V into the direct sum of generalized eigenspaces of ϕ. Then there
exists a direct sum

V = V1 ⊕ ...⊕ Vr,
where Vi is a ϕ−invariant R−submodules of V, such that its reduction modulo r is ker

(
ϕ−

%i
)ri for each 1 ≤ i ≤ r.

Proof. Let Rn −→ M −→ 0 be the projective cover of M that induces an isomorphism
Cn −→M/r. Then ϕ lifts to ϕ̃ : Rn −→ Rn and the residue of the characteristic polynomial
of ϕ̃ is equal to the characteristic of ϕ:

Pϕ̃(T ) = Pϕ(T ).

As R is a hensenlian ring, the factorization

Pϕ(T ) =
r∏
i=1

(
ϕ− %i

)ri = 0
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lifts to a factorization

Pϕ̃(T ) =
r∏
i=1

gi(T ),

so that the ideal generated by by
{
gi(T )

}
1≤i≤r is R[T ], cf

fulei11
[Lei11, Proposition 2.8.3].

Let Vi = ker gi(ϕ) for i = 1, 2, . . . , r, then Vi is an ϕ−invariant R-submodule of V . As
Pϕ(ϕ) = 0 on M , we conclude that

V = V1 ⊕ ...⊕ Vr.
Taking reduction modulo r we have Vi/r = ker

(
ϕ− %i

)ri . �

We now are ready to show the existence of a Deligne-Manin logarithmic model.
thm.20220607–04 Proposition 2.7 (Deligne-Manin model). Let (M,∇) be the regular-singular connection

over R((x)). Then, there exists a logarithmic model M ∈MClog(RJxK/R) of (M,∇) whose
reduced exponents do not differ from each other by non-zero integers.

Proof. Let M′ be an arbitrary logarithmic model of (M,∇). It is easy to see that resM′ :
M′/xM′ −→M′/xM′ is an R−linear homomorphism. Denote by {%1, . . . , %r} the set of all
reduced exponents (see Definition

28.06.2021–6
2.5) of M′. Write

M′/(r, x)M′ =
r⊕
i=1

ker(resM′ − %i)ri

the Jordan decomposition of resM′ . By applying Lemma
lem.202307-01
2.6 for V = M′/xM′ and ϕ =

resM′ , there exists a decomposition

M′/xM′ =
r⊕
i=1

Vi

having the following properties for each i = 1, 2, . . . , r:
(i) Vi is a ϕ−invariant R−submodule of M′/xM′;
(ii) the reduction modulo r of Vi is ker(resM′ − %i)ri .
We now use the shearing method to transform the set {%1, ..., %r} into a set in which

the difference of any two elements is either zero or a non-integer. It is enough to deal with
case r = 2 and %2 = %1 + 1.

For each i = 1, 2, let v0
i =

{
v0
i1, ..., v

0
ini

}
be a basis of ker(resM′ − %i)ri over C such that

Mat(resM′ ,v
0
i ) = J%i

is a Jordan matrix with respect to %i. Let vi =
{
vi1, ..., vini

}
⊂ Vi be an arbitrary lift of

v0
i , they generate Vi for each i = 1, 2. Let

{
mi1, ...,mini

}
be a lift of vi =

{
vi1, ..., vini

}
to

M′, they generates M′ as an RJxK−module, since RJxK is a local ring with maximal ideal
(r, x).

Let now define M = 〈xm11, ..., xm1n1 ,m21, ...,m2n2〉RJxK. We claim this is a logarithmic
model of M. Indeed it is obvious that ∇(xm1j) ∈M for each 1 ≤ j ≤ n1. Further we have:

res∇(m2j + (x)) = ∇(v2j) =

n2∑
k=1

a2kv2k,

since V2 is ϕ−invariant. Hence,

∇(m2j)−
n2∑
k=1

a2km2k ∈ xM′.

Therefore, ∇(m2j) ∈ M for all 1 ≤ j ≤ n2. Thus, M is a logarithmic model of (M,∇).
The general case is proved by induction. �
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2.2. R-flat connections. In this subsection, we will show that a connection inMCrs(R((x))/R)
is flat over R iff it is free as an R((x))-module. Recall that being flat over R is equivalent
to being flat over R((x)) (cf.

HdST22
[HdST22, Theorem 8.16]). Consider the r-adic completion

R −→ R̂. Our method is first to use the base change R((x)) −→ R̂((x)) and then to use
faithfully flat descend. The following lemma will be useful:

faith-flatness Lemma 2.8. Let R be a noetherian local C–algebra. Then the homomorphism RJxK −→
R̂JxK is faithfully flat. Consequently, the map R((x)) −→ R̂((x)) obtained by inverting x is
also faithfully flat.

Proof. Indeed, R̂JxK is (r, x)-adically complete, see
Mat86
[Mat86, Exercise 8.6]. Thus we can

consider R̂JxK as the (r, x)-adic completion of RJxK. As RJxK a noetherian local domain,
we conclude that R̂JxK is faithfully flat over RJxK (cf.

Mat86
[Mat86, Theorem 8.14]). �

thm.230704 Proposition 2.9. Let (M,∇) be a connection over R((x)) such that M is flat as an R–
module. Then, M is a free R((x))-module.

Proof. Let (M,∇) ∈MCrs

(
R((x))/R

)
such that M is flat of R–modules. Then M is flat

R((x))-module by
HdST22
[HdST22, Theorem 8.18]. Since R((x)) is noetherian, M is a projective

R((x))-module. We show that it is R((x))-free.
According to Proposition

thm.20220607–04
2.7, there exists a logarithmic model M ∈MClog

(
RJxK/R

)
of

(M,∇) such that all (reduced) exponents of res∇ belongs to τ . Hence

M̂ := M⊗RJxK R̂JxK

is a logarithmic model of
M̂ := M ⊗RJxK R̂((x)).

As R̂JxK is the completion of RJxK by the (r, x)-adic topology (cf. Lemma
faith-flatness
2.8), M̂ is the

completion of M in this topology. Hence

M̂/(r, x) = M/(r, x).

This implies all (reduced) exponents of M̂ are in τ .
By

HdST22
[HdST22, Theorem 9.1], M̂ is a Deligne-Manin model of M̂ . As M̂ is flat over R̂((x)),

HdST22
[HdST22, Corollary 9.4] implies that M̂ is a free R̂JxK-module. Now Lemma

faith-flatness
2.8 implies

that the model M is flat over RJxK which is a free RJxK since RJxK is local. Therefore M
is a free R((x))-module. �

2.3. Euler form for connections on free R((x))–modules. We now show that any
regular singular connection (M,∇), where M is a free R((x))-module, is isomorphic to a
connection of Euler form, in other words, the functor eul : Endfree

R →MCfree
rs (R((x))/R) is

essentially surjective.
We use the classical method to eliminate the power of x in the denominator, cf.

ABC20
[ABC20,

Section 8]. The following lemma is essential.

lemma3.9 Lemma 2.10. Let Q be a matrix in GLn
(
K((x))

)
∩Mn

(
R((x))

)
. Then one can write Q as

a product Q′.(Q′′)−1, where

Q′ ∈ GLn
(
R((x))

)
and Q′′ ∈ GLn

(
KJxK

)
.

Proof. By multiplying Q by a power of x, we may assume that Q ∈ Mn

(
RJxK

)
. Then

det(Q) can be written uniquely as:

det(Q) = xdu, where u ∈ KJxK×.

If d = 0, then Q ∈ GLn
(
KJxK

)
, so our statement is trivial.
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Assume that d > 0, we now show that there exists a matrix Q′1 ∈ GLn
(
R((x))

)
such that

Q′1Q ∈ Mn

(
RJxK

)
, and det (Q′1Q) = xd−1.u,

and then our lemma will follow by induction on d. Let λ1, . . . , λn ∈ R be the coefficients
of a non-trivial dependence relation between the rows of Q|x=0. Without loss of generality,
we may assume that λ1 = 1. Then we consider the following matrix:

matrix1matrix1 (4) Q′1 =


1/x λ2/x . . . λn/x
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Then it is easy to check that Q′1.Q ∈ Mn

(
RJxK

)
, and det(Q′1.Q) = xd−1.u. Moreover, the

inverse of Q′1 is

matrix1bmatrix1b (5) (Q′1)−1 =


x −λ2 . . . −λn
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


which is in GLn

(
R((x))

)
. This completes our proof. �

prop 3.9 Proposition 2.11. Let (M,∇) ∈MCfree
rs (R((x))/R). Then there exists a logarithmic lat-

tice of M, i.e. an RJxK–free logarithmic connection M such that γ(M) ∼= M .

Proof. As R is noetherian, so r = 〈r1, ..., rs〉R. Then, for each f(x) =
∑
i≥i0

aix
i in r((x)),

there exist aij ∈ R such that ai =
s∑
j=1

aijrj for each i ≥ i0. This implies that

f(x) =
∑
i≥i0

( s∑
j=1

aijrj

)
xi =

s∑
j=1

rj

[∑
i≥i0

aijx
i
]
.

We note that rj
∑
i≥i0

aijx
i ∈ r((x)) is correspond to rj ⊗

∑
i≥i0

aijx
i ∈ r((x)) in r⊗R((x)), and

hence r⊗R R((x)) ∼= r((x)). Therefore, we obtain that rR((x)) = r((x)) is a maximal ideal in
R((x)) as the quotient R((x))/r((x)) ∼= C((x)) is a field.

Set M := M/rM , the reduction modulo r of M. M is an object of MCrs(C((x))/C).
It is well-known that there exists a cyclic vector m of M, i.e., the set {∇(i)(m)}0≤i≤n−1

forms a basis of M over C((x)), see, e.g.,
ABC20
[ABC20, Lemma 8.3.3 (1)]. We claim that any

lift m ∈M of m is a cyclic vector of

MK((x)) = M ⊗R((x)) K((x)).

It is to prove that the set {∇(i)(m)}0≤i≤n−1 forms a basis of MK((x))). Let A := R((x))r,
the localization of R((x)) at the ideal r. Then A is a local ring with residue field be-
ing C((x)) and fraction field being a subfield of K((x)). By Nakayama lemma, the set
{∇(i)(m)}0≤i≤n−1 forms a basis of the A–module M ⊗R((x)) A. We have inclusions

M −→M ⊗R((x)) A −→M ⊗R((x)) K((x)) = MK((x)).

Thus {∇(i)(m)}0≤i≤n−1 forms a basis of MK((x)).
Set e = {∇(i)(m)}0≤i≤n−1. Apply Theorem 8.3.3 (3) in

ABC20
[ABC20] to the regular singular

connection MK((x)), we have
∇(e) = eH,
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with some matrix H in Mn(KJxK). Let f be a basis of M over R((x)). We have a presen-
tation of e via f :

e = fQ,

for some matrix Q in Mn

(
R((x))

)
. As e and f are both bases for MK((x)), we have Q ∈

GLn(K((x))). Lemma
lemma3.9
2.10 is applied for Q to obtain a decomposition

Q = Q′.(Q′′)−1,

where Q′ ∈ GLn
(
R((x))

)
and Q′′ ∈ GLn

(
KJxK

)
. Thus f ′ := fQ′ = eQ′′ is also a basis of

M.
As f ′ := fQ′, computation shows

∇(f ′) = f ′H1,

for some H1 in Mn

(
R((x))

)
. On the other hand, since f ′ = eQ′′, we have

H1 = (Q′′)−1HQ′′ + (Q′′)−1ϑ(Q) ∈ Mn

(
KJxK

)
.

So H1 ∈ Mn

(
R((x))

)
∩ Mn

(
KJxK

)
= Mn

(
RJxK

)
. This shows that 〈f ′〉RJxK is the sought

logarithmic lattice. �

We now arrive at the following theorem.

thm.2022070-8–01 Proposition 2.12. The functor

γeul : Endfree
R −→MCfree

rs (R((x))/R)

is faithful and essentially surjective. This functor is not full. Assume that τ is a set of
representatives of C/Z in C, which contains 0. Then its restriction to the full subcategory
of all objects (V,A) in Endfree

R such that the spectrum of A : V/r→ V/r is contained in τ ,
is indeed full.

Proof. Essential surjectivity follows from Propositions
thm.20220607–04
2.7 and

prop 3.9
2.11. Faithfulness is obvious.

We now concentrate on the verification of the last claim. Let (V,A) and (W,B) be
objects of Endfree

R and suppose that the eigenvalues of the C-linear endomorphisms of V/r
and W/r associated respectively to A and B lie in τ . On H = HomR(V,W ), consider
the endomorphism T : h 7→ hA − Bh; we then obtain an object (H,T ) of Endfree

R . Let
us note in passing that the spectrum of the C-linear endomorphism T0 : H/r → H/r
is built up from the differences of eigenvalues of A0 : V/r → V/r and B0 : W/r →
W/r; in particular, SpT0 ∩ Z ⊂ {0}. Consequently, for each k ∈ N, the spectrum of
the C-linear endomorphism Tk : H/rk+1 → H/rk+1 contains no integer except perhaps
0. This is because SpTk = SpT0

HdST22
[HdST22, Prp. 8.11]. It is a simple matter to see that

the HomMC(γeul(V,A), γeul(W,B)) corresponds to the horizontal elements of γeul(H,T ).
After picking a basis of H, a horizontal section of γeul(H,T ) amounts to a vector h ∈
R((x))r such that

ϑh = −Th.
Writing h =

∑
i≥i0 hix

i, we see that

Thi = −ihi.

Now, let i 6= 0. Then the image of hi in R⊕rk must be zero, since i 6∈ SpTk . Hence, hi = 0
except perhaps for i = 0. This proves that any arrow

h : γeul(V,A) −→ γeul(W,B)

comes from an arrow V →W .
�
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2.4. The case of a discrete valuation C-algebra. Previously, we have described the
structure of an R((x))–free connection. We still have no conclusions for arbitrary connec-
tions. So let us in this section suppose that

R is a DVR and r = Rt.

lem.20220612–01 Lemma 2.13. (i) The ring R((x)) is a principal ideal domain.
(ii) Let (E,∇) be a connection over R((x)) such that E is free of R–torsion. Then, E is

a free R((x))–module.

Proof. (i) Each ideal a ⊂ R((x)) is of the form A ·R((x)), where A = a ∩RJxK, cf.
Mat86
[Mat86,

Theorem 4.1, p.22]. Since RJxK is complete for the x-adic topology, any generator of the
RJxK/(x)–module A/xA ' (RJxK/(x)) ⊗RJxK A is a generator of A

Mat86
[Mat86, Theorem 8.4,

p.58]. Now, it is a simple matter to see that xA = (x)∩A, and hence that (RJxK/(x))⊗RJxKA
is an ideal of R, which is therefore generated by one element.

(ii) As E is flat over R((x)), the theorem of structure for finite modules over principal
ideal domains then assures that E is free over R((x)). �

The easiest case is when the connection is r–torsion: (M,∇) ∈MCrs(R((x))/R) is a con-
nection such that rM = 0. Then (M,∇) can be identified with M/rM ∈MCrs(C((x))/C).
Such a connection is Euler (cf.

HdST22
[HdST22]), i.e. has the form γeul(V,A) where V is a

C-vector space. This connection is certainly a quotient of the Euler connection γeul(V ⊗C
R,A⊗ id). Once this property has been brought to light, the general case follows a tech-
nique of

DH18
[DH18].

Proposition 2.14. Each object of MCrs(R((x))/R) is a quotient of a certain (E,∇) in
MCrs(R((x))/R) such that E is a free R((x))-module.

Proof. The proof is almost identical to the that of
DH18
[DH18, Proposition 5.2.2], but some

care has to be taken to assure that the connections constructed are regular singular. In
view of Proposition

rmk.20220607–01
?? and Lemma

lem.20220612–01
2.13, the requirement “E is a free R((x))–module” can

be weakened to “E is free of R-torsion.” Let us make this precise: given an R–module W ,
define

Wtors =
⋃
k

(0 : rk)W

= {w ∈W : some power of t annihilates w}.

Being free of R-torsion means that Wtors = 0.
Given M ∈MCrs(R((x))/R), we define

r(M) = min{s ∈ N : rsMtors = 0}.

We shall proceed by induction on r(E), the case r(E) = 0 being trivial. Assume r(E) = 1,
so that rE is free of R-torsion. Let q : E → Q be the quotient by rE; since Q is annihilated
by r, it is an object of MCrs(C((x))/C) and as such has the form γeul(V,A) where V is
a C-vector space

HdST22
[HdST22, Cor. 4.3]. This connection is certainly a quotient of the Euler

connection
Q̃ := γeul(V ⊗C R,A⊗ id).

We then have exact sequences

0 // rE // E
q // Q // 0

0 // rE

∼

OO

// Ẽ

�

OO

// Q̃

OOOO

// 0,
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where the rightmost square is cartesian and Ẽ → E is in fact surjective. Since rE and Q̃
are free of R-torsion, so is Ẽ. Since Ẽ is a subobject of Q̃⊕E, we can appeal to

HdST22
[HdST22,

Lemma 8.3] to assure that it is regular-singular.
Let us now assume that r(E) > 1. Let N = {e ∈ E : te = 0} and denote by q : E → Q

the quotient by N . It then follows that tr(E)−1Qtors = 0, so that r(C) ≤ r(E) − 1. By
induction there exists Q̃ free and a surjection Q̃→ Q. We arrive at commutative diagram
with exact rows

0 // N // E
q // Q // 0

0 // N

∼

OO

// Ẽ

�

OO

// Q̃

OOOO

// 0,

where the rightmost square is cartesian and Ẽ → E is surjective. Since Q̃ is free of R-
torsion, we conclude that Ẽtors = N , so that r(Ẽ) ≤ 1. We can therefore find Ẽ1 and a
surjection Ẽ1 → Ẽ and consequently a surjection Ẽ1 → E. �

cor.12.07.22-1 Corollary 2.15. The functor γeulRJxK : EndR −→MCrs(R((x))/R) is essentially surjec-
tive.

Proof. Let M ∈ MCrs(R((x))/R) be given; because of the Proposition, we can find an
exact sequence in MCrs(R((x))/R):

E
Φ−→ F −→M −→ 0,

where E and F are free objects of MCfree
rs (R((x))/R). Because of Propsoition

thm.2022070-8–01
2.12, we can

assume that
E ' γeul(V,A) and F ' γeul(W,B)

where A and B. In this case, Φ = γeul(ϕ), again by Proposition
thm.2022070-8–01
2.12 and hence M is

isomorphic to γeul(Cokerϕ). �

3. Regular singular connections on MCrs(R[x±]/R)
sect.4

Our aim in this section is to show the equivalence between EndR and MCrs(R[x±]/R).
Our strategy for the proof is different from the previous section. Instead of using the
shearing technique, we rely on the known result for complete discrete valuation ring and
use Popescu’s theorem to descend from R̂ to R.

3.1. Regular singular connections on the punctured line. We fix a choice of local
coordinates of P1

R as follows: write P1
R as the union of two affine lines A0 and A∞, where

A0 = Spec(R[x]) and A∞ = Spec(R[y]), with the transition function on their intersection
R[x±] ∼= R[y±] is given by x 7→ y = x−1.

By the equality y = x−1 we have

x
d

dx
= −y d

dy
,

therefore ϑ can be extended canonically to a global section, still denoted by ϑ, of the
tangent sheaf of P1

R.

dfn.20220607–08 Definition 3.1 (Connection on punctured affine line). The category of connections on on
R[x±] or on the punctured affine line P1

Rr{0,∞} over R, denoted MC(R[x±]/R), has for
objects those couples (M,∇) consisting of a R[x±]–module of finite presentation and a

R–linear endomorphism ∇ : M →M satisfying Leibniz’s rule

∇(fm) = ϑ(f)m+ f∇(m);
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arrows between (M,∇) and (M ′,∇′) are just R[x±]–linear maps ϕ : M → M ′ satisfying
∇′ϕ = ϕ∇.

It is well-known that for a connection (M,∇) on R[x±]/R, M is R[x±]–flat if and only
if its is R–flat, cf., e.g.,

dS09
[dS09, p.82] or

DH18
[DH18, Theorem 5.1.1]. Since R[x±] is a domain,

this amounts to M being projective over R[x±].

dfn.20220607–08b Definition 3.2 (Logarithmic connection on punctured affine line). The category of loga-
rithmic connections on the punctured affine line P1

R, denoted MClog(P1
R/R), has for

objects those couples (M,∇) consisting of a coherent OP1
R
–module and an R–linear endo-

morphism ∇ : M → M satisfying Leibniz’s rule ∇(fm) = ϑ(f)m + f∇(m) on all
open subsets; and

arrows between (M,∇) and (M′,∇′) are OP1
R
–linear maps ϕ : M → M′ satisfying ∇′ϕ =

ϕ∇.

We let
γ : MClog(P1

R/R) −→MC(R[x±]/R)

be the natural restriction functor.

Definition 3.3 (Regular singular connection on punctured affine line).
(1) A connection (M,∇) in MC(R[x±]/R) is regular-singular if γ(M) ' M for a

certain M ∈MClog(P1
R/R); in this case, any such M is a logarithmic model of M .

In case M is a locally free OPR-module, we call M a logarithmic lattice ofM (which
is also free over R((x))).

(2) The full subcategory of MC(R[x±]/R) having regular-singular connections as ob-
jects is denoted by MCrs(R[x±]/R).

ex.20220709–01 Example 3.4 (Euler connections). For an object (V,A) ∈ EndR we set

eulP1(V,A) := (OP1 ⊗R V,DA),

where DA : OP1
R
⊗R V → OP1

R
⊗R V is R−linear and defined by

DA(f ⊗m) = ϑ(f)⊗ v + f ⊗Av
on any open subsets of P1

R. Notation: eulP1(V,A).

Thus we have functor eulP1 : EndR −→ MClog(P1
R/R) and, composing it with γ, the

functor
γeulP1 : EndR −→MCrs(R[x±]/R).

prop.20220607–03 Proposition 3.5. The functor

γeulP1 : EndR −→MCrs(R[x±]/R)

is faithful and essentially surjective.

Proof. The functor is obviously faithful. We proceed to show that it is essentially surjective.
To see this we shall first base change to R̂ and use the known results from

HdST22
[HdST22], and

then descent back to R by using Popescu’s theorem.
Let R̂ be the r-adic completion of R. Let (M,∇) be an object in MCrs(R[x±]/R). By

tensoring over R with R̂, we obtain an object in MCrs(R̂[x±]/R̂), denoted by (M
R̂
,∇

R̂
).

Let us now write, according to Popescu
Pop86
[Pop86, Theorem 2.5],

R̂ = lim−→
λ∈L

Sλ

where each Sλ is a smooth R–algebra.
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Let (M,∇) ∈MCrs(R[x±]/R). For each λ ∈ L, we let (Mλ,∇λ) stand for the object of
MC(Sλ[x±]/Sλ) defined, in the evident manner, by means of the functor Sλ ⊗R (−). We
define (M̂, ∇̂) in the similar fashion.

Let A : V→ V be an endomorphism of the finite R̂-module V such that there exists an
isomorphism

f : (M̂, ∇̂) −→ (R̂[x±]⊗
R̂
V, DA)

in MC(R̂[x±]/R̂). The existence of this arrow is a consequence of
HdST22
[HdST22, Proposition

10.1] and Theorem
thm.2022070-8–01
2.12.

There exists α such that A : V→ V is of the form

id
R̂
⊗
Sα
Aα : R̂ ⊗

Sα
Vα −→ R̂ ⊗

Sα
Vα

where Aα is an Sα-linear endomorphism of the finite Sα-module. See
EGA4.3
[EGA IV3, 8.5.2(i)-

(ii), p.20]. Given λ ≥ α, let Aλ : Vλ → Vλ be the base-change of Aα to Vλ := Sλ ⊗Sα Vα.
This allows us to define objects in

(Sλ[x±]⊗Sα Vα, DAλ) ∈MC(Sλ[x±]/Sλ)

for all λ ≥ α along the lines of
ex.20220709–01
3.4.

There exists β ≥ α such that f is obtained from a certain

fβ : Mβ −→ Sβ[x±] ⊗
Sα
Vα

by base change Sβ → R̂. See
EGA4.3
[EGA IV3, 8.5.2.1, p.21]. For convenience, let fλ be the

base-change of fβ for λ ≥ β.
Let now {mi} ∈ M be a set of R[x±]-module generators for M and write mλ

i for the
image of mi inMλ via the natural arrowM →Mλ. Consider, for each λ ≥ β, the elements

δλi := fλ(∇λ(mλ
i ))−DAλ(fλ(mλ

i ))

of Sλ[x±]⊗Sα Vα. We then conclude that for some λ ≥ β, the elements δλi are all zero, and
hence for a certain λ ≥ β, the arrow

fλ : Mλ −→ Sλ[x±]⊗Sα Vα
is horizontal, which is verified without much effort.

Now, it is clear that C → C⊗RSλ comes with a section to C → Sλ⊗RC. Then, “Hensel’s
Lemma”

EGA4.4
[EGA IV4, 18.5.11.(b)] shows that there exists a section Sλ → R. Base changing

the morphism fλ via Sλ → R we obtain the desired isomorphism M → R[x±]⊗ V . �

4. Deligne’s equivalence
sect.5

In this section we put things together to obtain the generalization of Deligne’s equiva-
lence to the case of strict henselian rings. Recall that Deligne proved in

Del87
[Del87, Proposi-

tion 15.35] that for any field k of characteristic 0, the functor

r : MCrs(k[x±]) −→MCrs(k((x)))

given by base change is indeed an equivalence. This has been generalized to an equivalence
for k replace by a complete local noetherian C-algebra in

HdST22
[HdST22]. The aim of this section

is the following theorem.

thm.20220623–01 Theorem 4.1. Then the restriction functor

r : MCfree
rs (R[x±]/R) −→MCfree

rs (R((x))/R)

is an equivalence.
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Proof. Essential surjectivity. By Proposition
thm.2022070-8–01
2.12 and Proposition

prop.20220607–03
3.5 the functor r is

essentially surjective. Indeed, let (E,∇) be an arbitrary object in MCfree
rs (R((x))/R).

According to Theorem
thm.20220607–04
2.7, there exists (V,A) ∈ Endfree

R satisfying

γeulRJxK(V,A) ' (E,∇).

Then, γeulP1
R

(V,A) = (R[x±]⊗RV,DA) is a regular singular connection inMCrs(R[x±]/R)

which satisfies that r(R[x±]⊗R V,DA) ' (E,∇).
Faithfulness. This is obvious as the map R[x±] −→ R((x)) is fully faithful as it is the

localization at x of the completion map R[x] −→ RJxK.
Fullness. Since R[x±] is noetherian, each flat module over R[x±] is projective. Hence,

for each (E,∇) ∈ MCfree
rs (R[x±]/R) then E is R[x±]–projective. According to

Pop02
[Pop02,

Theorem 1], the module E is R[x±]–free.
Therefore, by using Proposition

prop.20220607–03
3.5, we may work with Euler forms all the time. So

given two objects (V1, A1), (V2, A2) ∈ Endfree
R , we are going to show that the restriction

map:

r : MorR[x±](γeulP1
R

(V1, A1), γeulP1
R

(V2, A2))→ MorR((x))(γeulRJxK(V1, A1), γeulRJxK(V2, A2)),

is surjective. Indeed, fix bases ei of Vi over R. Then any

f ∈ MorR((x))(γeulRJxK(V1, A1), γeulRJxK(V2, A2))

is defined a matrix with coefficients from R((x)). On the other hand, after base changed to
R̂, the above map is an isomorphism. This means the matrix elements of f also belong to
R̂[x±]. Now we have

R((x)) ∩ R̂[x±] = R[x±].

That is, f is defined over R[x±]. �

cor.deligne.equivalence.hensel Corollary 4.2. Let R be a henselian discrete valuation C-algebra with residue field iso-
morphic to C. Then the restriction functor

r : MCrs(R[x±]/R) −→MCrs(R((x))/R)

is an equivalence.

Proof. This is a consequence of Corollary
cor.12.07.22-1
2.15 and Proposition

prop.20220607–03
3.5 and the theorem above.

�

Remark 4.3. As the original equivalence established by Deligne holds true over any field
of characteristic 0, the above theorem also holds for any field C of characteristic 0. Indeed,
the proof in

HdST22
[HdST22] of the corresponding claim (Theorem 10.1) holds in this more general

setting.
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