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Abstract. We consider the following strongly damped wave equation on R3 with memory

utt − α∆ut − β∆u+ λu−
∫ ∞

0
κ′(s)∆u(t− s)ds+ f(x, u) + g(x, ut) = h,

where a quite general memory kernel and the nonlinearity f exhibit a critical growth. Existence, uniqueness
and continuous dependence results are provided as well as the existence of regular global and exponential

attractors of finite fractal dimension.

1. Introduction

The main goal of this paper is to discuss the long-time behavior of the weak solutions for the following
strongly damped wave equation with memory on R3,

utt − α∆ut − β∆u+ λu−
∫ ∞

0

µ(s)∆ηt(s)ds+ f(x, u) + g(x, ut) = h(x), x ∈ R3, t > 0,

u(x, t) = u0(x), x ∈ R3, t ≤ 0,

ut(x, t) = v0(x), x ∈ R3, t ≤ 0,

lim
|x|→∞

u(x, t) = 0, ∀t ≥ 0,

(1.1)

where α and β are positive constants, µ is a summable positive function, and

ηt = ηt(x, s) = u(x, t)− u(x, t− s), s ∈ R+. (1.2)

Now, we define the strictly positive non-increasing function

κ(s) = β +

∫ ∞

s

µ(r)dr, s ∈ [0,+∞)

the above equation reads

utt − α∆ut − κ(0)∆u+ λu−
∫ ∞

0

κ′(s)∆u(t− s)ds+ f(x, u) + g(x, ut) = h,

that is, a semilinear wave equation with a strong damping and a convolution term.
In (1.1), with µ ≡ 0, we obtain the usual strongly damped wave equation

utt − α∆ut − β∆u+ f(·, u) + g(·, ut) = h. (1.3)

Well-posedness and long time behavior (in terms of attractors) of solutions for equation (1.3) on bounded
domains have been investigated by many authors (see, e.g., [7, 8, 20, 21, 22] and references therein). Besides,
equation (1.3) on unbounded domain (on RN ) has been also studied in [5, 9] and some references therein.

The problem (1.1) in the case of bounded domains, without g(·, ut) and when the memory kernel µ does
not vanish (which reduces to a strongly damped wave equation with memory effects) has been studied in
[2, 13, 16], for a subcritical nonlinearity and the following assumptions imposed on the memory kernel

µ′(s) + δµ(s) ≤ 0,∀s > 0,

for some δ > 0. Besides, in [15], under the much weaker condition on the memory kernel,

µ(r + s) ≤ Ne−δrµ(s),
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for some N ≥ 1, δ > 0, every r ≥ 0, and almost every s > 0, Plinio, Pata and Zelik pointed out the existence
of global attractors of optimal regularity for both critical and supercritical nonlinearities.

Recently, Toan [19] also considered equation (1.1) in the case of time-dependent memory and without
g(·, ut). In this situation, the well-posedness, the existence and the regularity of the time-dependent global
attractor have been proved.

However, to the best of our knowledge, up to now, although there have been several results on attractors
for a strongly damped wave equation with memory, hardly any of the previous studies deal with the equations
on unbounded domains and memory kernel effects. More specifically, we consider this equation in the case
of containing critical nonlinear term which make the model more complex.

The novelty of this paper is that it overcomes the essential difficulties: ”both the Sobolev embedding
on R3 and the critical growth of f causes the lack of compactness, as well as the complexity of the model
caused by the memory term” and establishes the well-posedness, the existence of the global and exponential
attractors for the equation with memory and critical nonlinearity.

To study problem (1.1), we assume that the nonlinearity f, g, the external force h, and the memory term
satisfy the following conditions:

(H1) The convolution (or memory) kernel κ is a nonnegative summable function having the explicit form

κ(s) =

∫ ∞

s

µ(r)dr,

where µ ∈ L1(R+) is a decreasing (hence nonnegative) piecewise absolutely continuous in each
interval [0, T ] with T > 0. In particular, µ is allowed to exhibit (infinitely many) jumps. Moreover,
we require that

κ(s) ≤ θµ(s) (1.4)

for some θ > 0 and every s > 0. As shown in [11], this is completely equivalent to the requirement
that

µ(r + s) ≤ Ne−δrµ(s), (1.5)

for some N ≥ 1, δ > 0, every r ≥ 0 and almost every s > 0. As a consequence,

κ(s) ≤ Ce−δs.

(H2) The nonlinearity f ∈ C1(R,R), with f(·, 0) = 0, satisfy for some C > 0 the growth bound

|f ′u(x, u)| ≤ C
(
1 + |u|4

)
, and |f ′x(x, u)| ≤ C|u|5, (1.6)

lim inf
|u|→∞

F (x, u)

u2
≥ 0, uniformly as x ∈ R3,

lim inf
|u|→∞

uf(x, u)− d1F (x, u)

u2
≥ 0, uniformly as x ∈ R3 and for some d2 > 0, (1.7)

where F (x, u) =
∫ u

0
f(x, s)ds is a primitive of f .

(H3) Let g ∈ C1(R,R) with g(·, 0) = 0, satisfy for some C ≥ 0 the growth bounds

|g′m(x,m)| ≤ C(1 + |m|4), (1.8)

along with the dissipation conditions

lim inf
|m|→∞

g′m(x,m) > −λ. (1.9)

(H4) The external force h is in L2(R3).

Remark 1.1. The main difficulties when we study the asymptotic behavior of the problem that are the lack
of compactness caused by the unbounded domain, and both the nonlinearities f and g exhibit critical growth.

It is noticed that the condition in (H1) of the memory term is weaker than the usual condition in [3, 4]

in the sense that µ can be weakly singular at the origin. For instance, we can take µ(s) =
ce−as

s1−b
with c ≥ 0

and a, b > 0.
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We infer from (H2) that for every νi > 0, i = 1, 2, 3 there exists Cνi ≥ 0 such that

⟨f(x, u), u⟩ − d1⟨F (x, u), 1⟩+ ν1∥u∥2 + Cν1 > 0, (1.10)

and

⟨F (x, u), 1⟩ ≥ −ν2∥u∥2 − Cν2
. (1.11)

It is obvious that (1.9) implies that there are λ > 0 and Cλ > 0 such that

⟨g(x, r)− λr, r⟩ ≥ λ∥r∥2 − Cλ. (1.12)

2. Notations and preliminaries

In this section, we recall some notations about function spaces and preliminary results.
We introduce the Hilbert spaces H0 = L2(R3), H1 = H1(R3) and H2 = H2(R3). Let ⟨·, ·⟩ and ∥ · ∥ denote

the L2(R3)-inner product and L2(R3)-norm, respectively. Besides, ⟨·, ·⟩b , b = 0, 1, 2 and ∥ · ∥b denote the
Hb-inner product and Hb-norm, respectively.

In view of (1.5), let L2
µ(R+;Hb) be the Hilbert space of functions φ : R+ → Hb endowed with the inner

product

⟨φ1, φ2⟩b,µ =

∫ ∞

0

µ(s) ⟨φ1(s), φ2(s)⟩b ds,

and let ∥φ∥b,µ denote the corresponding norm. We introduce product Hilbert spaces

H1 = H1 ×H0 × L2
µ(R+;H1), and H2 = H2 ×H1 × L2

µ(R+;H2).

We begin with rephrasing (1.1) as an autonomous dynamical system on a suitable phase space. To this
aim, as in [6], a new variable that reflects the history of equation (1.1) is introduced, that is to be,

ηt(x, s) = u(x, t)− u(x, t− s), s ∈ R+,

Notice that ηt satisfies the boundary condition ηt(0) := lims→0η
t(s) = 0 and formally fulfills the equation

ηtt(x, s) = −ηts(x, s) + ut(x, t), (2.1)

with η0(s) = η0(s).
Taking for simplicity α = β = 1, the first equation of (1.1) can be transformed into the following system{

utt −∆ut −∆u+ λu−
∫∞
0
µ(s)∆ηt(s)ds+ f(x, u) + g(x, ut) = h(x),

ηtt = −ηts + ut.
(2.2)

The associated initial-boundary conditions are
u(x, t) = u0(x), x ∈ R3, t ≤ 0

ut(x, t) = v0(x), x ∈ R3, t ≤ 0,

ηt(x, s) = η0(x, s), (x, s) ∈ R3 × R+, t ≤ 0.

(2.3)

Denoting

z(t) = (u(t), ut(t), η
t), z0 = (u0, v0, η0).

To estimate the nonlinear term, we use the decomposition of g as follow

Lemma 2.1. For every fixed λ > 0, the decomposition

g(x, r) = ϕ(x, r)− λr + ϕc(x, r),

holds for some ϕ, ϕc ∈ C1(R) with the following properties:

• ϕc is compactly supported with ϕc(x, 0) = 0;
• ϕ vanishes inside [−1, 1] and fulfills for some c ≥ 0 and every r ∈ R the bounds

0 ≤ ϕ′(x, r) ≤ c|r|4.
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Proof. By (1.9), we can see that g′(x,m) ≥ −λ, ∀|r| ≥ k for k ≥ 1 large enough. Choosing then any
smooth function ϑ : R → [0, 1] satisfying

rϑ′(x, r) ≥ 0 and ϑ =

{
0 if |r| ≤ k

1 if |r| ≥ k + 1

it is immediate to check that

ϕ(x, r) = ϑ(x, r)[g(x, r) + λr] and ϕc(x, r) = [1− ϑ(x, r)][g(x, r) + λr]

comply with the requirements. □

Due to Lemma 2.1, the function on H1 given by

Φ0(w) = 2

∫
R3

∫ w

0

ϕ(x, r)drdx

fulfill for every w ∈ H1 the inequality

0 ≤ Φ0(w) ≤ 2⟨ϕ(x,w), w⟩. (2.4)

Besides, since

|ϕ(x,w)| 65 = |ϕ(x,w)| 15 |ϕ(x,w)| ≤ c|w||ϕ(x,w)|,
we can get that for all C > 0 sufficiently large

∥ϕ(x,w)∥
L

6
5
≤ C⟨ϕ(x,w), w⟩ 5

6 , ∀w ∈ H1. (2.5)

We conclude the section by recalling a Gronwall-type lemma needed in the sequel.

Lemma 2.2 (see [7]). Given k ≥ 1 and C ≥ 0, let Λε : [0,∞) → [0,∞) be a family of absolutely continuous
functions satisfying for every ε > 0 small, the inequalities

1

k
Λ0 ≤ Λε ≤ kΛ0 and

d

dt
Λε + εΛε ≤ Cε6Λ3

ε + C.

Then there are constants δ > 0, R ≥ 0 and an increasing function Q ≥ 0 such that

Λ0 ≤ Q(Λ0(0))e
−δt +R.

The plan of the paper is as follows: In Section 3, we discuss the well-posedness of the Cauchy problem
(1.1). In Section 4, we establish the existence of a global attractor and its regularity. Finally, in Section 5,
we study the exponential attractor.

3. Existence and uniqueness of weak solutions

We first define the solution for (2.2) with initial-boundary condition (2.3) as follows.

Definition 3.1. A triplet form z = (u, ut, η
t) is called a weak solution of problem (2.2) for T > 0 with the

initial datum z(0) = z0 ∈ H1 if z ∈ C([0, T ];H1) and∫ T

0

∫
R3

uttφdxdt+

∫ T

0

∫
R3

∇ut∇φdxdt+
∫ T

0

∫
R3

∇u∇φdxdt+
∫ T

0

∫ ∞

0

µ(s)⟨∇η(s)∇φ⟩dsdt

+ λ

∫ T

0

∫
R3

uφdxdt+

∫ T

0

∫
R3

f(x, u)φdxdt+

∫ T

0

∫
R3

g(x, ut)φdxdt =

∫ T

0

∫
R3

hφdxdt,∫ T

0

∫ ∞

0

µ(s)(∇ηtt ,∇ξt(s))dsdr +
∫ T

0

∫ ∞

0

µ(s)(∇ηts,∇ξt(s))dsdr =
∫ T

0

∫ ∞

0

µ(s)(∇ut,∇ξt(s))dsdr,

for every test functions φ ∈ H1 and ξt ∈ L2
µ(R+, H1), and a.e. t ∈ [0, T ].

The following result on the existence and uniqueness of weak solutions to the model (1.1)-(1.2) (also (2.2))
was proved by a Faedo-Garlerkin.
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Theorem 3.1. Assume that hypotheses (H1)-(H4) hold. Then for any z0 = (u0, v0, η0) ∈ H1, problem
(2.2)-(2.3) has a unique weak solution z = (u, ut, η

t) on the interval [0, T ] satisfying

z ∈ C([0, T ];H1).

Moreover, the weak solution depends continuously on the initial data on H1.

Proof. i) Existence.
Because of the separability of H1, one can choose a sequence {φj}∞j=1 that forms a smooth orthonormal

basis in both H0 and H1 spaces. For instance, one can take a complete set of normalized eigenfunctions
for −∆ in H1, such that −∆φj = νjφj , where νj is the eigenvalue corresponding to φj . Next, we want to
choose an orthonormal basis {ζj}∞j=1 of L2

µ(R+, H1) which also belong to D(R+, H1), where D(I,X) is the
space of infinitely differentiable X-valued functions with compact support in I ⊂ R. For this purpose, we
select vectors of the form lkφj (k, j = 1, . . . ,∞), where {lj}∞j=1 is an orthonormal basis in both L2

µ(R+) and

D(R+) spaces.
For each integer n ≥ 1, we denote by Pn and Qn the projections on the subspaces

span(φ1, . . . , φn) ⊂ H1 and span(ζ1, . . . , ζn) ⊂ L2
µ(R+, H1), respectively.

Consider the approximate solution zn(t) = (un(t), ∂tun(t), η
t
n(s)) in the form

un(t) =

n∑
j=1

anj(t)φj , ∂tun(t) =

n∑
j=1

a′nj(t)φj and ηtn(s) =

n∑
j=1

bnj(t)ζj(s),

where ank(t), bnj(t) are determined by the system of second order ordinary differential equations〈
n∑

k=1

a′′nk(t)φk, φj

〉
+

〈
n∑

k=1

(νk + λ)a′nk(t)φk, φj

〉
+

〈
n∑

k=1

νkank(t)φk, φj

〉

+

〈
n∑

k=1

bnk(t)ζk, ζj

〉
1,µ

+

〈
f

(
n∑

k=1

ank(t)φk

)
, φj

〉
+

〈
g

(
n∑

k=1

a′nk(t)φk

)
, φj

〉
= ⟨h, φj⟩ , j, k = 1, 2, . . . n,

(3.1)

with the initial data (
un, ∂tun, η

t
n)
∣∣
t=0

= (Pnu0, Pnv0, Qnη0), (3.2)

Since det(⟨φj , φk⟩) ̸= 0 and the nonlinear functions f and g are continuous, by the Peano existence theorem,
there exists at least one local solution to (3.1)-(3.2) in the interval [0;Tn). Thus this allows constructing the
approximate solution zn(t). Multiplying the equation (3.1)j by the function a′nj(t), summing from j = 1 to
n, we have

1

2

d

dt

(
∥∂tun∥2 + ∥∇un∥2 + λ∥un∥2 + ⟨F (x, un), 1⟩

)
+ ∥∇∂tun∥2 +

∫ ∞

0

µ(s)⟨∇ηtn(s),∇∂tun⟩ds+ ⟨g(x, ∂tun), ∂tun⟩ = ⟨h, ∂tun⟩. (3.3)

Using (2.1) and then integrating by parts, we have∫ ∞

0

µ(s)⟨∇ηtn(s), ∂t∇un⟩ds =
∫ ∞

0

µ(s)⟨∇ηtn(s),∇∂tηtn(s)⟩ds+
∫ ∞

0

µ(s)⟨∇ηtn(s),∇∂sηtn(s)⟩ds

=
1

2

d

dt

(∫ ∞

0

µ(s)∥∇ηtn(s)∥2ds
)
−
∫ ∞

0

µ′(s)∥∇ηtn(s)∥2ds.

Besides, from conditions (H3), (1.12) and the Cauchy inequality, we can see that

−
∫ ∞

0

µ′(s)∥∇ηtn(s)∥2ds ≥ 0, ⟨g(x, ∂tun), ∂tun⟩ ≥ 2λ∥∂tun∥2 − Cλ,

and 2⟨h, ∂tun⟩ ≤
1

λ
∥h∥2 + λ∥∂tun∥2.
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On the other hand, by multiplying the second equation of (2.2) by ηtn in L2
µ(R+, H0), we get

d

dt

∫ ∞

0

µ(s)∥ηtn∥2ds− 2

∫ ∞

0

µ′(s)∥ηtn∥2ds = 2

∫ ∞

0

µ(s)⟨ηtn(s), ∂tun⟩ds

≤ κ(0)

λ

∫ ∞

0

µ(s)∥ηtn∥2ds+ λ∥∂tun∥2. (3.4)

Therefore, summation of (3.3) and (3.4) and combining all the above estimates, we get

1

2

d

dt

(
∥∂tun∥2 + ∥∇un∥2 + λ∥un∥2 + ∥ηtn∥21,µ + ⟨F (x, un), 1⟩

)
+ ∥∇∂tun∥2 + λ∥∂tun∥2ds ≤

κ(0)

λ

∫ ∞

0

µ(s)∥ηtn∥2ds+ C∥h∥2 + C.

Thus,

1

2

d

dt
y(t) + ∥∇∂tun∥2 + λ∥∂tun∥2ds ≤ Cy(t) + C(∥h∥2 + 1),

where y(t) = ∥∂tun∥2 + ∥∇un∥2 + λ∥un∥2 + ∥ηtn∥21,µ + ⟨F (x, un), 1⟩, and ∥zn∥2H1
≤ C1y(t).

Applying Gronwall lemma, we deduce that

y(t) ≤ eCT y(0) + CeCT (∥h∥2 + 1),

where y(0) ≤ C2(∥z0∥2H1
+ ∥u0∥61).

This inequality implies that

{un} is bounded in L∞(0, T ;H1),

{ηtn} is bounded in L∞(0, T ;L2
µ(R+, H1)).

(3.5)

Integrating from 0 to t, we obtain

{∂tun} is bounded in L2(0, T ;H1), (3.6)

Now, multiplying the equation (3.1) by the function a′′nj(t), summing from j = 1 to n, we get

2∥∂ttun∥2 +
d

dt
Q(t) = 2⟨f ′u(x, un)∂tun, ∂tun⟩+ 2∥∇∂tun∥2 + 2λ∥∂tun∥2 + 2

∫ ∞

0

µ(s)⟨∇∂tηtn,∇∂tun⟩ds,

(3.7)

where

Q(t) = ∥∇∂tun∥2 + ⟨∇un,∇∂tun⟩+ λ⟨un, ∂tun⟩

+ 2

∫ ∞

0

µ(s)⟨∇∂tηtn,∇∂tun⟩ds+ ⟨f(x, un), ∂tun⟩+ ⟨G(x, ∂tun), 1⟩ − ⟨h(x), ∂tun⟩.

Using (3.5), (1.6), we obtain

⟨f ′u(x, un)∂tun, ∂tun⟩+ 2∥∇ut∥2 ≤ 2∥f ′u(x, un)∥L3/2∥∂tun∥2L6 + 2∥∇∂tun∥2

≤ C(1 + ∥un∥41)∥∂tun∥21 ≤ C∥∂tun∥21, (3.8)

and

2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇∂tun⟩ds = 2

∫ ∞

0

µ(s)⟨∇∂sηtn −∇∂tun,∇∂tun⟩ds

≤ 2

∫ ∞

0

µ(s)∥∇∂sηtn(s)∥∥∇∂tun∥ds+ 2κ(0)∥∇∂tun∥2

≤ 2

∫ ∞

0

µ(s)∥∇∂sηtn(s)∥2ds+ C∥∇∂tun∥2

≤ −
∫ ∞

0

µ′(s)∥∇ηtn(s)∥2ds+ C∥∂tun∥21, (3.9)

Combining (3.7), (3.8) and (3.9), then integrating over (0, T ), we get∫ T

0

∥∂ttun(r)∥2dr +Q(T ) ≤ Q(0) +

∫ T

0

∥∂tun(r)∥21dr,
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where Q(0) ≤ C(∥z0∥H1).
This inequality implies that

{∂ttun} is bounded in L2(0, T ;H0). (3.10)

Combining (3.5), (3.6) and (3.10), we deduce that there exists a subsequence of {un}, {∂tun} and {ηtn} (still
denoted by {un}, {∂tun} and {ηtn}) such that

un ⇀ u weakly-star in L∞(0, T ;H1),

∂tun ⇀ ∂tu weakly in L2(0, T ;H1),

∂ttun ⇀ ∂ttu weakly in L2(0, T ;H0),

ηtn ⇀ ηt weakly-star in L∞(0, T ;L2
µ(R+, H1

0 (Ω))),

(3.11)

and

∆un ⇀ ∆u weakly in L2(0, T ;H−1(R3)),

∆∂tun ⇀ ∆∂tu weakly in L2(0, T ;H−1(R3)),

∆ηtn ⇀ ∆ηt weakly in L2(0, T ;L2
µt
(R+, H−1(R3))),

(3.12)

Using (H1), we have

∥f(x, un)∥6/5L6/5 ⩽ C
(
∥un∥+ ∥un∥5L6

)
⩽ C

(
1 + ∥un∥51

)
,

and

∥g(x, ∂tun)∥6/5L6/5 ⩽ C
(
∥∂tun∥+ ∥∂tun∥5L6

)
⩽ C

(
1 + ∥∂tun∥51

)
Using (3.5), (3.6) once again, we have

{f(x, un)} is bounded in L6/5(0, T ;L6/5(R3)),

and {g(x, ∂tun)} is bounded in L6/5(0, T ;L6/5(R3)).

Thus
f(x, un)⇀ χ1 weakly in L6/5(0, T ;L6/5(R3)),

g(x, ∂tun)⇀ χ2 weakly in L6/5(0, T ;L6/5(R3)).
(3.13)

In addition, for each m ≥ 1, we denote Bm = {x ∈ RN : |x| ≤ m}. Let ϕ ∈ C1([0,+∞)) be a function
such that 0 ≤ ϕ ≤ 1, ϕ|[0,1] = 1 and ϕ(s) = 0 for all s ≥ 2. For each n and m we define

vn,m(x, t) = ϕ

(
|x|2

m2

)
un(x, t), ∂tvn,m(x, t) = ϕ

(
|x|2

m2

)
∂tun(x, t).

From (3.5) and (3.6), for allm ≥ 1, the sequences {vn,m}n≥1 and {∂tvn,m}n≥1 are bounded L
2
(
0, T ;H1

0 (B2m)
)
.

Since B2m is a bounded set, then H1
0 (B2m) ↪→ L2(B2m) compactly. Then, by Theorem 13.3 and Remark

13.1 in [17] we can deduce that

{∂tvn,m} and {vn,m} are precompact in L2(0, T ;L2(B2m)),

and thus

{∂tun|Bm
} and {un|Bm

} are precompact in L2
(
0, T ;L2(Bm)

)
.

By a diagonal procedure, using (3.11), we deduce that there exists a subsequence of {un} (still denoted by
{un}) such that

(un, ∂tun) → (u, ut) a.e. in Bm × (0, T ) as n→ +∞,∀m ≥ 1,

Then, since f(·, ·) is continuous,
f(x, un) → f(x, u) and g(x, ∂tun) → g(x, ut) a.e. in Bm × (0, T ),

and since {f(x, un)} and {g(x, ∂tun)} is bounded in L6/5(0, T ;L6/5(Bm)), by [12, Chapter 1, Lemma 3.1],
we get

f(·, un)⇀ f(·, u) and g(·, ∂tun)⇀ g(·, ut) in L6/5(0, T ;L6/5(Bm)).

From (3.13) ,

f(·, un)⇀ χ1|Bm×(0,T ) and g(·, ∂tun)⇀ χ2|Bm×(0,T ) in L6/5(0, T ;L6/5(Bm)).
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Therefore,

χ1 = f(x, u) χ2 = g(x, ut) a.e. in Bm × (0, T ),∀m ≥ 1,

and thus, taking into account that
⋃∞

m=1Bm = R3, we obtain

χ1 = f(x, u) χ2 = g(x, ut) a.e. in R3 × (0, T ). (3.14)

Now combining (3.11), (3.12), (3.13) and (3.15), we see that zn = (un, ∂tun, η
t
n) satisfies

utt −∆ut −∆u+ λu−
∫ ∞

0

µ(s)∆ηt(s)ds+ f(x, u) + g(x, ut) = h,

in H−1(R3) + L2
µ(R+, H1(R3) for a.e. t ∈ [0, T ]. By standard arguments, we can check that z satisfies the

initial condition z(0) = z0, and this implies that z is a weak solution of problem (2.2).
ii) Uniqueness and continuous dependence. We assume that z1 and z2 are two solutions subject to initial

data z1(0) and z2(0), respectively. Denote (w, η̄t) = (u1 − u2, η
t
1 − ηt2), we have

wtt −∆wt −∆w + λw −
∫ ∞

0

µ(s)∆η̄t(s)ds+ f(x, u1)− f(x, u2) + g(x, ∂tu1)− g(x, ∂tu2) = 0. (3.15)

Taking the inner product of (3.15) in H0 with wt, then using assumptions(2.1) and (1.9), we see that

d

dt
(∥wt∥2 + λ∥w∥2 + ∥∇w∥2 +

∫ ∞

0

µ(s)∥∇η̄t(s)∥2ds)

+ 2∥∇wt∥2 +
∫ ∞

0

µ′(s)∥∇η̄t(s)∥2ds ≤ 2λ∥wt∥2 + 2C
(
1 + ∥u1∥4L6 + ∥u2∥4L6

)
∥w∥L6∥wt∥L6 .

Therefore,

d

dt
(∥wt∥2 + λ∥w∥2 + ∥∇w∥2 +

∫ ∞

0

µ(s)∥∇η̄t(s)∥2ds)

≤ 2(1 + λ)∥wt∥2 + C∥w∥21, (3.16)

where 2C
(
1 + ∥u1∥4L6 + ∥u2∥4L6

)
∥w∥L6∥wt∥L6 ≤ C∥w∥21+∥wt∥2+∥∇wt∥2, and −

∫∞
0
µ′(s)∥∇η̄t(s)∥2ds ≥ 0.

On the other hand, as in (3.4), multiplying the second equation of (2.2) by η̄t in L2
µ(R+, L2(R3)), we get

d

dt

∫ ∞

0

µ(s)∥η̄t∥2ds− 2

∫ ∞

0

µ′(s)∥η̄t∥2ds ≤ κ(0)

λ

∫ ∞

0

µ(s)∥η̄t∥2ds+ λ∥∂tw∥2. (3.17)

Summation of (3.16) and (3.17), we get

d

dt
(∥wt∥2 + λ∥w∥2 + ∥∇w∥2 + ∥η̄t(s)∥21,µ) ≤ C(∥wt∥2 + λ∥w∥2 + ∥∇w∥2 + ∥η̄t(s)∥21,µ).

By the Gronwall inequality, we obtain

∥wt∥2 + λ∥w∥2 + ∥∇w∥2 + ∥η̄t(s)∥21,µ ≤ eCT (∥wt(0)∥2 + λ∥w(0)∥2 + ∥∇w(0)∥2 + ∥η̄0(s)∥21,µ). (3.18)

This proves the uniqueness (when z1(0) = z2(0)) and the continuous dependence on the initial data of the
weak solution. This completes the proof. □

4. The global attractor and its regularity

Theorem 3.1 allows us to define a continuous semigroup S(t) : H1 → H1 associated to problem (2.2) by
the formula

S(t)z0 := z(t),

where z(.) is the unique global weak solution of (2.2) with the initial datum z0 ∈ H1. The aim of this section
is to prove the existence of a global attractor for S(t) on H1, namely, to prove the following theorem.

Theorem 4.1. Assume that (H1)-(H4) hold. Then the semigroup {S(t)}t≥0 possesses a compact global
attractor in H1.

To prove this theorem, by the classical abstract results on the existence of global attractors (see e.g. [18,
Theorem 1.1], we need to show that the semigroup S(t) has a bounded absorbing set B0 in H1 and S(t) is
asymptotically compact in H1.
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4.1. Existence of an absobing set.

Lemma 4.2. The following inequality holds:

d

dt
Ψ(t) + ∥ηt∥21,µ = 2

∫ ∞

0

µ(s)⟨ηt(s), u(t)⟩1ds

where Ψ(t) =
∫∞
0
κ(s)∥ηt(s)− u(t)∥21ds > 0. Moreover,

Ψ(t) ≤ C0

(
∥ηt∥21,µ + ∥u(t)∥21

)
.

Proof. By direct calculations and using the equations ∂tη
t − ut = −∂sηt and κ′(s) = −µ(s), we have the

equalities

d

dt
Ψ(t) =

d

dt

(∫ ∞

0

κ(s)∥ηt(s)− u(t)∥21ds
)

= 2

∫ ∞

0

κ(s)⟨∂tηt(s)− ∂tu(t), η
t(s)− u(t)⟩1ds

= −2

∫ ∞

0

κ(s)⟨∂sηt(s), ηt(s)− u(t)⟩1ds

= −2

∫ ∞

0

κ(s)⟨∂sηt(s), ηt(s)⟩1ds+ 2

∫ ∞

0

κ(s)⟨∂sηt(s), u(t)⟩1ds

= −
∫ ∞

0

κ(s)
d

ds
∥ηt∥21ds+ 2

∫ ∞

0

κ(s)
d

ds
⟨ηt(s), u(t)⟩1ds

=

∫ ∞

0

κ′(s)∥ηt∥21ds− 2

∫ ∞

0

κ′(s)⟨ηt(s), u(t)⟩1ds

= −∥ηt∥21,µ + 2

∫ ∞

0

µ(s)⟨ηt(s), u(t)⟩1ds.

On the other hand, from (1.4), we learn that

Ψ(t) ≤ C0

(
∥ηt∥21,µ + ∥u(t)∥21

)
.

The proof is complete.
□

Lemma 4.3. Let the hypotheses (H1)-(H4) hold. Then there exists a bounded absorbing set in H1 for the
semigroup S(t).

∥z(t)∥2H1
≤ Q(∥z0∥H1)e

−γt +R1, (4.1)

for every z0 ∈ H1. Moreover,

sup
z∈B

∫ T

t

(
∥ut(r)∥21 + ⟨ϕ(x, ut), ut⟩ −

∫ ∞

0

µ′(s)∥ηr∥21ds
)
dr ≤ C + C(T − t), ∀T > t ≥ 0. (4.2)

Proof. For a ∈ [0, 1) to be fixed later, multiplying the first equation of (2.2) by ut(t) + au(t) in L2(R3), we
obtain

1

2

d

dt

(
∥ut∥2 + λ(1− a)∥u∥2 + (1 + a)∥∇u∥2 +

∫ ∞

0

µ(s)∥∇ηt∥2ds+ ⟨F (x, u), 1⟩+ 2a⟨ut, u⟩
)

+ aλ∥u∥2 + a∥∇u∥2 − (λ+ a)∥ut∥2 + ∥∇ut∥2 + ⟨ϕ(x, ut), ut⟩ −
∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ a⟨f(x, u), u⟩

= − a⟨ϕ(ut), u⟩ − a

∫ ∞

0

µ(s)⟨∇ηt(s),∇u⟩ds+ ⟨q, ut + au⟩,

(4.3)
where g(x, ut) = ϕ(x, ut)− λut + ϕc(x, ut), q = h− ϕc(·, ut) and∫ ∞

0

µ(s)⟨∇ηt,∇ut⟩ds =
1

2

d

dt

(∫ ∞

0

µ(s)∥∇ηt∥2ds
)
−
∫ ∞

0

µ′(s)∥∇ηt∥2ds.

Using (1.10), we have and

a⟨f(x, u), u⟩ ≥ d1a⟨F (x, u), 1⟩ − ν1a∥u∥2 − Cν1
.
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Besides, using Lemma 2.1 and Young inequality, we get

2⟨q, ut + au⟩ ≤ 2 (∥h∥+ ∥ϕc(·, ut)∥) (a∥u∥+ ∥ut∥)
≤ ν1

(
a∥u∥2 + ∥ut∥2

)
+ C0,

where q ∈ L∞(R+;H0).
Multiplying the second equation of (2.2) by jηt in L2

µ(R+, L2(R3)), we get

d

dt
j

∫ ∞

0

µ(s)∥ηt∥2ds− 2j

∫ ∞

0

µ′(s)∥ηt∥2ds = 2j

∫ ∞

0

µ(s)⟨ηt(s), ut⟩ds

≤ jk∥ut∥2 + j

∫ ∞

0

µ(s)∥ηt∥2ds. (4.4)

Putting

Eja(t) = ∥ut∥2+λ(1−a)∥u∥2+(1+a)∥∇u∥2+
∫ ∞

0

µ(s)(j∥ηt∥2+∥∇ηt∥2)ds+2a⟨ut, u⟩+ ⟨F (x, u), 1⟩+Cν2 .

From (1.11) and the estimation

2a⟨ut, u⟩ ≤ λa∥u∥2 + a

λ
∥ut∥2,

there exist positive constants δ0 small enough such that

Eja(t) ≥ δ0

(
∥ut∥2 + ∥u∥21 +

∫ ∞

0

µ(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds

)
.

and
Ej0(t) ≤ 2Eja(t) ≤ 4Ej0(t). (4.5)

Summation of (4.3) and (4.4) and plugging all the above inequalities into (4.3), it follows that

d

dt
Eja + 2a(λ− ν1)∥u∥2 + 2a∥∇u∥2 + (λ− ν1)∥ut∥2 + 2∥∇ut∥2 + 2d1a⟨F (u), 1⟩

+
1

2
⟨ϕ(x, ut), ut⟩ − 2

∫ ∞

0

µ′(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds+ 2a

∫ ∞

0

µ(s)⟨∇ηt(s),∇u⟩ds

≤ − 2a⟨ϕ(x, ut), u⟩+ jk∥ut∥2 + j

∫ ∞

0

µ(s)∥ηt∥2ds+K,

where K =
Cλ

2
+ C0 + 2d1aCν2

and ⟨ϕ(x, ut), ut⟩ ≥ 2λ∥ut∥2 − 2Cλ.

Now we define the functional
Λja(t) = Eja(t) + aΨj(t).

Using (4.5), (2.5) and Young inequality, we have

Ej0(t) ≤ Λj0(t) ≤ 2Λja(t) ≤ 4Λj0(t),

and

−2a⟨ϕ(x, ut), u⟩ ≤ 2a∥ϕ(x, ut)∥L6/5∥u∥L6 ≤ Ca⟨ϕ(x, ut), ut⟩5/6∥u∥1 ≤ 1

4
⟨ϕ(x, ut), ut⟩+ Ca6Λ3

j .

From Lemma 4.2, we can choose γ > 0 which is small enough, we obtain

d

dt
Λja + 2aγΛja +

1

2
∥ut∥21 +

1

4
⟨ϕ(x, ut), ut⟩ −

∫ ∞

0

µ′(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds

≤ Ca6Λ3
ja − 2aj

∫ ∞

0

⟨ηt(s), u⟩ds+ jk∥ut∥2 + j

∫ ∞

0

µ(s)∥ηt∥2ds+ C.

Thus,

d

dt
Λja + 2aγΛja +

1

2
∥ut∥21 −

∫ ∞

0

µ′(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds+

1

4
⟨ϕ(x, ut), ut⟩

≤ Ca6Λ3
ja + jk

(
∥ut∥2 + a∥u∥2

)
+ j(a+ 1)

∫ ∞

0

µ(s)∥ηt∥2ds+ C

≤ Ca6Λ3
ja + jkΛj0 + C, (4.6)
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where −2aj
∫∞
0

⟨ηt(s), u⟩ds ≤ jak∥u∥2 + ja
∫∞
0
µ(s)∥ηt∥2ds.

From (4.6), let j = 0 and then applying Lemma 2.2, then there are constants γ > 0, R ≥ 0, and an increasing
function Q ≥ 0 such that

Λ00(t) ≤ Q(Λ00(0))e
−γt +R

≤ C
(
∥z0∥2H1

+ 2d2∥u0∥6L6

)
e−γt +R

≤ ρ0. (4.7)

Besides, considering (4.6) for j ̸= 0, then using (4.7) and Lemma 2.2 one again, we obtain

Λ10(t) ≤ Q(Λ10(0))e
−γt +R1

≤
(
∥z0∥2H1

+ 2d2∥u0∥6L6

)
e−γt +R1.

Hence there exists ρ1 > 0 such that

∥z(t)∥2H1
≤ ρ1, (4.8)

for all z0 ∈ B and for all t ≥ TB , where B is an arbitrary bounded subset of H1. Finally, integrating (4.6)
on (t, T ) and using (4.8), the proof is completed. □

To prove the asymptotic compactness in the next section, we must use some of the following lemmas:

Lemma 4.4. [7, Lemma 6.2] If B0 is an invariant absorbing set, then

B1 = S(1)B0 ⊂ B0

remains invariant and absorbing, and any (bounded) function Λ : B1 → R satisfies

sup
t≥0

sup
z0∈B1

Λ(S(t)z0) = sup
t≥0

sup
z0∈B0

Λ(S(t+ 1)z0) ≤ sup
z0∈B0

Λ(S(1)z0).

Lemma 4.5. There exists an invariant absorbing set B1 and a constant C = C(B1) ≥ 0 such that, for all
initial data in B1,

sup
t≥0

∥ut(t)∥21 ≤ C and

∫ 1

0

∥utt(t)∥2 ≤ C.

Proof. Now, we consider the initial data z0 ∈ B0. Taking the inner product in H0 of (2.2) and utt, and
adding to both sides the term 2⟨u, ut⟩, to get

d

dt

(
∥ut∥2 + ∥∇ut∥2 + 2Φ0(ut) + 2⟨f(x, u), ut⟩+ 2⟨∇u,∇ut⟩+ 2

∫ ∞

0

µ(s)⟨∇ηt(s),∇ut⟩ds
)
+ 2∥utt∥2

= 2⟨f ′u(x, u)ut, ut⟩+ 2∥∇ut∥2 + 2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇ut⟩ds+ 2⟨u, ut⟩+ 2⟨q, utt⟩, (4.9)

where q = h+ λut + ϕc(·, ut) and Φ0(ut) is defined as in (2.4)..
Using (4.8), (1.6) and Lemma 2.1, we obtain

⟨f ′u(x, u)ut, ut⟩+ 2∥∇ut∥2 ≤ 2∥f ′u(x, u)∥L3/2∥ut∥2L6 + 2∥∇ut∥2

≤ C(1 + ∥u∥21)∥ut∥21 ≤ C∥ut∥21,

2⟨u, ut⟩+ 2⟨q, utt⟩ ≤ 2∥u∥∥ut∥+ 2∥q∥∥utt∥ ≤ ∥utt∥2 + C,

and

2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇ut⟩ds = 2

∫ ∞

0

µ(s)⟨∇ηts(s)−∇ut,∇ut⟩ds

≤ 2

∫ ∞

0

µ(s)∥∇ηts(s)∥∥∇ut∥ds+ 2κ(0)∥∇ut∥2

≤
∫ ∞

0

µ(s)∥∇ηts(s)∥2ds+ C∥∇ut∥2

= −
∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C∥ut∥21. (4.10)
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Now we define the functional

Λ = Λ(S(t)z0) = ∥ut∥2 + ∥∇ut∥2 + 2Φ0(ut) + 2⟨f(x, u), ut⟩+ 2⟨∇u,∇ut⟩+ 2

∫ ∞

0

µ(s)⟨∇ηt(s),∇ut⟩ds+K,

fulfils for K = K(B0, Cν1
) > 0 large enough the uniform controls

∥ut∥21 ≤ 2Λ ≤ C(1 + ∥ut∥21 + 2⟨ϕ(ut), ut⟩).
In particular, we deduce from (4.2) that∫ 1

0

Λ(S(t)z0)dt+

∫ 1

0

∫ ∞

0

−µ′(s)∥∇ηt(s)∥2dsdt ≤ C.

Combining (4.9)-(4.10), we obtain

d

dt
Λ + ∥utt∥2 ≤ −

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C∥ut∥21 +K.

Thus,
d

dt
Λ + ∥utt∥2 ≤ CΛ−

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+K. (4.11)

Therefore, multiplying at every fixed time t ∈ [0, 1] both terms of (4.11), we get

d

dt
[tΛ] ≤ CΛ−

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+K,

and subsequent integration on [0, 1] gives

Λ(S(1)z0) ≤ C

∫ 1

0

Λ(S(t)z0)dt+ C ≤ C.

Hence, we can choose

B1 = S(1)B0 ⊂ B0

and applying lemma 4.4, we have

sup
t≥0

sup
z0∈B1

Λ(S(t)z0) ≤ sup
z0∈B0

Λ(S(1)z0) ≤ C,

establishing the desired bound

sup
t≥0

sup
z0∈B1

∥ut(t)∥1 ≤ C.

On the other hand, for initial data z0 ∈ B1, the inequality (4.11) improves to

d

dt
Λ + ∥utt∥2 ≤ −

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C.

Integrating the above inequality over [0, 1], we provide the remaining integral control. □

Lemma 4.6. There exists an invariant absorbing set B0 satisfying

sup
t≥0

sup
z0∈B0

(
∥ut(t)∥21 + ∥utt∥2 +

∫ t+1

t

∥utt(r)∥21dr
)
<∞.

Proof. Taking initial data z0 ∈ B1, with B1 is the invariant absorbing set of the previous lemma.
Differentiating (2.2) with respect to time and then multiplying both terms by 2utt, we get

d

dt

(
∥utt∥2 + ∥∇ut∥2 + λ∥ut∥2

)
+ 2∥∇utt∥2 + 2⟨ϕ′(x, ut)utt, utt⟩

= − 2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇utt⟩ds− 2⟨f ′u(x, u)ut, utt⟩+ 2⟨λutt − ϕ′c(x, ut)utt, utt⟩.

Since ϕ′(x, ut) ≥ 0,

2⟨ϕ′(x, ut)utt, utt⟩ ≥ 0.

Using Lemma 4.5 and (4.1), we can see that

−2⟨f ′u(x, u)ut, utt⟩ ≤ ∥f ′u(x, u)∥L3/2∥ut∥L6∥utt∥L6 ≤ ∥utt∥21 + C
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Besides,

2⟨λutt − ϕ′c(x, ut)utt, utt⟩ ≤ C∥utt∥2 + C,

and

−2

∫ ∞

0

µ(s)⟨∇ηtt(s),∇utt⟩ds = −2

∫ ∞

0

µ(s)⟨∇ut −∇ηts(s),∇utt⟩ds

≤ d

dt
(−2κ(0)∥∇ut∥2) + 2

∫ ∞

0

µ(s)∥∇ηts(s)∥∥∇utt∥ds

≤ −2κ(0)
d

dt
∥∇ut∥2 −

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ ∥∇utt∥2.

Summarizing, we arrive at

d

dt
Λ + (∥∇utt∥2 + ∥utt∥2) ≤ CΛ−

∫ ∞

0

µ′(s)∥∇ηt(s)∥2ds+ C (4.12)

where Λ = ∥utt∥2 + (1 + 2κ(0))∥∇ut∥2 + λ∥ut∥2.
Using Lemma 4.5, we get ∫ 1

0

Λ(S(t)z0)dt ≤ C.

Therefore, multiplying by t and integrating on [0, 1], we obtain

Λ(S(1)z0) ≤ C.

Putting

B = S(1)B1 ⊂ B1,

we deduce from lemma 4.4 that

sup
t≥0

sup
z∈B

(∥ut(t)∥21 + ∥utt∥2) = sup
t≥0

sup
z∈B

Λ(S(t)z0) ≤ C.

Now, choosing initial data z0 ∈ B, we can rewrite (4.12) as follow

d

dt
Λ + ∥utt∥21 ≤ −C

∫ ∞

0

µ′(s)∥ηt(s)∥2ds+ C.

Integrating from t to t+ 1 and using (4.2) the proof is over.
□

4.2. Asymptotic compactness. One of the main difficulties of the problem is, of course, that the Sobolev
embeddings are no longer compact.

For any r > 0 introduce two smooth positive functions φi
r : R3 → R+, i = 0, 1, such that

φ0
r(x) + φ1

r(x) = 1 ∀x ∈ R3,

and

φ0
r(x) = 0 if |x| ≤ r,

φ1
r(x) = 0 if |x| ≥ r + 1.

To make the asymptotic regular estimates, we decompose f and define hi, i = 0, 1 as follows:

−f(x,m) + h(x)− ϕc(x, ut) + g(x, 0) = −f0(x,m) + h0 − f1(x,m) + h1,

where

h0 = (h(x)− ϕc(x, ut) + g(x, 0))φ0
r(x),

h1 = (h(x)− ϕc(x, ut) + g(x, 0))φ1
r(x),

and fi ∈ C1(R,R), f0(x, 0) = 0 such that

f0(x,m) =

(
f(x,m) + (ν1 + d1ν2)m+

(Cν1 + d1Cν1

m

)
σ(m), f1(x,m) = f(x,m)− f0(x,m),
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with σ : R → [0, 1] is a Lipschitz function where σ(m) = 0 if |m| ≤ 1 and σ(m) = 1 if |m| > 2.
Therefore, for some C > 0, the nonlinearities fi satisfy

f0(x,m)m ≥ 0, F0(x,m) =

∫ m

0

f0(x, y)dy ≥ 0, (4.13)

and
|f0(x,m)| ≤ C|m|5, (4.14)

|f1(x,m)| ≤ C(1 + |m|). (4.15)

Finally,

h1 = 0 for m ∈ R, |x| ≥ r + 1, and ∥h0∥ → 0 as r → ∞.

Now, we decompose the solution S(t)z0 = z(t) of problem (2.2) as follows

S(t)z0 = S1(t)z0 + S2(t)z0,

where S1(t)z0 = z1(t) and S2(t)z0 = z2(t), that is, z = (u, ut, η
t) = z1 + z2, with

u = v + w, ηt = ξt + ζt,

z1 = (v, vt, ξ
t), z2 = (w,wt, ζ

t),

solve the following problems
∂ttv −∆∂tv + λvt −∆v + λv −

∫ ∞

0

µ(s)∆ξt(s)ds+ f0(x, v) + ϕ(x, ut)− ϕ(x,wt) = h0,

∂tξ
t = −∂sξt + vt,

(v(0), vt(0), ξ
0) = z0,

(4.16)

and 
∂ttw −∆∂tw + λwt −∆w + λw −

∫ ∞

0

µ(s)∆ζt(s)ds

+ f0(x, u)− f0(x, v) + ϕ(x,wt) = h1 + λut − f1(x, u),

∂tζ = −∂sζ + wt,

(w(0), wt(0), ζ
0) = (0, 0, 0).

(4.17)

By the standard Galerkin method, problems (4.16)-(4.17) are easily seen to satisfy existence and continuous
dependence results analogous to those of Theorem 3.1.
We will establish some a priori estimates about the solutions of (4.16) and (4.17). Firstly, we have some
preliminaries lemmas.

Lemma 4.7. The uniform bound ∥v∥21+∥vt∥2+
∫∞
0
µ(s)∥∇ξt∥2ds ≤ C holds, along with the integral estimate∫ ∞

0

∥vt(t)∥21dt ≤ C. (4.18)

Proof. Multiplying the first equation of (4.16) by 2vt we get

d

dt

(
∥vt(t)∥2 + λ∥v(t)∥2 + ∥∇v(t)∥2 +

∫ ∞

0

µ(s)∥∇ξt∥2ds+ 2⟨F0(x, v), 1⟩
)

+ 2λ∥vt(t)∥2 + 2∥∇vt(t)∥2 − 2

∫ ∞

0

µ′(s)∥∇ξt∥2ds+ 2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩ = 2⟨h0, vt⟩.

From (2.4), (H1) and applying the Young inequality, we get

2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩ = 2⟨ϕ′(x, ut + θwt)vt, vt⟩ ≥ 0, 0 < θ < 1;

−2

∫ ∞

0

µ′(s)∥∇ξt∥2ds > 0, and 2⟨h0, vt⟩ ≤ C∥h0∥2 + λ∥vt(t)∥2.

Thus, we get

d

dt

(
∥vt(t)∥2 + λ∥v(t)∥2 + ∥∇v(t)∥2 +

∫ ∞

0

µ(s)∥∇ξt∥2ds+ 2⟨F0(x, v), 1⟩
)
+ a∥vt(t)∥21 ≤ C∥h0∥2,
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implying that

∥vt(t)∥2 + ∥v(t)∥21 +
∫ ∞

0

µ(s)∥∇ξt∥2ds+
∫ t

0

∥vt(r)∥21dr

≤ C

(
∥vt(t)∥2 + λ∥v(t)∥2 + ∥∇v(t)∥2 +

∫ ∞

0

µ(s)∥∇ξt∥2ds+ 2⟨F0(x, v), 1⟩
)
+

∫ t

0

∥vt(r)∥21dr ≤ C.

Since t ≥ 0 is arbitrary, we are finished. □

Collecting Lemma 4.6 and (4.18) we draw an immediate corollary.

Corollary 4.1. There is M =M(ρ2) > 0 such that, for any time T ≥ 1, the estimate

∥wt(tT )∥1 ≤M

occurs for some tT = tT (z0) ∈ [T − 1, T ].

Lemma 4.8. The uniform bound ∥wt∥1 ≤ C holds.

Proof. Multiplying the first equation of (4.17) by 2wtt we get

d

dt
Λ + 2∥wtt∥2 ≤ 2⟨h1 + λut − f1(x, u), wtt⟩+ 2∥wt∥2

+ 2⟨f ′0(x, u)ut − f ′0(x, v)vt, wt⟩+ 2

∫ ∞

0

µ(s)∥∇ζt∥∥∇wtt∥ds,

where Λ = λ∥wt∥2 + ∥∇wt∥2 + Φ0(wt) + 2λ⟨wt, w⟩ + 2⟨∇wt,∇w⟩ + 2⟨f0(x, u) − f0(x, v), wt⟩ + K, and
K = K(ρ1) > 0 large enough in order to have

∥wt∥21 ≤ Λ ≤ C(1 + ∥wt∥61).
Indeed, thanks to Lemmas 4.6 and 4.7,

2|⟨f0(x, u)− f0(x, v), wt⟩| ≤ 2∥f0(x, u)− f0(x, v)∥L6/5∥wt∥L6 ≤ 1

4
∥wt∥21 + C,

and
∥wt∥21 ≤ ∥vt∥21 + ∥ut∥21 ≤ ∥vt∥21 + C,

the right-hand side is controlled by

2(∥h1∥+ λ∥ut∥+ ∥f1(x, u)∥)∥wtt∥+ 2∥wt∥2

+ 2 (∥f ′0(x, u)∥L3/2∥ut∥L6 + ∥f ′0(x, v)∥L3/2∥vt∥L6) ∥wt∥L6 + 2

∫ ∞

0

µ(s)∥∇ζt∥∥∇wtt∥ds

≤ 2∥wtt∥2 + C∥wt∥21 + C∥vt∥1∥wt∥1 + C

≤ 2∥wtt∥2 + C∥vt∥21 + C.

Thus, we obtain

d

dt
Λ ≤ C∥vt∥21 + C. (4.19)

Integrating (4.19) over [t, T ], T > 0, for some positive t ≥ T − 1, and using (4.18), we get

∥wt(T )∥21 ≤ 2Λ(T ) ≤ C + 2Λ(t) ≤ C(1 + ∥wt∥61).
If T ≤ 1 we choose t = 0, otherwise we choose t = tT as in Corollary 4.1. In either case, the desired bound
follows. □

Combining Lemmas 4.3, 4.6 and 4.7, we get

∥u∥21 + ∥v∥21 + ∥w∥21 + ∥ut∥21 + ∥vt∥21 + ∥wt∥21 + ∥ηt(s)∥21,µ ≤ C. (4.20)

Firstly, we prove that the solution v becomes small as r → ∞ and t→ ∞.

Lemma 4.9. Assume that hypotheses of f0, ϕ and h0 hold. Then the solutions of equation (4.16) satisfy the
following estimate: for every ω > 0 there exist Tω > 0, rω > r0 and a constant γ2 > 0, such that the solution
v to (4.16), corresponding to r = rω, fulfills the inequality

∥S1(t)z0∥2H1
≤ ∥z0∥H1

e−γ2t + ω, for all t ≥ 0.
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Proof. Multiplying the first equation of (4.16) by vt + av and adding to both sides the term

d

dt
j

∫ ∞

0

µ(s)∥ξt∥2ds− 2j

∫ ∞

0

µ′(s)∥ξt∥2ds = 2j

∫ ∞

0

µ(s)⟨ξt(s), vt⟩ds

≤ jk∥vt(t)∥2 + j

∫ ∞

0

µ(s)∥ξt(s)∥2ds,

we get

d

dt
Eja + aλ∥v(t)∥2 + 2a∥∇v(t)∥2 + λ∥vt(t)∥2 + 2∥∇vt(t)∥2

+ 2a⟨f0(x, v), v⟩+ 2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩

≤ C∥h0∥2 + jk∥vt(t)∥2 + j

∫ ∞

0

µ(s)∥ξt(s)∥2ds− 2a⟨ϕ(x, ut)− ϕ(x,wt), v⟩.

where

Eja =∥vt(t)∥2 + λ(1 + a)∥v(t)∥2 + (1 + a)∥∇v(t)∥2 +
∫ ∞

0

µ(s)(j∥ξt(s)∥2 + ∥∇ξt(s)∥2)ds

+ 2⟨F0(x, v), 1⟩+ 2a⟨ut, u⟩.

Using (4.13), (4.14) and (4.20), we get

∥z1j∥2H1
≤ 2Ej0 ≤ 4Eja ≤ 8Ej0 ≤ C∥z1j∥2H1

. (4.21)

From Lemma 2.1 and (4.20), we get

2⟨ϕ(x, ut)− ϕ(x,wt), vt⟩ ≥ 0,

and

2a⟨ϕ(x, ut)− ϕ(x,wt), v⟩ ≤ 2a∥ϕ(x, ut)− ϕ(x,wt)∥L6/5∥v∥L6

≤ Ca∥vt∥1∥v∥1 ≤ Ca1/2∥vt∥21 + Ca3/2∥v∥21.

Now we also define the functional

Λja(t) = Eja(t) + aΨj(t),

where Ψ(t) =
∫∞
0
κ(s)(j∥ξt(s)− v(t)∥2 + ∥∇(ξt(s)− v(t))∥2ds > 0.

Using (4.21), Lemma 4.2 and Young inequality, we have

∥z1j∥2H1
≤ Λj0(t) ≤ 2Λja(t) ≤ 4Λj0(t) ≤ C∥z1j∥2H1

.

and the inequality

d

dt
Ψ(t) +

∫ ∞

0

µ(s)(j∥ξt∥2 + ∥∇ξt∥2)ds = 2

∫ ∞

0

µ(s)j⟨ξt, v⟩+ ⟨∇ξt,∇v⟩ds

≤ 1

2

∫ ∞

0

µ(s)(j∥ξt∥2 + ∥∇ξt∥2)ds+ 2k(j∥v∥2 + ∥∇v∥2).

Therefore, exist positive constant γ such that

d

dt
Λja + 2γΛja ≤ 4kjΛj0 + C∥h0∥2. (4.22)

Putting j = 0 in (4.22) and subsequently substituting the result into (4.22) with j = 1, we obtain

∥v(t)∥21 + ∥vt(t)∥2 + ∥ξt(s)∥21,µ ≤ ∥z0∥H1
e−γ2t + ω.

where the constant ω depends on ∥h0∥ with ∥h0∥ → 0 as r → ∞. This completes the proof.
□

Given R > 0, we shall denote B(R) = {x ∈ R3 : |x| ≤ R}. Based on Lemma 4.9, any solution (w,wt, ζ
t)

to (4.17) solves the Dirichlet problem on the bounded domain B(R), in the time interval [0, Tω]. Namely,
for every t ∈ [0, Tω],

(w(t), wt(t), ζ
t(s))|∂B(R) = 0,∀s > 0.



STRONGLY DAMPED WAVE EQUATIONS WITH MEMORY 17

Next, we prove that the solution (w,wt, ζ
t) to (4.17) identically vanishes outside the set B(R) × [0, Tω].

As in [1], given ρ > 0, we introduce the function ψρ : R3 → [0, 1] as

ψρ(x) =


0, |x| < ρ+ 1,

sin2
[
π

2

(
|x|
ρ+ 1

− 1

)]
, ρ+ 1 ≤ |x| ≤ 2ρ+ 2,

1 |x| > 2ρ+ 2.

Therefore, we can easily obtain the following estimates hold for all x ∈ R:

|∇ψρ(x)| ≤
π

2(ρ+ 1)
(4.23)

|∇ψ2
ρ(x)| ≤

π

ρ+ 1
ψρ(x)

|∆ψρ(x)| ≤
3π2

2(ρ+ 1)2

Lemma 4.10. There exists R > 0, Tω > 0 such that the solution (w,wt, ζ
t) to (4.17) identically vanishes

outside the set B(R)× [0, Tω], in the sence that fulfills the inequality

∥ψρw∥21 + ∥ψρwt∥2 + ∥ψρζ
t∥21,µ ≤ ω, ∀t ≥ Tω.

Proof. Taking the product in H0 of (4.17) and ψ2
ρwt, and adding to both sides the term

d

dt

∫ ∞

0

µ(s)∥ψρζ
t∥2ds− 2

∫ ∞

0

µ′(s)∥ψρζ
t∥2ds = 2

∫ ∞

0

µ(s)⟨ψ2
ρζ

t(s), wt⟩ds.

we get

1

2

d

dt

(∫
R3

ψ2
ρ|wt|2dx+ λ

∫
R3

ψ2
ρ|w|2dx+

∫ ∞

0

µ(s)∥ψρζ
t∥2ds

)
−
∫ ∞

0

µ′(s)∥ψρζ
t∥2ds+ λ

∫
R3

ψ2
ρ|wt|2dx−

∫
R3

ψ2
ρwt∆wdx−

∫
R3

ψ2
ρwt∆wtdx

−
∫ ∞

0

µ(s)

∫
R3

ψ2
ρwt∆ζ

t(s)dxds+

∫
R3

ψ2
ρϕ(x,wt)wtdx

=

∫ ∞

0

µ(s)

∫
R3

ζt(s)ψ2
ρwtdxds−

∫
R3

ψ2
ρ(f0(x, u)− f0(x, v))wtdx+

∫
R3

ψ2
ρ(h1 + λut − f1(x, u))wtdx.

Applying the Hölder, Young inequalities and (4.20), we obtain∫ ∞

0

µ(s)

∫
R3

ψ2
ρζ

t(s)wtdxds ≤
∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|ζt(s)||wt|dxds

≤
∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|ζt(s)|2dxds+ k

∫
R3

ψ2
ρ|wt|2dx,

∫
R3

ψ2
ρwt∆wdx = −1

2

d

dt

∫
R3

ψ2
ρ|∇w|2dx−

∫
R3

∇ψ2
ρwt∇wdx

≤ −1

2

d

dt

∫
R3

ψ2
ρ|∇w|2dx+

π

ρ+ 1
∥wt∥∥∇w∥

≤ −1

2

d

dt

∫
R3

ψ2
ρ|∇w|2dx+

C

ρ+ 1
,

∫
R3

ψ2
ρwt∆wtdx = −

∫
R3

ψ2
ρ|∇wt|2dx−

∫
R3

∇ψ2
ρwt∇wtdx

≤ −
∫
R3

ψ2
ρ|∇wt|2dx+

π

ρ+ 1

∫
R3

ψρ|wt||∇wt|dx

≤ −
∫
R3

ψ2
ρ|∇wt|2dx+

π2

4(ρ+ 1)2
∥wt∥2
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≤ −
∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
.

Note that h1(x, t) = 0 for m ∈ R, |x| ≥ r + 1, we get
∫
R3 ψ

2
ρh1wtdx = 0.

Applying Lemma 4.9 and (4.15), we obtain∫
R3

ψ2
ρf1(x, u)wtdx ≤ C

∫
R3

ψ2
ρ(|v|+ |w|)|wt|dx

≤ C

∫
R3

ψ2
ρ|wt|2dx+ C

∫
R3

ψ2
ρ|w|2dx+ aω.

∫
R3

ψ2
ρλutwtdx =

∫
R3

ψ2
ρλvtwtdx+

∫
R3

ψ2
ρλ|wt|2dx

≤ C

∫
R3

ψ2
ρ|wt|2dx+ a

∫
R3

ψ2
ρ|vt|2dx

≤ C

∫
R3

ψ2
ρ|wt|2dx+ aω,

and ∫ ∞

0

µ(s)

∫
R3

ψ2
ρwt∆ζ

t(s)dxds

= −
∫ ∞

0

µ(s)

∫
R3

∇ψ2
ρwt∇ζt(s)dxds−

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ∇wt∇ζt(s)dxds

≤ π

ρ+ 1

∫ ∞

0

µ(s)

∫
R3

ψρ|wt||∇ζt(s)|dxds−
1

2

d

dt

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

+

∫ ∞

0

µ′(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

≤ π2

4(ρ+ 1)2
∥wt∥2 +

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds−

1

2

d

dt

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds

≤ C

ρ+ 1
+

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds−

1

2

d

dt

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∇ζt(s)|2dxds,

where
∫∞
0
µ′(s)

∫
R3 ψ

2
ρ|∇ζt(s)|2dxds ≤ 0.

Using (1.6) and (4.20) and Lemma 2.1 we get∫
R3

ψ2
ρ(f0(x, u)− f0(x, v))wtdx

≤ C(1 + ∥u∥41 + ∥v∥41)∥ψρw∥1∥ψρwt∥1

≤
∫
R3

ψ2
ρ|∇wt|2dx+ C

∫
R3

ψ2
ρ|∇w|2dx+

C

ρ+ 1
,

and ∫
R3

ψ2
ρϕ(x,wt)wtdx ≥ 0.

Summarizing, we arrive at

d

dt
y(t) ≤ Cy(t) +

C

ρ+ 1
+ 2aω,

where y(t) =
∫
R3 ψ

2
ρ|wt|2dx+

∫
R3 ψ

2
ρ(λ|w|2 + |∇w|2)dx+

∫∞
0
µ(s)ψ2

ρ(∥ζt∥2 + ∥∇ζt∥2)ds.
Applying the Gronwall lemma on [0, Tω], recall that y(0) = 0, we obtain

y(Tω) ≤ Tωe
CTω

(
C

ρ+ 1
+ aω

)
.

We can easily see that

∥ψρwt∥2+∥ψρw∥21+∥ψρζ
t(s)∥21,µ ≤ Cy(Tω)+

∫
R3

|∇ψρ|2|∇w(Tω)|2dx+
∫ ∞

0

µ(s)

∫
R3

|∇ψρ|2|∇ζTω (s)|2dxds.
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On the other hand, using (4.23), we get∫
R3

|∇ψρ|2|∇w(Tω)|2dx+

∫ ∞

0

µ(s)

∫
R3

|∇ψρ|2|∇ζTω (s)|2dxds ≤ C

ρ+ 1
.

Thus, we conclude that

∥ψρwt∥2 + ∥ψρw∥21 + ∥ψρζ
t(s)∥21,µ ≤ C

ρ+ 1
+
ω

2
.

for fix C = C(ω), independent of ρ, and a small enough. Choosing ρ ≥ rω large enough such that
C

ρ+ 1
≤ ω

2
we are done. □

To state the next lemma, which provides the compact part in the decomposition of the solution, some
definitions are needed. Let B ⊂ R3 be a smooth bounded domain. Define the linear operator

Aw = −∆w, D(A) = H2(B) ∩H1
0 (B).

Moreover, introduce the Hilbert spaces Vα = D(Aα/2), endowed with the inner products ⟨·, ·⟩ = ⟨Aα/2, Aα/2⟩
and norms ∥ · ∥α.

By virtue of Lemma 4.10, any solution w of (4.17) solves the Dirichlet problem on a fixed bounded domain
wtt +Awt +Aw +

∫ ∞

0

µ(s)Aζt(s)ds

+ f0(x, u)− f0(x, v) + ϕ(x,wt) = h1 + λvt − λw − f1(x, u), on B(R)× [0, Tω],

∂tζ = −∂sζ + wt,

(w,wt, ζ
t)|∂B(R) = 0, (w(0), wt(0), ζ

0) = (0, 0, 0).

(4.24)

To prove the compactness of S(t), we replace (1.8) with the more restrictive assumption following:

|g′m(x,m)| ≤ C(1 + |m|p−1), 1 ≤ p < 5, and |g′x(x,m)| ≤ C|m|p. (4.25)

Lemma 4.11. There exists a positive constant Nω > 0 such that the solution w to (4.24) at time Tω,
corresponding to r = rω, fulfills the inequality

∥(w(t), wt(t), ζ
t)∥2Hν+1

≤ Nω (4.26)

for every z0 ∈ H1 and 0 < ν < 1
2 .

Proof. Multiplying the first equation of (4.24) by Aνwt(t), we have

d

dt

(
∥wt∥2ν + ∥w∥2ν+1 + ∥ζt∥2ν+1,µ

)
− 2

∫ ∞

0

µ′(s)∥ζt(s)∥2ν+1ds+ 2∥wt∥2ν+1

≤ − 2⟨f0(x, u)− f0(x, v), A
νwt⟩ − 2⟨ϕ(x,wt), A

νwt⟩+ 2⟨h1 + λvt + λw − f1(x, u), A
νwt⟩.

On the other hand, using (4.20) and the embeddingH1
0 (B(R)) ↪→ L6(B(R)) andD(A

1−ν
2 ) ↪→ L

6
3−2(1−ν) (B(R)),

we have

2⟨ϕ(x,wt), A
νwt⟩ ≤ C∥wt∥p

L
6p

5−2ν

∥Aνwt∥
L

6
3−2(1−ν)

≤ C∥wt∥p1∥wt∥ν+1

≤ 1

4
∥wt∥2ν+1 + C.

Using (4.1), the condition (1.7) and ν < ν+1
2 as 0 < ν < 1, we get

2⟨f0(x, u)− f0(x, v), A
νwt⟩

≤ C

∫
B(R)

(1 + |u|4 + |v|4)|w||Aνwt|dx

≤ C

(∫
B(R)

(1 + |u|4 + |v|4) 3
2 dx

) 2
3
(∫

B(R)

|w|
6

3−2(1+ν) dx

) 3−2(1+ν)
6
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×

(∫
B(R)

|Aνwt|
6

3−2(1−ν) dx

) 3−2(1−ν)
6

≤ C(1 + ∥u∥4L6 + ∥v∥4L6)∥w∥
L

6
3−2(1+ν)

∥Aνwt∥
L

6
3−2(1−ν)

≤ C(1 + ∥u∥41 + ∥v∥41)∥w∥ν+1∥wt∥ν+1

≤ 1

4
∥wt∥2ν+1 + C(ρ1)∥w∥2ν+1,

and

2⟨q, Aνwt⟩ ≤ 2∥q∥∥Aνwt∥

≤ 1

2
∥wt∥2ν+1 + C, where q = h1 + λvt + λw − f1(x, u).

Notice that −
∫∞
0
µ′(s)∥ζt(s)∥2ν+1ds ≥ 0, so we can omit this term in the above inequality. Thus,

d

dt

(
∥wt∥2ν + 2∥w∥2ν+1 + ∥ζt∥2ν+1,µ

)
≤ C

(
∥wt∥2ν + 2∥w∥2ν+1 + ∥ζt∥2ν+1,µ

)
+ C.

Hence, the conclusion is drawn from the Gronwall lemma.
□

In addition, for any ζ0 ∈ L2
µ(R+, H1), the Cauchy problem (see e.g. [2, 14]){

∂tζ
t = −∂sζt + wt, t > 0,

ζ0 = ζ0 = 0,

has a unique solution ζt ∈ C((0,∞);L2
µ(R+, H1)), and

ζt(s) =

{
w(t)− w(t− s), 0 < s ≤ t,

ζ0(s− t)− ζ0(0) + w(t)− w(0), s > t.

Thus, thanks to ζ0(x, s) = 0, we have

ζt(s) =

{
w(t)− w(t− s), 0 < s ≤ t,

w(t), s > t.
(4.27)

Let B0 be the bounded absorbing set obtained in Lemma 4.3, we now prove the following result.

Lemma 4.12. Setting

KT = PS2(T )B0,

for T > 0 large enough, where {S2(t)}t≥0 is the solution process of (4.24), P : H1
0 (B(R)) × L2(B(R)) ×

L2
µ(R+, H1

0 (B(R))) → L2
µ(R+, H1

0 (B(R))) is the projection operator. Then there is a positive constant N1 =
N1(∥B0∥H1) such that

(i) KT is bounded in L2
µ(R+, Vν+1) ∩H1

µ(R+;H1
0 (B(R)),

(ii) supξ∈KT
∥ξ(s)∥2

H1
0 (B(R))

≤ N1.

Moreover, KT is relatively compact in L2
µ(R+, H1

0 (B(R))).

Proof. From (4.27) we have

∂sξ
tε(s) =

{
w(t− s), 0 < s ≤ t,

0, s > t,

which, combining with Lemma 4.11, implies (i).
After that, using (4.27) once again, we can easily deduce that

∥ξT (s)∥2H1
0 (B(Rω))

≤

{∫ s

0
∥w(T − r)∥2

H1
0 (B(Rω))

dr ≤
∫ T

0
∥w(T − r)∥2

H1
0 (B(Rω))

dr, 0 < s ≤ T,∫ T

0
∥w(T − r)∥2

H1
0 (B(Rω))

dr, s > T.
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By virtue of (4.26), we know that (ii) holds. Because Vν+1 ↪→ H1
0 (B(Rω)) compactly, we conclude that KT

is relatively compact in L2
µ(R+, H1

0 (B(Rω))) thanks to the following lemma.

Lemma 4.13. [14] Assume that µ ∈ C1(R+)∩L1(R+) is a nonnegative function and satisfies the condition:
if there exists s0 ∈ R+ such that µ(s0) = 0, then µ(s) = 0 for all s ≥ s0. Moreover, let X0, X1, X2 be Banach
spaces, here X0, X2 are reflexive and satisfy

X0 ↪→ X1 ↪→ X2,

where the embedding X0 ↪→ X1 is compact. Let C ⊂ L2
µ(R+, X1) satisfy

(i) C is a subset in L2
µ(R+, X0) ∩H1

µ(R+, X2);

(ii) supη∈C ∥η(s)∥2X1
≤ h(x, s),∀s ∈ R+, where h ∈ L1

µ(R+).

Then C is relatively compact in L2
µ(R+, X1).

□

Proof of Theorem 4.1. By Lemma 4.3, the family of semigroup S(t) has a bounded absorbing B0 in H1.
Moreover, S(t) is global asymptotically compact in H1 due to Lemmas 4.9, 4.11 and 4.12. Therefore, the
family of semigroup S(t) has the global attractor A in H1.

□

In the next sections, we will prove the existence of exponential attractors of equation (1.1). This requires
that the solutions of system (1.1) have higher-order regularity, on this account, we need to show that u(t)
and ηt are bounded in H2.

4.3. Higher-order regularity. From Theorem 4.1, we immediately obtain the following regularity result.

Lemma 4.14. The attractor A is bounded in Hν+1, for all 1
4 ≤ ν < 1

2 .

To prove A is bounded in H2, we argue as follows. For z0 ∈ A, we split the solution S(t)z0 = z(t) into
the sum S1(t)z0 + S2(t)z0, where S1(t)z0 = v(t) and S2(t)z0 = w(t), instead of (4.16) and (4.17) solving,
respectively, 

∂ttv −∆∂tv + λvt −∆v + λv −
∫ ∞

0

µ(s)∆ξt(s)ds+ ϕ(x, ut)− ϕ(x,wt) = h0,

∂tξ
t = −∂sξt + vt,

(v(0), vt(0), ξ
0) = z0,

and 
∂ttw −∆∂tw + λwt −∆w + λw −

∫ ∞

0

µ(s)∆ζt(s)ds+ f(x, u) + ϕ(x,wt) = h1 + λut,

∂tζ = −∂sζ + wt,

(w(0), wt(0), ζ
0) = (0, 0, 0).

(4.28)

As the particular case of Lemma 4.9, we know that

∥S1(t)z0∥2H1
≤ Ce−γt + ω, ∀t ≥ 0. (4.29)

Besides, as in Lemmas 4.3, 4.6 and 4.7, we also obtain

∥u∥21 + ∥v∥21 + ∥w∥21 + ∥ut∥21 + ∥vt∥21 + ∥wt∥21 + ∥ηt(s)∥21,µ + ∥wtt∥2 ≤ C. (4.30)

Lemma 4.15. There exists Tω > 0 and ρ ≥ rω such that the solution w to (4.28) at time Tω, corresponding
to r = rω, fulfills the inequality

∥ψρw∥22 + ∥ψρwt∥21 + ∥ψρζ
t∥22,µ ≤ ω, ∀t ≥ Tω.

Proof. Taking the product in H0 of (4.17) and −ψ2
ρ∆wt, we get

1

2

d

dt

(∫
R3

ψ2
ρ|∇wt|2dx+

∫
R3

ψ2
ρ|∆w|2dx+

∫ ∞

0

µ(s)

∫
R3

ψ2
ρ|∆ζt(s)|2dxds

)
+

∫
R3

ψ2
ρ|∆wt|2dx+ λ

∫
R3

ψ2
ρ|∇wt|2dx−

∫ ∞

0

µ′(s)

∫
R3

ψ2
ρ|∆ζt(s)|2dxds
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+

∫
R3

∇ψ2
ρwtt∇wtdx−

∫
R3

ψ2
ρϕ(x,wt)∆wtdx−

∫
R3

ψ2
ρf(x, u)∆wtdx

= − λ

∫
R3

∇ψ2
ρwt∇wtdx− λ

∫
R3

∇ψ2
ρw∇wdx− λ

∫
R3

ψ2
ρ∇w∇wtdx+

∫
R3

ψ2
ρ(h1 + λut)∆wtdx. (4.31)

Applying the Hölder, Young inequalities and (4.30), we obtain∫
R3

∇ψ2
ρwtt∇wtdx ≤ π

ρ+ 1

∫
R3

ψρ|wtt||∇wt|dx

≤
∫
R3

ψ2
ρ|∇wt|2dx+

C

(ρ+ 1)2
∥wtt∥2

≤
∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
,

−λ
∫
R3

∇ψ2
ρwt∇wtdx ≤ π

ρ+ 1

∫
R3

ψρ|wt||∇wt|dx

≤
∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
,

−λ
∫
R3

∇ψ2
ρw∇wdx ≤ π

ρ+ 1

∫
R3

ψρ|w||∇w|dx

≤ C

ρ+ 1
,

−2λ

∫
R3

ψ2
ρ∇w∇wtdx ≤

∫
R3

ψ2
ρ|∇wt|2dx+ λ2

∫
R3

ψ2
ρ|∇w|2dx,

Note that h1(x, t) = 0 for m ∈ R, |x| ≥ r + 1, we get
∫
R3 ψ

2
ρh1wtdx = 0. Using (4.29) and (4.30), we obtain

−2λ

∫
R3

ψ2
ρut∆wtdx ≤ 2

∫
R3

∇ψ2
ρ|ut||∇wt|dx+ 2

∫
R3

ψ2
ρ|∇ut||∇wt|dx

≤ 2π

ρ+ 1

∫
R3

ψρ|ut||∇wt|dx+ 2

∫
R3

ψ2
ρ|∇(vt + wt)||∇wt|dx

≤ 2

∫
R3

ψ2
ρ|∇wt|2dx+

∫
R3

ψ2
ρ|∇vt||∇wt|dx+

C

ρ+ 1

≤ 3

∫
R3

ψ2
ρ|∇wt|2dx+ ω +

C

ρ+ 1
,

Applying (4.30), Lemma 4.14 and noting that D(A
ν+1
2 ) ↪→ L12, 1

4 ≤ ν < 1, we deduce that ∥u∥12L12 ≤
∥u∥12Hν+1

≤ C.

−
∫
R3

ψ2
ρf(x, u)∆wtdx

≤
∫
R3

ψ2
ρ|f ′u(x, u)||∇u||∇wt|dx+

∫
R3

ψ2
ρ|f ′x(x, u)||∇wt|dx+

∫
R3

∇ψ2
ρ|f(x, u)||∇wt|dx

≤ C

∫
R3

ψ2
ρ(1 + |u|4)|∇(v + w)||∇wt|dx+ C

∫
R3

ψ2
ρ|(v + w)|5|∇wt|dx+ C

∫
R3

∇ψ2
ρ(1 + |u|5)|∇wt|dx

≤ Cω +
1

2

∫
R3

ψ2
ρ|∆wt|2dx+ C

∫
R3

ψ2
ρ|∇wt|2dx+ C

∫
R3

ψ2
ρ|∇w|2dx+

C

ρ+ 1
.

Using (4.25), (4.30) and since −
∫
R3 ψ

2
ρϕ

′
wt
(x,wt)|∇wt|2dx ≤ 0, we have

−
∫
R3

ψ2
ρϕ(x,wt)∆wtdx =

∫
R3

ψ2
ρϕ

′
wt
(x,wt)|∇wt|2dx+

∫
R3

ψ2
ρϕ

′
x(x,wt)|∇wt|dx+

∫
R3

∇ψ2
ρϕ(x,wt)∇wtdx

≤ C

∫
R3

ψ2
ρ|wt|p|∇wt|dx+

C

ρ+ 1

∫
R3

ψρ|wt|4|∇wt|dx
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≤ 1

4

∫
R3

ψ2
ρ|∆wt|2dx+ C

∫
R3

ψ2
ρ|∇wt|2dx+

C

ρ+ 1
.

Plugging all the above inequalities into (4.31), it follows that

d

dt
y(t) ≤ Cy(t) + C

(
1

ρ+ 1
+ ω

)
,

where y(t) =
∫
R3 ψ

2
ρ|∇wt|2dx+

∫
R3 ψ

2
ρ|∆w|2dx+

∫∞
0
µ(s)ψ2

ρ∥∆ζt∥2ds.
Applying the Gronwall lemma on [0, Tω], recall that y(0) = 0, we obtain

y(Tω) ≤ CTωe
CTω

(
1

ρ+ 1
+ ω

)
. (4.32)

Combining (4.32) and Lemma 4.10, we conclude that

∥ψρwt∥21 + ∥ψρw∥22 + ∥ψρζ
t(s)∥22,µ ≤ Cω.

for fix C = C(R), independent of ρ. □

Lemma 4.16. Under the assumptions (H1) − (H4) (in (H3), (1.8) is replaced by (4.25)), the following
estimate holds:

∥S2(t)z0∥2H2
≤M0, (4.33)

for some M0 > 0.

Proof. For a ∈ [0, 1) to be fixed later, multiplying the first equation of (4.28) by wt(t) − aw(t) in L2(R3),
and adding to both sides the term

d

dt

∫ ∞

0

µ(s)∥ζt∥2ds− 2

∫ ∞

0

µ′(s)∥ζt∥2ds = 2

∫ ∞

0

µ(s)⟨ζt(s), wt⟩ds,

and as in the proof of Lemma 4.11, we get

∥(w,wt, ζ
t)∥2H1

≤ N, for some N > 0. (4.34)

Besides, multiplying the first equation of (4.28) by −∆wt(t)− a∆w(t) in L2(R3), we obtain

1

2

d

dt

(
∥∇wt∥2 + (1 + a)∥∆w∥2 + λ(1 + a)∥∇w∥2 +

∫ ∞

0

µ(s)∥∆ζt∥2ds+ 2a⟨∇wt,∇w⟩
)

+ (λ− a)∥∇wt∥2 + ∥∆wt∥2 + aλ∥∇w∥2 + a∥∆w∥2 + a

∫ ∞

0

µ(s)⟨∆ζt,∆w⟩ds

−
∫ ∞

0

µ′(s)∥∆ζt(s)∥2ds+ ⟨f(x, u),−∆wt − a∆w⟩+ ⟨ϕ′wt
(x,wt)∇wt,∇wt⟩

= − a⟨ϕ′wt
(x,wt)∇wt,∇w⟩ − ⟨ϕ′x(x,wt),∇wt + a∇w⟩+ ⟨h1 + λut,−∆wt − a∆w⟩.

(4.35)

Applying Lemma 4.2, we have

d

dt
aΨ(t) + a

∫ ∞

0

µ(s)∥∆ζt(s)∥2ds = 2a

∫ ∞

0

µ(s)⟨∆ζt(s),∆w⟩ds

≤ 2a

∫ ∞

0

µ(s)∥∆ζt∥∥∆w∥ds

≤ a
1
2

∫ ∞

0

µ(s)∥∆ζt∥2ds+ a
3
2 ∥∆w∥2. (4.36)

Using Lemma 4.14 and Sobolev embedding D(A
ν+1
2 ) ↪→ L10, 1

5 ≤ ν < 1, we deduce that ∥u∥10L10 ≤ ∥u∥10Hν+1
≤

C, 1
5 ≤ ν < 1. Therefore

a⟨f(x, u),−∆wt − a∆w⟩ ≤ C(1 + ∥u∥5L10)(∥∆wt∥+ a∥∆w∥)

≤ 1

2
∥∆wt∥2 + a2∥∆w∥2 + C.

Exploiting Lemma 2.1 and (4.25), (4.34), we get

−a⟨ϕ′wt
(x,wt)∇wt,∇w⟩ ≤ Ca∥ϕ′wt

(x,wt)∥L3/2∥∇wt∥L6∥∇w∥L6
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≤ 1

4
(∥∆wt∥2 + a2∥∆w∥2) + C,

−⟨ϕ′x(x,wt),∇wt + a∇w⟩ ≤ ∥ϕ′x(x,wt)∥2L6/5 +
1

4
(∥∆wt∥2 + a2∥∆w∥2)

≤ 1

4
(∥∆wt∥2 + a2∥∆w∥2) + C,

and

⟨ϕ′wt
(x,wt)∇wt,∇wt⟩ ≥ 0.

Finally,

⟨h1 + λut,−∆wt − a∆w⟩ ≤ 1

4
∥wt∥22 + a2∥w∥22 + C.

Putting Λ(t) = ∥∇wt∥2 +(1+ a)∥∆w∥2 +λ(1+ a)∥∇w∥2 +
∫∞
0
µ(s)∥∆ζt∥2ds+2a⟨∇wt,∇w⟩+ aΨ(t) where

∥∇wt∥2 + ∥∆w∥2 + λ∥∇w∥2 +
∫ ∞

0

µ(s)∥∆ζt∥2ds

≤ Λ(t) ≤ 2

(
∥∇wt∥2 + ∥∆w∥2 + λ∥∇w∥2 +

∫ ∞

0

µ(s)∥∆ζt∥2ds
)
.

Summation of (4.35) and (4.36) and then combining all the above inequalities, we arrive at

d

dt
Λ(t) + αΛ(t) +

1

4
∥∆wt∥2 ≤ C. (4.37)

By the Gronwall lemma, and using (4.30) and Lemma 4.2, we can get (4.29) immediately. This completes
the proof.

□

Now, we have the following lemma

Lemma 4.17. For B is bounded set in H2, the following estimate holds:

sup
t≥0

sup
z0∈B

∥(u(t), ut(t), ηt(s))∥H2
≤ C, . (4.38)

Moreover, for every t1, t2 > 0, we have ∫ t2

t1

∥∆ut(r)∥2dr ≤ C. (4.39)

Proof. Let z = (u, ut, η
t) be a solution of (1.1) with initial data z0 ∈ B. Now recasting the proof of Lemma

4.16, we end up with an inequality analogous to (4.37) and (u, ut, η
t) in place of (w,wt, ζ

t). Since the initial
data belong to B ∈ H2, Applying the Gronwal lemma, we obtain (4.38). Besides, integrating (4.37) from t1
to t2 and using (4.38) we get (4.39). □

We have the following regularity result.

Theorem 4.18 (Regularity of the global attractor). Under the assumptions of (H1)− (H4) (with (1.8) by
(4.25)) for the memory term and the nonlinearity, and the assumption of (4.29), the global attractor A is
bounded in H2.

Next, we can take a compact set B1 ⊂ H2, such that B = ∪t≥TωS(t)B1 is a compact positive invariant set
in H2 under S(t).
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5. Exponential attractors

Despite the existence of an exponentially attracting set, quantitative information on the attraction rate
of the global attractor is usually very hard to find. To overcome this difficulty, it was introduced in [10] the
concept of exponential attractor.

Definition 5.1. A compact set E ∈ H1 is called an exponential attractor or inertial set for the semigroup
S(t) if the following conditions hold:

(i) E is positively invariant, i.e., S(t)E ⊂ E for every t ≥ 0;
(ii) E has finite fractal dimension in H1.
(iii) E is exponentially attracting for S(t).

Recall that the fractal dimension of a compact set K in a metric space X is defined by

dimX K = lim sup
ε→0

logN(ε,K)

log(1/ε)
,

where N(ε,K) is the smallest number of balls of radius ε necessary to cover K. The main result of this
section is the following.

Theorem 5.1. The semigroup S(t) acting on H1 possesses an exponential attractor E contained and bounded
in H2.

As a byproduct, we have the following.

Corollary 5.1. The global attractor A of S(t) has a finite fractal dimension in H1.

The proof of Theorem 5.1 is based on an abstract result from Danese et al. (2005), which we report here
below as a lemma, in a version specifically tailored to fit our particular problem. Now, we will make use of
the projections P1 and P2 of H1 onto its components H1 ×H0 and L2

µ(R+, H1), namely

P1(z) = P1(u, ut, η
t) = (u, ut) and P2(z) = P2(u, ut, η

t) = ηt.

Lemma 5.2. Let the following assumptions hold.

(i) There exists R⋆ > 0 such that the ball B⋆ = BH2(R⋆) is exponentially attracting.
(ii) There exists R1 > 0 with the following property: for any given R ≥ 0, there exists a nonnegative

function ψ vanishing at infinity such that

∥S(t)z0∥H2
≤ ψ(t) +R1,

for all z0 ∈ B(R).
(iii) For every R ≥ 0 and every θ > 0 sufficiently large,∫ 2θ

θ

∥∂t(u(t), ∂tu(t))∥2H1×H0
dt ≤ Q(R+ θ),

for all (u, ut) = P1S(t)z0.
(iv) For every fixed R ≥ 0, the semigroup S(t) : B → B admits a decomposition of the form S(t) =

S1(t) + S2(t) satisfying for all initial data z0i ∈ B(R)
∥S1(z01)− S1(z02)∥H1

≤ ψ(t)∥z01 − z02∥H1
,

and
∥S2(z01)− S2(z02)∥H2 ≤ Q(t)∥z01 − z02∥H1 ,

for both Q and the nonnegative function ψ vanishing at infinity. Moreover, the function

η̄t = P2S2(t)z01 − P2S2(t)z02

fulfills the Cauchy problem

∂tη̄
t = ∂sη̄

t + w̄t(t),

η̄0 = 0,

for some w̄ satisfying the estimate

∥w̄(t)∥1 ≤ Q(t)∥z01 − z02∥H1
.
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Then S(t) possesses an exponential attractor E contained in the ball B(R1).

Proof of Theorem 5.1. The proof amounts to verifying the four points of the above Lemma 5.2. Indeed,
combining (4.29), Lemma 4.15 and Lemma 4.16 we get (i) and (ii). Besides, (iii) is an immediate consequence
of Lemma 4.6. Accordingly, we are left to show the validity of (iv).

For every initial data z0 = (u0, v0, η0) ∈ B, denote S1(t)z0 = z1(t) the solution at time t to the linear
homogeneous problem 

∂ttv −∆∂tv −∆v + λv −
∫ ∞

0

µ(s)∆ξt(s)ds = 0,

∂tξ
t = −∂sξt + vt,

(v(0), vt(0), ξ
0) = z0,

and let

S2z0 = S1(t)z0 − S(t)z0 = z2(t).

Let R ≥ 0 be fixed, and let z01, z02 ∈ B. We decompose the difference

(ū(t), ūt(t), η̄
t) = S(t)z01 − S(t)z02 = (v̄(t), v̄t(t), ξ̄

t) + (w̄(t), w̄t(t), ζ̄
t)

where

(v̄(t), v̄t(t), ξ̄
t) = S1(t)z01 − S1(t)z02, and (w̄(t), w̄t(t), ζ̄

t) = S2(t)z01 − S2(t)z02

solve the problems 
∂ttv̄ −∆∂tv̄ −∆v̄ + λv̄ −

∫ ∞

0

µ(s)∆ξ̄t(s)ds = 0,

∂tξ
t = ∂sξ

t + vt,

(v(0), vt(0), ξ
0) = z01 − z02,

and 
∂ttw̄ −∆∂tw̄ −∆w̄ + λw̄ −

∫ ∞

0

µ(s)∆ζ̄t(s)ds

+ f(x, u1)− f(x, u2) + g(x, ∂tu1)− g(x, ∂tu2) = 0,

∂tζ = ∂sζ + w,

(w(0), wt(0), ζ
0) = (0, 0, 0).

(5.1)

We first note that, on account of (ii),

∥S(t)z0i∥H2
≤ C.

On the other hand, as the particular case of Lemma 4.9, we get

∥S1(t)z01 − S1(t)z02∥H1 ≤ Ce−γt∥z01 − z02∥H1 .

Now, for a ∈ [0, 1) to be fixed later, multiplying the first equation of (5.1) by w̄t(t) − aw̄(t) in L2(R3),
and adding to both sides the term

d

dt

∫ ∞

0

µ(s)∥ζ̄t∥2ds− 2

∫ ∞

0

µ′(s)∥ζ̄t∥2ds = 2

∫ ∞

0

µ(s)⟨ζ̄t(s), w̄t⟩ds,

and as in the proof of Lemma 4.11, we get

∥(w̄, w̄t, ζ̄
t)∥2H1

≤ N0, for some N0 > 0.

Next, multiplying the first equation of (5.1) by −∆w̄t(t)− a∆w̄(t) in L2(R3), we obtain

1

2

d

dt

(
∥∇w̄t∥2 + (1 + a)∥∆w̄∥2 + λ∥∇w̄∥2 +

∫ ∞

0

µ(s)∥∆ζ̄t∥2ds+ 2a⟨∇w̄t,∇w̄⟩
)

− a∥∇w̄t∥2 + ∥∆w̄t∥2 + aλ∥∇w̄∥2 + a∥∆w̄∥2 + a

∫ ∞

0

µ(s)⟨∆ζ̄t(s),∆w̄⟩ds−
∫ ∞

0

µ′(s)∥∆ζ̄t(s)∥2ds

= − ⟨f(x, u1)− f(x, u2),−∆w̄t − a∆w̄⟩ − ⟨g(x, ∂tu1)− g(x, ∂tu2),−∆w̄t − a∆w̄⟩.

Due to (1.8) and the Agmon inequality,

∥g(x, ∂tu1)− g(x, ∂tu2)∥ ≤ C∥∂tu1 − ∂tu2∥.
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Thus
−⟨g(x, ∂tu1)− g(x, ∂tu2),−∆w̄t − a∆w̄⟩ ≤ C∥ūt∥∥w̄t + aw̄∥2.

Besides, by (1.6),
−⟨f(x, u1)− f(x, u2),−∆w̄t − a∆w̄⟩ ≤ C∥ū∥1∥w̄t + aw̄∥2.

A final application of the Hölder inequality entails

d

dt
Λ(t) ≤ αΛ(t) + C(∥ū∥21 + ∥ūt∥2)

where Λ = ∥∇w̄t∥2 + (1 + a)∥∆w̄∥2 + λ∥∇w̄∥2 +
∫∞
0
µ(s)∥∆ζ̄t∥2ds+ 2a⟨∇w̄t,∇w̄⟩,

and ∥(w̄, w̄t, ζ̄
t)∥2H2

≤ Λ ≤ 2∥(w̄, w̄t, ζ̄
t)∥2H2

.
Arguing as in the proof of (3.18), we obtain

∥ū∥21 + ∥ūt∥2 ≤ CeCt∥z01 − z02∥2H1
.

Since Λ(0) = 0, an application of the Gronwall lemma provides the sought inequality

Λ(t) ≤ C

∫ t

0

eC(t−r)(∥ū(r)∥21 + ∥ūt(r)∥2)dr ≤ CeCt∥z01 − z02∥2H1
.

In particular, we learn that
∥(w̄, w̄t, ζ̄

t)∥2H2
≤ CeCt∥z01 − z02∥2H1

,

which is exactly the last point of (iv) to be verified.
□
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