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Abstract. Using a new concept of “Yosida distance” between two (unbounded) linear

operators A and B in a Banach space X defined as lim supµ→+∞ ∥Aµ −Bµ∥, where Aµ

and Bµ are the Yosida approximations of A and B, respectively, we study the persis-
tence under small linear perturbation of exponential dichotomy in the linear evolution

equations. This new concept of distance is also used to define the continuity of the proto-

derivative of the operator F in the equation u′(t) = Fu(t), where F : D(F ) ⊂ X → X
is a nonlinear operator. We show that the above-mentioned equation has local stable

and unstable invariant manifolds near an exponentially dichotomous equilibrium if the

proto-derivative of F is continuous. The Yosida distance approach and the obtained
results seem to be new.

1. Introduction

It is well known in the qualitative theory of ordinary differential equations that the
asymptotic behavior of linear equations of the form

u′(t) =Mu(t), u(t) ∈ Rn, t ∈ R, (1.1)

where M is a n × n-matrix, persists under “small” perturbation that is either linear or
nonlinear if the system has an exponential dichotomy, that is, all eigenvalues of M are off
the imaginary axis (see e.g. [7, 11, 12]), or equivalently, the unit circle does not intersect with
the spectrum of eM . For many decades, extensions of these classical results have been ones of
the central topics in the theory of infinite dimensional dynamical systems with applications
to partial differential equations and other types of evolution equations. Namely, for linear
perturbation of a linear hyperbolic system in a Banach space

u′(t) = Au(t), u(t) ∈ X, (1.2)

where X is a (complex) Banach space, A : D(A) ⊂ X → X is an unbounded linear operator,
one often considers the equation

u′(t) = (A+B)u(t), u(t) ∈ X, (1.3)

where B : D(B) ⊂ X → X is a linear operator. To justify for the “smallness” of the perturba-
tion B one often assumes that B is bounded and its norm ∥B∥ is small. This assumption on
the “smallness” of perturbation B actually limits its applicability of the obtained results to
partial differential equations and other types of evolution equations. For this reason, when
A has some further properties like the generator of an analytic semigroup one can consider
the perturbation B among a more general class of linear operator that are A-bounded, that
is, ∥Bx∥ ≤ a∥Ax∥ + c∥x∥, x ∈ D(A), for some fixed positive constants a and c. Then, the
smallness of B is measured by the sizes of max{a, c}. These approaches are discussed in
[11, 12, 21, 22] for the generation of semigroups by A + B that can be easily used to show
that the exponential dichotomy of Eq. (1.3) persists under small perturbation.
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For nonlinear perturbation of Eq. (1.2)

u′(t) = Au+ Fu, u(t) ∈ X, (1.4)

where F : D(F ) ⊂ X → X is a nonlinear operator, the asymptotic behavior of Eq. (1.4) near
the equilibrium is often described by the (local) invariant manifolds near the equilibrium,
see e.g. [3, 4, 6, 10, 14, 16, 17, 18, 19, 24, 26]. Apart from the assumption that F be
differentiable in some sense, say, in the sense of Fréchet, the continuity of the derivatives
is often determined by that of F ′(x) in certain spaces of bounded linear operators (see e.g.
[10, 14, 16, 17]). This allows to include more classes of partial differential equations into the
consideration.

In this paper we will take an attempt to propose a new approach to the perturbation
theory for Eq. (1.2) in which the size of perturbation will be measured by the so-called
“Yosida distance”. This is a new concept of a pseudo metric defined on the set of all gener-
ators of C0-semigroups (see Definition 3.1 below). This allows us to measure to the distance
between two unbounded operators in many important classes as seen in our Lemma 3.2.
Note that in our Example 5.4 distances between another class of operators than those in
Lemma 3.2 could be determined as well. Remarkably, in the case of evolution equations
under unbounded perturbations we can see the work done by Chow-Leiva [5]. Unlike that
approach, our method by the Yosida approximations and Yosida distance is different and
that can be easily used to study nonlinear perturbations as shown in the paper. We will
use this Yosida distance to define the continuity of the proto-derivatives of F in Eq. (1.4).
For linear equations (1.3) we will show the persistence of the exponential dichotomy under
small perturbation measured by Yosida distance between A and A + B, see Theorem 3.4.
The Yosida distance approach will be extended to nonlinear perturbation, namely, to study
Eq. (1.4) where we allow F to be proto-differentiable and its proto-derivative is continuous
in the topology defined by the Yosida distance. We prove the existence of local stable and
unstable invariant manifolds near an equilibrium of (1.4) if the linearized equation (1.3) has
an exponential dichotomy, see Theorems 4.19 and 4.20. We note that in our Assumptions 2
and 3 conditions on the m-accretiveness of the operators only to guarantee that they gen-
erate semiflows, or in other words, the corresponding equations are well posed. At the end
of the paper we provide some examples to show that our approach allows a generalization
of known results as shown in Examples 5.1, 5.2 and 5.4. To the best of our knowledge, the
Yosida distance approach to the perturbation of exponential dichotomy and the obtained
results discussed in this paper are new. Though the concept of proto-differentiability is
popularly used in Applied Nonlinear Analysis to deal with set valued operators, we use it
in the paper in the context of single-valued operators, so some statements are adjusted to
this restriction.

This paper is organized as follows: In Section 2, we first list some notations used in the
paper. Then, we recall some background materials on accretive operators and generation
of strongly continuous nonlinear semigroups. Section 3 contains the definition of Yosida
distance between two linear operators and results on the roughness of exponential dichotomy
in linear dynamical systems. Nonlinear perturbation of exponential dichotomy is presented
in Section 4. In this section, using the concept of Yosida distance, we define the continuity
of the proto-derivative of a nonlinear operator and prove the existence of invariant manifolds
for nonlinear dynamical systems. Finally, in Section 5, we give some examples to show that
the Yosida distance is a consistent tool in studying the existence of invariant manifolds.

2. Preliminaries

2.1. Notations. In this paper we will denote by X, Y Banach spaces with corresponding
norms. The symbols R and C stand for the fields of real and complex numbers, respectively.
Denote by L(X,Y) the Banach space of all bounded linear operators from a Banach space
X to a Banach space Y. We will denote the domain of an operator T by D(T ) and its
range by R(T ). The resolvent set of a linear operator T in a Banach space will be denoted
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by ρ(T ) while its spectrum is denoted by σ(T ). Let P be a linear operator in a Banach
space X, as usual, Ker(P ) and Im(P ) are the notations of kernel and image of P . We shall
denote by Br(0,Y) the ball of radius r centered at 0 of Y and write Br(0,X) = Br(0) if this
does not cause any confusion, when X is a given fixed Banach space. Given function F , the
notations F ′(u), dF (u), and ∂F (u) will stand for the Fréchet derivative, Gâteaux derivative,
and proto-derivative, respectively, of F at u.

2.2. Accretive operators and generation of strongly continuous nonlinear semi-
groups.

Definition 2.1 (accretive, m-accretive (see [2, 8])). Let B be a (possibly nonlinear multi-
valued) operator in X, then B is called accretive if (I + λB)−1 exists as a single-valued
function and ∥∥(I + λB)−1x− (I + λB)−1y∥ ≤ ∥x− y

∥∥ ,
for all x, y ∈ D((I+λB)−1). An accretive operator B is called m-accretive if R(I+λB) = X
for all (equivalently for some) λ > 0.

Below is the well known Crandall-Liggett Theorem on the generation of strongly contin-
uous nonlinear semigroups.

Theorem 2.2 (see Crandall-Liggett [9]). Let A be a (possibly multivalued) nonlinear oper-

ator and ω be a real number such that ωI − A is accretive. If R(I − λA) ⊃ D(A) for all
sufficiently small positive λ, then

lim
n→∞

(
I − t

n
A

)−1

x (2.1)

exists for all x ∈ D(A) and t > 0. Moreover, if S(t)x is defined as the limit in (2.1), then

S(t+ τ) = S(t)S(τ), t, τ ≥ 0, (2.2)

lim
t↓0

S(t)x = x, x ∈ D(A), (2.3)

∥S(t)∥ ≤ eωt, t ≥ 0. (2.4)

In addition, if A is a single-valued operator and R(I − λA) ⊃ clco D(A) (“clco” means
the closure of convex hull of D(A)), then S(t)x is the solution of the Cauchy problem

du

dt
= Au, u(0) = x ∈ D(A). (2.5)

Definition 2.3 (Exponential dichotomy). A linear semigroup (T (t))t≥0 is said to have an
exponential dichotomy or to be hyperbolic if there exist a bounded projection P on X and
positive constants N and α satisfying

(1) T (t)P = PT (t), for t ≥ 0;
(2) T (t)

∣∣
Ker(P )

is an isomorphism from Ker(P ) onto Ker(P ), for all t ≥ 0, and its inverse

on Ker(P ) is defined by T (−t) :=
(
T (t)

∣∣
Ker(P )

)−1

;

(3) the following estimates hold

∥T (t)x∥ ≤ Ne−βt∥x∥, for all t ≥ 0, x ∈ Im(P ), (2.6)

∥T (−t)x∥ ≤ Ne−βt∥x∥, for all t ≥ 0, x ∈ Ker(P ). (2.7)

The projection P is called the dichotomy projection for the hyperbolic semigroup (T (t))t≥0,
and the constants N and α are called dichotomy constants.

The following result is well known:

Lemma 2.4. Let (T (t))t≥0 be a C0-semigroup. Then, it has an exponential dichotomy if
and only if σ(T (1)) ∩ {z ∈ C : |z| = 1} = ∅.
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Proof. See Engel-Nagel [12, 1.17 Theorem]. □

From Lemma 2.4, it is easy to prove the following result:

Lemma 2.5. Let (T (t))t≥0 be a C0-semigroup that has an exponential dichotomy. Then,
(S(t))t≥0 has an exponential dichotomy provided that S(1) is sufficiently close to T (1).

3. Yosida Distance and Roughness of Exponential Dichotomy

We begin this section with the concept of Yosida distance between two linear operators.
To this end, we recall the concept of Yosida approximation of a linear operator in the
definition below (see e.g. [21, 29]).

Given operator A in a Banach space X with ρ(A) ⊃ [ω,∞), where ω is a given number,
the Yosida approximation Aλ is defined as Aλ := λ2R(λ,A)− λI for sufficiently large λ.

Definition 3.1 (Yosida distance). The Yosida distance between two linear operators A and
B satisfying ρ(A) ⊃ [ω,∞) and ρ(B) ⊃ [ω,∞), where ω is a given number, is defined to be

dY (A,B) := lim sup
µ→+∞

∥Aµ −Bµ∥. (3.1)

Lemma 3.2. The following assertions are valid:

(i) Let A, B be the generators of contraction semigroups. Assume further that D(A) =
D(B). Then, A = B, provided that dY (A,B) = 0.

(ii) Let A, B ∈ L(X). Then

dY (A,B) = ∥A−B∥. (3.2)

(iii) If A is the generator of a C0-semigroup T (t) such that ∥T (t)∥ ≤ Meωt, and C is a
bounded operator, then dY (A,A+ C) is finite. Moreover,

dY (A,A+ C) ≤M2∥C∥ (3.3)

(iv) Let A be the generator of an analytic semigroup (T (t))t≥0 such that ∥T (t)∥ ≤ Meωt,
and C be an A-bounded operator, that is, D(C) ⊃ D(A), and there are positive con-
stants a, c such that

∥Cx∥ ≤ a∥Ax∥+ c∥x∥. (3.4)

Then, there exists a constant δ > 0 such that if 0 ≤ a ≤ δ, the distance dY (A,A+ C)
is finite. Moreover,

dY (A,A+ C) ≤ aKM + cM2, (3.5)

where K and M are positive constants that depend only on A.

Proof.

(i) From the semigroup theory (see Pazy [21, Lemma 1.3.3]), if A is the generator of a
contraction C0-semigroup, then

lim
µ→+∞

Aµx = Ax, x ∈ D(A). (3.6)

Therefore, for x ∈ D(A) = D(B), Ax = Bx.
(ii) Firstly, we have

R(µ,A)−R(µ,B)

= (µ−B)R(µ,B)R(µ,A)−R(µ,B)R(µ,A)(µ−A).

Set Cµ := R(µ,B)R(µ,A). Then

R(µ,A)−R(µ,B) = (µ−B)Cµ − Cµ(µ−A)

= µCµ +BCµ − Cµµ− CµA

= BCµ − CµA.
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Thus,

µ2∥R(µ,A)−R(µ,B)∥ = µ2 ∥BCµ − CµA∥ .
We will show that for a bounded linear operator A in X the following is valid

lim
µ→+∞

R(µ,A) = 0. (3.7)

In fact, for sufficiently large µ, say µ > ∥A∥, using the Neuman series, for large µ, we
have

∥R(µ,A)∥ =
1

µ

∥∥∥∥R(
1,

1

µ
A

)∥∥∥∥ ≤ 1

µ

∥∥∥∥∥
∞∑

n=0

(
1

µ
A

)n
∥∥∥∥∥

≤ 1

µ

1

1− 1
µ∥A∥

.

This proves (3.7). Next, by (3.7) and the identity (µ−A)R(µ,A) = I we have that

lim
µ→+∞

µR(µ,A) = I,

so

lim
µ→+∞

µ2Cµ = I,

Finally, we have

dY (A,B) := lim sup
µ→+∞

µ2 ∥BCµ − CµA∥ = ∥B −A∥,

and this finishes the proof.
(iii) By a simple computation we have

R(µ,A+ C)−R(µ,A) = R(µ,A+ C)CR(µ,A). (3.8)

It is known (see e.g. Pazy [21, Theorem 1.1, p. 76] that A+C with D(A+C) = D(A)
generates a C0-semigroup (S(t))t≥0 satisfying

∥S(t)∥ ≤Me(ω+M∥C∥)t, (3.9)

so by the Hille-Yosida Theorem

∥R(µ,A)∥ ≤ M

µ− ω
, ∥R(µ,A+ C)∥ ≤ M

µ− (ω +M∥C∥)
,

for certain positive constants M and ω. Therefore,

lim sup
µ→∞

µ2∥R(µ,A)−R(µ,A+ C)∥

≤ lim sup
µ→∞

µ2M2∥C∥
(µ− ω)(µ− (ω +M∥C∥)

=M2∥C∥ <∞. (3.10)

(iv) By Pazy [21, Theorem 2.1, p. 80] and the remark that follows it, there exists a positive
constant δ such that if 0 ≤ a ≤ δ, then, A+C generates an analytic semigroup (S(t))t≥0

that satisfies

∥S(t)∥ ≤Me(ω+Λ(c))t,

where limc→0 Λ(c) = 0. Therefore, by (3.8), as A generates an analytic semigroup
there are positive constants K and N (see Pazy [21, Theorem 5.5, p. 65]) such that if
µ > N , then

∥AR(µ,A)∥ ≤ K

µ
.

Hence,

dY (A,A+ C) = lim sup
µ→∞

µ2∥R(µ,A+ C)−R(µ,A)∥

≤ lim sup
µ→∞

µ2M

µ− ω − Λ(c)
(a∥AR(µ,A)∥+ c∥R(µ,A)∥)
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≤ lim sup
µ→∞

µ2M

µ− ω − Λ(c)

(
aK

µ
+

cM

µ− ω

)
≤ aKM + cM2.

The proof is completed. □

Remark 3.3. The reader is also referred to Example 5.4 for another example where the
distance between two unbounded linear operators A and A + B that are not included in
Parts (iii) and (iv) of the above lemma.

The following theorem is the main result of this section on the roughness of exponential
dichotomy.

Theorem 3.4. Let A be the generator of a C0-semigroup that has an exponential dichotomy.
Then, the C0-semigroup generated by an operator B also has an exponential dichotomy,
provided that dY (A,B) is sufficiently small.

Proof. First, we assume that both semigroups generated by A and B are contraction C0-
semigroups. Then, by Pazy [21, Lemma 3.4], etAλ is a C0-semigroup of contractions.

Let C and D be two bounded linear operators in a Banach space X. We will estimate the
growth of etC − etD. By the Variation-of-Constants Formula that is applied to the equation
x′(t) = Cx(t) + (D − C)x(t) and by setting x(t) = etDx we have

x(t) = etCx+

∫ t

0

e(t−s)C(D − C)x(s)ds.

For each t ≥ 0, we have∥∥etCx− etDx
∥∥ ≤

∫ t

0

∥∥∥e(t−s)C(D − C)esDx
∥∥∥ ds

≤ t∥C −D∥∥etC∥∥etD∥∥x∥.
Therefore,

∥etAλ − etBλ∥ ≤ t∥Aλ −Bλ∥etAλ∥∥etBλ∥. (3.11)

Now we assume that (T (t))t≥0 and (S(t))t≥0 are the C0-semigroups generated by A and B
that satisfy

∥T (t)∥ ≤Meωt, ∥S(t)∥ ≤Meωt

for certain positive numbers M and ω. As is well known, for the Yosida approximation
Aλ of the generator A of a C0-semigroup T (t) that satistifies ∥T (t)∥ ≤ Meωt the following
estimate of the growth is valid (see e.g. Pazy [21, (5.25)])

∥etAλ∥ ≤Me2ωt, ∥etBλ∥ ≤Me2ωt.

Hence, we have

∥etAλ − etBλ∥ ≤ tM2∥Aλ −Bλ∥e4tω∥. (3.12)

By Pazy [21, Theorem 5.5], for each x ∈ X, we have

∥T (t)x− S(t)x∥ = lim
λ→∞

∥etAλx− etBλx∥

≤ tM2e4ωt lim sup
λ→∞

∥Aλ −Bλ∥

= tM2e4ωtdY (A,B). (3.13)

Finally, if dY (A,B) is sufficiently small, ∥T (1)−S(1)∥ is sufficiently small as well, and thus,
(S(t))t≥0 has an exponential dichotomy. □

Corollary 3.5. Let A be the generator of an exponentially dichotomous C0-semigroup
(T (t))t≥0 in X and C be a bounded linear operator in X. Then, the operator A + C with
domain D(A+ C) = D(A) generates an exponentially dichotomous C0-semigroup, provided
that ∥C∥ is sufficiently small.
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Proof. Let A generate a C0-semigroup (T (t))t≥0 that satisfies ∥T (t)∥ ≤ Meω. By (3.10) if
∥C∥ is sufficiently small, then dY (A,A+C) is sufficiently small as well, so by Theorem 3.4,
the semigroup generated by A+ C also has an exponential dichotomy. □

Corollary 3.6. Let A be the generator of a hyperbolic analytic semigroup (T (t))t≥0 in X
satisfying ∥T (t)∥ ≤Meωt. Then, if C is a A-bounded linear operator in X, that is, it satisfies
for all x ∈ D(A)

∥Cx∥ ≤ a∥Ax∥+ c∥x∥
for certain positive constants a and c. Then, A+C generates an exponentially dichotomous
analytic semigroup, provided that a and c are sufficiently small.

Proof. By assumption for each x ∈ D(A) we have

∥Cx∥ ≤ |||C||| · |||x|||
≤ |||C||| · ∥Ax∥+ |||C||| · |||x|||. (3.14)

As is well known (see e.g. Pazy [21, Theorem 2.1, p. 80]) for sufficiently small |||C|||, the
operator A + C generates an analytic semigroup. Moreover, by (3.5) if |||C||| is sufficiently
small, dY (A,A + C) is sufficiently small, so by Theorem 3.4, the semigroup generated by
A+ C has an exponential dichotomy. □

4. Nonlinear Perturbation of Exponential Dichotomy

We consider evolution equations of the form

u′(t) = Au(t), (4.1)

where A is a nonlinear single-valued operator from D(A) ⊂ X to X. We will assume that
A(0) = 0, A is proto-differentiable in a neighborhood of 0 (see the definition below) and
the linearized evolution equation at 0 (i.e. u′ = ∂A(0)u) has an exponential dichotomy.
Roughly speaking, our next result in this section to show that if the proto-derivative of A is
continuous at 0 in the Yosida distance’ sense, then there exist stable and unstable invariant
manifolds in a neighborhood of 0.

4.1. Proto-Differentiability. The convergence of sets in a complete metric space (X, d)
in this section is adapted from the similar concept from Rockafellar [23]. A family of sets
{St}t>0 in a complete metric space (X, d) is said to converge to a set S ⊂ X as t ↓ 0, written

S = lim
t↓0

St, (4.2)

if S is closed and

lim
t↓0

dist(w, St) = dist(w, S), for all w ∈ X, (4.3)

where “dist” denotes the distance dist(w, S) := infy∈S{d(x, y)}. It is often convenient to
view (4.3) as the equation

S = lim inf
t↓0

St = lim sup
t↓0

St, (4.4)

where

lim inf
t↓0

St =

{
w ∈ X : lim sup

t↓0
dist(w, St) = 0

}
, (4.5)

and

lim sup
t↓0

St =

{
w ∈ X : lim inf

t↓0
dist(w, St) = 0

}
. (4.6)

As in this paper all operators and functions under consideration are assumed to be sing-
valued we will adapt the definition of proto-differentiability from Rockafellar [23] accordingly.

Assumption 1. Let G : D(G) ⊂ V ⊂ X → X be an operator. We assume that domain
D(G) is an open subset of a vector subspace V ⊂ X.
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Definition 4.1 (Proto-differentiability). Under Assumption 1 let x ∈ D(G) be a given
vector. For each t ∈ (0, 1), let Tt : V ⊂ X → X be an operator defined as

Tt(w) =
G(x+ tw)−G(x)

t
(4.7)

for each w ∈ Bε(x) ∩ V , where ε is a sufficient small positive constant such that B̄ε(x) ∩
V ⊂ D(G). Then, we say that G is proto-differentiable at u if there is a linear operator
T : D(T ) ⊂ V → X such that in B̄ε(x) × X the graph of Tt converges to the graph of T as
t ↓ 0. In this case we write ∂G(x) = T .

Remark 4.2. As all functions considered in this paper are assumed to be single-valued, the
proto-differentiablity of a function G mentioned in Definition 4.1 can be stated equivalently
as follows (see [1, 15]): G is proto-differentiable at x ∈ D(G) if and only if ∂iG(x) = ∂sG(x),
where ∂iG(x) and ∂sG(x) are defined as:

(1) The linear operator ∂iG(x) is defined at all u ∈ X and its value at u is v =: ∂iG(x)u
if for each sequence {tn} ↓ 0, there exists a sequence {(un, vn)} ⊂ X × X such that
(un, vn) → (u, v) in X× X, x+ tnun ∈ D(G) and

G(x+ tnun)−G(x)

tn
= vn. (4.8)

(2) The linear operator ∂sG(x) is defined at all u ∈ X and its value at u is v =: ∂sG(x)u
if there exists a sequence {tn} ↓ 0, and a sequence {(un, vn)} ⊂ X × X such that
(un, vn) → (u, v) in X× X, x+ tnun ∈ D(G) and

G(x+ tnun)−G(x)

tn
= vn. (4.9)

By definition it is apparent that ∂iG(x) ⊂ ∂sG(x).

Before we proceed to studying the nonlinear perturbation of exponential dichotomy we
consider some special cases.

Example 4.3. Consider G(x) = Ux, where U : D(U) ⊂ X → X is a closed linear operator.
Then, G is proto-differentiable at every x ∈ D(U) and ∂G(x) = U .

Proof. Indeed, we have

Dt(w) =
G(u+ tw)−G(u)

t
=
U(u+ tw)− Uu

t
=
U(tw)

t
= Uw,

so, the operator Dt and U are identical in any neighborhood of u, and their graphs must be
the same. □

Definition 4.4 (Gâteaux differentiability). Suppose X and X are Banach spaces, U ⊆ X is
open, and F : U ⊂ X → Y. Operator F is Gâteaux differentiable at u ∈ U if there exists an
operator L ∈ L(X,X) such that

lim
τ→0

F (u+ τw)− F (u)

τ
= Lw,

for all w ∈ X. In this case we denote the Gâteaux derivative of F at u by dF (u).

Proposition 4.5. Let G : D(G) = V ⊂ X → X and let V be equipped with the graph norm
|||x||| := ∥x∥ + ∥Sx∥, where S : D(S) = V ⊂ X → X is a closed linear operator. Then, the
following assertions are true:

(i) If G is a Gâteaux differentiable operator from (V, |||·|||) to (X, ∥ · ∥) and T is its
derivative at x. Then

T ⊂ ∂iG(x). (4.10)
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(ii) If G is a Fréchet differentiable operator from (V, |||·|||) to (X, ∥ · ∥) and T is its
derivative at x ∈ V that is a closed operator in X. Then, G is proto-differentiable
at x ∈ V and

∂G(x) = T. (4.11)

Moreover, if H = S +G, then ∂H(x) = S +G′(x), for all x ∈ X.

Proof. Part (i): By definition, as G is a Gâteaux differentiable operator from (V, |||·|||) to
(X, ∥ · ∥) and T is its Gâteaux derivative at x, we have

lim
t→0

∥G(x+ tw)−G(x)− T (tw)∥
|||tw|||

= 0, (4.12)

where w ∈ Bε(x) ∩ V for a sufficiently small positive ε. Therefore,

0 = lim
t→0

∥G(x+ tw)−G(x)− T (tw)∥
∥tw∥+ ∥S(tw)∥

. (4.13)

We will prove that T ⊂ ∂iG(x) ⊂ ∂sG(x) ⊂ T . Let 0 ̸= w ∈ D(T ) and {tn} ↓ 0 be any
sequence. By (4.13),

0 = lim
t→0

∥G(x+ tnw)−G(x)− T (tnw)∥
∥tnw∥+ ∥S(tnw)∥

. (4.14)

Set

un = w, vn :=
G(x+ tnw)−G(x)

tn
.

Then, for n large enough x+ tnw ∈ Bε(x) ∩ V ⊂ D(G), and setting y := G(x) we have

y + tnvn = G(x) + tn
G(x+ tnw)−G(x)

tn
= G(x+ tnw),

so, (x+ tnun, y + tnvn) ∈ graph(G). Obviously, un → w. We will show that

vn =
G(x+ tnw)−G(x)

tn
→ Tw, as n→ ∞. (4.15)

By (4.14)

lim
n→∞

∥∥∥G(x+tnw)−G(x)
tn

− T (w)
∥∥∥

∥w∥+ ∥S(w)∥
. (4.16)

This shows that (4.15) is valid. Finally, we have that (w, Tw) ∈ graph(∂iG(x)). By the
arbitrary nature of w, this yields that

T ⊂ ∂i(G)(x). (4.17)

Part (ii): Suppose that (u, v) ∈ graph(∂s(G)). This means that there exists a sequence
{tn} ↓ 0 and sequence (un, vn) → (u, v) ∈ X × X such that G(x + tnun) = G(x) + tnvn for
each n. As G is Fréchet differentiable at x we have

lim
n→∞

∥G(x+ tnun)−G(x)− T (tnun)∥
|||tnun|||

= 0, (4.18)

so, as un → u ̸= 0,

0 = lim
n→∞

∥∥∥G(x+tnun)−G(x)
tn

− T (un)
∥∥∥

∥un∥+ ∥S(un)∥
(4.19)

= lim
n→∞

∥∥∥∥G(x+ tnun)−G(x)

tn
− T (un)

∥∥∥∥ (4.20)

= lim
n→∞

∥vn − T (un)∥. (4.21)

As vn → v ∈ X, we have that Tun → v as n → ∞. Since T is a closed operator in X this
yields that u ∈ D(T ) and Tu = v. In other words, ∂sG(x) ⊂ T . Combined with Part (i)
and the fact from the definition that ∂iG(x) ⊂ ∂sG(x) we have

T ⊂ ∂iG(x) ⊂ ∂sG(x) ⊂ T.



10 X.-Q. BUI AND N.V. MINH

This yields that ∂G(x) exists and is equal to T , completing the proof. □

Proposition 4.6. Consider x′ = G(x) = Ux + F (x), where the linear operator U is the
generator of a C0-semigroup in X and F (·) is Fréchet differentiable at x ∈ X. Then, G is
proto-differentiable, and

∂G(x) = U + F ′(x). (4.22)

Proof. We have

Dt(w) =
G(u+ tw)−G(u)

t
=
U(u+ tw)− Uu+ F (u+ tw)− F (u)

t

= Uw +
F (u+ tw)− F (u)

t
.

Since F (x) is Fréchet differentiable, we have

lim
t→0

(
F (u+ tw)− F (u)

t
− F ′(u)

)
= 0.

Set W := U + F ′(x). We will show that

W ⊂ ∂iG(x) ⊂ ∂sG(x) ⊂W. (4.23)

First, we show that W ⊂ ∂iG(x). Let 0 ̸= w ∈ D(W ) and {tn} ↓ 0 be any sequence. By
assumption,

0 = lim
t→0

∥F (x+ tnw)− F (x)− F ′(x)(tnw)∥
∥tnw∥

= lim
t→0

∥G(x+ tnw)−G(x)−W (tnw)∥
∥tnw∥

(4.24)

= lim
n→∞

∥∥∥G(x+tnw)−G(x)
tn

−W (w)
∥∥∥

∥w∥
. (4.25)

Set

un = w, vn :=
G(x+ tnw)−G(x)

tn
.

Then, for n large enough x+ tnw ∈ Bε(x) ∩ V ⊂ D(G), and setting y := G(x) we have

y + tnvn = G(x) + tn
G(x+ tnw)−G(x)

tn
= G(x+ tnw),

so, (x+ tnun, y + tnvn) ∈ graph(G). Obviously, un → w. We will show that

vn =
G(x+ tnw)−G(x)

tn
→Ww (4.26)

as n→ ∞. By (4.25)

lim
n→∞

∥∥∥G(x+tnw)−G(x)
tn

−W (w)
∥∥∥

∥w∥
. (4.27)

This shows that (4.26) is valid. Finally, this shows that (w,Ww) ∈ graph(∂iG(x)). By the
arbitrary nature of w, this yields that

W ⊂ ∂i(G)(x). (4.28)

Next, we will show that ∂sG(x) ⊂ W . Suppose that (u, v) ∈ graph(∂s(G)). This means
that there exists a sequence {tn} ↓ 0 and sequence (un, vn) → (u, v) ∈ X × X such that
G(x+ tnun) = G(x) + tnvn for each n. As F is Fréchet differentiable at x we have

0 = lim
t→0

∥F (x+ tnun)− F (x)− F ′(x)(tnun)∥
∥tnun∥

= lim
t→0

∥G(x+ tnun)−G(x)−W (tnun)∥
∥tnun∥

= 0,



YOSIDA DISTANCE AND EXISTENCE OF INVARIANT MANIFOLDS 11

so, as un → u ̸= 0,

0 = lim
n→∞

∥∥∥G(x+tnun)−G(x)
tn

− T (un)
∥∥∥

∥un∥+ ∥S(un)∥

= lim
n→∞

∥∥∥∥G(x+ tnun)−G(x)

tn
−W (un)

∥∥∥∥
= lim

n→∞
∥vn −W (un)∥.

As vn → v ∈ X, Wun → v as n → ∞. Since U is a closed operator in X and F ′(x) is a
bounded operator, the operator W is closed, so this yields that u ∈ D(W ) and Wu = v. In
other words, ∂sG(x) ⊂W . Finally, (4.23) holds true, completing the proof. □

4.2. Families of linear operators depending continuously on a parameter. Recall
that dY (U, V ) stands for the Yosida distance between two closed operators U and V in X.

Definition 4.7. Let Aα be a family of (possibly unbounded) linear operators in X with
parameter α ∈ S, where S is a metric space satisfying dY (Aα0

, Aβ) < ∞ for every β ∈ S
and α0 is a certain element of S. The family of such operators Aα is said to be continuous
at α0 ∈ S if

lim
α→α0

dY (Aα, Aα0
) = 0. (4.29)

Example 4.8. Let A be the generator of a C0-semigroup. Then, the family AC := {A +
C,C ∈ L(X)} is continuous at α0 := C = 0. In fact, as in Lemma 3.2, if the semigroup T (t)
generated by A satisfies ∥T (t)∥ ≤Meωt, then

dY (A,A+ C) ≤M2∥C∥.

Therefore, when C → 0 in L(X), dY (A,A+ C) → 0.

Example 4.9. Let A be the generator of an analytic semigroup and C be an A-bounded
operator. Since D(C) ⊃ D(A) and there are constants a, c such that

∥Cx∥ ≤ a∥Ax∥+ c∥x∥,

the restriction of C on D(A) is a bounded linear operator from (D(A), |||·|||) to (X, ∥ · ∥),
where

|||x||| := ∥x∥+ ∥Ax∥, x ∈ D(A).

If we define F to be the family of all operators of the form AC := A + C where C is
A-bounded, and the metric space S as L((D(A), |||·|||),X), then

lim
C→0

dY (AC , A0) = 0.

4.3. Existence of invariant manifolds. This subsection deals with the existence of in-
variant manifolds.

Assumption 2.

(A2.1) There exists a real number ω such that ωI −A is m-accretive;
(A2.2) The proto-derivative ∂A(x) exists for each x ∈ D(A) as a single-valued linear

operator in X such that ωI −A is m-accretive.
(A2.3) Yosida distance dY (∂A(x), ∂A(0)) satisfies

sup
x∈D(A)

dY (∂A(x), ∂A(0)) = ε <∞. (4.30)

The assumption yields that the operator A generates a nonlinear semigroup in D(A) by
the Crandall-Liggett Theorem (Theorem 2.2).
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Let us consider the following family of equations associated with Eq. (4.1)
d

dt
uλ(t) = Aλuλ(t), 0 ≤ t ≤ 1,

uλ(0) = x,
(Eλ)

where

JA
λ := (I − λA)−1, Aλ :=

1

λ

(
JA
λ − I

)
, (4.31)

for λ > 0 and λω < 1. Note that with our notations if U is a linear operator, then

JU
λ = (I − λU)−1 =

1

λ
R

(
1

λ
,U

)
.

Therefore,

Uλ =
1

λ

(
1

λ
R

(
1

λ
,U

)
− I

)
= U1/λ,

where Uξ is the Yosida approximation of a linear operator U with parameter ξ. Therefore,
the Yosida distance between two linear operators U and V can be written as

dY (U, V ) = lim sup
λ↓0

1

λ2

∥∥∥∥R(
1

λ
,U

)
−R

(
1

λ
, V

)∥∥∥∥
= lim sup

λ↓0

1

λ2

∥∥∥∥∥
(
1

λ
− U

)−1

−
(
1

λ
− V

)−1
∥∥∥∥∥

= lim sup
λ↓0

1

λ

∥∥JU
λ − JV

λ

∥∥ (4.32)

= lim sup
λ↓0

1

λ

∥∥U1/λ − V1/λ
∥∥ . (4.33)

Recall that if Q is a nonlinear operator such that ωI −Q is m-accretive if and only if∥∥∥JQ
λ x− JQ

λ y
∥∥∥ ≤ 1

1− λω
∥x− y∥, x, y ∈ X. (4.34)

By Kato [15, Lemmas 1.1, 1.2], Aλ is proto-differentiable in a neighborhood of 0 and
∂Aλ(x) = dAλ(x) for x in a small neighborhood of 0. Consider the linearized equation for
equation (Eλ) along a solution Sλ(t)x0

d

dt
vλ(t) + dAλ(Sλ(t)x0)vλ(t) = 0, 0 ≤ t ≤ 1,

vλ(0) = w.
(Lλ;w)

Since for each sufficiently small (but positive) λ, Aλ(x) is a Lipschitz operator with Aλ(0) =
0, it generates a a semigroup (Sλ(t))t≥0. Moreover, uλ(t) := Sλ(t)x is the classical solution
of (Eλ). By Kato [15, Proposition 3.1] the solution of the Cauchy problem (Eλ) satisfies

∥vλ(t)∥ ≤ eµt∥w∥, (4.35)

where µ = ω/(1− λω), 0 < λ < 1/ω.

Lemma 4.10. Define Sλ : X → C([0, 1],X) by

(Sλx)(t) = Sλ(t)x, for t ∈ [0, 1]. (4.36)

Then, we have

(1) Sλ is Gâteaux differentiable at each x ∈ Br(0) and the Gâteaux derivative dSλ(x)
represents a unique solution of (Lλ;w),

dSλ(x)w = vλ(·; 0, w) (4.37)

is solution of (Lλ;w).
(2) Fix w ∈ X. The mapping z 7→ dSλ(z)w is continuous from Br(0) into C([0, 1],X).
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(3) For x, y ∈ Br(0),

Sλy − Sλx =

∫ 1

0

dSλ(θy + (1− θ)x)(y − x)dθ (4.38)

in C([0, 1],X).

Proof. See Kato [15, Proposition 3.2, Lemma 3.3, and Lemma 3.4]. □

Lemma 4.11. Let A(·), B(·) be continuous functions from [0, 1] to L(X). Assume that x(t)
and y(t) are the solutions of the Cauchy problems

x′(t) = A(t)x(t), x(0) = w,

y′(t) = B(t)y(t), y(0) = w,

respectively. Moreover, assume that the evolution operators of these two equations satisfy

∥X(t, s)∥ ≤Meω(t−s), ∥Y (t, s)∥ ≤Meω(t−s), 0 ≤ s ≤ t ≤ 1.

Then,

∥x(t)− y(t)∥ ≤Me2ω sup
0≤τ≤1

∥A(τ)−B(τ)∥ · ∥w∥. (4.39)

Proof. We have

y′(t) = A(t)y(t) + (B(t)−A(t))y(t),

so

y(t) = X(t, 0)w +

∫ t

0

X(t, τ)(B(τ)−A(τ))y(τ)dτ.

Next,

∥x(t)− y(t)∥ ≤
∫ t

0

∥X(t, τ)∥ · ∥B(τ)−A(τ)∥ · ∥y(τ)∥dτ

≤Me2ω sup
0≤τ≤1

∥A(τ)−B(τ)∥ · ∥w∥. (4.40)

This completes the proof. □

Corollary 4.12. Under Assumption 2, let vxλ(t) and v
0
λ(t) be solutions to (Lλ;w) with x0 =

x and x0 = 0, respectively. There exists 0 < r0 < r such that ∥Sλ(t)x∥ ≤ e2ωt∥x∥ < r/2, for
small enough λ, for all x ∈ X and 0 < t < 1 the following estimate hold true∥∥vxλ(t)− v0λ(t)

∥∥ ≤ e2µ∥w∥ sup
z∈X

dY (∂A(z), ∂A(0)), (4.41)

where µ = ω/(1− λω).

Proof. Applying the Lemma 4.11 to (Lλ;w) where

A(t) := dAλ(Sλ(t)x), B(t) := dAλ(Sλ(t)0) = dAλ(0)

and taking into account (4.35), we arrive at∥∥vxλ(t)− v0λ(t)
∥∥ ≤ e2µ∥w∥ sup

0≤t≤1

∥∥dAλ(Sλ(t)x)− dAλ(Sλ(t)0)
∥∥

≤ e2µ∥w∥ sup
0≤t≤1

lim sup
λ↓0

∥∥dAλ(Sλ(t)x)− dAλ(Sλ(t)0)
∥∥

≤ e2µ∥w∥ sup
0≤t≤1

dY (∂A(S(t)x), ∂A(S(t)0))

≤ e2µ∥w∥ sup
z∈X

dY (∂A(z), ∂A(0)). (4.42)

This finishes the proof. □
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Corollary 4.13. Let 0 be the stationary solution of (4.1) and let the Assumption 2 be
made. Let us denote by (S(t))t≥0 and (T (t))t≥0 the C0-semigroups generated by A and
∂A(0), respectively. Then the following statements are true

∥ϕ(x)− ϕ(y)∥ ≤ e3ω∥x− y∥ sup
z∈X

dY (∂A(z), ∂A(0)), (4.43)

for all x, y ∈ Br0(0) and r0 is sufficiently small positive real number.

Proof. Set

ϕ(t)x = S(t)x− T (t)x, (4.44)

ϕλ(x) = Sλ(x)− Tλ(x), (4.45)

where

(Sλx)(t) = Sλ(t)x, for all t ∈ [0, 1],

(Tλx)(t) = Tλ(t)x, for all t ∈ [0, 1].

In order to prove that (S(t))t≥0 and (T (t))t≥0 are ε0-close, it suffices to show that
Lip(ϕλ) ≤ ε, where ε = ε(ε0) is positive and independent of x, y, i.e. the following es-
timate

∥ϕλ(x)− ϕλ(y)∥ ≤ ε∥x− y∥, for all x, y ∈ X (4.46)

holds. Then, by letting λ ↓ 0, for fixed t, we have

∥ϕ(t)x− ϕ(t)(y)∥ ≤ ε∥x− y∥, for all x, y ∈ X, t ∈ [0, 1]. (4.47)

Our task is now to prove (4.46). By Kato [15, Lemma 3.4], we have

∥ϕλ(x)− ϕλ(y)∥
= ∥Sλ(x)− Sλ(y)− Tλ(x) + Tλ(y)∥

≤
∫ 1

0

∥dSλ(θx+ (1− θ)y)(x− y)− dTλ(θx+ (1− θ)y)(x− y)∥ dθ. (4.48)

Let η = θx+ (1− θ)y. Then

vηλ(t) = [dSλ(η)(x− y)](t) (4.49)

and

v0λ(t) := vλ(t) = [dTλ(η)(x− y)](t) (4.50)

are solutions to (Eλ) with the operators are dAλ(Sλ(t)η) and dAλ(0), respectively, and
w = x− y. By Corollary 4.12, for t ∈ [0, 1], we have

∥dSλ(θx+ (1− θ)y)(x− y)(t)− dTλ(θx+ (1− θ)y)(x− y)(t)∥
= ∥vηλ(t)− vλ(t)∥
≤ e2µ∥x− y∥ sup

z∈X
dY (∂A(z), ∂A(0)), (4.51)

where µ = ω/(1−λω), ω is a fixed positive number that makes ωI−Am-accretive. Therefore,

∥dSλ(θx+ (1− θ)y)(x− y)− dTλ(θx+ (1− θ)y)(x− y)∥
= sup

t∈[0,1]

∥dSλ(θx+ (1− θ)y)(x− y)(t)− dTλ(θx+ (1− θ)y)(x− y)(t)∥

≤ e2µ∥x− y∥ sup
z∈X

dY (∂A(z), ∂A(0)).

Next, we have

∥ϕλ(x)− ϕλ(y)∥ ≤
∫ 1

0

e2µ∥x− y∥ sup
z∈X

dY (∂A(z), ∂A(0))dθ

= e2µ∥x− y∥ sup
z∈X

dY (∂A(z), ∂A(0)).
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Letting λ ↓ 0, we arrive at

∥ϕ(x)− ϕ(y)∥ ≤ e3ω∥x− y∥ sup
z∈X

dY (∂A(z), ∂A(0)). (4.52)

This completes the proof of (4.43). □

Definition 4.14 (Lipschitz invariant manifold). Let (S(t))t≥0 be a semigroup of (possibly
nonlinear) operators on the Banach space X. A set M ⊂ X is said to be a Lipschitz invariant
manifold for semigroup (S(t))t≥0 if the phase space X is split into a direct sum X = X1⊕X2,
where X1 and X2 are closed subspaces of X, and there exists a Lipschitz continuous mapping
Φ: X1 → X2 so that M = graph(Φ) and S(t)M ⊂ M for t ≥ 0.

For brevity, a Lipschitz invariant manifold will be called simply invariant manifold if this
does not cause any confusion.

Definition 4.15 (ε-close (see Minh-Wu [19])). Two semigroups (S(t))t≥0 and (T (t))t≥0 on
a Banach space X are said to be ε-close if there exist a positive constant ε such that

∥ϕ(t)x− ϕ(t)y∥ ≤ ε∥x− y∥, for all t ∈ [0, 1], x, y ∈ X, (4.53)

where
ϕ(t)x := S(t)x− T (t)x, for all x ∈ X. (4.54)

Theorem 4.16 (Unstable invariant manifold). Under Assumption 2, let 0 ∈ X be a sta-
tionary solution of Eq. (4.1). Moreover, assume that the strongly continuous semigroup
(T (t))t≥0 has an exponential dichotomy with projection P . Then, there exists a positive
constant ε0, such that if 0 < ε < ε0, Eq. (4.1) has a unique invariant manifold Wu ⊂ X,
presented as graph of a Lipschitz continuous mapping Φ: Ker(P ) → Im(P ). Moreover,
limε0→0 Lip(Φ) = 0.

Proof. The theorem is an immediate consequence of Minh-Wu [19, Lemmas 2.11, 2.12, 2.13]
and Corollary 4.13. □

Theorem 4.17 (Stable invariant manifold). With the assumptions in Theorem 4.16, the
set

Ws :=

{
x ∈ X : lim

t→+∞
S(t)x = 0

}
(4.55)

is a stable invariant manifold of Eq. (4.1), represented by the graph of a Lipschitz continuous
mapping Ψ: Im(P ) → Ker(P ), i.e. Ws = graph(Ψ) and S(t)Ws ⊂ Ws, for all t ≥ 0.

Proof. The theorem is an immediate consequence of Minh-Wu [19, Theorem 2.16] and Corol-
lary 4.13. □

Below we present local versions of Theorems 4.16 and 4.17. Recall that Br(0,Y) stands
for the ball of radius r centered at 0 of Y. Because we use X as the fixed phase space for
Eq. (4.1), for brevity, we denote Br(0,X) by Br(0) if this does not cause any confusion.

Assumption 3.

(A3.1) There exists a real number ω such that ωI −A is m-accretive;
(A3.2) There exists a positive r > 0 such that A is proto-differentiable at every point

x ∈ Br(0)∩D(A) and the proto-derivative ∂A(x) is a single-valued linear operator
in X such that ωI −A is m-accretive.

(A3.3) Yosida distance dY (∂A(x), ∂A(0)) satisfies dY (∂A(x), ∂A(0)) < ∞ for all x ∈
Br(0) and it satisfies

lim
x→0

dY (∂A(x), ∂A(0)) = 0. (4.56)

This assumption yields that the operator A is proto-differentiable in a neighborhood of 0
and the proto-derivative ∂A(·) is continuous at 0 in the Yosida distance’s sense.
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Definition 4.18 (Local Lipschitz invariant manifold). Let (S(t))t≥0 be a semigroup of
(possibly nonlinear) operators on the Banach space X. A set N ⊂ X is said to be a local
Lipschitz invariant manifold for semigroup (S(t))t≥0 around an equilibrium 0 if X is split
into a direct sum X = X1⊕X2, where X1 and X2 are closed subspaces of X, and there exists
a Lipschitz continuous mapping Φ: Br(0,X1) → X2 and an open neighborhood U of 0 such
that N ∩ U = graph(Φ) and for each t ≥ 0, S(t)(graph(Φ)) ∩ U ⊂ graph(Φ).

Theorem 4.19 (Local unstable manifolds). Under the Assumption 3, let 0 ∈ X be a sta-
tionary solution of Eq. (4.1). Moreover, assume that the strongly continuous semigroup
(T (t))t≥0 has an exponential dichotomy with projection P . Then, there exists a neighbor-
hood U of 0 ∈ X, such that Eq. (4.1) has a unique local invariant manifold Wu

loc ⊂ X,
presented as graph(Φ) ∩ U , where Φ: Ker(P ) → Im(P ) is a Lipschitz continuous mapping.

Proof. For the functions ϕ(·) defined as in (4.54), we consider the standard truncation pro-
cedure by defining

ϕ0(t)x :=

{
ϕ(t)x, if ∥x∥ ≤ r0,

ϕ(t)(r0x/∥x∥), if ∥x∥ > r0.
(4.57)

It can be shown that ϕ0(t) is Lipschitz continuous with Lipschitz coefficient Lip(ϕ0(t)) =

2Lip
(
ϕ(t)

∣∣
Br0

(0)

)
(see, for example, Webb [28, Proposition 3.10, p.95]). Hence, by modify-

ing (4.42) and (4.43) we have

∥ϕ0(x)− ϕ0(y)∥ ≤ e3ω∥x− y∥ sup
∥z∥≤eωr0

dY (∂A(z), ∂A(0)), (4.58)

for all x, y ∈ Br0(0) and r0 is sufficiently small positive real number. Next, we have

Lip
(
ϕ(t)

∣∣
Br0 (0)

)
≤ e3ω sup

∥z∥≤eωr0

dY (∂A(z), ∂A(0)). (4.59)

Since dY (∂A(z), ∂A(0)) → 0 as r0 → 0, hence Lip
(
ϕ(t)

∣∣
Br0 (0)

)
→ 0 as r0 → 0. Now, the

assertions of Theorem 4.16 can be applied to ϕ0(t). In fact, we choose U = Br0/2(0,X2) ×
Br0/2(0,X1) ⊂ Br0(0). By Theorem 4.16, ϕ0(t) has an invariant manifold M, ϕ0(t)M ⊂ M.

Since M = graph(Φ), where Φ: X2 → X1, we have N := graph
(
Φ
∣∣
Br0/2(0,X2)

)
⊂ M. This

implies

ϕ0(t)N ⊂ ϕ0(t)M,

that is,

ϕ0(t)N ∩ U ⊂ ϕ0(t)M∩ U ⊂ M∩ U.

Note that M∩ U = graph
(
Φ
∣∣
Br0/2(0,X2)

)
, so

ϕ(t)graph
(
Φ
∣∣
Br0/2(0,X2)

)
⊂ graph

(
Φ
∣∣
Br0/2(0,X2)

)
.

The proof is complete. □

Theorem 4.20 (Local stable manifolds). Under the assumptions in Theorem 4.19, there
exists a neighborhood U of 0 ∈ X such that the set

Ws
loc :=

{
x ∈ U : lim

t→+∞
S(t)x = 0

}
(4.60)

is a local invariant manifold of Eq. (4.1), represented as graph(Ψ) ∩ U , where Ψ: Im(P ) →
Ker(P ) is a Lipschitz continuous mapping.

Proof. The proof is similar to that of Theorem 4.19 and so the details are omitted. □
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5. Applications and Examples

Example 5.1 (Semilinear equation). Let X be a Banach space. Consider the semilinear
equation

du(t)

dt
= (L+ F )u(t), (5.1)

where L : X → X is the infinitesimal generator of a C0-semigroup (T (t))t≥0 satisfying
∥T (t)∥ ≤ Meωt, where ω is a certain positive number, F : X → X is a nonlinear Fréchet
differentiable operator, and ū = 0 is the stationary solution of Eq. (5.1). Assume further
that F ′ is continuous in a neighborhood of 0 and F ′(0) = 0.

Then, by Proposition 4.6, the operator A := L+F is proto-differentable in a neighborhood
of 0. Moreover, ∂A(x) = L+ F ′(x) and then, by Lemma 3.2

dY (∂A(x), ∂A(0)) = dY (L+ F ′(x), L)

≤ ∥F ′(x)∥. (5.2)

By a standard renorming |x| = supt≥0 ∥e−ωtT (t)x∥ we can reduce the problem to the case
where L generates a contraction semigroup. Next, we can use the standard truncation
procedure by defining

F0(x) :=

{
F (x), if ∥x∥ ≤ r0,

F (r0x/∥x∥), if ∥x∥ > r0,
(5.3)

then, the function F0 is globally Lipschitz. It is well known that in this case −(L + F0) is
m-accretive (see e.g. [20, 27]). This process makes A := L+ F0 satisfies all assumptions of
Assumption 2.

Example 5.2 (Semilinear equation). Consider Eq. (5.1) again with a different assumption
that L be the generator of an analytic C0-semigroup (T (t))t≥0 in X such that ∥T (t)∥ ≤ eωt,
t ≥ 0, and |||x||| := ∥x∥ + ∥Lx∥ for all x ∈ D(A), here we note that this norm |||·||| makes
(D(A), |||·|||) a Banach space. Assume further that F : (D(A), |||·|||) → X be a Fréchet differ-
entiable operator such that F (0) = 0, F ′(0) = 0 and F ′(·) is countinous in a neighborhood
of 0. Then, by Proposition 4.5, F is proto-differentiable as a function from D(A) ⊂ X to X
and ∂F (x) = F ′(x). Therefore,

∂(L+ F )(x) = [L+ F (x)]′ = L+ F ′(x)

as L is its Fréchet derivative, itself.

Next, by Lemma 3.2,

dY (∂(L+ F )(x), L) = dY (L+ F ′(x), L)

≤ K|||F ′(x)|||, (5.4)

where K is a constant depending only on L and for U ∈ L(V,X), |||U ||| denotes the norm of
U . If we denote A := L+ F in this case, then

dY (∂A(x), ∂A(0)) = dY (L+ F ′(x), L)

≤ K|||F ′(x)|||, (5.5)

where K is a constant depending only on L. Therefore, if F ′(x) is continuous in x around
0, then, Assumption 3 is made and Theorems 4.19 and 4.20 apply.

Example 5.3. As a concrete example from PDE of Example 5.2 we can take the following:
Let us consider the initial value problem

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
− au(t, x) + sin

(
∂2u(t, x)

∂x2

)
, t ≥ 0, x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(0, x) = u0(x), x ∈ [0, π],

(5.6)
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where a is a constant and u0(·) ∈ L2[0, π]. If we set X := L2[0, π], then (see Pazy [21,
Chapter 7]) or Lunardi [16]), the operator Ay := y′′ − ay with domain D(A) consisting of
all y ∈ X such that y′ is absolutely continuous such that y′′ ∈ X, y(0) = y(π), will generate
an analytic C0-semigroup (T (t))t≥0. Therefore, (T (t))t≥0 has an exponential dichotomy if
and only if the following equations

λ+ a = −n2, n = 1, 2, . . . (5.7)

have no zero root (see Travis-Webb [25, p. 414]). Since F (y(·)) := sin(y(·)) is continuously
differentiable in y(·) ∈ D(A) all our assumptions in Theorems 4.19 and 4.20 are made if
a ̸= −n2 for any positive integer n.

Example 5.4 (Age-dependent population dynamics). Let L1 := L1(0,∞;Rn) be a Bochner
integrable function space, which norm is denoted by ∥·∥L1 . Given two mappings F : L1 → Rn

and G : L1 → L1, we consider the following partial differential equation
∂u(t, a)

∂t
+
∂u(t, a)

∂a
= G(u(t, ·))(a), t ≥ 0, a ≥ 0,

u(t, 0) = F (u(t, ·)) t ≥ 0.
(5.8)

For i = 1, . . . , n, define Ki, Ji : L
1 → [0,∞) by

Kiϕ =

∫ ∞

0

ki(a)ϕ(a)da, Jiϕ =

∫ ∞

0

ji(a)ϕ(a)da,

respectively, where ki, ji : [0,∞) → L(Rn, [0,∞)) are given mappings. Then define F : L1 →
Rn and G : L1 → L1 by taking their i-th component as follows:

F (ϕ)i =

∫ ∞

0

βi(a,Ki(ϕ)ϕi(a)da for ϕ = (ϕi) ∈ L1,

G(ϕ)i(a) = −µ(a, Jiϕ)ϕi(a)da a.e. a > 0 for ϕ = (ϕi) ∈ L1,

where β1, µi : [0,∞)× [0,∞) → [0,∞) are given functions (see Webb [28] for details).

In the following, we assume that F : L1 → Rn and G : L1 → L1 are continuously Fréchet
differentiable, i.e.,

(F) For any ϕ ∈ L1, there exists a F ′(ϕ) ∈ L(L1,Rn) such that

F (ϕ+ h) = F (ϕ) + F ′(ϕ)h+ oF (h), h ∈ L1,

where oF : L1 → X, ∥oF (h)∥ ≤ bF (r)∥h∥L1 for ∥h∥L1 ≤ r, and bF : [0,∞) → [0,∞) is
a continuous increasing function satisfying bF (0) = 0; and there exists a continuous
increasing function dF : [0,∞) → [0,∞) such that

∥F ′(ϕ)− F ′(ψ)∥L(L1,X) ≤ dF (r)∥ϕ− ψ∥L1 ,

for ∥ϕ∥L1 ≤ r, ∥ψ∥L1 ≤ r.
(G) For any ϕ ∈ L1, there exists a G′(ϕ) ∈ L(L1, L1) such that

G(ϕ+ h) = G(ϕ) +G′(ϕ)h+ oG(h), h ∈ L1,

where oG : L1 → X, ∥oG(h)∥L1 ≤ bG(r)∥h∥L1 for ∥h∥L1 ≤ r, and bG : [0,∞) →
[0,∞) is a continuous increasing function satisfying bG(0) = 0; and there exists a
continuous increasing function dG : [0,∞) → [0,∞) such that

∥G′(ϕ)−G′(ψ)∥L(L1,L1) ≤ dG(r)∥ϕ− ψ∥L1 ,

for ∥ϕ∥L1 ≤ r, ∥ψ∥L1 ≤ r.

Let ū a be a stationary solution of (5.8), i.e., ū ∈W 1,1 =W 1,1(0,∞;Rn), ū = F (ū), and
ū′ = G(ū) where “′” stands for d/da when the variable of functions in W 1,1 is represented
by a. Fix r0 > 0 such that ∥ū∥L1 < r0. Then define the radial truncations F0 and G0 by

F0(ϕ) =

{
F (ϕ) if ∥ϕ∥L1 ≤ r0,

F (r0ϕ/∥ϕ∥L1) if ∥ϕ∥L1 > r0,
(5.9)
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and

G0(ϕ) =

{
G(ϕ) if ∥ϕ∥L1 ≤ r0,

G(r0ϕ/∥ϕ∥L1) if ∥ϕ∥L1 > r0.
(5.10)

Then, the functions F0 and G0 are globally Lipschitz continuous and continuously Fréchet
differentiable on the ball Br0 in L1.

Now define an operator A on L1 by

Aϕ = ϕ′ −G0(ϕ), for ϕ ∈ D(A) :=
{
ϕ ∈W 1,1 : ϕ(0) = F0(ϕ)

}
. (5.11)

Obviously, operator A is not included in Examples 5.1 and 5.2 even though the formula
defining A in (5.11) would suggests it is. This is due to the fact that the domain D(A) is
not the whole space W 1,1 (see [13, 28] for more information on the matter).

The properties of operator A are summarized in the following proposition:

Proposition 5.5.

(1) With ω = ∥F0∥Lip + ∥G0∥Lip, A + ωI is a densely defined m-accretive operator in
L1.

(2) With ωu = ∥F ′(u)∥L(L1,X) + ∥G′(u)∥L(L1,L1), operator ∂A(u) + ωuI is m-accretive

in L1.
(3) For u ∈ D(A) ∩Br(ū), ∂A(u) exists and

graph(∂A(u)) = lim
t↓0

t−1[graph(A)− (u,Au)]. (5.12)

(4) Operator ∂A(u) + ωI is m-accretive in L1 for u ∈ D(A) ∩Br(ū).
(5) There exist λū and a nondecreasing Lū : [0,∞) → [0,∞) such that∥∥∥J∂A(z)

λ v − J
∂A(u)
λ v

∥∥∥
L1

≤ λ∥z − u∥L1Lū(∥v∥L1) (5.13)

for 0 < λ < λū, z, u ∈ Bδū(ū) ∩D(A) and v ∈ L1.

Proof. See Kato [15, Propositions 5.2, 5.4, 5.5 and 5.6]. □

By (4.32) and (5.13) we have

dY (∂A(z), ∂A(0)) =
1

λ

∥∥∥J∂A(z)
λ v − J

∂A(u)
λ v

∥∥∥
L1

≤ ∥z − u∥L1Lū(∥v∥L1). (5.14)

This implies that

lim
z→0

dY (∂A(z), ∂A(0) = 0. (5.15)

This means that the condition (4.56) is fulfilled. Therefore, all conditions listed in Assump-
tion 3 are satisfied. Applying Theorems 4.19 and 4.20, the age-dependent population model
has a local stable, unstable manifold near ū if the linear system x′(t) = −∂A(ū)x has an
exponential dichotomy.

References

1. J.P. Aubin, I. Ekeland. Applied Nonlinear Analysis. John Wiley & Sons, Inc., New York, 1984.

2. V. Barbu. Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International
Publishing, Leiden, 1976.

3. P.W. Bates, K. Lu, and C. Zeng. Existence and persistence of invariant manifolds for semiflows in Banach
space. Memoirs of the American Mathematical Society 135 (1998), no. 645, viii+129 pp.

4. P.W. Bates, K. Lu, and C. Zeng. Approximately invariant manifolds and global dynamics of spike states.

Inventiones Mathematicae 174 (2008), no. 2, 355-433.
5. S.-N. Chow, H. Leiva. Unbounded perturbation of the exponential dichotomy for evolution equations.

Journal of Differential Equations 129 (1996) no. 2, 509-531.

6. S.-N. Chow, K. Lu. Invariant manifolds for flows in Banach spaces. Journal of Differential Equations
74 (1988), 355-385.

7. W.A. Coppel. Dichotomies in Stability Theory. Lecture Notes in Mathematics 629. Springer-Verlag,

Berlin-New York, 1978.



20 X.-Q. BUI AND N.V. MINH

8. M.G. Crandall. Nonlinear semigroups and evolution equations governed by accretive operators. Proceed-

ings of Symposia in Pure Mathematics, #45, Part 1. American Mathematical Society, 1986, 305-337.

9. M.G. Crandall, T.M. Liggett. Generation of semi-groups of nonlinear transformations on general Banach
spaces. American Journal of Mathematics 93 (1971), 265-298.

10. G. Da Prato, A. Lunardi. Stability, instability and center manifold theorem for fully nonlinear au-

tonomous parabolic equations in Banach space. Archive for Rational Mechanics and Analysis 101
(1998), 115-141.

11. Ju.L. Daleckii, M.G. Krein. Stability of Solutions of Differential Equations in Banach Spaces. American

Mathematical Society Translations, 1974.
12. K.J. Engel, R. Nagel. One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in

Mathematics 194, Springer, 2000.

13. J. Hale. Theory of Functional Differential Equations (second edition). Applied Mathematical Sciences
3, Springer-Verlag, New York-Heidelberg, 1977.

14. M.-L. Hein, J. Prüss. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations.
Journal of Differential Equations 261 (2016), no. 8, 4709-4727.

15. N. Kato. A principle of linearized stability for nonlinear evolution equations. Transactions of the Amer-

ican Mathematical Society 347 (1995), 2851-2868.
16. A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel,
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