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Abstract. This paper deals with spectral criteria for the asymptotic con-

stancy of solutions to the implicit difference equation Cx(n+1) = Tx(n)+y(n)
in a Banach space X, where the bounded sequence {y(n)}n is asymptotically

constant. The main result states that, if 1 is either not in σΓ(C, T ), or is its

isolated element, then the implicit difference equation has an asymptotic so-
lution that is asymptotically constant, provided it has a bounded asymptotic

solution. In the case of σΓ(C, T ) ⊂ {1} we prove that every asymptotic so-

lution is asymptotically constant. Furthermore, we give an application of the
result to periodic evolution equations associated with C-semigroups.

1. Introduction

In this paper, we study the asymptotic behavior of the implicit difference equa-
tion

Cx(n+ 1) = Tx(n) + y(n), n ∈ N, (1)

where x(n) ∈ X, X is a Banach space, T is a bounded linear operator acting in
X, C is an injective operator in L(X), and y(n) ∈ X is a bounded asymptotically
constant sequence in X.

Historically, Katznelson–Tzafriri [11] studied the asymptotic behavior of the se-
quence {Tn}n, where T is a power bounded operator in a Banach space X, that is,
supn∈N ∥Tn∥ < ∞. A famous result of that paper is the following theorem:

Theorem A (Katznelson–Tzafriri [11, Theorem 1]). Let T be a linear contraction
on a Banach space X. Then,

lim
n→∞

(Tn+1 − Tn) = 0 if (and only if) σΓ(T ) ⊂ {1}.

We can refer to Vu [27] for a short proof of the Theorem A, see also [1, 15, 17, 26]
for discussions related to this result. Recent developments related to Theorem A
can be found in [2, 3, 4, 7, 16, 23, 28]. Theorem A can be expressed as the spectral
criterion for all solutions to the homogeneous equation x(n + 1) = Tx(n) to be
asymptotically constant.
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For the case of explicit difference equation

x(n+ 1) = Tx(n) + y(n), n ∈ N, (2)

that is, implicit difference equation (1) in the case of C is the identity operator I,
by using the spectral decomposition technique in [8, 20], Minh–Matsunaga–Huy–
Luong [17] proved in 2022 that if σΓ(C, T ) ⊂ {1} and {y(n)}n is asymptotically
constant, then every bounded solution of (2) is asymptotically constant. Further-
more, Minh–Matsunaga–Huy–Luong [17] introduced the concept of asymptotic so-
lution (see Definition 3.3) to study the case when the condition σΓ(T ) ⊂ {1} may
not hold. The result states that if 1 is either not in σΓ(T ), or is an isolated point
of σΓ(T ), then (2) has an asymptotic solution that is asymptotically constant, pro-
vided it has a bounded solution (see Theorem 3.8). A result of this type is often
referred to as a Massera-type theorem. Such results play a very important role
in studying the periodicity of differential and difference equations. The reader is
referred to [6, 8, 12, 14, 18, 19, 20, 21, 22, 29, 32], see also [10, 13, 17, 24, 25] for
more recent developments.

The aims of this paper are to extend the methods and results of Minh–Matsunaga–
Huy–Luong [17] to the case of implicit difference equation (1) and to further study
the relationship of the spectrum of a bounded sequence and spectrum of a bounded
asymptotic solution (see the first inclusion in Lemma 3.4). More specifically, we will
give a spectral criterion for the asymptotic constancy of solutions to implicit differ-
ence equation (1). Our technique is to use the spectral definition of the sequences
in Definition 2.1 to establish the desired criterion. Hence, the main difficulty when
transitioning to the case of implicit difference equation is proving the analyticity
of the function ρ(C, T ) ∋ λ 7→ R(λ,C, T ) := (λC −T )−1. This difficulty is resolved
in Lemma 3.2 which gives the openness of the resolvent set ρ(C, T ) in the complex
plane and the analyticity of the function λ 7→ R(λ,C, T ) on the resolvent set.

With Lemma 3.2, our main results are contained in Lemma 3.4, Theorem 3.6,
Theorem 3.7, Theorem 3.8, and Theorem 4.3. We also prove that the spectrum of
a bounded sequence is a subset of the spectrum of a bounded asymptotic solution,
see inclusion “σ(y) ⊂ σ(x)” in Lemma 3.4. Note that, the result “σ(x) ⊂ σ(y) ∪
σΓ(C, T )” in Lemma 3.4 is analogous to Naito–Minh–Shin [20, Lemma 3.2] for the
implicit difference equations, see Remark 3.5.

This paper is organized as follows: In Section 2, we first list some notations used
in the paper. Then, we recall some background materials on spectral theory. Sec-
tion 3 contains the main results, which begins with Lemma 3.2 on the analyticity
of the resolvent R(λ,C, T ) := (λC − T )−1. Using Lemma 3.4, we describe a neces-
sary condition for implicit difference equation (1) to have an asymptotic constant
solution in Theorem 3.6. A spectral criterion for any bounded asymptotic solution
to be asymptotically constant is stated in Theorem 3.7. Theorem 3.8 builds a spec-
tral criterion to infer the existence of asymptotically constant from the existence
of a bounded asymptotic solution. Finally, Section 4 discusses an application to
periodic evolution equations associated with C-semigroups.

2. Preliminaries

Notations. For a complex Banach space X, the space of all bounded linear oper-
ators acting in X is denoted by L(X); ρ(C, T ) and σ(C, T ) denote the resolvent set
and spectrum of linear operator pencil {C, T}, respectively. For λ ∈ ρ(C, T ), we
denote R(λ,C, T ) := (λC − T )−1. A sequence in X will be denoted by {x(n)}n.



SPECTRAL CRITERIA FOR THE ASYMPTOTIC CONSTANCY OF IDE 3

Consider the Banach spaces of sequences

l∞(X) :=
{
x = {x(n)}n ⊂ X : sup

n∈N
∥x(n)∥ < ∞

}
, (3)

and

c0(X) :=
{
x = {x(n)}n ⊂ X : lim

n→∞
x(n) = 0

}
(4)

are equipped with sup-norm, ∥x∥ := supn∈N ∥x(n)∥. The shift operator S acts in
l∞(X) as

Sx(n) = x(n+ 1), n ∈ N, x ∈ l∞(X).
The operator S is a contraction (see Minh–Matsunaga–Huy–Luong [17]).

Consider the quotient Banach space Y := l∞(X)/c0(X) with the induced norm.
The equivalent class of x ∈ l∞(X) will be denoted by x̄. Since S leaves c0(X)
invariant it induces a bounded linear operator S̄ acting in Y. Similarly, each op-
erator T ∈ L(X) induces an operator T̄ ∈ L(Y). Moreover, one notes that S̄ is a
surjective isometry. As a consequence, σ(S̄) ⊂ Γ, where Γ denotes the unit circle
{z ∈ C : |z| = 1} in the complex plane. We put

σΓ(C, T ) := σ(C, T ) ∩ {z ∈ C : |z| = 1}. (5)

2.1. Spectral Theory. In this subsection, we present some materials on spectral
theory, see detail in [15, 17].

Firstly, the resolvent of the isometry S̄ satisfies∥∥R (
λ, S̄

)∥∥ ≤ 1

||λ| − 1|
, for all |λ| ≠ 1. (6)

Definition 2.1. The spectrum of x̄ ∈ Y, denoted by σ(x̄), is defined to be the set
of all non-removable singular points of the complex function

g(λ) := R(λ, S̄)x̄. (7)

If x = {x(n)}n ∈ l∞(X), then, its spectrum, denoted by σ(x), is said to be σ(x̄).

From the definition of spectrum of a bounded sequence x it follows that σ(x) is
a closed subset of C.

Lemma 2.2 (Minh [15, Lemma 2.2]). Assume that x̄ ∈ Y, and ξ0 is an isolated
point of σ(x̄). Then, ξ0 is a pole of first order of the complex function g(λ) :=
R(λ, S̄)x̄.

Definition 2.3. A sequence {xn}n is said to be asymptotically constant if

lim
n→∞

[x(n+ 1)− x(n)] = 0.

Proposition 2.4 (see Minh–Matsunaga–Huy–Luong [17]). The following asser-
tions are valid:

(1) Let x ∈ l∞(X). Then, σ(x) = ∅ if and only if x ∈ c0(X);
(2) Let x ∈ l∞(X). Then σ(x) ⊂ {1} if and only if x is asymptotically constant;
(3) Let Λ be a closed subset of Γ, and YΛ := {x̄ ∈ Y : σ(x̄) ⊂ Λ}. Then, YΛ is

a closed subspace of Y;
(4) Let Λ = Λ1 ⊔ Λ2, where Λ1,Λ2 are disjoint closed subsets of Γ. Then,

YΛ = YΛ1
⊕ YΛ2

. Moreover, the projection associated with this direct sum
commutes with the shift operator S̄ and the operator T̄ .
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3. Main Results

In this section, we present the main results of the paper on spectral criteria for
the asymptotic constancy of solutions to implicit difference equations in a Banach
space. We start with the concepts of resolvent set and spectrum of a linear operators
pencil (see Gohberg–Goldberg–Kaashoek [9, Chapter IV] and references therein for
more information on the matter).

Definition 3.1. A linear operator pencil {C, T}, where C, T ∈ L(X), is said to be
regular if there exists λ ∈ C such that the linear operator λC − T is invertible. We
set

R(λ,C, T ) := (λC − T )−1, for all λ ∈ ρ(C, T ). (8)

The complement of such λ ∈ C is called the spectrum, and is denoted by σ(C, T ).

Lemma 3.2. The following assertions are valid:

(1) The resolvent set

ρ(C, T ) :=
{
λ ∈ C : ∃(λC − T )−1, (λC − T )−1 ∈ L(X)

}
(9)

is an open subset of C.
(2) The function

ρ(C, T ) ∋ λ 7→ R(λ,C, T ) := (λC − T )−1 ∈ L(X) (10)

is analytic.

Proof.

(1) We have

λC − T = (λ− λ0)C + (λ0C − T ). (11)

Therefore, if λ0 ∈ ρ(C, T ), then A := (λ0C − T )−1 exists as an element of
L(X). It is easily seen that if A ∈ L(X) is invertible, then there exists an
open neighborhood of A consisting of all invertible operators. That means,
if λ− λ0 is sufficiently small, (λ− λ0)C + (λ0C − T ).

(2) Let λ0 ∈ ρ(C, T ) and λ ∈ Bε(λ0) with sufficiently small ε > 0. We have

(λ0C − T )−1(λC − T )

= (λ− λ0)(λ0C − T )−1C + (λ0C − T )−1(λ0C − T )

= (λ− λ0)(λ0C − T )−1C + I.

Therefore, for sufficiently small ε, say,

ε <
1

∥(λ0C − T )−1C∥
,

by Neumann series formula, the operator[
(λ− λ0)(λ0C − T )−1C + I

]−1

=

∞∑
k=0

(−1)k(λ− λ0)
k(λ0C − T )−kCk.

That means,[
(λ0C − T )−1(λC − T )

]−1
= (λC − T )−1(λ0C − T )

exists and is an analytic function of λ in a small neighborhood of λ0 ∈
ρ(C, T ). Since (λ0C − T ) is invertible, this yields that (λC − T )−1 is well
defined and analytic in a small neighborhood of λ0.
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The lemma is proved. □

Definition 3.3 (see Minh–Matsunaga–Huy–Luong [17, Definition 2.2]). Let u =
{u(n)}n be a bounded sequence in X. Then, u is said to be an asymptotic solution
to (1) if

Cu(n+ 1) = Tu(n) + y(n) + ε(n), n ∈ N,
where the sequence {ε(n)}n satisfies limn→∞ ε(n) = 0.

Lemma 3.4. Let x = {x(n)}n be a bounded asymptotic solution to (1) and y =
{y(n)}n is any bounded sequence. Then,

σ(y) ⊂ σ(x) ⊂ σ(y) ∪ σΓ(C, T ). (12)

Proof.

(1) We prove that
σ(x) ⊂ σ(y) ∪ σΓ(C, T ). (13)

Applying the transformation (7) to (1), we have

R
(
λ, S̄

)
C̄S̄x̄ = R

(
λ, S̄

)
T̄ x̄+R

(
λ, S̄

)
ȳ, for all |λ| ≠ 1. (14)

Since R
(
λ, S̄

)
S̄x̄ = λR

(
λ, S̄

)
x̄− x̄, we obtain that

λR
(
λ, S̄

)
C̄S̄x̄− C̄x̄ = R

(
λ, S̄

)
T̄ x̄+R

(
λ, S̄

)
ȳ. (15)

Suppose that Γ ∋ λ0 /∈ σ(y) ∪ σΓ(C, T ). Then, R
(
λ, C̄, T̄

)
, by Lemma 3.2,

and R(λ, S̄)ȳ are extendable to an analytic function in a neighborhood of
λ0. Therefore,(

λC̄ − T̄
)
R
(
λ, S̄

)
x̄ = C̄x̄+R

(
λ, S̄

)
ȳ, |λ| ≠ 1, (16)

thus,

R
(
λ, S̄

)
x̄ = R

(
λ, C̄, T̄

) (
C̄x̄+R(λ, S̄)ȳ

)
, |λ| ≠ 1. (17)

Therefore, R
(
λ, S̄

)
x̄ is analytic in a neighborhood of λ0, hence λ0 /∈ σ(x).

This proves (13).
(2) We now prove that

σ(y) ⊂ σ(x). (18)

From (16), we have(
λC̄ − T̄

)
R
(
λ, S̄

)
x̄− C̄x̄ = R

(
λ, S̄

)
ȳ, |λ| ≠ 1. (19)

If R
(
λ, S̄

)
x̄ an be extended to an analytic function in a neighborhood of

λ0 ∈ Γ, then so is the left-hand side of (19). Therefore, R
(
λ, S̄

)
ȳ is also

extendable to an analytic function in a neighborhood of λ0 ∈ Γ, that is,
λ0 /∈ σ(y). This implies σ(y) ⊂ σ(x), finishing the proof.

The proof is completed. □

Remark 3.5. The part “σ(x) ⊂ σ(y) ∪ σΓ(C, T )” in Lemma 3.4 is an analog to
Naito–Minh–Shin [20, Lemma 3.2] for the implicit difference equations.

Below we will apply Lemma 3.4 to study the asymptotic constancy of solutions
to implicit differece equation (1), where y is assumed to be a bounded sequence.

Theorem 3.6. The necessary condition for (1), where y is assumed to be a bounded
sequence, to have an asymptotic constant solution is

σ(y) ⊂ {1}. (20)

That is y must be asymptotic constant itself.
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Proof. Since Lemma 3.4, we have σ(y) ⊂ σ(x). If x is an asymptotic constant, then
σ(x) ⊂ {1}. This finishes the proof. □

Theorem 3.7. Suppose that

(1) {y(n)}n ⊂ l∞(X) is asymptotically constant, and
(2) σΓ(C, T ) ⊂ {1}.

Then, every bounded asymptotic solution to (1) is asymptotically constant.

Proof. By Lemma 3.4, we have

σ(x) ⊂ σ(y) ∪ σΓ(C, T ) ⊂ {1}
for any asymptotic solution x ∈ l∞(X) to (1). Therefore, x is asymptotically
constant according to Proposition 2.4. □

Theorem 3.8. Suppose that

(1) sequence {y(n)}n ⊂ l∞(X) is asymptotically constant;
(2) if either 1 /∈ σΓ(C, T ), or 1 is an isolated point of σΓ(C, T );
(3) Equation (2) has a bounded asymptotic solution.

Then, (2) has an asymptotic solution that is asymptotically constant.

Proof. Set Λ1 := {1} and Λ2 = σΓ(C, T )\{1}. Then Λ1 and Λ2 are both closed and
disjoint by the assumption. By Proposition 2.4, we have

x̄ = x̄1 + x̄2, (21)

where x̄1 := Px̄, x̄2 = (I − P )x̄, and P is the Riesz spectral project corresponding
to the splitting YΛ = YΛ1 ⊕ YΛ2 . Since x is an asymptotic solution to (1),

CSx = Tx+ y + ε, where ε = {ε(n)}n ∈ c0(X), (22)

so
PC̄S̄x̄ = PT̄ x̄+ P ȳ. (23)

As σ(ȳ) ⊂ {1}, we have
PC̄S̄x̄ = PT̄ x̄+ ȳ. (24)

Therefore
C̄S̄P x̄ = T̄P x̄+ ȳ

since P commutes with S̄ and T̄ . If we choose z as a representative of Px̄, then z
satisfies the equation

Cz(n+ 1) = Tz(n) + y(n) + ε′(n), (25)

where {ε′(n)}n ∈ c0(X). Obviously, {z(n)}n is an asymptotic solution to (1), and
is asymptotically constant since σ(z) ⊂ {1}. □

4. An Application to Evolution Equations Associated with
C-Semigroups

This section presents an application to evolution equations associated with C-
semigroups. The concept of C-semigroups introduced to approach a larger class
of evolution equations which are ill-posed (see, e.g., [5, 30, 31] and the references
therein for more information).

Definition 4.1. A family of bounded linear operators (T (t))t≥0 from a Banach
space X to itself is called 1-periodic C-semigroup if the following conditions are
satisfied
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(1) T (0) = C;
(2) T (t+ s) = T (t)T (s)C for all t, s ≥ 0;
(3) for each x ∈ X, the map t 7→ T (t)x is continuous;
(4) T (t+ 1) = T (t) for all t ≥ 0;
(5) ∥T (t)∥ ≤ Neωt for some positive constants N and ω independent of t ≥ 0.

A function f ∈ C(R+,X) is said to be asymptotically 1-periodic if

lim
t→∞

[f(t+ 1)− f(t)] = 0. (26)

Consider the following linear 1-periodic evolution equation

x′ = Ax+ f(t), t ≥ 0, (27)

where x ∈ X, f is an asymptotically 1-periodic function. The homogeneous evolu-
tion equation

x′ = Ax, t ≥ 0, (28)

of Equation (27) is said to be C-well-posed if it generates a 1-periodic C-semigroup
(T (t))t≥0 in X.

Definition 4.2. A function u ∈ C(R+,X) is a mild asymptotic solution of Equa-
tion (27) if there is a function ε ∈ C(R+,X) such that

lim
t→∞

ε(t) = 0, (29)

Cu(t) = T (t− s)u(s) +

t∫
s

T (t− ξ)[f(ξ) + ε(ξ)]dξ, t ≥ 0. (30)

We denote P the monodromy operator T (1) of the semigroup (T (t))t≥0. As an
application of Theorem 3.7 we have the following:

Theorem 4.3. Assume that the homogeneous evolution equation (28) generates a
1-periodic C-semigroup (T (t))t≥0 in a Banach space X such that

σΓ(C,P ) ⊂ {1}. (31)

Then, every bounded asymptotic solution to (27) satisfies

lim
t→∞

∥C(u(t+ 1)− u(t))∥ = 0. (32)

Proof. If u is a mild asymptotic solution to (27), then

Cu(n+ 1) = T (1)u(n) +

n+1∫
n

T (n+ 1− ξ)[f(ξ) + ε(ξ)]dξ. (33)

Put

y(n) :=

n+1∫
n

T (n+ 1− ξ)[f(ξ) + ε(ξ)]dξ. (34)

From the 1-periodicity of the C-semigroup (T (t))t≥0 we have T (1) = P . Then, (33)
becomes

Cu(n+ 1) = Pu(n) + y(n), n ∈ N. (35)

We will show that {y(n)}n is asymptotically constant. By computing directly, we
can obtain that

y(n+ 1)− y(n)
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=

n+2∫
n+1

T (n+ 2− ξ)[f(ξ) + ε(ξ)]dξ −
n+1∫
n

T (n+ 1− ξ)[f(ξ) + ε(ξ)]dξ

=

n+1∫
n

T (n+ 1− ξ)[f(ξ + 1) + ε(ξ + 1)− f(ξ)− ε(ξ)]dξ.

Since f is an asymptotically 1-periodic function and the limit limt→∞ ε(t) = 0 it
follows that

lim
n→∞

[y(n+ 1)− y(n)] = 0.

In other words, {u(n)}n is an asymptotic solution to (35). Under the assumption
in Theorem 4.3, all conditions of Theorem 3.7 are satisfied. Hence, every bounded
asymptotic solution to (35) is asymptotic constant,

lim
n→∞

[u(n+ 1)− u(n)] = 0. (36)

Denoting n = [t], the integer part of t, we have

C(u(t+ 1)− u(t))

= T (t− n)[u(n+ 1)− u(n)] +

t+1∫
n+1

T (t+ 1− ξ)[f(ξ) + ε(ξ)]dξ

−
t∫

n

T (t− ξ)[f(ξ) + ε(ξ)]dξ

= T (t− n)[u(n+ 1)− u(n)]

+

t∫
n

T (t− ξ)[(f(ξ + 1) + ε(ξ + 1))− (f(ξ) + ε(ξ))]dξ.

By Definition 4.1, we have the following estimate

∥C(u(t+ 1)− u(t))∥

≤ Neω∥u(n+ 1)− u(n)∥+Neω
t∫

n

∥f(ξ + 1) + ε(ξ + 1)− f(ξ)− ε(ξ)∥dξ.

Since limt→∞ ε(t) = 0, the asymptotical 1-periodicity of f and the asymptotic
constancy of {u(n)}n, it follows that

lim
t→∞

∥C(u(t+ 1)− u(t))∥ = 0.

The theorem is proved. □
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