
On a generalization of Steiner formula

and its application to the conjunction

probability of smooth stationary

Gaussian fields

Viet-Hung Pham

Institute of Mathematics, Vietnam Academy of Science and Technology (VAST),
Hanoi, Vietnam, e-mail: pvhung@math.ac.vn

Abstract: In this paper, we provide an explicit formula to calculate the
volume of n-tuples (t1, . . . , tn) satisfying the non-empty intersection condi-
tion B(t1, r1)∩. . .∩B(tn, rn)∩S 6= ∅ for given small enough radii r1, . . . , rn
and a set S of positive reach in Rd. This formula can be seen as a gener-
alization of the celebrated Steiner formula. As a consequence, through this
formula, we derive an asymptotic expansion for the conjunction probability
of smooth stationary Gaussian fields.
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1. Introduction

Let S be a convex body in Rd. For a given ε > 0, the ε-neighborhood of S,
denoted by S+ε, is defined as

S+ε = {t ∈ Rd : dist(t, S) ≤ ε (or) B(t, ε) ∩ S 6= ∅}.

Then the volume of S+ε is provided by the celebrated Steiner formula [7] as a
polynomial of the variable ε,

λd
(
S+ε

)
=

S∑
j=0

ωd−jµj(S)εd−j , (1)

where ωd−j is the volume of a (d − j)-dimensional unit ball (with respect to
the usual (d− j)-dimensional Lebesgue measure), and µj(S)’s are the geometric
functionals of S. In particular, one has:

- µd(S) is the volume of S,
- µd−1(S) is half of the surface area (volume) of S,
- and µ0(S) = 1.

This formula is extended to the class of sets with positive reach by Federer [6].
For a subset S ∈ Rd, the reach of S is defined as the supremum of the parameter
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ε such that for any point t in S+ε, it has a unique projection on S. For this class
of sets, the Steiner formula (1) becomes the Weyl formula that is valid for any
ε smaller than the reach of S. Remark that, in the Weyl formula, µ0(S) is the
Euler-Poincare characteristic of S; and it can obtain any integer values, not only
1 as in (1). For example, for a planar compact set S ∈ R2, its Euler-Poincare
characteristic µ0(S) equals to the number of connected components minus the
number of holes inside. For further progress of sets with positive reach, we refer
the survey [10].

An other extension of the Steiner formula is to replace the Euclidean space
Rd by other space with its own geodesic distance structure. For instance, Allen-
doerfer [2] considered the general sphere Sd and used the Gauss-Bonner formula
to derive the Steiner-type formula.

The geometric functionals µj(S)’s are also called Minkowski functionals or
Killing-Lipschitz curvartures. Besides the above definition through the Steiner-
Weyl formula, they can defined by other approaches. Let us recall the approach
from theory of Geometric probability (or Integral geometry) [8] as follows. First,
in low dimension (a line or a plane), the the geometric functionals can be de-
fined and calculated easily in an intuitive way. Then for higher dimension, they
can be calculated inductively through the ones of the cross sections in lower
dimensional. In fact, the Crofton formula states that∫

Graff(d,k)

µj(S ∩ V ∗)dλdk(V ∗) =
ωm

ωnωm−n

(
m

n

)
µd−k+j(S), (2)

where Graff(d, k) is the affine Grassmannian of all k-dimensional affine sub-
spaces of Rd, and the measure λdk is the invariant measure on Graff(d, k) under
the group of Euclidean motions.

Studying the Steiner formula and also the Minkowski functionals, as well as
their generalizations plays a central role in Convex Geometry, Geometric Proba-
bility and other domains. It is surprising to see that one can find the appearance
of this formula to derive the asymptotic expansion of the tail distribution of the
maximum of stationary Gaussian fields {X(t) : t ∈ S ⊂ Rd}. Investigating
this tail distribution is an interesting and challenging problem in Probability.
Davies applied this distribution in practical statistical tests to determine the loci
of gene. Worsley and Fristion applied in statistical tests to study the activations
of human brains.

The first break through observation is provided by Sun [11]. Here the author
assume that the random field has a finite Karhunen-Loeve expansion. It means
that there exists the i.i.d random variables Z1, . . . , Zk ∼ N (0, 1) such that for
any t ∈ S,

X(t) =

k∑
i=1

at,iZi = 〈at, Z〉,

with a2
t,1 + . . . + a2

t,k = 1. Then the statement 〈at, Z〉 ≥ u is equivalent to

〈at, U〉 ≥ u
‖Z‖ for U = Z

‖Z‖ ∼ Unif(Sk−1). Hence we obtain that U ∈ S+ arccos(u/‖Z‖)
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and we could apply the tubular Steiner formula on the sphere Sk−1. See also
[12].

A deeper connection is provided by Adler and Taylor [1] through the cele-
brated Gaussian kinematic formula. Here they considered the (random) excur-
sion set for a given level u,

Cu = {t ∈ S : X(t) ≥ u},

and calculated the expectation of the Euler characteristic of this set

E(µ0(Cu)) =

d∑
i=0

ρiµi(S), (3)

where ρi’s are the Euler characteristic densities defined as

ρ0 = Φ(u) =

∫ ∞
u

e−x
2/2

√
2π

dx,

ρi = (2π)−(i+1)/2Hi−1(u)e−u
2/2 = (2π)−i/2Hi−1(u)ϕ(u),∀i > 0,

with ϕ(u) = e−u
2/2/
√

2π, and Hj(x) = (−1)ne
x2

2
dj

dxj
e
−x2

2 is the Hermite poly-

nomial of degree j. They also proved that for locally convex and tamed index
set S, then this expectation can be used as a good approximation for the tail
distribution of the maximum.

For planar non-convex index set S, Azais and Pham [3] proved that if S still
has a Steiner-type expansion for the area of its ε-neighborhood, then one can
derive the asymptotic formula for the tail distribution of the maximum with
corresponding coefficients from the Steiner expansion. Their proof relies on a
result of Azais and Wschebor [5] that for large threshold level u and with high
probability, the shape of the excursion set with respect to level u is close to a ball
centered at the unique (random) maximum point t0 of the field with (random)
radius r0. Then by intuition, the maximum of the field indexed on S exceed
the level u if and only if S has a non-empty intersection with this ball, or the
maximum point t0 is in the r0-neighborhood of S.

In this paper, given a convex body S in Rd (or in general, a set with positive
reach) and small enough radii r1, . . . , rn, we are interested in a formula for the
volume of n-tuples (t1, . . . , tn) satisfying the non-empty intersection condition

λnd

(
(t1, . . . , tn) ∈ Rnd : ∩

1≤i≤n
B(ti, ri) ∩ S 6= ∅

)
.

It is clear that for n = 1, we go back to the Steiner formula of the ε-
neighborhood of S.

Our motivation to study this problem is from the conjunction probability
problem. Now, consider n independent copies {Xi(t); i = 1, 2, . . . , n} of the
smooth stationary Gaussian field X. For a level u, the conjunction probability
is defined as

P
(
∃t ∈ S : Xi(t) ≥ u, ∀i ∈ 1, n

)
. (4)
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or equivalently,

P

(
sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)
. (5)

This problem is provided by Worsley and Friston [16] to study the statistical
tests for comparing the activations of the brains between two genders male and
female. Again, by Euler characteristic method, they provided the expectation
of the conjunction set

P(Cu 6= ∅) = P

(
sup
t∈S

min
1≤i≤n

Xi(t) ≥ u
)
≈ E(µ0(Cu)) = (1, 0, . . . , 0)Rnµ(S), (6)

where µ(S) = (µ0(S)b0, µ1(S)b1, . . . , µd(S)bd) is the column vector of the scaled
Minkowski functionals of S, with bi = Γ((i + 1)/2)/Γ(1/2) and R an upper-
triangular Toeplitz matrix defined as

R =


ρ0/b0 ρ1/b1 . . . ρd/bd

0 ρ0/b0 . . . ρd−1/bd−1

...
...

. . .
...

0 0 . . . ρ0/b0

 . (7)

However, it seems hard to prove that this expectation is a good approximation
for the conjunction probability.

Continuing the ideas in Azais and Pham [3] and Azais and Wschebor [5],
Pham [9] considered the maximum points ti, i = 1, . . . , n of the fields; and
argued that if the conjunction set is non-empty then intuitively, one has

∩
1≤i≤n

B(ti, ri) ∩ S 6= ∅.

This implies the connection between the conjunction probability problem and
our generalized Steiner formula. Then the author proved that for a fixed point
t1 in the parameter space and for r1, r2, . . . , rn > 0 small enough,

λ(n−1)d

(
(t2, . . . , tn) ∈ Rd(n−1) : ∩

1≤i≤n
B(ti, ri) 6= ∅

)
= T (r1, . . . , rn)

=

d∑
kn=0

d∑
kn−1=d−kn

. . .

d∑
k2=(n−2)d−(kn+kn−1+...+k3)

r
(n−1)d−

∑n
i=2 ki

1 ×

n∏
i=2

(
rkii ωki

) ωdω(n−1)d−
∑n

i=2 ki

ω∑n
i=2 ki−(n−2)d

∏n
i=2 ωd−ki

× d!

[
∑n
i=2 ki − (n− 2)d]!.

∏n
i=2(d− ki)!

.

(8)

and

λnd

(
(t1, . . . , tn) ∈ Rnd : ∩

1≤i≤n
B(ti, ri) ∩ S 6= ∅

)
= λd(S)T (r1, . . . , rn)+O(

∑
‖m‖=k+1

rm).

(9)



/A generalization of Steiner formula 5

From this volume expansion, the author derived an one-term asymptotic for-
mula for the conjunction probability of smooth Gaussian fields. This asymptotic
formula coincides with the the first term of the heuristic approximation given
by Worsley and Friston.

In this paper, we would like to develop the above results. Our main result is
the following generalized Steiner formula.

Theorem 1.1. Let S be a convex body in Rd. Then for every r1, . . . , rn we have

λnd((t1, . . . , tn) : B(t1, r1) ∩ . . . ∩B(tn, rn) ∩ S 6= ∅)

=

d∑
kn=0

d∑
kn−1=d−kn

. . .

d∑
k1=(n−1)d−(kn+kn−1+...+k2)

µnd−
∑
ki(S)×

n∏
i=1

(
rkii ωki

[
(d− kn) + . . .+ (d− ki)

d− ki

])
.

where [
m
n

]
=

ωm
ωnωm−n

(
m

n

)
.

The detailed proof of the main theorem is presented in Section 2. The proof
relies on the classic Steiner-Weyl formula and Crofton formula.

2. Proof of the main theorem

The following lemma is the key ingredient of our proof of the main theorem. We
believe that it has its own interest.

Lemma 2.1. Let T be a convex body in Rd. Then for any r and i = 0, 1 . . . , d,∫
Rd

µd−i(T ∩B(t, r))dt =

d∑
k=d−i

rkωk

[
d− i+ d− k

d− k

]
µd−i−(d−k)(T ).

Proof. By Crofton formula,

µd−i((T ∩B(t, r))) =

∫
Graff(d,i)

µ0 (T ∩B(t, r) ∩ V ∗) dλdi (V ∗).

Given a k-dimensional affine subspaces V ∗ ∈ Graff(d, k). One can define
its corresponding couple (V, p) where V is a translation of V ∗ to be a linear
subspace containing the origin; and p is the intersection point between V ∗ and
V ∗,⊥ = V ⊥ the maximal linear subspace of Rd orthogonal to V ∗ and containing
the origin.
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Then we can rewrite the above integral as follows∫
Gr(d,i)

dνdi (V )

∫
V ⊥

µ0 (T ∩B(t, r) ∩ (V + p)) dp

=

∫
Gr(d,i)

dνdi (V )

∫
V ⊥

I{p∈T∩B(t,r)|
V⊥}dp

By the Fubini theorem,∫
Rd

µd−i(T ∩B(t, r))dt

=

∫
Gr(d,i)

dνdi (V )

∫
V ⊥

I{p∈T |
V⊥}dp

∫
Rd

I{B(t,r)∩(T∩(V+p))6=∅}dt

=

∫
Gr(d,i)

dνdi (V )

∫
V ⊥

I{p∈T |
V⊥}dpλd (T ∩ (V + p))

+r

It is clear that T ∩ (V + p) is an i-dimensional convex set, then apply the
Weyl formula for the volume of the tube around the d-dimensional space, we
have ∫

Gr(d,i)

dνdi (V )

∫
V ⊥

I{p∈T |
V⊥}

d∑
k=d−i

rkωkµd−k (T ∩ (V + p)) dp

=

d∑
k=d−i

rkωk

∫
Gr(d,i)

dνdi (V )

∫
V ⊥

µd−k (T ∩ (V + p)) dp.

Here we use again the Crofton formula to complete the proof.

Now we are ready to present the detailed proof the main theorem.
The considering volume can be rewritten as

I = λnd

(
(t1, . . . , tn) ∈ Rdn : ∩

1≤i≤n
B(ti, ri) ∩ S 6= ∅

)
=

∫
R(n−1)d

I{S∩ ∩
1≤i≤n−1

B(ti,ri) 6=∅}dt1 . . . dtn−1

∫
Rd

I
{B(tn,rn)∩

(
S∩ ∩

1≤i≤n−1
B(ti,ri)

)
6=∅}

dtn

=

∫
R(n−1)d

I{S∩ ∩
1≤i≤n−1

B(ti,ri)6=∅}λd

(
S ∩

(
∩

1≤i≤n−1
B(ti, ri)

)+rn
)
dt1 . . . dtn−1

By Steiner-Weyl tube formula,

λd

(
S ∩

(
∩

1≤i≤n−1
B(ti, ri)

)+rn
)

=

d∑
kn=0

rknn ωknµd−kn

(
S ∩ ∩

1≤i≤n−1
B(ti, ri)

)
.
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Therefore

I =

d∑
kn=0

rknn ωkn

∫
R(n−1)d

µd−kn

(
S ∩ ∩

1≤i≤n−1
B(ti, ri)

)
dt1 . . . dtn−1

=

d∑
kn=0

rknn ωkn

∫
R(n−2)d

dt1 . . . dtn−2

∫
Rd

µd−kn

(
S ∩

1≤i≤n−2
B(ti, ri) ∩B(tn−1, rn−1)

)
dtn−1.

We can apply Lemma 2.1 for t = tn−1 and T = S ∩ ∩
1≤i≤n−2

B(ti, ri) to obtain

that

I =

d∑
kn=0

rknn ωkn

d∑
kn−1=d−kn

r
kn−1

n−1 ωkn−1

[
d− kn + d− kn−1

d− kn−1

]
∫
R(n−3)d

µd−(kn+kn−1−d)

(
S ∩ ∩

1≤i≤n−2
B(ti, ri)

)
dt1 . . . dtn−2.

It means that each time we reduces the number of variables to integrate.
Then using this argument repeatedly until the last time for t = t1 and T = S,

I =

d∑
kn=0

d∑
kn−1=d−kn

. . .

d∑
k1=(n−1)d−(kn+kn−1+...+k2)

Lnd−∑ ki(S)×

n∏
i=1

(
rkii ωki

[
(d− kn) + . . .+ (d− ki)

d− ki

])
.

The proof completes.
Remark. By checking the proof carefully, the key ingredients are Steiner-

Weyl and Crofton formulas, and a trick by using the Fubini theorem. Then we
can also state the same result for a subset S of Rd with positive reach r0. Then
in this case we have to restrict the radii r1, . . . , rn smaller than r0 to apply the
Steiner-Weyl formula. In the original proof, we use the fact that the intersection
of two convex sets (S and a ball, or S and a linear space) is also a convex set.
To apply for the positive reach case, we need the same property. It is proven to
be true in [10].
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[3] Azäıs, J. M. and Pham, V.-H. (2016). Asymptotic formula for the tail of
the maximum of smooth stationary Gaussian fields on non locally convex
sets. Stochastic Process. Appl. 126(5) 1385–1411.
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[5] Azäıs, J. M. and Wschebor, M.(2014). The tail of the maximum of
smooth Gaussian fields on fractal sets. J. Theoret. Probab. 27(3) 932–944.

[6] Federe, H. (1959). Curvature measures Trans. Amer. Math. Soc. 93 418–
481.

[7] Gray, A. (2004). Tubes, 2nd ed. Progress in Mathematics, 221, Birkhuser
Verlag, Basel.

[8] Klain, D. A. and Rota, G.-C. (1997). Introduction to geometric proba-
bility. Cambridge University Press, Cambridge.

[9] Pham, V.-H. (2023). Asymptotic formula for the conjunction probability
of smooth stationary Gaussian fields. ALEA, Lat. Am. J. Probab. Math.
Stat.. 20 805–824.

[10] Rataj, J. and Zhle, M. and (2019). Curvature measures of singular sets.
Springer Monogr. Math. Springer, Cham, 2019. xi+256 pp.

[11] Sun, J. (1993). Tail probabilities of the maxima of Gaussian random fields.
Ann. Probab. 21 34–71.

[12] Takemura, A., and Kuriki, S. (2002). On the equivalence of the tube
and Euler characteristic methods for the distribution of the maximum of
Gaussian fields over piecewise smooth domains. Ann. Appl. Probab. 12 768-
796.

[13] Taylor, J. E., Takemura, A., and Adler, R. J. (2005). Validity of the
expected Euler characteristic heuristic. Ann. Probab. 33(4) 1362–1396.

[14] Taylor, J. E. (2006). A Gaussian kinematic formula. Ann. Probab. 34(1)
122–158.

[15] Worsley, K. J. (1994). Local maxima and the expected Euler charac-
teristic of excursion sets of χ2, F and t fields. Adv. in Appl. Probab. 26(1)
1–42.

[16] Worsley, K. J. and Friston, K. J. (2000). A test for a conjunction.
Statist. Probab. Lett. 47(2) 135–140.


