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Abstract

Within the econometrics literature, assessing the impact of climate change on
agricultural yield has been approached with a linear functional regression model,
wherein crop yield, a scalar response, is regressed against the temperature dis-
tribution, a functional parameter alongside with other covariates. However this
treatment overlooks the specificity of the temperature density curve. In the realm
of compositional data analysis, it is argued that such covariates should undergo
appropriate log-ratio transformations before inclusion in the model. We compare
a discrete version with temperature histograms treated as compositional vectors
and a smooth scalar-on-density regression with temperature density treated as an
object of the so-called Bayes space. In the latter approach, when density covariate
data is initially available in histogram format, a preprocessing smoothing step is
performed involving CB-splines smoothing. We investigate the respective advan-
tage of the smooth and discrete approaches by modelling the impact of maximum
and minimum daily temperatures on rice yield in Vietnam. Moreover we advo-
cate for the modelling of climate change scenarios through the introduction of
perturbations of the initial density, determined by a change direction curve which



induces a concentration of the densities towards higher temperature ranges. The
resulting impact on rice yield is then quantified by calculating a simple inner
product between the parameter of the density covariate and the change direction
curve. Our findings reveal that the smooth approach and the discrete counter-
part yield coherent results, but the smooth seems to outperform the discrete one
by an enhanced ability to accurately gauge the phenomenon scale.

Keywords: Compositional scalar-on-density regression, Bayes space, compositional
splines, functional data, climate change, rice yield, Vietnam.

1 Introduction

We consider improving the linear functional regression models approach used in the
econometrics literature to assess the impact of climate change on agricultural yield by
properly taking into account the density nature of their functional parameter.

As the complexity of recorded data continues to grow, contemporary models
increasingly involve intricate data objects including random densities. We are focusing
here on regression models where such density objects serve as explanatory variables.
These density objects can be treated either in a discrete fashion as histograms or in
a continuous fashion as density functions, see for example [1]. True continuous obser-
vations are rarity. Density data, often available in the discrete form of histograms,
are typically treated as continuous when the number of bins is exceedingly large.
Consequently, a preprocessing step involving smoothing becomes necessary.

It is often the case that density data are recorded in an aggregated form as his-
tograms, see for example [2] for a comprehensive review in the context of climate
change econometrics. When adopting this discrete approach, the sample space can be
described by the set of vectors of bin frequencies, with positive components that sum
to one. These vectors are called compositions and their space is known as a simplex.
A proper statistical treatment of this type of data can be done by compositional data
analysis, see [3] or [4] for an introduction. Scalar-on-composition regression models
using the simplex representation are described for example in [5]. They are obtained
by transforming the simplex explanatory vectors, usually using a log-ratio transfor-
mation, to map them into an unconstrained linear space R* (for some adapted value
of k).

Conversely, [6] conducts a comprehensive review of various methodologies for con-
structing regression models involving samples of probability density functions with a
functional perspective. In the realm of functional data analysis, densities stand out as
unique entities due to the constraints they must satisfy. For one-dimensional densi-
ties, the sample space is defined as the space D of functions with positive values and a
unit integral. [6] highlights one of the two primary approaches, which revolves around
the representation of densities in the so-called Bayes spaces 2. Bayes spaces, initially
introduced by [7], endow the space D of densities with a finite support [a,b] with a
Hilbert space structure. This space and structure can be viewed as a continuous ver-
sion of the simplex and its associated operations. As for the log-ratio transformation,



the functional centered log-ratio serves as the functional counterpart of the classical
centered log-ratio transformation for vectors of a simplex. This concept is used for
example in [8] to construct functional scalar-on-density regression models. For the pre-
processing step, [9] propose a new class of splines, known as compositional splines or
CB-splines, specifically designed to accomodate the density constraints.

Nonetheless the functional (smooth) approach implementation is more complex
prompting the natural question of assessing the potential advantage gained from using
the functional model. Our objective in this work is to explore this comparison through
an original application to the study of the impact of climate change on rice yield in
Vietnam.

Using regression models to relate agricultural yield and climate descriptors is by
no means a new endeavor, as evidenced by [10]. Climate change exerts both direct and
indirect impacts on various facets of the food system encompassing food production,
storage, processing, distribution, retail and consumption, as discussed by [11]. Due to
its direct exposition to weather conditions, crop production is all the more sensitive
to climate change. In countries such as Vietnam, crop production plays a vital role
in both the country’s economy and the well-being of its people. For instance, rice
cultivation occupies a substantial 63% of Vietnam’s total agricultural land and is also
essential to the livelihoods of 63% of Vietnamese farming households. Moreover, in
2019, rice production in Vietnam reached a staggering 43.4 million tons, solidifying
the country’s position as the world’s fifth-largest rice producer and second-largest
rice exporter. Unfortunately, this critical sector faces mounting threats from climate
change. The rising sea levels pose a significant danger to Vietnam’s primary rice-
growing region, the Mekong River Delta, which accounts for 54.47% of the nation’s rice-
planted area. Under a high greenhouse gases global emissions scenario, sea levels could
rise by up to 84 cm, potentially submerging large portions of the Delta plain whose
estimated average elevation is expected to fall around 80cm below sea-level by the
end of the century [see Chapters 1 and 3 in 12]. Furthermore, temperature projections
(ranging from a modest increase of approximately 1.3°C under a low greenhouse gases
global emissions scenario to substantial rise of around 4.2°C under a high emissions
scenario, with faster increases on the North of the country than in the South) signal
the possibility of chronic heat stress in some areas that could also adversely affect rice
production, even under lower emissions pathways.

Within the field of econometrics, assessing the impact of climate change for a given
economic sector relies on the specification and estimation of a damage function. For a
specific outcome, the damage function relates a change in the climate indicators to the
corresponding change in the outcome. [13] present empirical, micro-founded sector-
specific damage functions tailored to various sectors, including agriculture, crime,
health and labor. Several of these damage functions consider crop yield as the outcome
of interest and link that yield to temperature and precipitation. Noteworthy among
these contributions are the insights provided by [14], while a recent and comprehen-
sive survey can be found in [15]. [14] build their assumptions on the premise that
temperature effects on yields accumulate over time and that yield is proportional to
total exposure. The consequence of this assumption is that we may use the tempera-
ture density as a functional covariate instead of using the curve of the temperature as



a function of time, in other words the order in time in which the temperatures occur
has no impact on the yield. In mathematical terms, this assumption allows to specify
the link between crop yield (a scalar response) and temperature as a linear functional
of a probability density function. This functional incorporates an integral of the tem-
perature density against a regression parameter, itself a function of temperature. This
regression parameter encapsulates the sensibility of crop yield at different tempera-
ture levels. The estimation strategy adopted by [14] revolves around using a discrete
approximation of that integral resulting from approximating the temperature density
by an histogram of the number of days falling into different temperature bins over
the crop growing season. Similar to the handling of dummy variables, one bin is omit-
ted from the list of regressors to account for the fact that the sum of the regressors
remains constant and equal to the total number of days in the crop growing season.
The impact of an additional day within a specific temperature bin is therefore mea-
sured in reference to the omitted bin. This estimation strategy has been adopted by
several researchers, gaining prominence after its use in [16]. For instance, [17] applied
this approach in their study of how subsistence Peruvian farmers respond to extreme
heat.

The estimation strategy proposed by [14] can be discussed in light of recent con-
tributions to the statistical literature. The original model of [14] uses a function
representation for the temperature density, making the model directly comparable to
the functional scalar-on-density approach. In both cases the density function appears
on the right hand side of the regression equation in a linear fashion through an inte-
gral term. In Schlenker’s treatment of their model, they approximate this integral by
a finite sum resulting in a regression model on bin frequencies (excluding a reference
bin). This implementation of their model is therefore comparable to a discrete scalar-
on-composition model. However a significant divergence arises from this point onward.
Schlenker’s model uses bin frequencies (except the reference bin) as explanatory vari-
ables in a linear model. It has long been recognized in the statistical literature, see for
example [18], that comparing densities is best achieved by using relative distributions,
a concept with a strong scale invariance property which is a generalization of the usual
scale invariance. The relative probability density function for a pair of distributions
is the ratio of their two densities and it is invariant under any monotone transforma-
tion of the underlying random variable. Consequently when comparing temperature
distributions, it is advisable to employ relative densities instead of absolute differ-
ences between them. Whereas using linear effects of the temperature bin frequencies
as in [14] is coherent with absolute differences, in contrast, compositional data analy-
sis use log-ratios of bin frequencies as explanatory variables, aligning with the notion
of relative differences.

The paper is organized as follows. Section 2 reviews the methodological tools
involved in these discrete and smooth compositional models (simplex space and Bayes
space structures, centered log-ratio transformations) as well as the construction of the
compositional splines. Section 3 presents the rice yield data and the weather data and
explores their main features. Section 4 presents the discrete and smooth compositional
scalar-on-density regression models and their estimation results. It also provides an
interpretation of the discrete and smooth parameters associated to the temperature



distribution parameters. Section 5 presents our proposal to build a climate change
scenario, and derives the corresponding formulas for computing its impact. An illus-
tration of these impacts on the dataset allows to reveal the interest of the smooth
approach. Section 6 then concludes.

2 Methodological reminders

The dataset central to our problem comprises distributions of maximum daily temper-
atures spanning a 30-year period, from 1987 to 2016, across 63 provinces in Vietnam.
These temperature density distributions serve as key covariates within our regres-
sion model, aimed at elucidating the factors impacting rice yield in Vietnam over this
timeframe. In the discrete approach, we represent these temperature covariates as
compositional vectors and and we provide an overview of fundamental techniques for
working with compositional vectors in Section 2.1. In the smooth approach, we use
smooth densities and we remind in Section 2.2 the construction of the Bayes space B2
of densities. As we delve into the regression component, for the discrete approach, we
employ scalar-on-composition regression techniques, as presented by [5]. In contrast,
the functional approach necessitates an initial step to transform the density covariate
data, originally available in histogram form, into elements of B2”. In contrast, since
the density covariate data is originally available as an histogram, the regression part
of the functional approach necessitates a preliminary step to transform the histograms
into B2 elements using CB-splines smoothing. We briefly review CB-splines in Section
2.3 and CB-splines smoothing in Section 2.4.

2.1 Discrete densities as compositional vectors

Let us first recall that compositional data (hereafter referred to as CoDa) vectors
can be defined as vectors consisting of D positive components that sum up to one,
elements of a simplex denoted SP. A discrete density function associated to a random
variable with a finite number of outcomes is typically represented by its probability
mass function, or equivalently by the vector of probabilities of each of these outcomes
which satisfies the same constraints as a CoDa vector. This space can be equipped
with a vector space structure using the following operations, see e.g. [3].

1. @ is the perturbation operation, corresponding to the addition in RP:
For u,veS? udv=C=C(uvy,..., upvp),

2. ® is the power operation, corresponding to the scalar multiplication in RP:
For AeRueS? Nou=Cu,...,up),

where C denotes the closure of a vector (division by the sum of its components).

The above operations enable the definition of a meaningful average of a sample of n
compositional vectors u; (for i =1ton) by =1 ©® (u; ®...®uy,) (thus the com-
ponents of this average are just the geometric average of the corresponding sample’s
components).



The clr transformation of a vector u € S? is defined by
clr(u) = Gplnu,

where Gp = Ip— %1[) 1p7,Ipisa D x D identity matrix, 1p is the D-vector of ones
and where the logarithm of u € S? is understood componentwise. For a vector u* in
the orthogonal space 13 (orthogonality with respect to the standard inner product of
RP), the inverse clr transformation is defined by

clr ™ (u*) = C(exp(u*)).

The simplex SP of dimension D — 1 can be equipped with the Aitchison inner
product
<u,v >4=<clr(u),clr(v) >,

where the right hand side inner product is the standard inner product in RP.

2.2 Continuous densities as elements of the Bayes space

As outlined in [9], density functions can be considered elements of the so-called Bayes
space denoted by B?([a,b]) and comprising positive functions integrating to one on a
bounded interval [a,b] whose log-transform is square integrable. This concept corre-
sponds to a particular case of that introduced in [7] for the reference measure being
the Lebesgue measure. Discrete compositional data analysis is often justified by the
scale invariance property of the CoDa vectors which make necessary the use of ratios
of components. Let us briefly develop the meaning of scale invariance for densities.
[19] proved that, when two r.v. are continuous with respect to Lebesgue measure, the
p.d.f. of the relative distribution of one random variable (the comparison r.v.) with
respect to another one (the reference r.v.) coincides with the ratio of the two densities
evaluated at a given quantile of the reference density (see also [18]). This space can
first be equipped with a vector space structure using the following operations. For any
positive function on [a,b], let us define its closure C(s) of s to be the unique density
proportional to it. Subsequently, for any two functions f and g in B?([a,b]) and any
real «, the following operations can be defined

e perturbation as (f @ g)(t) = C(f(¢)g(t))
® powering as (o © f)(t) = C(f()*)

The centered log-ratio (clr) transformation is defined for f € B?([a,b]) and t in
[a,b] by

b
clef (1) =log £(t) - 7 [ log f(wdu &

Through its construction, the clr transformation maps B2([a,b]) into the space
L3([a,b]) of square integrable functions on [a,b] with a zero integral. The inverse
transformation is well defined and can be expressed as follows for a function fy €
L3((a, b)), B

clr™ (fo)(t) = Cexp (clr fo(1)) .



B2([a,b]) can then be equipped with the following inner product rendering the clr
transformation isometric when the classical inner product is used in LZ([a, b]).

b
< f,g >p2= / clrf(t) clrg(t)dt =< clrf,clrg > p12(jap) - (2)
a

2.3 Reminder on CB-splines and ZB-splines

Spline functions are constructed by piecing together segments of polynomials of a
specified degree connecting at specified knots points while adhering to prescribed
smoothness conditions [see e.g. 20]. In our context, aimed at approximating density
functions, we require a specific type of constrained splines. One approach to con-
structing them is described in [9] using the so-called ZB-splines in L3([a,b]) and
corresponding CB-splines in B%([a, b]). As is common in many CoDa techniques, the
procedure is based on a log-ratio transformation, specifically the clr introduced in
Section 2.2. The process starts by constructing a basis of spline functions that fulfill
the integral constraint within L3 ([a, b]). These basis functions are then pulled back to
B2([a, b)) by the inverse clr transformation. The ultimate system of B-splines is entirely
characterized by a sequence of knots (points where polynomial pieces connect) and
an order (equal to the polynomial degree plus one). Let A = {(A1,...,}g) 1a <A1 <
... Ag < b} be the set of so called inside knots. For technical reasons, additional knots
are introduced at the boundary: if k is the degree of the polynomial pieces (d = k+ 1
the corresponding order), k knots equal to a are added at the beginning of the interval
and k knots equal to b at the end. Consequently the dimension of the ZB-splines basis
(a basis of L2([a,b])) is equal to g + k while the dimension of the B-spline basis corre-
sponding to the same set of knots and order is equal to g 4+ d. Notably,one dimension
is lost for the ZB-basis due to the integral constraint. The inverse clr of the ZB-basis
functions are termed the CB-basis functions. For this application, we use exclusively
cubic splines for which k& = 3 and d = 4. Let S{* be the subspace of L?([a, b]) generated
by the B-splines basis and Z ,/C\ be the space generated by the corresponding ZB-splines
basis. Equation (17) in [9] establish a correspondence between the representation of
any function in Z,? within both basis systems. This correspondence proves invalu-
able as it facilitates the manipulation of ZB-splines using conventional code originally
designed for B-splines.

In our subsequent application, the temperature data will first be processed into a
set of histograms, each depicting daily maximum and minimum temperatures for a
specific province and year. For maximum temperatures, the data is discretized into
28 bins of length 1 within the interval [a, b] = [12,40]. To approximate the underlying
densities represented by these original histograms, we employ cubic splines (k = 3)
and set g = 7 (respectively ¢ = 9) as the number of inside knots. Consequently,
the dimension of the ZB-spline basis becomes 7 + 3 = 10 when using 7 inside knots
(respectively 9 + 3 = 12 for 9 inside knots). For minimum temperatures, the data is
discretized into 22 bins of length 1 within the interval [a, b] = [7,29]. To approximate
the underlying densities represented by these original histograms, we employ cubic
splines (k = 3) and set g = 9 as the number of inside knots.



In both cases, the positioning of the knots is determined relative to the data points
position using quantiles as argued in [9].

Figure 1 represents the two sets of basis functions thus obtained in L3([a, b]) and in
B?([a, b]). The vertical dotted lines on the plots indicate the knots position. We observe
that the inclusion of two additional knots in the lower plots results in an increased
number of basis functions that concentrate around the mode of the distribution. This
enhancement enables a more precise approximation of the densities, particularly in
regions where our dataset features a higher density of temperature data points.

Fig. 1 CB-splines (left) and ZB-splines (right) with 7 inside knots (top) and 9 inside knots (bottom)
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2.4 Smoothing histograms with CB-splines

Our original temperature data comprises sequences of daily maximum temperatures.
In order to apply the same technique as [9], we first preprocess the data into inter-
mediate histogram representations. Subsequently, we transform these histograms into
smooth density functions using CB-splines as in [21]. The CB-spline smoothing step
involves choosing a ZB-spline basis in L2 and viewing the estimation of the clr trans-
formed densities expressed in the ZB-basis as a penalized least squares regression. In
this regression, we explain the clr transformed histogram frequencies by covariates
derived from evaluating the ZB-spline basis functions at the midpoints of the his-
tograms bins. To ensure the existence and uniqueness of the least squares problem
(full column rank of the collocation matrix), we enforce an upper limit on the number



of knots. This upper bound is dictated by the Schoenberg-Whitney conditions (see
[22]). In our application, the condition, both for maximum and minimum tempera-
ture, stipulates that the number of knots must be less than or equal to the number of
bins minus 3 (degree of splines). Smoothing with ZB splines does not accommodate
bins with zero counts because of the log transformation. To address this limitation,
we implement a simple zero-replacement procedure: any zero count is substituted by
10~7 after which we apply the closure operator. For the selection of the smoothing
parameter, we opt for a generalized cross-validation using a regular grid of 100 points
on a log-scale.

As an illustrative example, Figure 2 displays the histogram of the daily maximum
temperatures in 1995 in the Yen Bai province (North-East of Vietnam), as well as the
corresponding smooth density obtained by the above procedure on the left plot, and
the smoothed clr transform on the right plot.

Fig. 2 Density of daily maximum temperature in 1995 in Yen Bai province (left) and its clr transform
(right)
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3 Data and exploratory analysis

3.1 Rice yield data

The dataset concerning rice yield is sourced from the International Rice Research
Institute!. The data set contains comprehensive information on annual rice production,
harvested area, and rice yield at provincial level from 1987 to 2016. Rice yield is
quantified in tons per hectares. Figure 3 provides an overview of the overall evolution
of rice yield over the considered period. After a period of stagnation between 1987 and
1992, rice yield has exhibited consistent growth since 1992, affecting all Vietnamese
provinces. This growth may be attributed to the progress of agronomic techniques
over the years. While we lack a direct proxy for this progress, we will account for it
through the incorporation of a linear time trend. This choice is supported by Figure
4, which reports the evolution of average rice yields for the six different agronomic
regions in Vietnam. In this figure, we use the following acronyms for the regions: NMM

IRRI is an organisation that promotes research and development of rice production in the world.
Information about the institute can be found at https://www.irri.org/



for Northern Midland and Montainous region, NCC for North Central Coast region,
CHR for Central Highlands region, SR for Southeast region, MDR for Mekong Delta
River region and RRD for Red River Delta region.

Fig. 3 Rice yield distributions from 1987 to 2016
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Fig. 4 Average rice yield by agronomic regions from 1987 to 2016
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Fig. 5 Maximum temperature histograms across the Vietnamese regions in 2015
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3.2 Weather data

The weather data used in this study encompasses daily maximum-temperatures and
precipitation records. Temperature data comes from the Climate Prediction Center
(CPC) database developed and maintained by the National Oceanic and Atmospheric
Administration (NOAA). We have retrieved historical information pertaining to daily
maximum temperatures for a grid with a resolution of 0.50 x 0.50 degrees of latitude
and longitude, specifically for the geographical expanse of Vietnam. Subsequently, we
have transformed this data to yield the daily maximum temperature for each of 63
Vietnamese provinces and during a period of 30 years (1987-2016) (365 or 366 values
for each year). The compilation yields one temperature distribution for each of 1890
statistical units.

Figure 5 displays the average histograms of each of the 6 regions where average is
understood with the simplex operations as defined in Section 2.1. These histograms
provide a visual representation of how the range of maximum temperatures varies
across different regions, emphasizing the substantial regional disparities.

Using the CB-spline smoothing tool we can also explore other aspects of the
temperature densities variations across time and space. Figure 6 displays the daily
maximum temperature density with 9 knots (along with its clr transform) in the
province of Ninh Binh which is one of the major provinces for rice production situated
in the Red River Delta region. We use the viridis color palette with 30 values, featur-
ing 30 distinct values that transition from yellow in 1987 to dark violet in 2016 with
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intermediate shades of green. The top part of Figure 6 clearly reveals the rightward
shift of the temperature densities corresponding to climate change. Finally Figure 7
displays the densities and their clr transforms for all provinces in the year 2015 (9
inside knots). When examining the clr transforms, we can see groups of provinces and
it would be interesting to explore their respective spatial position. It seems that they
primarily differ in the range of the observed maximum temperatures.

Fig. 6 Density (top panel) and clr transform (bottom panel) of the smoothed daily maximum
temperature from 1987-2016 in Ninh Binh province
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To facilitate the integration of the smoothed histograms into the subsequent regres-
sion model, it is imperative to ensure that they are expressed in a uniform basis
of CB-splines. Consequently, we must employ a consistent set of knots across all
63 * 30 = 1890 histograms. For this reason, we first pool all observations into a single
distribution and place the knots at the quantiles of this global distribution.

Improving this phase of the process hinges on obtaining information about the
specific starting and ending dates of the growing season within each province. However
since these temporal boundaries may exhibit substantial variability across geographical
regions as we have seen in section 3.2, the adoption of a standardized temperature
range across all provinces would then be rendered difficult, unless we find a way of
overcoming this technical constraint.

3.3 Climate change data

Let us first examine the “historical” climate change between 1987 and 2016. Using
relative distributions for comparing two distributions as recommended by [18], Figure
8 showcases boxplots depicting the ratios of 2016 to 1987 densities across provinces
in some regions for maximum and minimum temperatures. Notably, this analysis
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Fig. 7 Density (top) and Clr transform (bottom) of the smoothed daily maximum temperature from
in 2015 for all provinces
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highlights temperature ranges affected by changes, specifically ranging from 26 to 40
degrees Celsius for maximum temperature and 17 to 29 degrees Celsius for minimum
temperature. Moreover for maximum temperature in the Red River Delta and Mekong
Delta regions, a concentration of temperature increase is observed within the 27 to 33
degrees Celsius range. In contrast, for minimum temperature, we observe an increasing
trend of the ratio indicating a shift of this density to the right.

The Intergovernmental Panel on Climate Change (IPCC) provides projections of
global C'O2 emissions and associated temperature distributions around the world under
several scenarios associated to representative concentration pathways (RCPs) for the
end of this century, see for example [23]. We will use the most optimistic RCP called
RCP2.6, which projects an average increase of 1 degree Celsius relative to the period
1986-2005. In Section 5, we construct a climate change scenario for 2099 which approx-
imates RCP2.6 and is more easily handled in our framework. The RCP2.6 data for
vietnamese provinces come from [24].

4 The discrete and smooth regression models

The objective in this application is to develop a regression model to unravel the rela-
tionship between rice yield and the distribution of daily maximum and minimum
temperatures for the corresponding year and province, while also controlling for addi-
tional covariates. Unlike a conventional time series model used for yield prediction in
the future, our focus here is to leverage spatio-temporal variability to quantify the
influence of temperature on rice yield. Therefore we decide to include a simple linear
time trend in the model as a proxy for unobserved factors that may have evolved over
time, such as advancements in production techniques. In view of Figures 3 and 4, the

13



Fig. 8 Relative distribution of daily temperature for 2016 versus 1987 in some regions
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inclusion of a linear trend appears to be a reasonable choice. We further use other con-
trolling factors namely precipitation and regional dummies. Given the distributional
nature of our primary covariate, we need an adapted regression model. The choice
boils down to either utilizing a histogram of daily temperatures as a compositional
covariate, akin to the approach in [5], or opting for a smoothed representation of the
temperature density as a continuous density covariate, following the method outlined
in [8]. Before delving into the results, let us first revisit the fundamental principles
behind these two models.

4.1 The discrete regression model

The scalar-on-composition regression model as presented for example in [5] consti-
tutes a regression framework where at least one of the covariates takes the form of a
compositional vector. In our discrete regression setup, the compositional vectors are
temperature histograms which can also be viewed as discrete densities. Any linear func-
tion of a compositional explanatory variable X € SP must be of the form < 8, X >4,
where 3 is a parameter vector of S” and < .,. >, is the classical Aitchison inner
product in SP (see e.g. [4]). Therefore a linear model designed to explain a scalar
variable Y with possibly several compositional variables X; € S Lifor j=1,...J and
several scalar variables Z; for [ = 1,... L is formulated by an equation of the form
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J L
Yz‘:aJrZ<,3j,Xij >4 +Z’nzil+€i, (3)

j=1 1=1
where the parameters §8; € ST and the errors €; are i.i.d. gaussian variables with
mean zero and variance 2. For our application, it is essential to index all observations
according to both the province ¢ and the year k therefore the single index i of equation
(3) is replaced by the two indices i and k. This adjustment allows us to define Yj;, as
the rice yield for province ¢ (ranging from 1 to 63) in year k (spanning from 1 to 30).
Initially, the model comprises several classical scalar variables (L = 7) including time,
precipitation and five regional dummies (reference region being CHR). In addition to
these, we also incorporate two discrete densities as compositional covariates, namely
the histograms of maximum and minimum daily temperature, reported with equal bins
of length 1 degree Celsius. Moreover, after testing the inclusion of interactions between
the two discrete densities and the six regional dummies, we decide to integrate the
interactions solely for maximum temperature and three specific regions: RRD, CHR
and MDR. As a result, we get J = 5 parameters associated with the discrete densities
and denoted by BRsD, BNGe: By r and Ble  for the maximum temperature and

B™" for minimum temperature.

As demonstrated for example in [25], after transformation of the compositional
covariates by any transformation in the log-ratio family (isometric or additive log-
ratio), the estimation of such a model is done by ordinary least squares. The choice
of any of these transformation will yield the same result for the discrete densities
contribution when expressed as a linear combination of the logarithm of the histogram
bin frequencies with a zero sum contraint on the coefficients.

4.2 The smooth regression model

Extending the model in [8] to the case of several density covariates as well as additional
scalar covariates, we consider the following linear scalar on density regression model

J L
Yo =80+ Y < Bi(t), fis(t) >p2 + > _nZu+ €, (4)
j=1

=1

where Y is the scalar dependent variable, fy is a real intercept, 3;(t),j =1,...J are
curve-parameters for the effects of the densities f;;, Z; (I =1,..., L) are real covariates
with their corresponding parameters 7;, and finally ¢; are normal errors with mean
zero and standard deviation 2. The densities fij as well as the curve-parameters 3;
are assumed to belong to the Bayes space B([a, b]).

Using the fact that the clr transform is an isometry between B2 and LZ([a,b])
equipped with their respective inner products, we can rewrite the model as follows

J L
Y, = 6o+ Z < clrB(t), clr fi(t) >z + Z%Zu + €. (5)
j=1 =1
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In order to estimate this model, we first need to use a basis expansion of the functional
parameters (;(t), as well as a similar expansion for the densities f;;(t). For the sake
of simplicity, we will use the same basis system to express the functional regression
parameters and the observed functional explanatory variables. The expansion can be
written directly in B%([a,b]) or equivalently for the clr transforms in L3([a,b]). We
then replace these functions by their expansions in the inner products of the model
equation (4). Consequently, the inner products terms appear as linear combinations of
the beta curves coordinates whose coefficients are given by the product of the Gram
matrix (inner products of all pairs of basis functions) by the densities coordinates as
in [8]. After this step, we are back to a classical linear model for ordinary covariates
that we can fit with ordinary least squares.

As before in our application, all observations are indexed by province i and year
k therefore the index i of equation (4) is replaced by the two indices: i for the
province and k for the year. Sy is a real intercept and we have the same L = 7 clas-
sical covariates as for the discrete model (time, precipitation and regional dummies)
with their corresponding parameters ;. As for the discrete model, we include two
smooth density covariates f/** and fk”", which are respectively the densities of daily
maximum and minimum temperature, in province i and year k. To facilitate the com-
parison, we include the same interactions between densities and regional dummies.
The corresponding curve-parameters will be denoted by BEFEL (1), BREC (1), BB r(t)
and Bme2 (t) for the maximum temperature and 3™ (¢) for minimum temperature.
Finally €;;, are normal errors with mean zero and standard deviation o2. M i’}gi”
as well as all the curve-parameters are assumed to belong to the Bayes space B?([a, b]).

The number of basis functions for the expansion is a function of the number of
knots. In order to reduce variability, it is advisable to use a small number of knots com-
pared to the sample size. Respecting the Schoenberg-Whitney conditions of Section
2.4, we will test two different knots numbers equal to g = 7 and g = 9 correspond-
ing to dimensions for the corresponding ZB-basis of 74+ 3 = 10 in the first case and
9 4+ 3 = 12 in the second case.

Let us note an important difference between the discrete and the smooth model.
Conventional compositional data analysis does not pay attention to the order of the
components (permutation invariance). However in our case, for a temperature his-
togram, the components correspond to temperature bins and the order of these bins
should be considered to take into account some continuity of the bin frequencies with
respect to the bins positions on the temperature axis. In contrast the smooth approach
does this into account.

4.3 Model results

The histograms smoothing step and the fitting of both models are performed with the
R packages compositions and robCompositions, adapting some codes from [26]. The
analysis of variance table of the discrete model (Table 1) reveals that all covariates
are strongly significant.

The fits of the smooth model with 7 or 9 knots reveal the superiority of the second
option which we keep thereafter. The smooth model with 9 knots has a better fit than
the discrete as shown in Figure 9 with the distance between fitted and observed values

16



for both models. The parameters estimates for classical variables displayed in Table 2
are comparable between discrete and smooth models.

Table 1 Anova for Discrete model

Variables Df Sum Sq Mean Sq F value Pr(>F)
Year 1 152271 1522.71  5464.70 0.0000
Total precipitation 1 12.80 12.80 45.94 0.0000
SR 1 152.21 152.21 546.27 0.0000
MKD 1 37.99 37.99 136.35 0.0000
NMM 1 155.61 155.61 558.46 0.0000
NCC 1 15.15 15.15 54.37  0.0000
RRD 1 88.14 88.14  316.33 0.0000
ilr (tmax) 27 42.53 1.58 5.65 0.0000
ilr (tmin) 21 94.26 449 1611  0.0000
MKD:ilr(tmax) 27 98.64 3.65 13.11 0.0000
NCC:ilr(tmax) 27 60.53 2.24 8.05 0.0000
RRD:ilr(tmax) 27 32.60 1.21 4.33 0.0000
Residuals 1753 488.46 0.28

Fig. 9 Aitchison distance between observed and fitted values by models and regions
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The interpretation of parameters of a compositional covariate is presented for
example in [25]. In the discrete case, as in [27], we interpret the difference between clr
parameters as related to the influence of pairwise log-ratios. Similarly, for the smooth
regression model, the ratio between the density value at two given points is related
to the relative change of the density between these two points and therefore as in the
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discrete case, the detection of couples of temperatures leading to the highest values
of this ratio indicate the regions of most influential contrasts for the density covari-
ate. Figure 10 shows the estimated clr parameters for maximum temperature in the
discrete model. For the Red River Delta region, we see that the highest clr coefficient
corresponds to the temperature bin 31-32 and the lowest clr to the temperature bin
23-24. This reveals that the contrast between these two bins, and therefore any change
in the corresponding ratio, has the highest impact on rice yield in the model. A simi-
lar result appears for the North Coastal Central region. In the Mekong Delta region,
the most influential contrast occurs between the bins 30-31 and 32-33. Turning now
attention to the smooth model, the curves of the different functional parameters Bm‘”
on Figure 12, respectively Bmi" on Figure 13, are presented in the functional clr space
on the right plot and in the functional Bayes space on the left plot. Comparing the
right plot with Figure 10, we can see that in both models, it is the Mekong Delta and
the Red River Delta regions which undergo the highest impacts of climate change. In
the MDR region, the smooth model reveals a contrast between temperatures around
32 and 33 degree Celsius showing that the ratio with the highest impact is that con-
trasting the density at these two points. The detection of the influential ratios may
be affected by the choice of parameters: in the discrete case by the bin size choice and
the end-point of the first bin and in the smooth case by the number of knots of the
spline approximation. However it is known that a small change in the end-point of
the first bin can dramatically affect the histogram whereas the smooth approach does
not suffer from that drawback. Figures 11 and 13 show these parameters for minimum
temperature. For minimum temperature, the highest contrast is between 24 and 27
degrees Celsius in the smooth case whereas it is between bins 23-24 and 26-27 in the
smooth case. Overall we can say that the results of both models are coherent but more
precise and possibly less sensitive to parameter choices for the smooth model.

5 Climate change scenario and its marginal effect

Covariates impact in scalar-on-composition regression can be evaluated either using
finite increments as in Coenders and Pawlowsky-Glahn [25] or infinitesimal increments
as in Morais et al. [28]. To simplify comparisons between the discrete and the smooth
regression models, and because the changes we envision for the covariates cannot be
considered as infinitesimal in the present case, we select a finite increment perspective.
In order to assess the impact of a compositional covariate in a model such as (3)
or (4), we imagine possible change scenarios for this covariate. In the discrete case,
to be coherent with the simplex space to which the histograms belong, it would be
desirable that the change scenario be linear with respect to the vector space structure
of the simplex S2® whereas in the smooth case, it would be linear with respect to the
vector space structure of the Bayes space B2([a, b]). Let us first look at what are linear
changes in these two frameworks.

In the discrete case, the perturbation of a histogram f by a change scenario of
direction ¢ € S?® and intensity h € R is given by

Tf=fo oy, (6)
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Table 2 Estimated coefficients associated to regional dummies, total
precipitation and year

Regression type

Variable Discrete Smooth
regression regression
(9 knots)
Constant 3.317%F 3.3137F
(0.31) (0.259)
Region
NMM —0.34 —0.43**
(0.26) (0.21)
NCC —1.42%** —1.44%**
(0.32) (0.28)
RRD —0.88** —0.47
(0.36 (0.30
SR —1.63"** —1.67"**
(0.10) (0.09)
MDR 0.62 0.74**
(0.40) (0.34)
(Reference = CHR)
Total precipitation —0.005 0.004
(Thousand ml per year) (0.03) (0.03)
Year 0.107%F 0.10%°%
(0.002) (0.002)
Adjusted R? 0.81 0.811
Residual Std. Error 0.53 (df = 1753)  0.539 (df = 1822)
F Statistic 61.04"** 116.921***
(df = 136, 1753)  (df = 67; 1822)
RMSE 1.10 0.53

Note: ¥, ¥*¥ "and ¥* mean significant at 10%, 5%, and 1%, respectively

where ¢ is a direction of change in §%%. Equivalently we may write h © ¢ = Tf © f,
and therefore the change vector is given by

T T
h@g&zC(%,...,%

emphasizing the fact that the change from the initial distribution f to T'f is a relative
change in the original scale of frequencies.

Similarly in the smooth case, and using on purpose the same notation for a different
object, the perturbation of a density f by a change scenario ¢ € B([a, b]) and intensity
h € R is given by

); (7)

Tt =ft) @ (hoe), (8)
where (t) is a direction of change in B2([a,b]). Note that, in clr space, the change
writes as follows in the discrete case and

crTf = clrf + helre (9)
and as follows in the smooth case

cIrT f(t) = clrf(t) + helrp(t). (10)
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Fig. 10 Estimated clr coefficients of maximum temperature for some regions
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Ideally, we would like to compute projections of rice yield corresponding to the
IPPC projections of the temperature, see [29]. However these would give rise to a
different ¢ vector or curve for each province, resulting in computational complexity
when evaluating impact significance. Therefore we create working scenarios which are
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linear (same ¢ for each province) but not so far from the IPPC projections for the
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end of the century. Before tuning their parameters to get approximations of the IPPC
projections, let us first describe the class of working scenario.

To simplify further the comparison between discrete and smooth cases, we decide
to choose a change direction curve in B2([a,b]) which coincides with a histogram
function with bin length of one so that the change curve ¢(t) is totally determined by
the vector of histogram frequencies ¢ used for the discrete model and therrfore the
climate change is common to both cases.

In order to construct a manageable but plausible ¢ which would yield changes
similar to those projected by RCP2.6, we propose to use the following type of ¢. In the
discrete case, we define ¢ to be the closure of the vector of ones except for bins between
bin m; and bin m, where one is replaced by exp(h). After visual inspection of the
histograms in Figures 14 and 15 of the temperature distributions as observed in 2016
(the last year of our panel) and as projected by RCP2.6 (the most optimistic IPCC
scenario), we select reasonable values for m;, m,, and h : for maximum temperature
my = 29, m, = 40,h = 5 and for minimum temperature m; = 23, m, = 26, h = 5.

For tmax Region RRD h=3 ml=19 mu= 34 Region NCC h= 4 ml= 22 mu= 34
Region CH h= 3 ml= 26 mu= 31 Region MKD h=3 ml= 30 mu=34

For tmin Region RRD h=5 ml= 14 mu= 27 Region NCC h= 5 ml= 19 mu= 25
Region CH h=5 ml=16 mu=22 Region MKD h= 5 ml= 23 mu=26

Alternative choices of working scenarios are of course possible.

From equation (7) it is easy to see that if I’ <m; or ' > m, and m, <1 < m,, we
have

1 _ _ 1
75, = oxp(h) = (11)
fz/ fl’

In the smooth case, a similar formula is true replacing f; and f; by f(¢) and f(t').
Formula (11) and its smooth counterpart can be interpreted as follows: after the
change, the frequency outside of the interval [m;, m,] is equal to the frequency inside
this interval before change multiplied by a factor of exp(—5) ~ 0.0067. The effect is
to inflate the density inside the interval [m;, m,].

The histograms RCP2.6 of Figures 14 (for maximum temperature) and 15 (for max-
imum temperature) illustrate the resulting change scenario for four selected provinces
(Ninh Binh for the RRD region, Thua Thien Hue for the NCC region, Lam Dong for
the CHR region and Can Tho for the MDR region). We observe that the frequencies
in warm temperature bins are higher after the change but we can see that the change
is relative and not obtained by adding a constant to all bins after the threshold.

Were this hypothetical climate change to happen in a given province and year,
we are now in position to compute a projection of the resulting rice yield change
Yik(h,go) — Y, where ﬁk(h,go) denotes the projected rice yield under the change
scenario. Given that both our models are linear for the simplex structure and that
Thfir(t) — fir(t) = h ® ¢(t), the resulting change of rice yield for a given province i
and a given year k are given by
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Fig. 14 Maximum temperature distributions in four provinces: observed in 2016, working scenario
and projected by RCP2.6
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6
Yie(hy9) = Yie = b Leer {< B7%, 0 >4 + < B, >4} (12)
r=1
6
=h Z lpe {< clrfB%, clrp >g2s + < clrf*", clrp >ges},
r=1

® in the smooth regression model

6
Yik(hy ) = Yik = by e {< B (1), (1) >m2 + < B (1), (1) >p2} (13)

r=1

6
= hzlker{< clrmT (t), clrp(t) >pz + < clr (t), clrp(t) >rzhy

r=1

Note that since a given province belongs to a single region, there is indeed a single
non-zero term in the right hand side sums. The inner products < clrfpaz, clre >ges,
and < clrByin, clrp >ges in the discrete model, respectiveley < clrSBynaz (t), clrp(t) > L2
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Fig. 15 Minimum temperature distributions in four provinces: observed in 2016, working scenario
and projected by RCP2.6
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and < clrﬁmm(t), clrp(t) > L2 in the smooth model therefore characterize the impacts
of a change in temperature density in the respective models and these are constant
for all provinces in both models for our working scenario. The computation of the
variance of the impacts is derived in the Appendix Section.

Table 3 displays the impacts and their standard error in our application.

Table 3 Climate impact on yield using the working scenario

Type Regions Discrete regression Smooth regression
Value Standard error Value Standard error
RRD 2.6690 0.9092 20.0700 0.8626
tmax NCC -1.2590 0.4896 -14.0736 0.7555
MDR -1.9395 0.5538 31.9298 0.5625
Other regions -0.2969 0.3329 -6.3677 0.6948
Average impact* | -0.3216 6.1964
tmin All regions 0.0004 0.0341 —0.7754 0.0654
Overall (tmin and tmax) | All regions -0.3212 5.4210

*The average impact for maximum temperature is computed as a weighted average taking into account
the number of provinces in each region.
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6 Conclusion

We have proposed and illustrated a procedure for assessing the impact of climate
change on rice yield production in Vietnam using scalar on density regression with a
discrete and a smooth frameworks. The results show that the smooth or functional
approach allows to keep more information from the density objects. The impact thus
measured by the smooth model comes out larger than that measured by the discrete
one.

Some aspects of this model correspond to preliminary choices. For example, a more
realistic assessment would take into account the cropping season in each region if the
cropping season data were available. However, dealing with density covariates with
varying supports would have opened other issues from the methodological side since
then we couldn’t have used the same spline basis for all densities.

Alternative methods of estimation could be considered: instead of choosing a small
number of knots, one can use penalized regression. However in that case it seems more
difficult from the implementation point of view to include several explanatory densities
each having a different smoothing parameter.

In order to measure the impact of climate change, we have chosen to consider
simplified change scenarios as close as possible to RCP scenarios of IPCC. Refinements
of these approximations are also possible.

We evaluate seprately the impact of maximum and that of minimum temperatures.
A direction of improvement could be to use the bivariate density of the maximum and
minimum temperatures and evaluate their joint impact which would take into account
their possible correlation.

7 Appendix

This appendix provides details about the computation of the impacts and their vari-
ance. We derive the impact variance in a general scenario where the change direction
curve may depend on province ¢ and will use it for the change scenario given by the
simplex-difference between the RCP2.6 histogram and the observed histogram in 2016
for that province. The computation is very similar in spirit for both the discrete and
the smooth framework, however the evaluation of the inner products involved is more
intricate in the smooth framework. We evaluate separately the impact of maximum
temperature and that of minimum temperature, and then add them up to get the
impact of climate change. We develop the computation for maximum temperature and
the result for minimum temperature is obtained in the same fashion.

In the smooth framework, the impact estimate for maximum temperature between
an initial time, say 0, and time s, say s = 2099, is given, for a province ¢ in region r, by

Vis — Yio =< clr(pi), clr(Bme®) > . (14)
Because the RCP scenarios are available as histograms, we will assume that ¢; is a

step function (constant on each bin with values (g;); for bin j.). Since clr(574%)(t) =
Zlgilg z/(Bme®) Z(t) the impact of maximum temperature for province i in region r is
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then given by
g+3

Voo = Yia = Yo a(5re) [ gz, (15)
1=1
where z(379%) is the g + 3 vector of components of the 4™ curve in the ZB-spline
basis and Z}(t) is the [*" ZB-spline curve. For i = 1 to 63 and [ = 1 to g + 3, let us
denote by p;; the integral term

pa= [ itz e (16)
and therefore Vi, — Yig = Ef’if’ 2108 )pa.
To compute the p;;, we take advantage of the fact that ¢; are constant on the bins

(bj,bj+1) and then of the fact that the integral of a ZB-spline can be obtained with
differences of B-splines of a higher order using equation (7) in [9] as follows

40 28 bjt+1
D = /1 clr(p:)(t) Z{ (t)dt = ;/bj clr(cpi)j(t)Zf(t)dt (17)

2
28 bjt1 28
= ZCZT(%)j /b Zi (t)dt = chr(%)j (B (bj1) — B (b)) (18)

Turning now attention to the variance of the estimated impact of maximum temper-
ature, we have

The unbiasedness of the OLS estimates in clr space implies that E(z(379)) =
z(Bme®). Therefore we have

g+3

2
Var(Yis — Yio) =E (Z(ZI(B;MI) - Zz(ﬁl”“))pu) (19)

=1

Let P be the 63 x (g + 3) matrix of elements p;;. Then the variance of the impact in
province 7 is given by

Var(Y;s — Yig) = VarP; z(B®) = P; Var(z(57*")) P, (20)
where P;_ is the i*" row of P. We can estimate Var(z(37**)) by the empirical variance-
covariance matrix of the parameters estimates.

We will use a single scenario by region. For region r, this scenario ¢, is computed
as the average (in the simplex sense) of the RCP scenarios of all the provinces in that
region.
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