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Abstract. In this article, we investigate four-dimensional gradient shrinking

Ricci solitons close to a Kähler model. The first theorem could be considered
as a rigidity result for the Kähler-Ricci soliton structure on S2 × R2 (in the

sense of Remark 1). Moreover, we show that if the quotient of norm of the

self-dual Weyl tensor and scalar curvature is close to that on a Kähler metric in
a specific sense, then the gradient Ricci soliton must be either half-conformally

flat or locally Kähler.

1. Introduction

A complete Riemannian metric g on an n-dimensional smooth manifold Mn is
called a gradient shrinking Ricci soliton (GSRS) if there exists a smooth potential
function f such that the Ricci tensor Ric and metric g satisfy the equation

(1.1) Ric+Hess f =
1

2
g.

Here, Hess f denotes the Hessian of f . Ricci solitons are self-similar solutions to
Hamilton’s Ricci flow and play a crucial role in the singularity analysis of the Ricci
flow [26]. They also provide a natural extension of Einstein manifolds, see [5] for
an overview on Ricci solitons.

In [26], Hamilton showed that any two-dimensional GSRS is either isometric to
the plane R2 or a quotient of the sphere S2 (both are Kähler by the identifications
R2 ≃ C and S2 ≃ CP1). Furthermore, it follows by the works of Ivey [27], Perelman
[35], Naber [33], Ni-Wallach [34], and H.-D. Cao-Chen-Zhu [7], that any three-
dimensional GSRS is a finite quotient of either the round sphere S3, the Gaussian
shrinking soliton R3, or the round cylinder S2 × R.

In dimension n = 4, the first non-Einstein example of compact gradient shrinking
Ricci soliton is a rotationally Kähler metric on CP2♯(−CP2), where (−CP2) is the
complex projective space with the opposite orientation. This was first discovered
by H.-D. Cao [6] and Koiso [29]. Later, Wang and Zhu [41] constructed a new
gradient Kähler-Ricci soliton on CP2♯2(−CP2). A well-known folklore conjecture
asks whether any compact non-Einstein gradient Ricci soliton in dimension four is
necessarily Kähler. For noncompact examples, we have the gradient Kähler-Ricci
soliton S2×R2 with the natural orientation induced from the complex structure on
CP1×C and the family constructed by Feldman, Ilmanen and Knopf in [24], which
is U(n)-invariant and cone-like at infinity.
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Despite of recent important advancements, the classification of four-dimensional
GSRS remains open, even in the case of complete Kähler-Ricci solitons; see, e.g.,
[2, 8–10, 12, 17, 19, 20, 22, 23, 25, 28, 30–34, 36, 43] for recent progress. By the works
[12,23,30,34,36,43], locally conformally flat (i.e., W = 0) four-dimensional complete
GSRS are isometric to finite quotients of either S4, or R4, or S3×R. Other relevant
classification results have been obtained under various curvature conditions: half-
conformally flat (W+ = 0 by a choice of orientation) by Chen and Wang [18]; Bach-
flat by H.-D. Cao and Chen [8]; harmonic Weyl tensor (divW = 0) by Fernández-
López and Garćıa-Ŕıo [25] together with Munteanu and Sesum [30]; and harmonic
self-dual Weyl tensor (divW+ = 0) by Wu et al. [42], also see [15].

On the other hand, there are results based on pinching conditions of the Weyl
curvature. Catino [14] showed that any complete four-dimensional GSRS with
nonnegative Ricci curvature and

(1.2) |W|R ≤
√
3

(
|R̊ic| − 1

2
√
3
R

)2

must be conformally flat, here, R̊ic and R denote traceless Ricci tensor and scalar
curvature, respectively. The nonnegative Ricci curvature assumption was later
removed in [42]. Some related results involving integral pinching conditions were
established in [11, 16]. By a different method, Zhang [44] shows that any four-
dimensional GSRS with 0 ≤ Ric ≤ C and

(1.3) |W| ≤ γ
∣∣∣|R̊ic| − 1

2
√
3
R
∣∣∣

is either flat or has 2-positive Ricci curvature, for some constant γ < 1 +
√
3.

It turns out that neither pinching conditions (1.2) nor (1.3) recovers the non-

Einstein Kähler-Ricci soliton S2×R2, the (normalized) GSRS
(
S2(

√
2)×R2, g, f

)
with product metric g and potential function

f(x, y) =
|y|2

4
+ 1,

for (x, y) ∈ S2(
√
2) × R2. A recent result, due to H.-D. Cao, Ribeiro and Zhou

[9, Theorem 1], states that a complete four-dimensional GSRS satisfying

(1.4) |W+|2 −
√
6|W+|3 ≥ 1

2
⟨(R̊ic⊙ R̊ic)+,W+⟩

is either Einstein, conformally flat, or S2 × R2. Here, ⊙ denotes the Kulkarni-
Nomizu product. One important new feature in the above result is that they only
need a condition on the self-dual part of Weyl tensor, but no point-wise Ricci curva-
ture bound is needed. Nonetheless, as mentioned in [9, Remark 2], it is interesting
to replace the right hand side of (1.4) by a sharp expression depending on the norm

of R̊ic instead of a Kulkarni-Nomizu product.

In this article, we first prove a classification result, in the spirit of [9, Theorem

1], using the norm of R̊ic. More precisely, we have established the following result.

Theorem 1. Let (M4, g, f) be a complete four-dimensional gradient shrinking
Ricci soliton (1.1) satisfying the pinching condition

(1.5) |W+|2 −
√
6|W+|3 ≥

√
6

6
|R̊ic|2|W+|.
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Then (M4, g, f) is either

(i) isometric to the standard round sphere S4, the complex projective space CP2,
or

(ii) a finite quotient of the Gaussian shrinking soliton R4, the round cylinder
S3 × R, or

(iii) a compact Einstein manifold with ∇W+ ≡ 0 and W+ has precisely two
distinct eigenvalues (including S2 × S2 with the product metric), or

(iv) a finite quotient of the Kähler-Ricci soliton S2 × R2.

A key ingredient in the proof of Theorem 1 is the novel sharp estimate

(1.6) ⟨(R̊ic⊙ R̊ic)+,W+⟩ ≤
√
6

3
|R̊ic|2|W+|.

Interestingly, its proof is based on the notion of the curvature of the second kind
and its algebraic consequences outlined by X. Cao, Gursky and Tran [13] in the
resolution of a conjecture of Nishikawa.

Remark 1. We point out that the equality in Theorem 1 holds for S2 × R2 :

|W+|2 −
√
6|W+|3 =

√
6

6
|R̊ic|2|W+| = 1

48
.

Thereby, Theorem 1 can be seen as a gap theorem for S2 × R2.

Remark 2. A relevant observation is that, by using essentially the same arguments
as in the proof of Theorem 1, if we replace the assumption (1.5) by the condition

(1.7) |W+| −
√
6|W+|2 ≥

√
6

6
|R̊ic|2.

we derive the same classification of Theorem 1 with the exception of the round
cylinder S3 × R.

In our next result, we establish a general rigidity theorem for four-dimensional
Kähler-Ricci solitons. It is known from [21] that a four-dimensional Kähler metric
with a natural of orientation must satisfy

|W+|2 =
R2

24
.

We will show that on a four-dimensional GSRS, if the quotient |W+|2
R2 is close enough

to 1/24 from below, then the manifold must be either locally Kähler or one of the
standard models. To be precise, we have the following result.

Theorem 2. Let (M4, g, f) be a four-dimensional complete (nonflat) gradient
shrinking Ricci soliton (1.1) satisfying the pinching condition

(1.8)
1

24
≥ |W+|2

R2
≥

√
6

3

|R̊ic|2

R3
|W+|.

Then (M4, g, f) is either

(i) isometric to S4, or CP2, or
(ii) a finite quotient of the round cylinder S3 × R, or
(iii) a locally Kähler-Ricci soliton.

Remark 3. Locally Kähler in Theorem 2 means Kähler after possibly pulling back
to a double cover of M4.
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Remark 4. We highlight that the condition in Theorem 2 is sharp as both inequa-
lities in (1.8) become equalities for the Kähler-Ricci soliton S2 × R2.

In the compact case, the reverse of (1.8) leads to the following characterization.

Corollary 1. Let (M4, g, f) be a four-dimensional compact gradient shrinking
Ricci soliton (1.1) satisfying

(1.9)
1

24
≤ |W+|2

R2
≤

√
6

3

|R̊ic|2

R3
|W+|.

Then (M4, g, f) is a locally Kähler-Ricci soliton.

Remark 5. In the compact case, it is known (see [5,41]) that a nontrivial Kähler-
Ricci soliton is Fano (i.e., the first Chern class is positive) and the Futaki-invariant
is nonzero. Moreover, it follows from the works of Tian and Zhu [39, 40] that the
soliton vector field is unique up to holomorphic automorphisms of the underlying
complex manifold.

This article is organized as follows. In Section 2, we review some basic facts and
useful lemmas on four-dimensional GSRS. Section 3 contains relevant contributions
with several novel estimates. Finally, Section 4 collects the proofs of our main re-
sults.

Acknowledgment. X. Cao was partially supported by the Simons Foundation
(#585201). E. Ribeiro was partially supported by CNPq/Brazil (#309663/2021-0),
CAPES/Brazil and FUNCAP/Brazil (# PS1-0186-00258.01.00/21). H. Tran was
partially supported by grants from the Simons Foundation, NSF DMS-2104988,
and VIASM. The authors would like to thank Detang Zhou for helpful comments
on a preliminary version of the paper.

2. Background

In this section, we review some basic facts and present key results that will be
used for our main theorems.

Throughout this paper, for an n-dimensional Riemannian manifold (Mn, g), we

denote Ric, R̊ic, R and K to be the Ricci, traceless Ricci, scalar and sectional
curvatures, respectively. Given a point p ∈ M , let {e1, . . . , en} be a local normal
orthogonal coordinate of TpM, then {e1, . . . , en} denotes the associated dual basis.

For a finite dimensional vector space V , S2(V ) and Λ2(V ) are the space of
symmetric and anti-symmetric linear maps on V (called symmetric 2-tensors and
2-forms, respectively). In particular, S2

0(V ) contains only traceless symmetric maps.
When V = TpM , we normally subdue the vector space for convenience. The
convention for the inner products is as follows. For u, v ∈ S2(V ) and α, β ∈ Λ2(V ):

⟨u, v⟩ = Tr (uT v) and ⟨α, β⟩ = 1

2
Tr (αTβ).

Let R(V ) be the space of algebraic curvatures, that is, (4, 0)-tensors satisfying
certain symmetric properties and the first Bianchi identity. More precisely, for
T ∈ R(V ), we have

T (ei, ej , ek, el) = −T (ej , ei, ek, el) = −T (ei, ej , el, ek) = T (ek, el, ei, ej)
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and

0 = T (ei, ej , ek, el) + T (ei, ek, el, ej) + T (ei, el, ej , ek).

Thus, any element T ∈ R(V ) can be considered as an element in either End(Λ2(V ))
or End(S2(V )). They are so called the curvature of the first or second kind, respec-
tively (see [13] and references therein). Precisely, for ω ∈ Λ2(V ) and A ∈ S2(V ),
we define

T (ω)(ei, ej) :=
∑
k<l

T (ei, ej , ek, el)ω(ek, el)

and

(T̂A)(ei, ek) :=
∑
j,l

T (ei, ej , el, ek)A(ej , el).

The inner product in End(Λ2(V )) is given by

⟨T1, T2⟩ =
∑

i<j,k<l

T1(eij , ekl)T2(eij , ekl) =
1

4

∑
i,j,k,l

(T1)ijkl(T2)ijkl.

Recall that the Kulkarni-Nomizu product ⊙: S2(V )×S2(V ) 7→ R(V ) is defined
by

(A⊙B)ijkl = AikBjl +AjlBik −AilBjk −AjkBil.(2.1)

In terms of the Kulkarni-Nomizu product, we have the following intrinsic relation,
its proof follows from a straightforward calculation.

Lemma 1. Let A,B ∈ S2(V ), then we have:

(T̂A,B) = −⟨T,A⊙B⟩ .

We further recall the following curvature decomposition

Rijkl = Wijkl +
1

n− 2

(
Rikgjl +Rjlgik −Rilgjk −Rjkgil

)
− R

(n− 1)(n− 2)

(
gjlgik − gilgjk

)
,(2.2)

where Rijkl stands for the Riemann curvature tensor and Wijkl is the Weyl curva-
ture tensor.

2.1. Four-dimensional Manifolds. In this subsection, we focus on dimension
n = 4. The bundle of 2-forms Λ2 can be invariantly decomposed into a direct sum,

(2.3) Λ2 = Λ+ ⊕ Λ−.

Moreover, as observed in [1] (see also [21, Lemma 2]), these components have special
structures:

Lemma 2. Let (M4, g) be an oriented four-dimensional Riemannian manifold and
p be a point in M4. Then the following assertions hold:

(1) Λ± are mutually commuting, each isomorphic to so(3).

(2) Elements of lengths
√
2 in Λ± coincides with the almost complex structure

compatible with the metric.
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(3) Each oriented orthogonal basis {ω1, ω2, ω3} of Λ± with |ω1| = |ω2| = |ω3| =√
2 forms a quaternionic structure in TpM . That is,

ω2
1 = ω2

2 = ω2
3 = −I and ω1ω2 = ω3 = −ω2ω1.

(4) Given ω ∈ Λ+, α ∈ Λ−, ωα = αω is an orientation preserving involution
of TpM . Its (±1)-eigenspaces form an orthogonal decomposition of TpM
into a direct sum of two planes. In particular, we have ωα ∈ S2

0 .

The decomposition (2.3) is in particular conformally invariant and induces a
decomposition for the Weyl curvature:

(2.4) W = W+ ⊕W−,

where W± : Λ± −→ Λ± are called the self-dual part and anti-self-dual part of the
Weyl tensor, respectively. Furthemore, at a point p ∈ M4, one can diagonalize W±

with eigenforms {ωi}3i=1 ∈ Λ+ and {αi}3i=1 ∈ Λ− such that λi and µi, 1 ≤ i ≤ 3,
are the respective eigenvalues. In particular, one observes that

(2.5)

{
λ1 ≥ λ2 ≥ λ3 and λ1 + λ2 + λ3 = 0,

µ1 ≥ µ2 ≥ µ3 and u1 + µ2 + µ3 = 0.

So, it follows that

(2.6) 2W =

3∑
i=1

λiωi ⊗ ωi + µiαi ⊗ αi.

In a local neighborhood, we construct a local frame so that (2.6) holds. In parti-
cular, Λ± is invariant under parallel displacement. By using Derdzinski’s argument
[21, p. 414], we arrive at, for (i, j, k) an orientation-preserving permutation of
(1, 2, 3),

∇ωi = aj ⊗ ωk − ak ⊗ ωj ,

2∇W+ =

3∑
i=1

(dλi ⊗ ωi + (λi − λk)aj ⊗ ωk − (λi − λj)ak ⊗ ωj)⊗ ωi.(2.7)

The following Kato inequality will be also useful.

Lemma 3. Let (M4, g) be an oriented four-dimensional Riemannian manifold.
Then we have:

|∇|W+|| ≤ |∇W+|.

Equality holds if and only if there is an one-form ν such that ∇W+ = ν ⊗W+.

We will also need to use the following algebraic inequality

(2.8) detW+ ≤
√
6

18
|W+|3,

moreover, equality holds if and only if λ3 = λ2 = − 1
2λ1.
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2.2. Two-forms and Two-tensors. In dimension four, there is an interesting
connection between 2-tensors and 2-forms. A choice of orthonormal bases of Λ± is
given by

B+ =
1√
2
(e12 + e34, e13 − e24, e14 + e23) =

1√
2
(ω1, ω2, ω3),(2.9)

B− =
1√
2
(e12 − e34, e13 + e24, e14 − e23) =

1√
2
(α1, α2, α3).

By Lemma 2, their cross products form a basis for S2
0(V ), i.e.,

(2.10) B2 = {ωiαj} = {h1, . . . , h9}.

More specifically, one has

h1 = ω1α1 =


−1

−1
1

1

 ; h2 = ω1α2 =


1

−1
−1

1

 ;

h3 = ω1α3 =


−1

−1
−1

−1

 ; h4 = ω2α1 =


−1

−1
−1

−1

 ;

h5 = ω2α2 =


−1

1
−1

1

 ; h6 = ω2α3 =


1

1
−1

−1

 ;

h7 = ω3α1 =


1

−1
1

−1

 ; h8 = ω3α2 =


−1

−1
−1

−1

 ;

h9 = ω3α3 =


−1

1
1

−1

 .

At the same time, according to Berger [3] (see also [38]), at a point, there is a
normal form for the Weyl tensor: a basis {ei}4i=1 such that the bases (2.9) consist
of eigenforms of W±. Whence, X. Cao, Gursky and Tran in [13, Proposition 4.3]

are able to compute Ŵ with respect to (2.10),

Ŵ =

 D1 0 0
0 D2 0
0 0 D3

 ,(2.11)

here the Di’s are diagonal matrices given by

Di =

 −4(λi + µ1)
−4(λi + µ2)

−4(λi + µ3)

 .
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Before proceeding, we list the curvature operator of the second kind R̂ for some
basic examples:

1. Let (S4(
√
6), g0) be the 4-dimensional round sphere of radius

√
6 and scalar

curvature R = 2. In this case, one has

R̂ =
√
6I,

where I is the identity matrix.
2. Let (CP2, g

FS
) be the complex projective space of complex dimension 2

with the Fubini-Study metric and scalar curvature R = 8. Then, up to the
ordering of eigenvalues, one has

R̂ = 16

 − 1
2 I 0 0
0 I 0
0 0 I

 .

3. Let
(
S2(

√
2)×R2, g, f

)
be the GSRS with the product metric g and scalar

curvature R = 1. In this case, up to the ordering of eigenvalues, one has

R̂ =
√
2



− 1
2

1
1

0
0

0
0

0
0


.

2.3. Four-Dimensional Shrinking Ricci Solitons. In this subsection, we are
going to collect some well-known identities for four-dimensional GSRS satisfying
(1.1). First, let us recall the following lemma.

Lemma 4 ([26]). Let
(
M4, g, f

)
be a four-dimensional gradient shrinking Ricci

soliton satisfying (1.1). Then we have:

(1) R+∆f = 2;
(2) 1

2∇R = Ric(∇f);

(3) ∆fR = R− 2|Ric|2;
(4) R+ |∇f |2 = f (after normalizing);
(5) ∆fRij = Rij − 2RikjlRkl.

Here, ∆f · := ∆ · −∇∇f · denotes the drifted Laplacian.

Chen showed in [17] that any complete ancient solution to the Ricci flow has
nonnegative scalar curvature, it follows that R ≥ 0 for any complete GSRS. More-
over, R is strictly positive unless (M4, g, f) is the Gaussian shrinking soliton (see
[37]).

Regarding the potential function f , H.-D. Cao and Zhou [10] proved that

(2.12)
1

4

(
r(x)− c

)2
≤ f(x) ≤ 1

4

(
r(x) + c

)2
,

for all r(x) ≥ r0, where r = r(x) is the distance function to a fixed point in M.
Additionally, they showed that every complete noncompact GSRS has at most
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Euclidean volume growth (see [10, Theorem 1.2]). These asymptotic estimates are
optimal in the sense that they are achieved by the Gaussian shrinking soliton.

Next, we recall a Weitzenböck type formula established by the first and third
authors [11] that will play a crucial role in our proofs.

Proposition 1 ([11]). Let (M4, g, f) be a four-dimensional gradient shrinking
Ricci soliton satisfying (1.1). Then we have:

∆f |W±|2 = 2|∇W±|2 + 2|W±|2 − 36 detW± − ⟨(R̊ic⊙ R̊ic)±,W±⟩,
where ⊙ stands for the Kulkarni-Nomizu product.

3. Key Estimates

In this section, we will establish some key lemmas that will be used in our proofs.

Lemma 5. Let (M4, g) be a four-dimensional Riemannian manifold. If ∇W+ =
ν⊗W+ for some one-form ν and λ2 = λ3 at each point, then ω1 is a locally Kähler
form.

Proof. Since λ2 = λ3 at each point, from (2.5), it is clear that

λ1 = −2λ2 = −2λ3

is a non-negative function. Its eigenspace ω1 is therefore locally defined (for exam-
ple, see [21]). Hence, it follows from (2.7) that

2∇W+ = (dλ1 ⊗ ω1 +
3

2
λ1a2 ⊗ ω3 −

3

2
λ1a3 ⊗ ω2)⊗ ω1

+(dλ2 ⊗ ω2 −
3

2
λ1a3 ⊗ ω1)⊗ ω2

+(dλ3 ⊗ ω3 +
3

2
λ1a2 ⊗ ω1)⊗ ω3.

At the same time, since ∇W+ = ν ⊗W+, we have

2∇W+ =

3∑
i=1

λiν ⊗ ωi ⊗ ωi.

The equations above then imply that

λ1ν = dλ1,

a2 = a3 ≡ 0.

Consequently, ∇ω1 ≡ 0 and, since ω1 ∈ Λ+, it is a locally Kähler form. □

Next, we obtain a sharp estimate for ⟨(R̊ic⊙ R̊ic)+,W+⟩.

Lemma 6. Let (M4, g) be an oriented four-dimensional Riemannian manifold.
Then we have:

(3.1) ⟨(R̊ic⊙ R̊ic)+,W+⟩ ≤
√
6

3
|R̊ic|2|W+|.

Moreover, equality holds if and only if W+ has eigenvalues

0 ≤ λ1 = −2λ2 = −2λ3

and
R̊ic = a1h1 + a2h2 + a3h3.
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Proof. A priori, using the orthogonal basis (2.10), one has R̊ic =
∑9

i=1 aihi. It
follows from (2.11) that

Ŵ+(R̊ic, R̊ic) = a2i Ŵ
+(hi, hi)

= −4

3∑
i=1

λi

3i∑
j=3i−2

a2j .

Denote A2
i =

∑3i
j=3i−2 a

2
j and hence, since |hi| = 2, one obtains that

|R̊ic|2 = 4
∑
i

A2
i .

Without loss of generality, we may consider |R̊ic|2 = ρ ≥ 0, |W+| = σ ≥ 0 and

λ⃗ = (λ1, λ2, λ3),

A⃗ = (A2
1, A

2
2, A

2
3).

Therefore, λ⃗ is on the circular intersection of the sphere x2+y2+z2 = σ2 and region

x ≥ y ≥ z in the plane x + y + z = 0. Besides, A⃗ is on the triangular intersection
of the plane x+ y + z = ρ/4 and the quadrant x, y, z ≥ 0. Consequently,

(3.2) −Ŵ+(R̊ic, R̊ic) = 4

3∑
i=1

λiA
2
i = 4

〈
λ⃗, A⃗

〉
= 4

〈
λ⃗, A⃗

〉
.

Here, A⃗ is the projection of A⃗ on the plane x+ y + z = 0, that is,

(3.3) A⃗ =
1

3

(
2A2

1 −A2
2 −A2

3,−A2
1 + 2A2

2 −A2
3,−A2

1 −A2
2 + 2A2

3

)
.

Observe that if A⃗ is (0, 0, 0), then it suffices to use (3.2) and (3.3) in order to infer
that the asserted inequality is trivially satisfied. Therefore, from the description of

A⃗, one can deduce that A⃗ is within an equilateral triangle centered at the origin
and vertices (ρ/6,−ρ/12,−ρ/12), (−ρ/12, ρ/6,−ρ/12) and (−ρ/12,−ρ/12, ρ/6). In

particular, the maximum value of ⟨λ⃗, A⃗⟩ is attained if and only if A⃗ coincides with

a vertex of the triangle and λ⃗ is parallel to it. Thereby, A⃗ coincides with a vertex

and λ⃗ is a positive multiple of the projection of A⃗ on the plane x+ y + z = 0. By
a direct computation at three vertices, one sees that the maximum is achieved at

A⃗ = (ρ/4, 0, 0).

Then, λ⃗ is a positive multiple of the projection of A⃗ on the plane x + y + z = 0

and hence, it is not difficult to check that λ⃗ must be a multiple of (2,−1,−1). Of
which, we obtain

(3.4) −Ŵ+(R̊ic, R̊c) ≤ 2√
6
|W+||R̊ic|2.

Furthermore, equality holds if and only if W+ has eigenvalues

0 ≤ λ1 = −2λ2 = −2λ3

and

R̊ic = a1h1 + a2h2 + a3h3.
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Finally, it suffices to use Lemma 1 and (3.4) to calculate that〈
W+, R̊ic⊙ R̊ic

〉
= −Ŵ+(R̊ic, R̊c) ≤ 2√

6
|W+||R̊ic|2,

which gives the desired result. □

To conclude this section, we shall use Proposition 1 to establish a lemma that
will be employed in the proof of Theorem 2.

Lemma 7. Let (M4, g, f) be a four-dimensional gradient shrinking Ricci soliton.
Then, for Ψ = f − 2 lnR, we have

∆Ψ

(
|W+|2

R2

)
= 4

|Ric|2

R3
|W+|2 + 2

|∇R|2

R4
|W+|2 + 2

R2
|∇W+|2

−36
detW+

R2
− 1

R2
⟨(R̊ic⊙ R̊ic)+,W+⟩(3.5)

− 2

R3
⟨∇|W+|2,∇R⟩.

Proof. First, one observes that

(3.6) ∆

(
|W+|2

R2

)
= R−2∆|W+|2 + |W+|2∆

(
R−2

)
+ 2⟨∇|W+|2,∇

(
R−2

)
⟩.

Moreover, we have ∇(R−2) = −2R−3∇R so that

∆(R−2) = −2R−3∆R+ 6R−4|∇R|2.
This substituted into (3.6) gives

∆

(
|W+|2

R2

)
= |W+|2

(
−2

∆R

R3
+ 6

|∇R|2

R4

)
+

1

R2
∆|W+|2

− 4

R3
⟨∇|W+|2,∇R⟩.

Now, we may use Proposition 1 and Lemma 4 to infer

∆

(
|W+|2

R2

)
= |W+|2

[
− 2

R3

(
⟨∇R,∇f⟩+R− 2|Ric|2

)
+ 6

|∇R|2

R4

]
+

1

R2

[
⟨∇f,∇|W+|2⟩+ 2|∇W+|2 + 2|W+|2

−36 detW+ − ⟨(R̊ic⊙ R̊ic)+,W+⟩
]

− 4

R3
⟨∇|W+|2,∇R⟩.

Consequently,

∆

(
|W+|2

R2

)
= −2

|W+|2

R3
⟨∇R,∇f⟩+ 4

|Ric|2

R3
|W+|2 + 6

|∇R|2

R4
|W+|2

+
1

R2
⟨∇f,∇|W+|2⟩+ 2

|∇W+|2

R2
− 36

detW+

R2

− 1

R2
⟨(R̊ic⊙ R̊ic)+,W+⟩ − 4

R3
⟨∇|W+|2,∇R⟩.(3.7)

On the other hand, observe that
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〈
∇
( |W+|2

R2

)
,∇f

〉
=

1

R2
⟨∇|W+|2,∇f⟩ − 2

|W+|2

R3
⟨∇R,∇f⟩.

Therefore, (3.7) becomes

∆f

(
|W+|2

R2

)
= 4

|Ric|2

R3
|W+|2 + 6

|∇R|2

R4
|W+|2 + 2

|∇W+|2

R2

−36
detW+

R2
− 1

R2
⟨(R̊ic⊙ R̊ic)+,W+⟩(3.8)

− 4

R3
⟨∇|W+|2,∇R⟩.

Now, choosing φ = 2 lnR we have〈
∇φ,∇

(
|W+|2

R2

)〉
=

2

R3
⟨∇R,∇|W+|2⟩ − 4

R4
|W+|2|∇R|2.

Plugging this into (3.8) yields

∆Ψ

(
|W+|2

R2

)
= 4

|Ric|2

R3
|W+|2 + 2

|∇R|2

R4
|W+|2 + 2

R2
|∇W+|2

−36
detW+

R2
− 1

R2
⟨(R̊ic⊙ R̊ic)+,W+⟩(3.9)

− 2

R3
⟨∇|W+|2,∇R⟩,

where Ψ = f − 2 lnR. This finishes the proof of the lemma.
□

4. Proof of the Main Results

In this section, we will present the proofs of Theorem 1, Theorem 2 and Corollary
1. In the first part, we adapt the arguments from H.-D. Cao-Ribeiro-Zhou [9].

4.1. Proof of Theorem 1.

Proof. By Proposition 1, we have

2|W+|∆f |W+| = 2|∇W+|2 − 2|∇|W+||2 + 2|W±|2 − 36 detW+

−⟨(R̊ic⊙ R̊ic)+,W+⟩,(4.1)

where we have used that

∆f |W+|2 = 2|W+|∆f |W+|+ 2|∇|W+||2.

Using the Kato inequality (2.8) and Lemma 6, one sees that

|W+|∆f |W+| ≥ |W+|2 −
√
6|W+|3 − 1

2
⟨(R̊ic⊙ R̊ic)+,W+⟩,

≥ |W+|2 −
√
6|W+|3 −

√
6

6
|R̊ic|2|W+|.(4.2)

Hence, our assumption guarantees that |W+|∆f |W+| does not change sign.
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In order to proceed, we need to show that |W+| is L2
f -integrable, i.e., |W+| ∈

L2(e−fdVg). To do so, we first observe that the assumption also implies that

√
6|W+|2 ≤ |W+| −

√
6

6
|R̊ic|2

≤
√
6

2
|W+|2 + 1

2
√
6
.

Integrating over M4, we obtain∫
M

|W+|2e−fdVg ≤ 1

6

∫
M

e−fdVg.

Thus, sinceM4 has finite weighted volume, i.e.,
∫
M

e−fdVg < ∞ (see, [10, Corollary

1.1]), one concludes that |W+| is L2
f -integrable.

Proceeding, we consider a cut-off function ρ : M → R such that ρ = 1 on a
geodesic ball Bp(r) centered at a fixed point p ∈ M of radius r, ρ = 0 outside of
Bp(2r) and |∇ρ| ≤ c

r , where c is a constant. By our assumption and (4.2), we have

0 ≥ −
∫
M

ρ2|W+|∆f |W+|e−fdVg

=

∫
M

〈
∇
(
ρ2|W+|

)
,∇|W+|

〉
e−fdVg

=

∫
M

∣∣ρ∇|W+|+ |W+|∇ρ
∣∣2 e−fdVg −

∫
M

|W+|2|∇ρ|2e−fdVg.

It follows that∫
M

∣∣∇ (ρ|W+|
)∣∣2 e−fdVg ≤

∫
M

|W+|2|∇ρ|2e−fdVg.(4.3)

Hence, we deduce that∫
B(r)

∣∣∇|W+|
∣∣2 e−fdVg ≤

∫
M

∣∣∇ (ρ|W+|
)∣∣2 e−fdVg

≤
∫
M

|W+|2|∇ρ|2e−fdVg

≤
∫
M\B(2r)

|W+|2|∇ρ|2dVg +

∫
B(2r)\B(r)

|W+|2|∇ρ|2dVg

+

∫
B(r)

|W+|2|∇ρ|2dVg

≤
∫
B(2r)\B(r)

|W+|2|∇ρ|2e−fdVg

≤ c2

r2

∫
M

|W+|2e−fdVg.(4.4)

Since |W+| is a L2
f -integrable function on M4, we conclude that the right hand side

tends to zero as r → ∞ and hence, |W+| must be constant.
Now, if |W+| = 0, then, by Theorem 1.2 of [18], one deduces that the soliton

is either Einstein, the Gaussian soliton R4, the round cylinder S3 × R, or their
quotients. In the case that it is a non-flat Einstein manifold, one invokes Myer’s
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theorem and the Hitchin classification to conclude that it is isometric to either the
round sphere S4 or the complex projective space CP2 (see [4, Theorem 13.30]).

On the other hand, if |W+| is a nonzero constant, then it suffices to use (4.1),
(2.8), Lemma 6 and the assumption, in order to infer that∇W+ ≡ 0. Consequently,
by Theorem 1.1 in [42], one concludes that (M4, g, f) is either a finite quotient of
S2 × R2, or compact Einstein with ∇W+ ≡ 0 and W+ has 2 distinct eigenvalues.
This finishes the proof of Theorem 1.

□

4.2. Proof of Theorem 2.

Proof. Initially, one verifies that

∆Ψ

(
|W+|2

R2

)
= 2

|W+|
R

∆Ψ

(
|W+|
R

)
+ 2

|W+|2

R4
|∇R|2 + 2

R2
|∇|W+||2

− 2

R3
⟨∇R,∇|W+|2⟩.

Now, substituting this data into Lemma 7, one obtains that

2
|W+|
R

∆Ψ

(
|W+|
R

)
= 4

|Ric|2

R3
|W+|2 + 2

R2

(
|∇W+|2 − |∇|W+||2

)
−36

detW+

R2
− 1

R2
⟨(R̊ic⊙ R̊ic)+,W+⟩.

Thereby, by the Kato inequality, (2.8) and Lemma 6, we compute

2
|W+|
R

∆Ψ

(
|W+|
R

)
≥ 4

|Ric|2

R3
|W+|2 − 2

√
6

R2
|W+|3

− 1

R2
⟨(R̊ic⊙ R̊ic)+,W+⟩

≥ 4
|R̊ic|2

R3
|W+|2 + |W+|2

R
− 2

√
6

R2
|W+|3

− 1

R2

√
6

3
|W+||R̊ic|2

=
1

R

(
1− 2

√
6
|W+|
R

)(
|W+|2 −

√
6

3

|R̊ic|2

R
|W+|

)
.(4.5)

Hence, our assumption guarantees that |W+|
R ∆Ψ

(
|W+|
R

)
does not change sign.

Now, we need to show that |W+|
R is a L2

Ψ-integrable function on M4. Indeed, we
observe that

(4.6)

∫
M

|W+|2

R2
e−ΨdVg =

∫
M

|W+|2

R2
e−fe2 lnRdVg =

∫
M

|W+|2e−fdVg.

At the same time, our assumption gives

(4.7)

∫
M

|W+|2e−fdVg ≤ 1

24

∫
M

R2e−fdVg ≤ 1

6

∫
M

|Ric|2e−fdVg.

By Theorem 1.1 in [30], we have∫
M

|Ric|2e−fdVg < ∞.
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Thus, it follows from (4.6) and (4.7) that |W+|
R is a L2

Ψ-integrable.
Next, we are going to apply a cut-off function argument similar as in the proof

of Theorem 1 to conclude that |W+|
R is constant. Indeed, we set a cut-off function

ρ : M → R such that ρ = 1 on a geodesic ball Bp(r) centered at a fixed point p ∈ M
of radius r, ρ = 0 outside of Bp(2r) and |∇ρ| ≤ c

r , where c is a constant. Hence,

taking into account that |W+|
R is a Ψ-subharmonic function on M4 and R > 0 unless

(M4, g, f) is the Gaussian shrinking soliton, one easily verifies that

0 ≥ −
∫
M

ρ2
|W+|
R

∆Ψ

(
|W+|
R

)
e−ΨdVg

=

∫
M

∣∣∣∣ρ∇( |W+|
R

)
+

|W+|
R

∇ρ

∣∣∣∣2 e−ΨdVg −
∫
M

|W+|2

R2
|∇ρ|2e−ΨdVg,

so that

∫
M

∣∣∣∣∇(ρ |W+|
R

)∣∣∣∣2 e−ΨdVg ≤
∫
M

|W+|2

R2
|∇ρ|2e−ΨdVg.(4.8)

It follows that

∫
B(r)

∣∣∣∣∇( |W+|
R

)∣∣∣∣2 e−ΨdVg ≤
∫
M

∣∣∣∣∇(ρ |W+|
R

)∣∣∣∣2 e−ΨdVg

≤
∫
B(2r)\B(r)

|W+|2

R2
|∇ρ|2e−ΨdVg

≤ c2

r2

∫
M

|W+|2

R2
e−ΨdVg.(4.9)

Since |W+|
R is a L2

Ψ-integrable function on M4, we conclude that the right hand

side tends to zero as r → ∞ and consequently, |W+|
R must be constant on M4, as

asserted.
If |W+|

R = 0, then W+ ≡ 0. As in the proof of Theorem 1, the soliton must be

isometric to either S4, CP2, or a finite quotient of the round cylinder S3 × R.
Otherwise, if |W+|

R is a nonzero constant, each inequality above becomes an
equality. In particular, by Lemma 3, one obtains that ∇W+ = ν ⊗ W+ for some
one-form ν. Besides, it follows from Lemma 6 that W+ has λ2 = λ3 at each point.
Finally, it suffices to use Lemma 5 to conclude that (M4, g) is a locally Kähler-Ricci
soliton.

□

4.3. Proof of Corollary 1.

Proof. To begin with, we follow the initial steps in the proof of Theorem 2 up till
(4.5) in order to obtain

(4.10) 2
|W+|
R

∆Ψ

(
|W+|
R

)
≥ 1

R

(
1− 2

√
6
|W+|
R

)(
|W+|2 −

√
6

3

|R̊ic|2

R
|W+|

)
.
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Thereby, our assumption guarantees that the right hand side of (4.10) is nonneg-

ative and therefore, by using the Maximum Principle, we conclude that |W+|
R is a

constant. In particular, each previous inequality obtained in the establishment of
(4.10) becomes an equality. Now, observe that W+ = 0 leads to a contradiction
with the assumption (1.9). Consequently, W+ ̸= 0 and we may use again the equal-
ity case in Lemma 3, Lemma 6 and Lemma 5 in order to infer that (M4, g) is a
locally Kähler-Ricci soliton, which gives the desired result. □
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