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Abstract

We give some rigidity properties of a p-biharmonic map u : (M, g) → (N,h) between Riemannian

manifolds (Mn, g) and (Nm, h). We first provide various sufficient conditions for p-biharmonic maps

to be harmonic. Moreover, when the map u is an isometric immersion, by assuming that the L
n
2 -norm

of the sectional curvature on M is sufficiently small or if the fundamental tone of the p-biharmonic

submanifold is sufficiently big, it is proved that M is minimal.

1 Introduction and results

Let u : (Mn, g) → (Nm, h) be a smooth map between Riemannian manifolds (Mn, g) and (Nm, h).

The differential du can be considered as a section of the vector bundle T ∗M ⊗ u−1TN . Given a local

orthonormal frame {ei} on M , |du| can be computed as

|du|2 =

n∑
i=1

⟨du(ei), du(ei)⟩,

where |du|(x) is the Hilbert-Schmidt norm of (du)(x) induced by the metrics g and h at a given point

x ∈ M . If the map u is a critical point of the following energy functional

E(u) =
1

2

∫
M

|du|2

then we call the map u harmonic. It is well-known that the Euler-Lagrange equation [CL16] of the energy

E is given by

τ(u) :=

n∑
i=1

[
∇̃eidu(ei)− du(∇eiei)

]
= 0,

where ∇̃ is the Levi-Civita connection on the pullback bundle u−1TN and τ(u) is called the tension field

of u.
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On the other hand, in the study of higher-order elliptic problems, it is natural to consider the bihar-

monic maps which is the critical point of the bienergy functional

E2(u) =
1

2

∫
M

|τ(u)|2.

We note that the Euler-Lagrange equation [CL16] of E2(u) is given by

τ2(u) := ∆τ(u)−
n∑

i=1

RN (τ(u), du(ei)) du(ei) = 0.

In a general way, Hornung-Moser [HM14] (see also [HF14]) considered the p-bienergy (p > 1) functional

as follows:

Ep(u) =

∫
M

|τ(u)|p.

The p-bitension field τp(u) is defined by

τp(u) := ∆
(
|τ(u)|p−2τ(u)

)
−

n∑
i=1

RN
(
|τ(u)|p−2τ(u), du(ei)

)
du(ei).

The Euler-Lagrange equation for Ep(u) is given by τp(u) = 0 and a map u satisfying that τp(u) = 0

is called a p-biharmonic map. One of the most interesting problems in the biharmonic theory is the

following problem, which was proposed by Chen in 1988:

Conjecture (Chen’s conjecture). Any biharmonic submanifold in Euclidean space Rn is minimal.

More generally, Caddeo-Montaldo-Oniciuc [CMO01] proposed the generalized Chen’s conjecture as fol-

lows.

Conjecture (Generalized Chen’s conjecture). Any biharmonic submanifold in a Riemannian manifold

with nonpositive sectional curvature is minimal.

Chen’s and the generalized Chen’s conjectures have been intensively studied. For example, Chen

[Chen91] and Jiang [Jia87] showed that Chen’s conjecture is true for biharmonic surfaces in R3. Hasanis-

Vlachos [HV95] and Fu-Hong-Zhan [FHZ21] gave an affirmative answer to Chen’s conjecture in R4 and

R5, respectively. Moreover, Ou-Tang [OT12] showed that the generalized Chen’s conjecture is false. How-

ever it is interesting to find sufficient conditions for biharmonic submanifolds to be minimal. Nakauchi-

Urakawa [NU11, NU13] proved the generalized Chen’s conjecture when the L2-norm of the mean curva-

ture vector is finite. Motivated by this result, Luo [Luo15] extended their result under assumption on

finiteness of the Lp-norm of the mean curvature vector for some 0 < p < ∞. Furthermore, Nakauchi-

Urakawa-Gudmundsson [NUG14] showed that the map is harmonic if the energy and bienergy of the

domain manifold are finite and if the curvature of the target manifold is nonpositive. Recently, Seo-

Yun [SY22] studied biharmonic maps and biharmonic submanifolds with small curvature integral. By

assuming the domain manifold satisfies a Sobolev inequality, they gave many sufficient conditions for bi-

harmonic maps to be harmonic and for biharmonic submanifolds to be minimal. We refer the readers to

[AM13, BMO10, CMO01, CMO01b, CMO02, Chen91, Chen96, CM13, Def98, DIM92, Fu14, Jia86, Luo14,

MAE14, NUG14, ONI02, OU10] for further discussion in this field. On the other direction, motivated by

Chen’s conjecture, Han [Han15] proposed the following conjecture for p-biharmonic submanifolds.

Conjecture. Every complete p-biharmonic submanifolds in non-positively curved Riemannian manifold

is minimal.
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By using the method developed in [Luo15], Han [Han15] proved several results on the nonexistence

of p-biharmonic submanifolds. Cao-Luo [CL16] studied the nonexistence result for general p-biharmonic

submanifolds. Moreover, Han-Zhang [HZ15] investigated p-biharmonic maps and obtained the harmonic-

ity of the biharmonic maps. They also obtained that any weakly convex p-biharmonic hypersurfaces in

space form N(c) with c ≤ 0 is minimal. Inspired by these investigations, our aim in this paper is to study

p-biharmonic maps and p-biharmonic submanifolds with small curvature integral. Firstly, if L
n
2 -norm of

|RN ◦ u| · |du|2 is sufficiently small, then we obtain the harmonicity of the p-biharmonic map as follows.

Theorem 1.1. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with
∫
M

|τ(u)|Q < ∞ for some

constant Q > p− 1. Assume that (Mn, g) satisfies the Sobolev inequality (3.1) and

∥|RN ◦ u| · |du|2∥
L

n
2 (M)

:=

(∫
M

(|RN ◦ u| · |du|2)n
2

) 2
n

<
4(p− 1)(Q+ 1− p)

Q2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

We note that Theorem 1.1 recovers Theorem 2.2 and Theorem 2.3 in [SY22] (see Corollaries 3.1 and

3.3). When the product of Ln-norm of |du|2 and Ln-norm of |RN ◦ u| is sufficiently small, we get the

harmonicity of the p-biharmonic map as follows.

Theorem 1.2. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with
∫
M

|τ(u)|Q < ∞ for some

constant Q > p− 1. Assume that (Mn, g) satisfies the Sobolev inequality (3.1) and

∥RN ◦ u∥Ln(M)∥|du|2∥Ln(M) <
4(p− 1)(Q+ 1− p)

Q2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Let Σ be a complete noncompact Riemannian manifold. Denote by λ1(Ω) the first positive eigenvalue

of the following eigenvalue problem for a bounded domain Ω ⊂ Σ∆f + λf = 0 in Ω,

f = 0 on ∂Ω,

where ∆ denotes the Laplace-Beltrami operator on Σ. Then the fundamental tone λ1(Σ) is defined by

λ1(Σ) := inf
Ω

λ1(Ω),

where the infimum is taken over all bounded domains in Σ. Replacing the condition on the Sobolev

inequality by the condition on the fundamental tone of the domain manifold, we obtain a similar result

as follows.

Theorem 1.3. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with |RN ◦ u| · |du|2 ≤ K for some

constant K > 0 and
∫
M

|τ(u)|Q < ∞ for some constant Q > p− 1. Assume that the fundamental tone of

M satisfies λ1(M) > Q2K
4(p−1)(Q+1−p) . Then u is harmonic.

In particular, if |du| ≤ C, |RN ◦ u| ≤ D and p = Q = 2, then we are able to obtain Theorem 2.4 in

[SY22] (see Corollary 3.6). On the other hand, when the Weyl curvature tensor of the target manifold

WN = 0, we have the following result.
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Theorem 1.4. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) satisfying that WN = 0, SN ≤ 0 and∫
M

|τ(u)|Q < ∞ for some constant Q > p− 1. Assume that (Mn, g) satisfies the Sobolev inequality (3.1)

and

∥|ZN ◦ u| · |du|2∥
L

n
2 (M)

<
(m− 2)(p− 1)(Q+ 1− p)

Q2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

In the same way as Theorem 1.2, we have the following theorem.

Theorem 1.5. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) satisfying that WN = 0, SN ≤ 0 and∫
M

|τ(u)|Q < ∞ for some constant Q > p− 1. Assume that (Mn, g) satisfies the Sobolev inequality (3.1)

and

∥ZN ◦ u∥Ln(M)∥|du|2∥Ln(M) <
(m− 2)(p− 1)(Q+ 1− p)

Q2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Replacing the Sobolev inequality condition by a certain condition on the fundamental tone of the

domain manifold M , we obtain a rigidity result for p-biharmonic as follows.

Theorem 1.6. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) satisfying that WN = 0, SN ≤ 0,

|ZN ◦u| · |du|2 ≤ K for some constant K > 0 and
∫
M

|τ(u)|Q < ∞ for some constant Q > p− 1. Assume

that λ1(M) > Q2K
(m−2)(p−1)(Q+1−p) . Then u is harmonic.

Recall that, if u : (Mn, g) → (Nm, h) is a p-biharmonic isometric immersion, then the map u is

called p-biharmonic. Moreover, any 2-biharmonic submanifolds are called biharmonic simply. Using

some condition on small integral of curvature and assuming that the Sobolev inequality (3.1) holds on

M , we are able to prove the following rigidity result.

Theorem 1.7. Let u : (Mn, g) → (Nm, h) be a p-biharmonic isometric immersion of a complete

noncompact submanifold M into a Riemannian manifold N satisfying that
∫
M

|
−→
H |Q < ∞ for some

constant Q > p− 1, where
−→
H denotes the mean curvature vector field. Assume that (Mn, g) satisfies the

Sobolev inequality (3.1) and

||RN ◦ u||
L

n
2 (M)

<
4(p− 1)(Q+ 1− p)

Q2Cs
,

where Cs denotes the Sobolev constant. Then u is minimal.

It should be mentioned that our approach is slight different from [SY22], where Seo-Yun considered

two cases m = n+ 1 and m > n+ 1 separately. However, our approach here is applicable to both cases.

Instead of using the Sobolev inequality, we obtain a similar result by using the fundamental tone of the

domain manifold as follows.

Theorem 1.8. Let u : (Mn, g) → (Nm, h) be a p-biharmonic isometric immersion of a complete

noncompact submanifold M into a Riemannian manifold N satisfying that |RN ◦u| ≤ K for some constant

K > 0, and
∫
M

|
−→
H |Q < ∞ for some constant Q > p − 1, where

−→
H denotes the mean curvature vector

field. Assume that the fundamental tone of M satisfies λ1(M) > Q2K
4(p−1)(Q+1−p) . Then u is minimal.

Finally, if the target manifold (Nn+1, h) is Einstein, i.e., RicN = scalN

n+1 h, then we obtain the following

rigidity property.
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Theorem 1.9. Let u : (Mn, g) → (Nn+1, h) be a p-biharmonic isometric immersion of a complete

noncompact hypersurface M into an Einstein manifold N with nonnegative constant scalar curvature SN .

Assume that
∫
M

|
−→
H |Q < ∞ for some constant Q > p − 1 and λ1(M) > SNQ2

4(n+1)(p−1)(Q+1−p) , where
−→
H

denotes the mean curvature vector field. Then u is minimal.

The rest of this paper is organized as follows: In Section 2, we recall some preliminary background

of p-biharmonic maps. In Section 3, we prove many results for p-biharmonic maps with small curvature

integral. Finally, the rigidity results of p-biharmonic submanifolds are proved in Section 4.

2 Preliminaries

Let u : (Mn, g) → (Nm, h) be a p-biharmonic map between Riemannian manifolds (Mn, g) and

(Nm, h). Then the Bochner-Weitzenböck formula for τ(u) is given by

1

2
∆|τ(u)|2 = |∇τ(u)|2 + ⟨∆τ(u), τ(u)⟩.

Therefore

1

2
∆|τ(u)|2(p−1) = |∇

(
|τ(u)|p−2τ(u)

)
|2 + ⟨∆

(
|τ(u)|p−2τ(u)

)
, |τ(u)|p−2τ(u)⟩.

Since τp(u) = 0, we have

1

2
∆|τ(u)|2(p−1) =|∇

(
|τ(u)|p−2τ(u)

)
|2

+ ⟨
n∑

i=1

RN
(
|τ(u)|p−2τ(u), du(ei)

)
du(ei), |τ(u)|p−2τ(u)⟩.(2.1)

By the fact that ∆(fg) = f∆g + g∆f + 2⟨∇f,∇g⟩ and the Kato inequality, the above inequality yields

|τ(u)|p−1∆|τ(u)|p−1 ≥ ⟨
n∑

i=1

RN
(
|τ(u)|p−2τ(u), du(ei)

)
du(ei), |τ(u)|p−2τ(u)⟩

≥ −|RN ◦ u||du|2|τ(u)|2(p−1).

Therefore we have

|τ(u)|∆|τ(u)|p−1 ≥ −|RN ◦ u||du|2|τ(u)|p.

Fix a point x0 ∈ M . Denote r(x) by the geodesic distance on M from x0 to x. Choose φ ∈ C∞
0 (M)

satisfying for r > 0,

(2.2) φ(x) =


1, if r(x) ≤ r

∈ [0, 1] and |∇φ|(x) ≤ 2

r
, if r < r(x) ≤ 2r

0, if r(x) > 2r.

The above inequality yields∫
M

φ2|τ(u)|q+1∆|τ(u)|p−1 ≥ −
∫
M

φ2|RN ◦ u||du|2|τ(u)|p+q.

Applying integration by parts for the term in the left hand side gives∫
M

φ2|τ(u)|q+1∆|τ(u)|p−1 = −
∫
M

⟨∇(φ2|τ(u)|q+1),∇|τ(u)|p−1⟩.
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Therefore the above inequality yields∫
M

φ2|RN ◦ u||du|2|τ(u)|p+q ≥2(p− 1)

∫
M

φ|τ(u)|p+q−1⟨∇φ,∇|τ(u)|⟩

+ (p− 1)(q + 1)

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2.

Since

2

∫
M

φ|τ(u)|p+q−1⟨∇φ,∇|τ(u)|⟩ ≥ −δ

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2 − 1

δ

∫
M

|τ(u)|p+q|∇φ|2

for all δ > 0, we have

[(p− 1)(q + 1)− δ(p− 1)]

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2 ≤p− 1

δ

∫
M

|τ(u)|p+q|∇φ|2

+

∫
M

φ2|RN ◦ u||du|2|τ(u)|p+q.(2.3)

3 Rigidity results for p-biharmonic maps

In this section, we study p-biharmonic maps under the condition that the domain manifold (Mn, g)

satisfies the following Sobolev inequality:(∫
M

φ
2n

n−2

)n−2
n

≤ Cs

∫
M

|∇φ|2 for all φ ∈ C1
0 (M).(3.1)

Proof of Theorem 1.1. By the Hölder inequality and (3.1), we have∫
M

φ2|RN ◦ u||du|2|τ(u)|p+q

≤
[∫

M

(
|RN ◦ u| · |du|2

)n
2

] 2
n
[∫

M

(
φ2|τ(u)|p+q

) n
n−2

]n−2
n

≤ Cs∥|RN ◦ u| · |du|2∥
L

n
2 (M)

∫
M

|∇
(
φ|τ(u)|

p+q
2

)
|2

= Cs∥|RN ◦ u| · |du|2∥
L

n
2 (M)

[
(p+ q)2

4

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2 +
∫
M

|τ(u)|p+q|∇φ|2
]

+ Cs∥|RN ◦ u| · |du|2∥
L

n
2 (M)

(p+ q)

∫
M

φ|τ(u)|p+q−1⟨∇|τ(u)|,∇φ⟩

≤ Cs∥|RN ◦ u| · |du|2∥
L

n
2 (M)

(
(p+ q)2

4
+

α(p+ q)

2

)∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2

+ Cs∥|RN ◦ u| · |du|2∥
L

n
2 (M)

(
1 +

p+ q

2α

)∫
M

|τ(u)|p+q|∇φ|2

for all α > 0. Here we used the Cauchy-Schwarz inequality in the last inequality. Combining the above

inequality and (2.3), we obtain

A

∫
M

φ2|τ(u)|Q−2|∇|τ(u)||2 ≤ B

∫
M

|τ(u)|Q|∇φ|2,(3.2)

where the constants A, B, and Q are defined by

A = (p− 1)(Q+ 1− p)− δ(p− 1)− Cs∥|RN ◦ u| · |du|2∥
L

n
2 (M)

(
Q2

4
+

αQ

2

)
,
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B =
p− 1

δ
+ Cs∥|RN ◦ u| · |du|2∥

L
n
2 (M)

(
1 +

Q

2α

)
,

Q = p+ q.

Moreover, since ∥|RN ◦ u| · |du|2∥
L

n
2 (M)

< 4(p−1)(Q+1−p)
Q2Cs

by our assumption, we have

(p− 1)(Q+ 1− p)− Cs∥|RN ◦ u| · |du|2∥
L

n
2 (M)

.
Q2

4
> 0.

Thus, for δ and α small enough, we see that A > 0. Therefore (3.2) yields

A

∫
Bx0

(r)

|τ(u)|Q−2|∇|τ(u)||2 ≤ A

∫
M

φ2|τ(u)|Q−2|∇|τ(u)||2

≤ B

∫
M

|τ(u)|Q|∇φ|2

≤ 4B

r2

∫
Bx0

(2r)

|τ(u)|Q.

Letting r tend to ∞, we see that |τ(u)|Q−2||∇|τ(u)||2 = 0 on M , which implies that |τ(u)| = constant.

Since the volume of M is infinite, we conclude that τ(u) = 0.

By the proof of Theorem 1.1, when L
n
2 -norm of the sectional curvature of the image u(M) ⊂ N is

sufficiently small or Ln-norm of |du| is sufficiently small, we can obtain two consequences as follows.

Corollary 3.1. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with |du| ≤ C for some constant

C > 0 and
∫
M

|τ(u)|Q < ∞ for some constant Q > p − 1. Assume that (Mn, g) satisfies the Sobolev

inequality (3.1) and

||RN ◦ u||
L

n
2 (M)

<
4(p− 1)(Q+ 1− p)

Q2C2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Corollary 3.2. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h), with |RN ◦u| ≤ D for some constant

D > 0 and
∫
M

|τ(u)|Q < ∞ for Q > p−1. Assume that (Mn, g) satisfies the Sobolev inequality (3.1) and

||du||2Ln(M) <
4(p− 1)(Q+ 1− p)

Q2DCs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. By the Hölder inequality and (3.1), we have∫
M

φ2|RN ◦ u||du|2|τ(u)|p+q

≤
[∫

M

(
|RN ◦ u|

)n] 1
n
[∫

M

(
|du|2

)n] 1
n
[∫

M

(
φ2|τ(u)|p+q

) n
n−2

]n−2
n

≤ Cs∥RN ◦ u∥Ln(M)∥|du|2∥Ln(M)

∫
M

|∇
(
φ|τ(u)|

p+q
2

)
|2

= Cs∥RN ◦ u∥Ln(M)∥|du|2∥Ln(M)

[
(p+ q)2

4

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2 +
∫
M

|τ(u)|p+q|∇φ|2
]
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+ Cs∥RN ◦ u∥Ln(M)∥|du|2∥Ln(M)

∫
M

φ|τ(u)|p+q−1⟨∇|τ(u)|,∇φ⟩

≤ Cs∥RN ◦ u∥Ln(M)∥|du|2∥Ln(M)

(
(p+ q)2

4
+

α(p+ q)

2

)∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2

+ Cs∥RN ◦ u∥Ln(M)∥|du|2∥Ln(M)

(
1 +

p+ q

2α

)∫
M

|τ(u)|p+q|∇φ|2

for all α > 0. Therefore (2.3) yields

A

∫
M

φ2|τ(u)|Q−2|∇|τ(u)||2 ≤ B

∫
M

|τ(u)|Q|∇φ|2,

where the constants A, B, and Q are defined by

A = (p− 1)(Q+ 1− p)− δ(p− 1)− Cs∥RN ◦ u∥Ln(M) · ∥|du|2∥Ln(M)

(
Q2

4
+

αQ

2

)
,

B =
p− 1

δ
+ Cs∥RN ◦ u∥Ln(M).∥|du|2∥Ln(M)

(
1 +

Q

2α

)
,

Q = p+ q.

In the same manner as in the proof of Theorem 1.1, we get the conclusion.

In particular, when p = Q = 2, we obtain the following harmonicity of the biharmonic.

Corollary 3.3. Let u : (Mn, g) → (Nm, h) be a biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with
∫
M

|τ(u)|2 < ∞. Assume that

(Mn, g) satisfies the Sobolev inequality (3.1) and

∥RN ◦ u∥Ln(M)∥|du|2∥Ln(M) <
1

Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Now we give a proof of Theorem 1.3.

Proof of Theorem 1.3. By the assumption |RN ◦ u| · |du|2 ≤ K, we have∫
M

φ2|RN ◦ u| · |du|2|τ(u)|p+q

≤ K

∫
M

φ2|τ(u)|p+q

≤ K

λ1(M)

∫
M

|∇
(
φ|τ(u)|

p+q
2

)
|2

≤ K

λ1(M)

[
(p+ q)2

4

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2 +
∫
M

|τ(u)|p+q|∇φ|2
]

+
K

λ1(M)
(p+ q)

∫
M

φ|τ(u)|p+q−1⟨∇|τ(u)|,∇φ⟩

≤ K

λ1(M)

(
(p+ q)2

4
+

α(p+ q)

2

)∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2

+
K

λ1(M)

(
1 +

p+ q

2α

)∫
M

|τ(u)|p+q|∇φ|2

for all α > 0. Hence (2.3) yields

A

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2 ≤ B

∫
M

|τ(u)|p+q|∇φ|2,
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where the constants A and B are given by

A = (p− 1)(q + 1)− δ(p− 1)− K

λ1(M)

(
(p+ q)2

4
+

α(p+ q)

2

)
,

B =
p− 1

δ
+

K

λ1(M)

(
1 +

p+ q

2α

)
.

By repeating the arguments in Theorem 1.1, we get the conclusion.

Using Theorem 1.3, we have the following.

Corollary 3.4. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with |du| ≤ C, |RN ◦ u| ≤ D for

some constants C > 0, D > 0 and
∫
M

|τ(u)|Q < ∞ for Q > p− 1. Assume that the fundamental tone of

M satisfies λ1(M) > Q2C2D
4(p−1)(Q+1−p) . Then u is harmonic.

On the other hand, if the Weyl curvature tensor WN vanishes, then we have the following decompo-

sition

RN =
SN

2m(m− 1)
h⃝∧ h+

1

2
ZN ⃝∧ h,

where SN denotes the scalar curvature and ZN = RicN − SN

m h denotes the traceless Ricci tensor of

(Nm, h). Thus we have

n∑
i=1

⟨RN (du(ei), τ(u))du(ei), τ(u)⟩

=
SN

m(m− 1)

(
|du|2|τ(u)|2 −

n∑
i=1

⟨du(ei), τ(u)⟩h

)

+
1

m− 2

(
n∑

i=1

ZN (du(ei), du(ei)|τ(u)|2 + ZN (τ(u), τ(u)|du|2
)

− 2

m− 2

(
n∑

i=1

ZN (du(ei), τ(u))⟨du(ei, τ(u)⟩h

)

≤ SN

m(m− 1)

(
|du|2|τ(u)|2 −

n∑
i=1

⟨du(ei, τ(u)⟩h

)
+

4

m− 2
|ZN ◦ u||du|2|τ(u)|2.

Hence, if we assume that N has nonpositive scalar curvature, i.e., SN ≤ 0, then we have

n∑
i=1

⟨RN (du(ei), τ(u))du(ei), τ(u)⟩ ≤
4

m− 2
|ZN ◦ u||du|2|τ(u)|2.

This implies

n∑
i=1

⟨RN (du(ei), |τ(u)|p−2τ(u))du(ei), |τ(u)|p−2τ(u)⟩ ≤ 4

m− 2
|ZN ◦ u||du|2|τ(u)|2(p−1).

Combining the above inequality and (2.1), we have

1

2
∆|τ(u)|2(p−1) ≥ |∇

(
|τ(u)|p−2τ(u)

)
|2 − 4

m− 2
|ZN ◦ u||du|2|τ(u)|2(p−1).

Applying the Kato inequality, the above inequality yields

|τ(u)|∆|τ(u)|p−1 ≥ − 4

m− 2
|ZN ◦ u||du|2|τ(u)|p.
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For the function φ in (2.2), we have∫
M

φ2|τ(u)|q+1∆|τ(u)|p−1 ≥ − 4

m− 2

∫
M

φ2|ZN ◦ u||du|2|τ(u)|p+q.

Using the divergence theorem and Young’s inequality, we get

[(p− 1)(q + 1)− δ(p− 1)]

∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2

≤p− 1

δ

∫
M

|τ(u)|p+q|∇φ|2 + 4

m− 2

∫
M

φ2|ZN ◦ u||du|2|τ(u)|p+q(3.3)

for any δ > 0. Using (3.3), we are able to prove Theorem 1.4.

Proof of Theorem 1.4. By the Hölder inequality and (3.1), we have∫
M

φ2|ZN ◦ u||du|2|τ(u)|p+q

≤ Cs∥|ZN ◦ u| · |du|2∥
L

n
2 (M)

∫
M

|∇
(
φ|τ(u)|

p+q
2

)
|2

≤ Cs∥|ZN ◦ u| · |du|2∥
L

n
2 (M)

(
(p+ q)2

4
+

α(p+ q)

2

)∫
M

φ2|τ(u)|p+q−2|∇|τ(u)||2

+ Cs∥|ZN ◦ u| · |du|2∥
L

n
2 (M)

(
1 +

p+ q

2α

)∫
M

|τ(u)|p+q|∇φ|2

for all α > 0. Combining the above inequality and (3.3), we obtain

A

∫
M

φ2|τ(u)|Q−2|∇|τ(u)||2 ≤ B

∫
M

|τ(u)|Q|∇φ|2,

where the constants A, B, and Q are defined by

A = (p− 1)(Q+ 1− p)− δ(p− 1)− 4

m− 2
Cs∥|ZN ◦ u| · |du|2∥

L
n
2 (M)

(
Q2

4
+

αQ

2

)
,

B =
p− 1

δ
+

4

m− 2
Cs∥|ZN ◦ u| · |du|2∥

L
n
2 (M)

(
1 +

Q

2α

)
,

Q = p+ q.

Using the same argument in the proof of Theorem 1.1, we get the conclusion.

On the other hand, it is known that the Weyl curvature tensor WN = 0 when m = 3 or m ≥ 4 and

(Nm, h) is locally conformally flat. Thus Theorem 1.4 implies the following.

Corollary 3.5. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with SN ≤ 0 and
∫
M

|τ(u)|Q < ∞
for some constant Q > p− 1. Assume that (Mn, g) satisfies the Sobolev inequality (3.1) and assume that

either

(i) m = 3 or

(ii) m ≥ 4 and N is locally conformally flat.

If

∥|ZN ◦ u| · |du|2∥
L

n
2 (M)

<
(m− 2)(p− 1)(Q+ 1− p)

Q2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.
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By the proof of Theorem 1.4, it is easy to prove two following corollaries.

Corollary 3.6. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with WN = 0, SN ≤ 0, |du| ≤ C

for some constant C > 0 and
∫
M

|τ(u)|Q < ∞ for Q > p− 1. Assume that (Mn, g) satisfies the Sobolev

inequality (3.1) and

∥ZN ◦ u∥
L

n
2 (M)

<
(m− 2)(p− 1)(Q+ 1− p)

Q2C2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Corollary 3.7. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with WN = 0, SN ≤ 0, |ZN ◦u| ≤ D

for some constant D > 0 and
∫
M

|τ(u)|Q < ∞ for Q > p− 1. Assume that (Mn, g) satisfies the Sobolev

inequality (3.1) and

∥du∥2Ln(M) <
(m− 2)(p− 1)(Q+ 1− p)

Q2DCs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Using the general Hölder inequality for three functions in the terms of curvature of (3.3) as in the proof

of Theorem 1.2, we have the following result.

Theorem 3.8. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact Rie-

mannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with WN = 0, SN ≤ 0 and
∫
M

|τ(u)|Q <

∞ for Q > p− 1. Assume that (Mn, g) satisfies the Sobolev inequality (3.1) and

∥ZN ◦ u∥Ln(M)∥|du|2∥Ln(M) <
(m− 2)(p− 1)(Q+ 1− p)

Q2Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

In particular, if p = Q = 2, then we immediately obtain the following.

Corollary 3.9. Let u : (Mn, g) → (Nm, h) be a biharmonic map from a complete noncompact Rie-

mannian manifold (Mn, g) into a Riemannian manifold (Nm, h), with WN = 0, SN ≤ 0 and
∫
M

|τ(u)|2 <

∞. Assume that (Mn, g) satisfies the Sobolev inequality (3.1) and

∥ZN ◦ u∥Ln(M)∥|du|2∥Ln(M) <
m− 2

4Cs
,

where Cs denotes the Sobolev constant. Then u is harmonic.

Proof of Theorem 1.6. By using (3.3) and repeating the arguments in Theorem 1.3, we complete

the proof of Theorem 1.6.

Corollary 3.10. Let u : (Mn, g) → (Nm, h) be a p-biharmonic map from a complete noncompact

Riemannian manifold (Mn, g) into a Riemannian manifold (Nm, h) with WN = 0, SN ≤ 0, |du| ≤ C,

|ZN ◦ u| ≤ D for some constants C > 0, D > 0 and
∫
M

|τ(u)|Q < ∞ for Q > p − 1. Assume that

λ1(M) > C2DQ2

(m−2)(p−1)(Q+1−p) . Then u is harmonic.
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4 Rigidity results for p-biharmonic submanifolds

We recall that if u : (Mn, g) → (Nm, h) is an isometric immersion, then u is called a p-biharmonic

submanifold. In particular, a 2-biharmonic submanifold is called a biharmonic submanifold. The second

fundamental form B : TM × TM → T⊥M is defined by:

∇XY = ∇XY +B(X,Y )

for X,Y ∈ Γ(TM), where ∇ is the Levi-Civita connection on N and ∇ is the Levi-Civita connection on

M . The Weingarten formula is given by

∇Xξ = −AξX +∇⊥
Xξ

for X ∈ Γ(TM), where Aξ is called the Weingarten map with respect to ξ ∈ T⊥M and ∇⊥ denotes the

normal connection on the normal bundle of M in N . For any x ∈ M , the mean curvature vector field H

of M at x is

H⃗ =
1

n

n∑
i=1

B(ei, ei).

Now suppose u : (Mn, g) → (Nm, h) is a p-biharmonic isometric immersion of a Riemannian manifold M

with mean curvature vector
−→
H into a Riemannian manifold N . Then we have

τ(u) = n
−→
H.

Moreover, the p-biharmonic submanifold u satisfies the following equation:

τp(u) := ∆(|
−→
H |p−2−→H )−

n∑
i=1

RN (|
−→
H |p−2−→H, ei)ei = 0.

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. Let B be the second fundamental form of M and A be the Weingarten

map. Then, by the Bochner-Weitzenböck formula, we have (see [CL16, Han15] for example)

∆|
−→
H |2p−2 = 2|∇(|

−→
H |p−2−→H )|2 + 2⟨∆(|

−→
H |p−2−→H ), |

−→
H |p−2−→H ⟩

= 2|∇(|
−→
H |p−2−→H )|2 + 2⟨

n∑
i=1

B(A|
−→
H |p−2−→

H
ei, ei), |

−→
H |

p−2−→
H ⟩

+ 2

n∑
i=1

〈
RN (ei, |

−→
H |p−2−→H )ei, |

−→
H |p−2−→H

〉
.(4.1)

On the other hand, we have (see [Han15] for instance)〈
n∑

i=1

B(A|
−→
H |p−2−→

H
ei, ei), |

−→
H |

p−2−→
H

〉
≥ n|

−→
H |2p,(4.2)

and

n∑
i=1

〈
RN (ei, |

−→
H |p−2−→H )ei, |

−→
H |p−2−→H

〉
≥ −|

−→
H |2p−2|RN ◦ u|.(4.3)

Combining (4.1)-(4.3), we obtain

∆|
−→
H |2p−2 ≥ 2|∇(|

−→
H |p−2−→H )|2 + 2n|

−→
H |2p − 2|

−→
H |2p−2|RN ◦ u|.



13

By the Kato inequality, we have

|
−→
H |∆|

−→
H |p−1 ≥ n|

−→
H |p+2 − |

−→
H |p|RN ◦ u|.

For the function φ in (2.2), we have∫
M

φ2|
−→
H |q+1∆|

−→
H |p−1 ≥ n

∫
M

φ2|
−→
H |p+q+2 −

∫
M

φ2|
−→
H |p+q|RN ◦ u|.

Using integration by parts, the above inequality implies∫
M

φ2|
−→
H |p+q|RN ◦ u| ≥ [(p− 1)(q + 1)− δ(p− 1)]

∫
M

φ2|
−→
H |p+q−2|∇|

−→
H ||2

+ n

∫
M

φ2|
−→
H |p+q+2 − p− 1

δ

∫
M

|
−→
H |p+q|∇φ|2(4.4)

for all δ > 0. Here we used the Cauchy-Schwarz inequality in (4.4). By the Hölder inequality and the

Sobolev inequality (3.1), we get∫
M

φ2|
−→
H |p+q|RN ◦ u| ≤ Cs∥RN ◦ u∥

L
n
2 (M)

∫
M

|∇(φ|
−→
H |

p+q
2 )|2

≤ Cs∥RN ◦ u∥
L

n
2 (M)

(
(p+ q)2

4
+

α(p+ q)

2

)∫
M

φ2|
−→
H |p+q+2

+ Cs∥RN ◦ u∥
L

n
2 (M)

(
1 +

p+ q

2α

)∫
M

|
−→
H |p+q|∇φ|2.

Therefore (4.4) implies

C

∫
M

φ2|
−→
H |Q−2.|∇|

−→
H ||2 + n

∫
M

φ2|
−→
H |Q+2 ≤ D

∫
M

|
−→
H |Q|∇φ|2

where the constants C, D, and Q are defined by

C = (p− 1)(Q+ 1− p)− δ(p− 1)− Cs∥RN ◦ u∥
L

n
2 (M)

(
Q2

4
+

αQ

2

)
,

D =
p− 1

δ
+ Cs∥RN ◦ u∥

L
n
2 (M)

(
1 +

Q

2α

)
,

Q = p+ q.

As before, we can conclude that |
−→
H | = 0.

Proof of Theorem 1.8. By using (4.4) and applying the same argument as in the proof of Theorem

1.3, we are able to prove Theorem 1.8.

Finally we prove Theorem 1.9.

Proof of Theorem 1.9. Let ν be the unit normal vector field of M . Then we have

τ(u) = n
−→
H = n|

−→
H |ν.

Since (Nn+1, h) is Einstein, we have

n∑
i=1

⟨RN (ei, |
−→
H |p−2−→H )ei, |

−→
H |p−2−→H ⟩ =

n∑
i=1

|
−→
H |2p−2⟨RN (ei, ν)ei, ν⟩

=− |
−→
H |2p−2RicN(ν, ν)
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=− SN

n+ 1
|
−→
H |2p−2.

Combining inequalities (4.1), (4.2) and the above equality, we obtain

∆|
−→
H |2p−2 ≥ 2|∇(|

−→
H |p−2−→H )|2 + 2n|

−→
H |2p − 2

SN

n+ 1
|
−→
H |2p−2.

By the Kato inequality, we have

|
−→
H |∆|

−→
H |p−1 ≥ n|

−→
H |p+2 − SN

n+ 1
|
−→
H |p.

For the function φ in (2.2), we have∫
M

φ2|
−→
H |q+1∆|

−→
H |p−1 ≥ n

∫
M

φ2|
−→
H |p+q+2 − SN

n+ 1

∫
M

φ2|
−→
H |p+q.

Using integration by parts and the Cauchy-Schwarz inequality, the above inequality implies

SN

n+ 1

∫
M

φ2|
−→
H |p+q ≥ [(p− 1)(q + 1)− δ(p− 1)]

∫
M

φ2|
−→
H |p+q−2|∇|

−→
H ||2

+ n

∫
M

φ2|
−→
H |p+q+2 − p− 1

δ

∫
M

|
−→
H |p+q|∇φ|2(4.5)

for all δ > 0. Moreover, we have

SN

n+ 1

∫
M

φ2|
−→
H |p+q ≤ SN

(n+ 1)λ1(M)

∫
M

|∇(φ|
−→
H |

p+q
2 )|2

≤ SN

(n+ 1)λ1(M)

(
(p+ q)2

4
+

α(p+ q)

2

)∫
M

φ2|
−→
H |p+q+2

+
SN

(n+ 1)λ1(M)

(
1 +

p+ q

2α

)∫
M

|
−→
H |p+q|∇φ|2.

Therefore (4.5) implies

C

∫
M

φ2|
−→
H |Q−2|∇|

−→
H ||2 + n

∫
M

φ2|
−→
H |Q+2 ≤ D

∫
M

|
−→
H |Q|∇φ|2

where the constants C, D, and Q are defined by

C = (p− 1)(Q+ 1− p)− δ(p− 1)− SN

(n+ 1)λ1(M)

(
Q2

4
+

αQ

2

)
,

D =
p− 1

δ
+

SN

(n+ 1)λ1(M)

(
1 +

Q

2α

)
,

Q = p+ q.

Using the same argument as in the proof of Theorem 1.1, we can obtain that |
−→
H | = 0, which implies that

u is minimal.
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