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Abstract. Let (M, g, J, f) be an irreducible non-trivial Kähler gradient Ricci soliton
of real dimension 2n. We show that its group of isometries is of dimension at most n2

and the case of equality is characterized. As a consequence, our framework shows the
uniqueness of U(n)-invariant Kähler gradient Ricci solitons constructed earlier. There
are corollaries regarding the groups of automorphisms or affine transformations and
a general version for almost Hermitian GRS. The approach is based on a connection
to the geometry of an almost contact metric structure.

1. Introduction

Let (M, g) be an orientable connected Riemannian manifold. In [30], R. Hamilton
introduced the Ricci flow equation, for Rc denoting the Ricci curvature,

(1.1)
∂

∂t
g(t) = −2Rc(t).

The theory has been utilized to solve fundamental problems; see [50, 52, 51, 5, 9, 10]. As
a weakly parabolic system, it generically develops singularities and the study of such
models is essential in any potential applications. Gradient Ricci solitons (GRS) are
self-similar solutions to (1.1) and arise naturally in that context. Consequently, there
have been numerous efforts to study them; see [31, 21, 52, 46, 43, 16, 55, 7, 8, 17, 40, 45]
and references therein.

A GRS (M, g, f) is a Riemannian manifold such that, for a constant λ,

(1.2) Rc + Hessf = λg.

It is called shrinking, steady, or expanding depending on the sign of λ being positive,
zero, or negative. Clearly, any Einstein manifold is an example with Hessf ≡ 0 and λ

being the Einstein constant. Moreover, the Gaussian soliton refers to (Rm, gEuc, λ
|x|2
2
)

for gEuc the Euclidean metric. It is natural to combine these examples and, in that

case, a soliton is called rigid, namely isometric to a quotient of Nn−k×Rk with f = |x|2
2

on the Euclidean factor. A soliton is called non-trivial (or non-rigid) if at least a factor
in its de Rham decompsotion is non-Einstein.

Many non-trivial examples are Kähler and the topic receives tremendous interest;
see, for examples, [61, 63, 15, 19, 44, 12, 20, 39, 24, 27]. In particular, significant
efforts lead to the classification of all Kähler Ricci shrinker surfaces [25, 23, 1, 41]. For
m = 2n, (Mm, g, J) is called an almost Hermitian manifold if g is compatible with an
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almost complex structure J : TM 7→ TM , J2 = −Id. The associated Kähler two-form
is defined as, for tangential vector fields X and Y ,

ω(X, Y ) = g(X, JY ).

Consequently, (M2n, g, J) is called almost Kähler if ω is closed and Kähler if, addition-
ally, J is a complex structure. A Kähler GRS (M, g, J, f) is simultaneously a Kähler
manifold and a gradient Ricci soliton.

In this paper, we propose an investigation based on the group of symmetry. An
isometry on (Mm, g) is a diffeomorphism preserving the metric g. The dimension of

the group of isometries is at most m(m+1)
2

[36] and it is attained iff the manifold is
simply-connected of constant curvature: the round spheres or the real projective space,
the Euclidean space, or the hyperbolic space.

For an almost Hermitian manifold, using the terminology of [35], an automorphism
is an isometry which preserves J . S. Tanno [59] showed that the maximal dimension of
the automorphism group is n(n+2). Additionally, the maximal case is characterized as
the manifold must be homothetic to one of the followings: the unitary space Cn = R2n

with gEuc, a complex projective space CPn with a Fubini-Study metric, or an open ball
Bn

C with a Bergman metric. These models play an important role in our work.

Definition 1.1. Let Nn(k) be a simply connected Kähler manifold of real dimension
2n with constant holomorphic sectional curvature and normalized Ricci curvature k.

From the above discussion, it is immediate that a Gaussian soliton has n(2n + 1)
isometries and n(n+ 2) automorphisms. Also, P. Petersen and W. Wylie showed that
a homogeneous GRS must be rigid and if the Riemannian metric is reducible then the
soliton structure is reduced accordingly [54]. It is, thus, interesting to ponder the next
best scenario. It is noted that, many non-trivial Kähler GRS’s, see [13, 14, 38, 18, 29],
are U(n)-invariant and dim(U(n)) = n2. According to [26], their metrics all belong to
the following cohomogeneity one structure:

An Ansatz: Let Nn−1(k) be a Kähler-Einstein manifold with RcN = kId, I be an
interval, and functions H,F : I 7→ R+. (P, gt) is a Riemann submersion of a line or
circle bundle with coordinate z over (N,F 2gN) and a bundle projection π : P 7→ N. η
is the one-form dual of ∂z such that dη = qπ∗ωN for q ∈ Z. If N = CPn−1 and q = 1
then P = S2n−1 and one recovers the Hopf fibration. If N = N ̸= CPn−1, the bundle is
trivial. The metric on I × P is given by

(1.3) g = dt2 + gt = dt2 +H2(t)η ⊗ η + F 2(t)π∗gN.

Our first result asserts the uniqueness.

Theorem 1.2. Let (M2n, g, J, f, λ) be an irreducible non-trivial complete Kähler GRS.
Its group of isometries is of dimension at most n2 and equality happens iff it is smoothly
constructed by the ansatz 1.3 for N = N(k) and q = 1. If λ ≥ 0 then N = CPn−1.

Remark 1.1. When N = CPn−1, the construction of complete Kähler GRS with ansatz
1.3 is considered in [26]. By their analysis, there must be exactly one or two singular
orbits (two only if λ > 0); to smoothly compactify each, one must collapse either the
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whole sphere (both H and F going to zero) or just the fiber (H going to zero). Here
are all possible configurations:

• λ = 0, I = [0,∞), the singular orbit is either a point (M is topologically Cn)
or CPn−1 ((M is Cn blowing up at one point) [13, 18].

• λ < 0, I = [0,∞), the original construction is due to [14, 18, 29].
• λ > 0, I = [0, 1], each singular orbit is CPn−1 [38, 13, 18].
• λ > 0, I = [0,∞), the singular orbit is CPn−1 [29] (if the singular orbit is a
point, it recovers a Gaussian soliton).

Remark 1.2. The metric in Theorem 1.2 has each (P, gt) being a deformed homogenous
Sasakian structure with constant holomorphic sectional curvature.

For the reducible case, the group of isometries is potentially skewed by a Gaussian
soliton factor of a large dimension. Thus, it is natural to consider the following.

Corollary 1.3. Let (M2n, g, J, f, λ) be a complete simply connected non-trivial Kähler
GRS. Its group of automorphisms is of dimension at most n2 and equality happens iff
it is either irreducible as in Theorem 1.2 or isometric to

(i) a product of a Gaussian soliton and a Hamilton’s cigar (λ = 0);
(ii) a product of N(k) (k ≤ 0) with a complete Kähler expanding GRS in real di-

mension two (λ < 0).

Remark 1.3. There is a list of all models of GRS in real dimension two [3].

Under certain conditions, an infinitesimal isometry is closely related to conformal
[57] and affine vector fields [36]. For example, following [37, Chapter 9], one recalls
that a Kähler manifold is non-degenerate if the restricted linear holonomy group at
x ∈ M contains the endormorphism Jx for an arbitrary x ∈ M .

Corollary 1.4. Let (M2n, g, J, f) be a non-degenerate complete simply connected Kähler
GRS. If f is non-constant, then the group of affine transformations is of dimension at
most n2 and equality happens iff it is either irreducible as in Theorem 1.2 or a product
of N(k) (k < 0) with a complete Kähler expanding GRS in real dimension two.

Indeed, Theorem 1.2 follows from a more general version for (possibly incomplete)
almost Hermitian GRS (M2n, g, J, f, λ). These structures are compatible:

g(X, Y ) = g(JX, JY ),

Hessf(X, Y ) = Hessf(JX, JY ).

The group of symmetry is to preserve all g, J , and f .

Theorem 1.5. Let (M2n, g, J, f) be an almost Hermitian GRS with symmetry group
G. If f is non-constant then dim(G) ≤ n2 and equality happens iff locally it is either

(i) constructed by the ansatz 1.3 for N = N(k) and q = 0, 1.
(ii) a product of a line/circle with a hyperbolic space.
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Remark 1.4. The metric in case (ii) above can be written as, for non-zero constants
H and A,

g = dt2 + gt = dt2 +H2dz2 + e2AzgCn−1 ,

λ =
∂2f

∂t2
= −2(

A

H
)2(n− 1).

Remark 1.5. For Ansatz 1.3, equation (1.2) is equivalent to an ODE system:

λ = −H ′′

H
− (2n− 2)F ′′

F
+ f ′′ =

H2q2(2n− 2)

F 4
− H ′′

H
− 2(n− 1)H ′F ′

HF
+ f ′H

′

H

=
k

F 2
− 2H2q2

F 4
− F ′′

F
− (2n− 3)(

F ′

F
)2 − H ′F ′

FH
+ f ′F

′

F
.(1.4)

The almost Kähler condition is equivalent to

FF ′ = qH.

Remark 1.6. It is possible to construct local solutions for (1.4) giving (possibly in-
complete) manifolds with maximal symmetry. For N = CPn−1, generalized versions of
(1.4) were investigated by [26] and [11].

Remark 1.7. The Gaussian soliton (R2n, gEuc, f = λ |x|2
2
, λ) for λ ̸= 0 belongs to family

q = 1 with P being the round sphere, H = F = t, and k = 2n. For λ = 0, the soliton
(R2n, gEuc, f = axi + b) belongs to family q = 0 with P being the Euclidean space.

To illustrate the dimension n2, let’s consider the case of a Gaussian soliton for λ ̸= 0.

The isometry group consists of 2n translations and 2n(2n−1)
2

rotations. With a standard
coordinate {xi, yi}ni=1, one specifies an almost complex structure such that

J(∂xi
) = ∂yi , J(∂yi) = −∂xi

.

Then it is clear that not all rotations preserve this tensor field. That’s why the au-
tomorphism group is only of dimension n(n + 2). Among those, the translations do

not preserve the potential function f = λ |x|2
2
. Consequently, the group of symmetry

preserving g, J and f is of dimension n2.
The paper is organized as follows. Section 2 recalls general and useful preliminaries

while Section 3 is devoted to calculation about ansatz 1.3. Afterward, we’ll discuss
the relation between the symmetry of an almost Hermitian GRS and one of its level
sets determined by f . The key idea is that a symmetry group on (M, g, J, f) induces a
symmetry group of regular level sets considered as almost contact metric structures. In
Section 5, the rigidity of a maximal dimension is examined and proofs of all theorems
are collected. Finally the appendix explains our convention and recalls submersion.

1.1. Acknowledgment. H. T was partially supported by grants from the Simons
Foundation [709791], the National Science Foundation [DMS-2104988], and the Viet-
nam Institute for Advanced Study in Mathematics. He also benefits greatly from
discussion with Profs. McKenzie Wang, Catherine Serle, and Ronan Conlon.
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2. Preliminaries

We’ll recall fundamental concepts and useful results about an almost complex struc-
ture, a gradient Ricci soliton, group actions on a manifold, an almost contact structure,
and certain model spaces.

2.1. Almost Complex Structure. Let M be a smooth manifold of dimension 2n.

Definition 2.1. An almost complex structure is a smooth section J of the bundle of
endormorphisms End(TM) such that

J2 = −Id.

One can immediately extend J to be an endormorphism on the complexified tangent
bundle TM ⊗R C via C-linearity. An almost complex structure is said to be integrable
if M admits an atlas of complex charts with holomorphic transition functions such that
J corresponds to the induced complex multiplication on TM⊗RC. A real differentiable
manifold with an integrable almost complex structure is, by definition, a complex man-
ifold. Thanks to the work of Newlander and Nirenberg [47], the integrability of J is
equivalent to the vanishing of the Nijenhuis tensor

NJ(X, Y ) = [JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ].

Definition 2.2. Let (M2n, g) be a Riemannian manifold with an almost complex struc-
ture J . (M, g, J) is called an almost Hermitian manifold and g a Hermitian metric if

g(JX, JY ) = g(X, Y ).

The fundamental 2-form or Kähler form is given by

ω(X, Y ) = g(X, JY ).

(M, g, J) is called almost Kähler if dω = 0. When J is integrable, we upgrade an almost
Hermitian to Hermitian and almost Kähler to Kähler.

For a Riemannian manifold to be Kähler, the following is well-known.

Proposition 2.3. [6, Proposition 3.1.9] Let (M, g, J) be an almost Hermitian (real)
manifold. The followings are equivalent:

(1) ∇J = 0,
(2) ∇ωg = 0,
(3) (M, g, J) is Kähler.

On a Kähler manifold, one observes that

J(R(X, Y )Z) = R(X, Y )JZ,

R(X, Y, JZ, JW ) = g(R(X, Y )JZ, JW ) = g(R(X, Y )Z,W ) = R(X, Y, Z,W ).

Naturally, it leads to the notion of the Ricci form.

Definition 2.4. The Ricci form ρ is the image of ωg via the curvature operator:

ρ(X, Y ) = g(R(ωg)(X), Y ).

A priori, it is not clear how the Ricci form ρ is related to the Ricci curvature tensor.



6 HUNG TRAN

Proposition 2.5. [4, Proposition 2.45] On a Kähler manifold (M, g, J, ωg), we have

Rc(X, Y ) = ρ(X, JY ).

Corollary 2.6. On a Kähler manifold (M, g, J), Rc is J-invariant.

2.2. Gradient Ricci Solitons. In this subsection, we recall how a GRS is compatible
with a complex setup.

Definition 2.7. (M, g, J, f) is an almost Hermitian GRS if (M, g, f) is a GRS, (M, g, J)
is an almost Hermitian manifold, and L∇fg is J-invariant.

Because of (1.2), L∇fg is J-invariant if and only if Rc is J-invariant. Thus, the
assumption is automatic for Kähler manifolds.

Definition 2.8. (M, g, J, f) is a Kähler GRS if (M, g, f) is a GRS, (M, g, J) is Kähler
manifold.

In a complex coordinate system, the J-invariant property is equivalent to ∇f being
a holomorphic vector field. That is,

L∇fg(∂zi , ∂zj) = L∇fg(∂zi , ∂zj) = 0.

2.3. Group Actions on a manifold. In this subsection, we review the basic setup
and properties of group actions on a manifold. The standard texts are [36, 37, 34]. Let
G be a topological group. An action of G on a manifold M is a homomorphism from
G to the group of homomorphisms on M

g 7→ Ag such that Ag : M 7→ M,x 7→ g.x

The action is continuous/smooth if the map G × M 7→ M , given by (g, x) 7→ g · x
is continuous/smooth (for smoothness, it requires G to be a Lie group). The action is
said to be proper if the associated map G×M 7→ M ×M , given by (g, x) 7→ (x, g · x)
is proper (that is, the inverse of any compact set is compact).

For each x ∈ G, the subgroup Gx = {g ∈ G, g · x = x} is called the isotropy
subgroup or the stabilizer. The orbit through x is an immersed sub-manifold and there
is a natural identification

G · x = {y ∈ M, y = g · x, g ∈ G} ≡ G/Gx.

Orbits are also classified based on the relative size of associated isotropy groups. In
particular, principal orbits correspond to the smallest possible groups and singular ones
have isotropy groups of higher dimensions.

At the infinitesimal level, a smooth vector field X on M generates a (local) one-
parameter family of maps between domains in M . If the vector field is complete,
then it generates global differmorphisms. If the corresponding maps preserve certain
geometric quantities and structures then the vector field is called a (local) infinitesimal
transformation of the same property. A vector field preserves a tensor T if and only if

LXT = 0.

It is also noted that the set of all vector fields can be seen as a Lie algebra X(M) by
the natural bracket

[X, Y ] = XY − Y X.
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Since

L[X,Y ] = LX ◦ LY − LY ◦ LX ,

the set of all infinitesimal transformations preserving a tensor T is always a Lie sub-
algebra of X(M). It is noted that the group of transformations preserving a tensor T
is not necessarily a Lie group.

Nevertheless, on a Riemnnian manifold, the group of isometries (preserving the Rie-
mannian metric) is a Lie group [36, Chapter 6. Theorem 3.4]. The infinitesimal trans-
formation corresponding to a subgroup of isometries is called a Killing vector field.
That is,

LXg = 0.

The Lie algebra of such vector fields corresponds to the Lie algebra of the Lie group of
all isometries on M . It is well-know that a Killing vector field is totally determined by
its zero and first order values at a point (Xp, (∇X)p) [36, Chapter VI].

The Kähler and GRS structures impose rigidity on the Riemannian manifold as the
followings are well-known [29].

Lemma 2.9. Let (M, g, J, f) be a Kähler gradient Ricci soliton. Then, we have the
followings:

(1) J(∇f) is a Killing vector field.
(2) L∇fJ ≡ 0.

On an almost Hermitian GRS (M, g, J, f), one may consider transformations and
vector fields preserving each individual structure: the metric g, the almost complex
structure J . and the potential function f . The group of such symmetry is clearly a
closed subgroup of the group of isometry and, thus, is a Lie group.

2.4. Almost Contact Structure. In this subsection, we recall important notions
about an almost contact structure following the book by C. Boyer and K. Galicki [6].

Definition 2.10. A (2n + 1)-dimensional manifold M is an almost contact manifold
if there exists a triple (ζ, η,Φ) where ζ is a vector field, η is a 1-form, Φ is a tensor
field of type (1, 1), and they satisfy, everywhere on M ,

η(ζ) = 1 and Φ2 = −Id + ζ ⊗ η.

Definition 2.11. An almost contact manifold (M, ζ, η,Φ) with a Riemannian metric
g is called an almost contact metric structure if

g(Φ(X),Φ(Y )) = g(X, Y )− η(X)η(Y ).

Definition 2.12. The holomorphic or Φ-sectional curvature of an almost contact man-
ifold (M, ζ, η,Φ) is given by, for η(X) = 0 and g(X,X) = 1,

KΦ(X) = K(X,Φ(X)).

Closely related is the notion of a contact structure.
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Definition 2.13. A (2n + 1)-dimensional manifold M is a contact manifold if there
exists a 1-form η, called a contact 1-form, on M such that

η ∧ (dη)n ̸= 0

everywhere on M . A contact structure is an equivalence class of such 1-forms.

Definition 2.14. An almost contact metric structure (M, ζ, η,Φ, g) is called a contact
metric structure if one further assumes

g(X,Φ(Y )) = dη(X, Y ).

It is immediate to check that a contact metric structure is indeed a contact manifold
by the above definition. As ζ and Φ are uniquely determined by η and g, we also denote
a contact metric manifold by (M, η, g).

Definition 2.15. A contact metric structure (M, g, η) is called Sasakian if the cone
C(M) = M × R+ with the cone metric r2g + dr2 is Kähler.

Next we recall certain transformations which will play crucial roles.

Definition 2.16. Let (M, ζ, η,Φ, g) be an almost contact metric structure. For a > 0,
a transverse a-homothety deformation is given by

ζ̂ =
1

a
ζ, η̂ = aη, Φ̂ = Φ, ĝ = ag + (a2 − a)η ⊗ η.

If (M, ζ, η,Φ, g) is Sasakian, then so is its homothety transformation.

Definition 2.17. Let (M, ζ, η,Φ, g) be an almost contact metric structure. For a > 0,
a ±a-deformation is given by

ζ∗ = ζ, η∗ = η, Φ∗ = ±Φ, g∗ = ag + (1− a)η ⊗ η.

A ±a-deformation of a Sasakian manifold is not necessarily Sasakian.

2.5. Model Spaces. Using the submersion toolkit, we can describe several model
spaces that will appear in our classification. First, the unitary space is the complex for-
mulation of the Euclidean space Cn = R2n with standard coordinates {x1, y1, ..., xn, yn}.
The metric, the almost complex structure, and the fundamental 2-form are as follows:

g =
∑
i

(dxi)2 + (dyi)2,

J =
∑
i

(∂yi ⊗ dxi − ∂xi
⊗ dyi),

ωCn = −2
∑
i

dxi ∧ dyi.

The flat Sasakian space (P, gP ) = R2n+1(−3): the total space of a real line bundle
over Cn with coordinates {x1, y1, ..., xn, yn, z}. For η = dz + 2

∑
i yidxi, one considers:

gP =
∑
i

(
((dxi)

2 + (dyi)
2
)
+ η ⊗ η,

Φ =
∑
i

(
∂yi ⊗ dxi − (∂xi

− 2yi∂z)⊗ dyi.
)
.
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It is readily verified, by Lemma 6.3, that (P, gP , η, ∂z,Φ) is Sasakian with constant
Φ-sectional curvature −3.

The spherical Sasakian (P, gP ) = S2n+1(a): For simplicity, we utilize the ambient
coordinates of R2n+2, {x1, y1, ..., xn+1, yn+1}. All tensors described below are understood
as their restriction to the unit sphere. With the induced metric, the canonical Sasakian
structure on S2n+1 is given by

ζ =
∑
i

(yi∂xi
− xi∂yi),

η =
∑
i

(yidx
i − xidy

i),

Φ =
∑
i,j

(xixj − δij)∂xi
⊗ dyj − (yiyj − δij)∂yi ⊗ dxj + xjyi∂yi ⊗ dyj − xiyj∂xi

⊗ dxj

Let π : S2n+1 7→ N = CPn be the Hopf fibration and gN the Fubini-Study metric. The
Sasakian metric can be realized as

g = π∗gN + η ⊗ η, dη = π∗ωN .

Via a homothetic deformation (Definition 2.16), if gN is scaled to have Ricci curvature
kId, k > 0, then the constant Φ-sectional curvature a of gP is, by Lemma 6.3,

a =
4k

n+ 1
− 3 > −3.

The hyperbolic Sasakian (P, gP ) = SB2n+1(a): Let g0 be the Bergman metric of
constant sectional curvature −1 in the unit ball in Cn. One then scales it to have Ricci
curvatutre kId, for k < 0 and denote such construction by N = Bn

C(k) with metric gN .
Let ωN be the corresponding Kähler form and, since Bn

C(k) is simply connected, there
exists 1-form α such that dα = ωN . On the total space of the line bundle P = Bn

C(k)×R
with natural projection π, one considers:

gP = π∗gN + η ⊗ η,

η = dz + π∗α.

By Lemma 6.3, the Φ-sectional curvature of (P, gP ) is

a =
k

2n− 1
− 3 < −3.

Theorem 2.18. [60] Let (M2n+1, g, η,Φ, ζ) be a simply connected complete Sasakian
manifold with constant Φ-sectional curvature H then it must be isometric to:

(i) (H > −3) the Sasakian sphere S2n+1(H),
(ii) (H = −3) the flat Sasakian space R2n+1(−3),
(iii) (H < −3) the Sasakian disk model SB2n+1(H).

As described earlier, Sasakian manifolds belong to the family of almost contact metric
structures which also include certain Riemannian products and the following. For
P = R× Cn and a constant A,

gP = dz2 + e2AzgCn−1 .
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One realizes it as a hyperbolic metric H2n+1(−A2).

Lemma 2.19. The sectional and Ricci curvature of gP , for orthonormal vectors X, Y
on Cn and ∂z along R,

K(∂z, X) = −A2 = K(X, Y )

R(∂z, ∂z) = −2nA2 = Rc(Xi, Xi).

All aforementioned models appear in the following result. Let (P 2n+1, g, η, ζ,Φ) be
an almost contact metric structure. The symmetry group is supposed to preserve both
g, η, ζ and Φ.

Theorem 2.20. [58] The maximum dimension of the symmetry group is (n + 1)2. It
is attained iff the sectional curvature for 2-planes which contain ζ is a constant C and
the manifold is one of the following spaces:

(i) C > 0: an ±b deformation of a homogeneous Sasakian manifold with constant
Φ-sectional curvature H or, precisely,

• H > −3 : the Sasakian sphere S2n+1(H) or its quotient by a finite group
generated by exp(tζ) for 2π/t being an integer,

• H = −3: the flat Sasakian space R2n+1(−3) or its quotient by a cyclic
group generated by exp(tζ),

• H < −3: the Sasakian disk model SB(H) or its quotient by a cyclic group
generated by exp(tζ).

(ii) C = 0: six global Riemannian product X ×CPn−1(k), X ×Cn−1, X ×Bn−1
C (k)

where X is a line or a circle;
(iii) C < 0 the hyperbolic space H2n+1(C).

For a Sasakian model with submersion π : P 7→ N with N = N(k), the metric can
always be written as

g = gN + η ⊗ η, dη = π∗ωN .

Lemma 2.21. If (M, ζ ′, η′,Φ′, g′) is obtained via a transverse a-homothety and a ±b-
deformation then

g′ = bagN + a2η ⊗ η, ζ ′ =
1

a
ζ, , η′ = aη, Φ′ = ±Φ.

Proof. Via a transerver a-homothety transformation:

g∗ = ag + (a2 − a)η ⊗ η = agN + a2η × η = agN + η∗ ⊗ η∗;

η∗ = aη; ζ∗ =
1

a
ζ; Φ∗ = Φ.

Via a ±b-deformation:

g′ = bg∗ + (1− b)η∗ ⊗ η∗ = bagN + bη∗ ⊗ η∗ + (1− b)η∗ ⊗ η∗

= bagT + η∗ ⊗ η∗ = bagN + a2η ⊗ η

η′ = η∗ = aη, ζ ′ = ζ∗ =
1

a
ζ, Φ′ = (±)Φ.

□
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3. Cohomogeneity One Ansatz

Here we assume the cohomogeneity one condition and collect calculation related to
ansatz 1.3. The setup follows [26] closely. Let G be a Lie group acting isometrically on
a Riemannian manifold (M, g). Supposed that there is a dense subset M0 ⊂ M such
that, locally, there is a G-equivariant diffeomorphism:

Ψ : I × P 7→ M0 given by Ψ(t, hK) = h · γ(t).

Here, I is an interval; γ(t) is a unit speed geodesic intersecting all orbits orthogonally;
P = G/K where K is the istropy group along γ(t). It follows that

Φ∗(g) = g = dt2 + gt

where gt is a one-parameter family of G-invariant metrics on G/K. For unit vector
fields N = Φ∗(∂t), let L denote the shape operator

L(X) = ∇XN.

We will consider Lt = L|Ψ(t×P )
to be a one-parameter family of endormorphisms on

TP via identification T (Ψ(t× P )) = TP . Following [26], one observes

∂tg = 2gt ◦ Lt.

Thanks to Gauss, Codazzi, and Riccati equations, the Ricci curvature of (M0, g) is
totally determined by the geometry of the shape operator and how it evolves. Thus,
the gradient Ricci soliton equation Rc + Hessf = λg is reduced to

0 = −(δL)−∇trL,

λ = −tr(L′)− tr(L2) + f ′′,(3.1)

λgt(X, Y ) = Rct(X, Y )− (trL)gt(LX, Y )− gt(L
′(X), Y ) + f ′gt(LX, Y ).

Here Rct denotes the Ricci curvature of (P, gt), δL =
∑

i ∇eiL(ei) for an orthonormal
basis and trT = trgtTt.

We are particularly interested in the metric given by Ansatz 1.3. For convenience,
let m = n− 1, the dimension of N . We recall

g = dt2 + gt = dt2 + F (t)2π∗gN +H(t)2η ⊗ η,

η = (dz + qπ∗α), dα = ωN.

We have

2gtLt = g′t = 2
H ′

H
H2η ⊗ η + 2

F ′

F
F 2π∗gN .

Thus, for Id denoting the identity operator on the horizontal subspace of TP , which is
gt- perpendicular to ∂z,

Lt =
H ′

H
∂z ⊗ η +

F ′

F
Id.

L′
t =

(H ′′

H
−

(H ′

H

)2)
∂z ⊗ η +

(F ′′

F
−
(F ′

F

)2)
Id.
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Consequently,

trLt =
H ′

H
+ (2m)

F ′

F
,

trL2
t = (

H ′

H
)2 + (2m)

(F ′)2

F 2
,

trL′
t =

H ′′

H
+ (2m)

F ′′

F
− (H ′)2

H2
− (2m)

(F ′)2

F 2
.

Lemma 3.1. The gradient Ricci soliton equation becomes

λ = −H ′′

H
− (2m)

F ′′

F
+ f ′′ =

H2q2

F 4
(2m)− H ′′

H
− 2m

H ′F ′

HF
+ f ′H

′

H

=
k

F 2
− H2q2

F 4
2− F ′′

F
− (2m− 1)(

F ′

F
)2 − H ′F ′

FH
+ f ′F

′

F
.

Proof. By Lemma 6.3 and system 3.1, we obtain

0 = −δL−∇(trL) = −0− 0 = 0;

λ = −trL′
t − trL2

t + f ′′

= −H ′′

H
− (2m)

F ′′

F
+

(H ′)2

H2
+ (2m)

(F ′)2

F 2
− (H ′)2

H2
− (2m)

(F ′)2

F 2
+ f ′′

= −H ′′

H
− (2m)

F ′′

F
+ f ′′;

H2λ = Rc(∂z, ∂z)− trLg(L∂z, ∂z)− g(L′∂z, ∂z) + f ′g(L∂z, ∂z)

=
H4q2

F 4
(2m)− (

H ′

H
+ (2m)

F ′

F
)H2H

′

H
−H2

(H ′′

H
−
(H ′

H

)2)
+ f ′H2H

′

H

= H2
(H2q2

F 4
(2m)− H ′′

H
− (2m)

F ′

F

H ′

H
+ f ′H

′

H

)
;

F 2λ = k − 2
H2q2

F 2
− (

H ′

H
+ (2m)

F ′

F
)F 2F

′

F
− F 2

(F ′′

F
−
(F ′

F

)2)
+ f ′F 2F

′

F

= F 2
( k

F 2
− H2q2

F 4
2− F ′′

F
− F ′

F

H ′

H
− (2m− 1)

(F ′

F

)2
+ f ′F

′

F

)
.

□

The almost complex structure on I × P is constructed from one on (N, gN):

J = ∂t ⊗Hη − 1

H
∂z ⊗ dt+ π∗JN .

Thus, the Kähler form becomes:

ω = 2dt ∧Hη + F 2π∗ωN ,

dω = −2qHdt ∧ π∗ωN + 2FF ′dt ∧ π∗ωN .

Thus the metric is almost Kähler if and only if

(3.2) FF ′ = qH
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Following [26], we consider the change of variables:

(3.3) ds = Hdt, α(s) := H2(t), β(s) = F 2(t), φ(s) := f(t).

Consequently, for Ẋ = ∂sX,

α̇ = 2H ′, α̈ =
2H ′′

H

β̇ =
2FF ′

H
, β̈ =

2F ′2 + 2FF ′′

H2
− 2FF ′H ′

H3
,

φ̇ =
f ′

H
, φ̈ =

f ′′

H2
− f ′H ′

H3
.

The almost Kählerity of g implies β(s) = 2s+A, φ(s) = Bs+C. The soliton equation
becomes

λ = −α′′

2
+

2mα

(2s+ A)2
− mα′

2s+ A
+B

α′

2
= −α′′

2
+B

α′

2
−
( mα

2s+ A
)′

λ(2s+ A) = k − α′ − 2(m− 1 + q2)α

2s+ A
+Bα.

We summarize the above calculation in the following lemma.

Lemma 3.2. Let (I × P, g) be given as in Ansatz 1.3. g is almost Kähler GRS if and
only if, under transformation (3.3), we have:

λ = − α̈

2
+B

α̇

2
− d

ds

( mα

2s+ A
)

λ(2s+ A) = k − α̇− 2(m− 1 + q2)α

2s+ A
+Bα

It order to obtain a global complete metric, one needs to smoothly extend the con-
struction to singular orbits (if any). The following follows from the proof of [28, Lemma
1.1]. We provide a direct proof as our ansatz (1.3) is fairly explicit.

Lemma 3.3. Let I = (0, r) for r > 0 and (I×P, g) is given by ansatz 1.3 for H(0) = 0,
F (0) > 0. The metric can be extended smoothly to t = 0 if and only if, for any non-zero
integer k,

H ′(0) = 1, H(2k)(0) = 0 = F (2k+1)(0).

Proof. We rewrite the metric in polar coordinates, for x = t cos(z) and y = t sin(z),

dt =
x

t
dx+

y

t
dy,

dz =
−y

t2
dx+

x

t2
dy
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Then,

g = dt2 +H2(dz + qα)⊗ (dz + qα) + F 2gN

= t−2(x2dx2 + y2dy2 + xydx⊗ dy + xydy ⊗ dx)

+
H2

t4
(y2dx2 + x2dy2 − xydx⊗ dy − xydy ⊗ dx)

+
−qyH2

t2
(α⊗ dx+ dx⊗ α) +

qxH2

t2
(α⊗ dy + dy ⊗ α)

+H2q2α⊗ α + F 2gN ,

= dx2(
H2y2

t4
+

x2

t2
) + dy2(

H2x2

t4
+

y2

t2
) + (dx⊗ dy + dy ⊗ dx)(−H2xy

t4
+

xy

t2
)

+
−qyH2

t2
(α⊗ dx+ dx⊗ α) +

qxH2

t2
(α⊗ dy + dy ⊗ α)

+H2q2α⊗ α + F 2gN .

Thus, the metric can be extended smoothly to t = 0 if and only if the metric components

y2

t2
(
H2

t2
− 1),

x2

t2
(
H2

t2
− 1),

xy

t2
(
H2

t2
− 1),

qyH2

t2
,
qxH2

t2
, F 2

can be smoothly extended to x = y = 0. According to [33, Prop. 2.7], a function

f̃(x, y) = f(t, z) is smooth if and only if

• f(t, z) = f(−t, z + π) for all t, z.

• tk(∂
kf

∂tk
(0, θ)) is a homogeneous polynomial of degree k in x and y,

Applying such criteria to our case yields

• H ′(0) = 1 and H(2n)(0) = 0;
• F (2n+1)(0) = 0.

□

Additionally, the hyperbolic case gives rise to the following.

Lemma 3.4. Let I × P be equipped with the metric

dt2 + gt = dt2 + e2A(t)zπ∗gN +H2(t)η ⊗ η

for η = dz and RcN = 0. The gradient Ricci soliton equation becomes

A′ = 0 = H ′,

λ = −(
A

H
)2(2m) = f ′′.

Proof. We have

2gtLt = g′t = 2
H ′

H
H2dz2 + 2zA′e2Azπ∗gN ,

Lt =
H ′

H
∂z ⊗ dz + zA′Id,

L′
t = (

H ′′

H
− (

H ′

H
)2)∂z ⊗ dz + zA′′Id.
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Consequently,

trLt =
H ′

H
+ zA′(2m),

trL2
t = (

H ′

H
)2 + 2mz2(A′)2,

trL′
t = (

H ′′

H
− (

H ′

H
)2) + (2m)zA′′.

By the first equation of (3.1), one deduces that A′ = 0 or A is constant. By the third
equation of (3.1) and Lemma 2.19, H is constant. The result then follows.

□

4. Induced Symmetry

Let (M, g, J, f) be an almost Hermitian GRS. In this section, we examine how the
symmetry of (M, g, J, f) induces certain symmetry on level sets of function f . For each
c ∈ f(M), Mc := f−1(c) is called a level set of f . By the regular level set theorem [62],
if c is a regular value, then the level set is a smooth submanifold of codimension one.
From now on, we assume c is a regular value unless stated otherwise.

As V = ∇f
|∇f | is well-defined on Mc, let ζ = −J(V ) and η be the dual 1-form to ζ. We

define Φ on TMc by

ΦX + η(X)V = JX.

Proposition 4.1. Let (M, g, J, f) be an almost Hermitian GRS. If c is a regular value
of f , then (Mc, g, ζ, η,Φ) is an almost contact metric structure.

Proof. If X = aζ +X1 for X1 a section of TMc and X1 ⊥ ζ, then it is immediate that
Φ(X) = JX1 is also a section of TMc. We check

Φ2(X) = Φ(J(X1)) = J(J(X1))− η(J(X1))V,

= −X1 − g(ζ, J(X1))V = −X1 + g(J(ζ), X1)V = −X1 + g(V,X1)V,

= −X1 = −X + aζ = −X + η(X)ζ.

Therefore, Φ2 = −Id+ ζ ⊗ η and (Mc,Φ, ζ, η) is an almost contact structure. Next, for
X = aζ +X1 and Y = bζ + Y1, we compute

g(ΦX,ΦY ) = g(J(X1), J(Y1)) = g(X1, Y1) = g(X − aζ, Y − bζ)

= g(X, Y )− ag(ζ, Y )− bg(X, ζ) + abg(ζ, ζ)

= g(X, Y )− 2ab+ ab = g(X, Y )− ζ(X)ζ(Y ).

Thus, (Mc,Φ, ζ, η) is an almost contact metric structure. □

We will collect useful observations.

Lemma 4.2. Suppose that LXg = 0.

(i) LXf = 0 ⇐⇒ LX∇f = 0 ⇐⇒ LX |∇f |2 = 0.
(ii) Let γ be the 1-form dual to a vector field Z. LXZ = 0 ⇐⇒ LXγ = 0.
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Proof. We only show the first statement as others follow from similar calculation. One
computes

(LX∇f)Y = g(∇X∇f −∇∇fX, Y )

= Hessf(X, Y ) + g(∇YX,∇f)− LXg(Y,∇f)

= Hessf(X, Y )− g(X,∇Y∇f) + Y (LXf)− LXg(Y,∇f)

= Y (LXf)− LXg(Y,∇f).

Furthermore,

LX |∇f |2 = 2g(∇X∇f,∇f)

= 2g([X,∇f ],∇f)− 2g(∇∇fX,∇f)

= 2g([X,∇f ],∇f)− (LXg)(∇f,∇f).

The conclusion then follows. □

Lemma 4.3. Suppose that LXV = 0 and LXη = 0. LXΦ = 0 if and only if LXJ = 0.

Proof. We compute

(LXΦ)Y = [X,Φ(Y )]− Φ([X, Y ])

= [X, J(Y )− η(Y )V ]− J([X, Y ]) + η([X, Y ])V

= (LXJ)Y − [X, η(Y )V ] + η([X, Y ])V

= (LXJ)Y − η(Y )[X, V ]−∇X(η(Y ))V + η([X, Y ])V

= (LXJ)Y − η(Y )LXV − (LXη)(Y )V

□

Proposition 4.4. On each Mc, if LXg = LXJ = LXf = 0 then we have

LXζ = 0, LXη = 0, LXΦ = 0.

Proof. It follows from Lemmas 4.2 and 4.3. □

Proposition 4.5. Suppose that LXg = 0 and LX∇f = 0. If X|Mc
≡ 0 then X ≡ 0.

Proof. We compute

∇∇fX = −[X,∇f ] +∇X∇f

= Hessf(X, ·) = 0.

Since a Killing vector field is completely determined by its zero and first order values
at a point, X must be trivial. □

Theorem 4.6. Let (M2n, g, J, f) be an almost Hermitian GRS with a non-trivial f and
G be a group of symmetry preserving g, J, and f . Then G is also a group of symmetry
for (Mc, g, ζ, η,Φ) as an almost contact metric structure.

Proof. Let u : M 7→ M be an isometry preserving J and f . As f(u(a)) = f(a),
u(Mc) = Mc and u induces a map uc : Mc 7→ Mc. The proof will follow from the
following claims.
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Claim: If uc is an identity map then so is u.
Proof: An isometry is necessarily an affine transformation which preserves parallelism

[36, Chapter VI]. The result then follows.
Claim: ∇f

|∇f | is u-invariant. Consequently, so is ζ = −J( ∇f
|∇f |).

Proof: Since f is u-invariant, so is df . As ∇f is the dual of df via g and each is
u-invariant, the first statement follows via Lemma 4.2. The second is because J is
u-invariant.

Claim: η and Φ are u-invariant.
Proof: Because η is the dual of an u-invariant vector field and u is an isometry, η is

u-invariant. Next, one recalls

Φ(·) = J(·)− η(·) ∇f

|∇f |
and each component is u-invariant. The result then follows. □

Corollary 4.7. Let (M2n, g, J, f) be an almost Hermitian GRS with a non-trivial f .
The dimension of the group of symmetry is at most n2.

Proof. It follows from Theorem 4.6 and the corresponding result for an almost contact
metric structure, Theorem 2.20.

□

Under the setup of cohomogeneity one, there is a converse statement. Let (M, g, J, f)
be an almost Hermitian GRS such that over a dense subset, the metric is given by the
ansatz 1.3. Let X be an infinitesimal automorphism vector field on N . That is,

LXgN = LXJN = 0.

Since ωN = g(·, J ·),
LXωN = 0.

Let X∗ be its horizontal lift to (P, gt). By Cartan’s formula,

3dω(W,Y, Z) = (LWω)(Y, Z)− d(iWω)(Y, Z).

For ω = π∗(ωN), W = X∗, dω = 0 = LX∗ω. Thus, iX∗ω is closed. If P is simply
connected then there exists a function ℓ such that

iX∗π∗(ω) = dℓ.

Lemma 4.8. If P is simply connected then the vector field X∗ − ℓ∂z is independent of
t and is an infinitesimal symmetry of (P, gt, η, ζ,Φ).

Proof. X∗ is independent of t as it only depends on π and the fixed subspace which
is gt perpendicular to ∂z for all t. ℓ is independent of t as the proof of the Poincare’s
lemma is topological. The rest is straightforward; see [58, Lemma 5.1] for details. □

Remark 4.1. If N is simply-connected, one can choose u to be constant on each fiber.

Since (P, gt) is complete for each t, it is possible to construct G, the group consisting
of automorphisms generated by vector fields of the form X∗ − u∂z in Lemma 4.8 and
the Killing vector field ∂z.
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Proposition 4.9. If P is simply connected then G is a group of automorphism for
(M, g, J, f).

Proof. Let Xi be either a vector field from Lemma 4.8 or ∂z. Then, immediately,

LXi
g = LXi

(dt2 + gt) = LXi
gt = 0.

For V = ∂t, by Lemmas 4.3 and 4.8, LXJ = 0. The result then follows. □

5. Rigidity of the Maximal Dimension

We are now ready to prove main results.

Proof of Theorem 1.5. First, by Corollary 4.7, dim(G) ≤ n2. Suppose that dim(G) =
n2. Since f is non-constant, let γ(t) be a unit speed integral curve of ∇f . For each
regular value f(t), (Mt, ζt, ηt,Φt) is an almost contact metric structure by Prop 4.1.
By Theorem 4.6, G is also a group of symmetry for each such almost contact metric
structure.

By S. Tanno’s Theorem 2.20, each connected component of Mt must be one of the
model spaces therein. Furthermore, asG acts transitively on each connected component
of Mt, Mt is a principal orbit and the orbit space of G-actions on M is of dimension one.
Thus, (M, g, J, f) is of cohomogeneity one and each Mc is connected. Let P = Mt0 , for
some fixed value t0, which is a total space of a line or circle bundle over N(k) with the
fiber projection π. By Sard’s theorem, the set of singular values for f : M 7→ R is of
measure zero in R. Thus, by continuity, nearby Mt must be obtained from the same
model. Locally, the metric can be written as,

g = dt2 + gt, f = f(t).

Next, we consider cases as described in Theorem 2.20.
Case 1: (P, gt, ζt, ηt,Φt) is a deformation of a homogeneous Sasakian metric with

constant Φ-sectional curvature. Thus, gt is obtained from a standard Sasakian metric
via an a-homothety and a ±b deformation. Thus, by fixing a background η and ζ = ∂z
on each fiber, By Theorem 2.18 and Lemma 2.21, for F 2 = ab and H = a,

gt = F 2(t)π∗gN +H2(t)η ⊗ η,

η(∂z) = 1, dη = π∗ωN .

Case 2: P is a trivial bundle over N(k). Thus,
gt = H2(t)dz2 + F (t)2π∗gN.

Case 3: (P, gt) is a hyperbolic metric. That is,

gt = H2dz2 + e2A(t)zgN .

One direction then follows from Lemmas 3.1 (for q = 1, 0) and Lemma 3.4.

For the reverse direction, if the soliton is locally constructed by the ansatz 1.3 and P
is simply connected, then its automorphism group is the same as the group of symmetry
of (P, gt, ηt, ζt,Φt) for each regular value t by Lemma 4.9. For N = N(k) such group is
of dimension n2 by [58]. The hyperbolic case case is trival as the metric is a product.
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□

The next results will pave the way to the proof of Theorems 1.2.

Proposition 5.1. Let (M2n, g, J, f, λ) be a non-trivial almost Kähler GRS with G the
group of symmetry. If dim(G) = n2 then either

(i) the soliton belongs to case (i) of Theorem 1.5 with q = 1. Furthermore, H,F
and f can be solved as follows:

ds = Hdt,

F 2(t) = β(s) = 2s+ A,

f(t) = ϕ(s) = Bs+ C,

D = k − λA,

α(x)(2x+ A)me−Bx |ss0 =
eBs

(2s+ A)m

∫ s

s0

(−2λx+D)e−Bx(2z + A)mdx.

(ii) the soliton splits as (M1, g,J1, f1, λ) × (N, gN, JN, fN, λ) for (M1, g,J1, f1, λ) a
Kähler GRS in real dimension two.

Proof. We continue from the proof of Theorem 1.5. For the first case q = 1, the result
follows from Lemma 3.2. For the case q = 0, by equation (3.2), F is constant. Thus,
the soliton must splits as a Riemannian product

M1 ×M2.

By [54, Lemma 2.1] and the discussion after Lemma 3.1, each (Mi, gi, Ji.fi, λ) is a
Kähler GRS. As (M2, g2, J2) = (N, gN, JN) the result follows. Finally, for the hyperbolic
case, the product metric is not almost Kähler.

□

Proof of Theorem 1.2. We first need the following.
Claim 1: The largest connected group of isometries preserves J and f .
Proof: By A. Lichnerowicz [42], for an irreducible Kähler manifold, the largest con-

nected group of isometries preserves the almost complex structure if n is odd or if n is
even and Rc does not vanish. As the soliton is non-trivial, Rc ̸= 0.
Furthermore, by [54], for a Killing vector field X, either LXf = ∇Xf ≡ 0 or ∇X ≡ 0

and the manifold splits off a line or a circle. Since the metric is Kähler,

∇X ≡ 0 ⇄ ∇(JX) ≡ 0.

Thus, it splits off a line/circle if and only if there is a decomposition with a flat factor
with respect to the Kähler structure, which contradicts the irreducibility. The claim
follows.

The claim implies that the largest connected group of isometries is contained in the
group of symmetry preserving g, J, and f . By Theorem 1.5, the dimension of the group
of isometries is at most n2. The maximal dimension is attained only if, locally, the
metric must be constructed from ansatz 1.3 as in Prop. 5.1(i). Since α(s) and β(s) do
not both approach ∞ as s → −A/2, the metric is only complete if there is a singular
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orbit and one needs to smoothly compactify such an end. By taking a scaling if neces-
sary, one assumes that the singular orbit is at s = 0 = t and the metric is defined in a
neighborhood where s > 0. Thus, immediately, β ≥ 0 if and only if A ≥ 0.

Claim 2: If λ ≥ 0 then N = CPn−1.
Proof: Assume that N ̸= CPn−1 then it is non-compact. Then, at t = s = 0, one can

only collapse the fiber; that is, α(0) = H(0) = 0, β(0) = F 2(0) > 0. By Prop. 3.3, the
smoothness of the metric requires

∂α

∂s
(0) = 2

∂H

∂t
(0) = 2.

Evaluating the equation λ(2s+ A) = k − α̇− 2(m−1+q2)α
2s+A

+Bα at s = 0 yields

k − λA = D = 2.

For λ ≥ 0, it implies that k > 0, a contradiction to N(k) ̸= CPn−1.

Finally, the reverse direction follows from Claim 1 and Theorem 1.5.
□

Remark 5.1. For λ < 0, Lemma 3.3 shows that it is possible to construct Kähler GRS
with N ̸= CPn−1. The details will appear elsewhere.

Proof Corollary 1.3. If it is irreducible, Theorem 1.2 applies. Otherwise, we argue as
in the proof of Theorem 1.2 to obtain a decomposition:

(M, g, f, J, λ) = Πk
i=0(M

ni
i , gi, fi, Ji, λ)

with
∑

i ni = n (complex dimensions), the i = 0-factor is Gaussian, and each i > 0-one
is an irreducible Kähler GRS. The group of automorphisms for the i = 0-factor is of
dimension at most

n0(n0 + 2).

For the rest, by Theorem 1.2, the group of isometry of the i-factor is of dimension at
most n2

i . As each is simply-connected, the group of the product is equal to the product
of groups [36]. Thus, together, the group of isometry is of dimension at most

n2
1 + ...n2

k ≤ (n1 + ...nk)
2 = (n− n0)

2.

It follows that the automorphism group of (M, g, J, f) is of dimension at most, for
k ≤ n− 1,

(n− n0)
2 + n0(n0 + 2) = n2 − 2n0(n− n0 − 1) ≤ n2.

Equality happens if and only if k = 1 and n0 = n− 1 or n0 = 0. The case n0 = n− 1,
one factor is a complete Kähler GRS in real dimension two. The result then follows.

□

Proof of Corollary 1.4. By [35], the largest connected group of affine transformations
G contains of automorphisms. Non-degeneracy implies the Riemannian metric does
not split off any flat factors. Thus, f is G-invariant. The result then follows from
Theorem 1.5 and Corollary 1.3. For the reverse direction, the non-degeneracy follows
as the Ricci curvature is non-singular at some point [35]. □
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6. Appendix

6.1. Convention. Here are our conventions:

• L denotes the Lie derivative.
• The convention of exterior derivative, for an m-form α,

(m+ 1)dα(X0, ....Xm) =
∑
i

(−1)iXi(α(X0, ...., X̂i, ...Xm))

+
∑
i<j

(−1)i+jα([Xi, Xj], X0, ..., X̂i, ..., X̂j, ...Xm).

Consequently,

(dxi1 ∧ ... ∧ dxik)(∂xi
, ...∂xk

) =
1

k!
.

Remark 6.1. Our convention agrees with [22] but differs from [4] by a scaling.

• The interior product for a m-form is defined as

(iXα(Y1, ..., Ym)) = mα(X, Y1, ..., Ym).

The following identity is the so-called Cartan’s formula for a differential form

LXα = (d ◦ iX + iX ◦ d)α.
• On a Riemannian manifold (M, g), there is a unique Levi-Civita connection
∇ : TM × C∞(TM) 7→ C∞(TM). The connection induces a Riemannian
curvature via the covariant second derivative:

∇2
X,Y = ∇X∇Y −∇∇XY .

The Riemann curvature (3, 1) tensor and (4, 0) tensor are defined as follows,

R(X, Y, Z) = ∇2
X,YZ −∇2

Y,XZ

R(X, Y, Z,W ) = g(∇2
X,YZ −∇2

Y,XZ,W ).

Remark 6.2. Our sign convention agrees with [22, 6]. Our (3, 1) curvature
tensor differs from one of [4] by a sign.

Furthermore, the curvature can be seen as an operator on the space of two
forms. For an orthonormal basis {ei}i and any 2-form α,

R(α)(ei, ej) =
∑
k<l

R(ei, ej, ek, el)α(ek, el).

Consequently, due to our exterior derivative convention,

R(X ∧ Y )(Z,W ) =
1

2
R(X, Y, Z,W ).

The sectional curvature and Ricci curvature are defined as follows,

K(X, Y ) = R(X, Y, Y,X),

Rcik =
∑
j

Rijjk.
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6.2. Submersion. A differentiable map between smooth manifolds π : P 7→ N is a
submersion if the pushforward of the tangent space at each point is surjective. That
is, for p ∈ P , π∗(TxP ) = Tπ(p)N . A Riemannian submersion is a submersion between
Riemannian manifolds such that the differential above is a linear isometry.

We consider a Riemannian submersion π : (P 2n+1, gp) 7→ (N2n, gN) such that each
fiber is a geodesic line or circle with tangential vector field ζ such that g(ζ, ζ) = 1.
The submersion naturally decomposes TP into vertical and horizontal distributions.
Let (·)H and (·)V denote the horizontal and vertical parts, respectively, of a vector field
on P . The vertical subspace consists of multiples of ζ. Furthermore, for each vector
field on N there is a unique horizontal vector field on P such that they are π-related.
We’ll collect useful lemmas whose proofs can be found in [53, 4, 6] or a straightforward
calculation.

Lemma 6.1. For horizontal vector fields X and Y :

i) [ζ,X] is vertical,
ii) g([X, Y ], ζ) = 2g(∇XY, ζ) = 2g(∇Y ζ,X) = −2g(∇ζX, Y ),
iii) ζ is a Killing vector field.

The curvature of a submersion can be computed via B. O’Neill’s A and T tensors
[48]. Since each fiber is totally geodesic, T ≡ 0 and only A is non-trivial. One recalls

AXζ = (∇Xζ)
H, AXY = (∇XY )V .

For horizontal vector fields X,T, Z,W ,

RP (X, Y, Z,W ) = RN(X, Y, Z,W ) + 2g(AXY,AZW ) + g(AXZ,AYW )− g(AXW,AYZ),

RP (X, ζ, Z, ζ) = −g(AXζ, AZζ).

Remark 6.3. These formulas differ from ones of [4, Chapter 9] by a sign convention.

Consequently, there are corresponding identities for the sectional curvature and Ricci
curvature. For orthonormal horizontal vectors X, Y

KP (X, Y ) = KN(X, Y )− 3|AXY |2; KP (X, ζ) = |AXζ|2,
RcP (X, Y ) = RcN(X, Y )− 2g(AX , AY ); Rc(X, ζ) = 0; Rc(ζ, ζ) = g(Aζ,Aζ).

Here, as {Ei}2ni=1 denotes a local orthonormal frame for the horizontal distribution,

g(AX , AY ) =
∑
i

g(AXEi, AYEi) = g(AXζ, AY ζ),

g(Aζ,Aζ) =
∑
i

g(AEi
ζ, AEi

ζ).

Next, we restrict to the submersion given by ansatz 1.3. It is immediate that ζ = 1
H
∂z

is a Killing vector field. In this situation, tensor A can be computed immediately.
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Lemma 6.2. For horizontal vector fields X and Y

2Hdη(X, Y ) = −g([X, Y ], ζ) =
Hq

F 2
g(X, JY ),

AXY = −Hq

F 2
g(X, JY )ζ

AXζ = −Hq

F 2
JX.

Lemma 6.3. The sectional and Ricci curvature of (P, g) are given by, for orthonormal
horizontal vectors X, Y

K(X, Y ) =
1

F 2
KN(FX,FY )− 3

H2q2

F 4
g(X, JY )2,

K(X, ζ) =
H2q2

F 4
,

Rc(X, Y ) = RcN(X, Y )− 2
H2q2

F 4
g(X, Y )

Rc(ζ, ζ) =
H2q2

F 4
2m.
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