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Abstract. Our goal in this paper is to establish some difference analogue of second main
theorems for holomorphic curves into projective varieties intersecting arbitrary families of
c-periodical hypersurfaces (fixed or moving) with truncated counting functions in various
cases. Our results generalize and improve the previous results in this topic.

1. Introduction

The values distribution theory for meromorphic functions on the complex plane was
initiated by R. Nevanlinna [14] in 1926. Later on, in 1933, H. Cartan [2] established the
second main theorem (SMT) in this theory for linearly non-degenerate holomorphic curves
from C into PN(C) intersecting hyperplanes in general position. In 1983, by introducing
the notion of Nochka’s weight for the family of hyperplanes, E. Nochka [15] generalized
the result of Cartan to the case of hyperplanes in subgeneral position. In some recent
years, this theory has been developed to the case of hypersurfaces (fixed or moving) in
general or subgeneral position by many mathematicians, such as M. Ru [22, 23], T. T.
H. An-H. T. Phuong [1], G. Dethloff-T. V. Tan [7], Q. Yan-G. Yu [25], L. B. Xie-T.B.
Cao [24], S. D. Quang-D. P. An [16], S. D. Quang [17, 18] and many others therein. Very
recently, by introducing the notion of distributive constant of families of hypersurfaces, the
present third author [19] further researched the case of holomorphic curves into projective
varieties with arbitrary families of hypersurfaces and proved the following second main
theorem.

Theorem A (see [19, Theorem 1.1]) Let V ⊂ PN(C) be a smooth complex projective
subvariety of dimension n ≥ 1. Let {Q1, . . . , Qq} be a family of hypersurfaces of PN(C)
with the distributive constant ∆ with respect to V , degQi = di (1 ≤ i ≤ q), and d be the
least common multiple of d1, . . . , dq. Let f be an algebraically non-degenerate holomorphic
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map from C into V . Then, for every ε > 0,

∥∥ (q −∆(n+ 1)− ε)Tf (r) ≤
q∑
i=1

1

di
N [M0](r, f∗Qi) + o(Tf (r)),

where M0 =
[
dn

2+n deg(V )n+1en∆n(2n+ 4)n(n+ 1)n(q!)nε−n
]
.

Here, the notation “‖ P” means the assertion P holds for all r ∈ [1,+∞) outside a set
of finite measure, the notation [x] stands for the largest integer not exceeding the real
number x.

On the other side, motivated by the development of the value distribution of complex
difference polynomials and solutions of complex difference equations (refer to see [3]),
the difference analogues of second main theorems (DSMT) were established. In 2006,
R.G. Halburd and R.J. Korhonen [10] obtained the c-difference analogue of the second
main theorem (c-DSMT) for meromorphic functions in the complex plane. Later, P. M.
Wong-H.F. Law-P. P. W. Wong [26] and R. G. Halburd-R. J. Korhonen and Tohge [11]
have independently obtained the c-DSMT for holomorphic curves into complex projective
spaces intersecting hyperplanes in general position. In 2017, the present first author and
J. Nie [4] proved an c-DSMT for the case of c-periodical slowly moving hypersurfaces
located in subgeneral position of PN(C) with the truncation level N . Recently, P. C. Hu
and the present second author [12] have considered the case of holomorphic curves with
hypersurfaces in subgeneral position with respect to a projective varieties with an explicit
truncation level for the counting function. Our goal in this paper is to establish some
difference analogues of the SMT for such curves with arbitrary families of hypersurfaces
(fixed or c-periodical slowly moving), which are analogues to Theorem A, generalize and
extend the above mentioned results for the case of hypersurfaces. In order to state the
results, we recall the following.

Throughout this paper, we denote by M the set of all meromorphic functions on C,
by Pc the subfield of M consisting of all c-periodical meromorphic functions, by Pλ

c the
subfield of Pc consisting of all functions in Pc with the hyperorders strictly less than λ, and
by Kλ

f,c the subfield of Pλ
c consisting of all functions in Pλ

c which are small with respect

to f . Obviously, we have the relationship M ⊃ Pc ⊃ Pλ
c ⊃ Kλ

f,c. Here a meromorphic
function ϕ is said to be small (with respect to f) if ‖ Tϕ(r) = o(Tf (r)).

Firstly, motivated by the recent works of the present third author on Nevanlinna theory
for entire curves [19] and on Diophantine approximation [20], we prove the following c-
DSMT for algebraically nondegenerate holomorphic curves from C into projective varieties
with an explicit truncation level for counting functions.

Theorem 1.1. Let V ⊂ PN(C) be an irreducible algebraic subvariety of dimension
n (n ≤ N). Let f : C → V be a holomorphic map with hyperorder ς(f) < 1. Let
Q = {Q1, . . . , Qq} be a set q hypersurfaces with the distributive constant ∆Q,V with respect
to V and d = lcm(degQ1, . . . , degQq). Assume that f is algebraically non-degenerate over
P1
c . Then for any ε > 0,

∥∥ (q −∆Q,V (n+ 1)− ε)Tf (r) ≤
q∑
j=1

1

degQj

Ñ
[L0−1,c]
Qj(f) (r) + o(Tf (r)),



DIFFERENCE ANALOGUE OF THE SECOND MAIN THEOREM FOR HYPERSURFACES 3

where L0 =
[
dn

2+n(deg V )n+1en∆n
Q,V (2n+ 5)n((n+ 1)∆Q,V ε

−1 + 1)n
]
.

Here, the distributive constant ∆Q,V of the familyQ with respect to V , the characteristic

function Tf (r) and the truncated counting function Ñ
[M0,c]
Qj(f) (r) are defined in Section 2.

Let d be a positive integer. We denote by I(V ) the ideal of homogeneous polynomials
in C[x0, . . . , xn] defining V and by C[x0, . . . , xn]d the C-vector space of all homogeneous
polynomials in C[x0, . . . , xn] of degree d (including the zero polynomial) and let I(V )d =
I(V ) ∩ C[x0, . . . , xn]d. Define

Id(V ) :=
C[x0, . . . , xn]d

I(V )d
and HV (d) := dim Id(V ).

Then HV (d) is called the Hilbert function of V . For the second aim, we will establish an
c-DSMT with better truncation level as follows.

Theorem 1.2. Let V be a complex projective subvariety of PN(C) of dimension n (n ≤
N). Let {Qi}qi=1 be hypersurfaces of Pn(C) in `-subgeneral position with respect to V . Let
d be the least common multiple of degQ1, . . . , degQq, i.e., d = lcm(degQ1, . . . , degQq).
Let f be a holomorphic map of C into V which is P1

c -algebraically non-degenerate over
Id(V ) with hyperorder ς(f) < 1. Then, we have∥∥∥∥ (q − (2`− n+ 1)HV (d)

n+ 1

)
Tf (r) ≤

q∑
i=1

1

degQi

Ñ
[HV (d)−1,c]
Qi(f) (r) + o(Tf (r)).

For the last purpose, we will consider the case of arbitrary families of c-periodical slowly
moving hypersurfaces in PN(C). We will prove the following.

Theorem 1.3. Let f be a P1
c -algebraic nondegenerate holomorphic curve of C into Pn(C)

with hyperorder ς(f) < 1. Let Q = {Qi}qi=1 be a family of c-periodical slowly (with respect
to f) moving hypersurfaces with the distributive constant ∆Q. Then for any ε > 0, we
have

‖ (q −∆Q(n+ 1)− ε)Tf (r) ≤
q∑
i=1

1

degQi

Ñ
[Li,c]
Qi(f)(r) + o(Tf (r)),

where Li = degQi

d
L0 −

[
degQi

d

]
and d, L0 are positive numbers defined by:

d := lcm(degQ1, . . . , degQq), L0 :=

(
L+ n

n

)
p
(L+n

n )((L+n
n )−1)(q

n)−2

0

with L := dn+ 1 + 2∆Q(n+ 1)3ε−1ed and p0 :=

[(
L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
− 1

log(1 + ε
3(n+1)∆Q

)

]2

.

Here, by dxe stands for the smallest integer not less than x.

2. Preliminaries and lemmas

(A) Some notation and definitions. For a divisor ν on C and a positive integer M or
M = +∞, as usual we denote by N [M ](r, ν) the counting function of ν with multiplicities
truncated to level M .
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For a meromorphic function ϕ on C, denote by νϕ its divisor of zeros and set

Nϕ(r) = N(r, νϕ), N
[M ]
ϕ (r) = N [M ](r, νϕ) (r0 < r < R0).

For brevity, we will omit the character [M ] if M = +∞. In this paper we fix a nonzero
constant c ∈ C. Define

ϕ(z) ≡ ϕ := ϕ̄[0], ϕ(z + c) ≡ ϕ̄ =: ϕ̄[1], f(z + 2c) ≡ ϕ̄ =: ϕ̄[2], · · · , f(z +Mc) ≡ ϕ̄[M ]

and set ν
[M,c]
ϕ = min0≤k≤M νϕ̄[k] , ν̃

[M,c]
ϕ = νϕ − ν

[M,c]
ϕ . We define the following valence

functions (cf. [6, inq. (2.5)] and see also [13, Definition 4.1] for a modification):

N [M,c]
ϕ (r) = N(r, ν [M,c]

ϕ ) and Ñ [M,c]
ϕ (r) = N(r, ν̃ [M,c]

ϕ ).

Let f : C → PN(C) be a holomorphic map with a reduced representation f = (f0, . . . , fN).

Set ‖f‖ =
(
|f0|2 + · · ·+ |fN |2

)1/2
. The characteristic function of f is defined by

Tf (r) =

2π∫
0

log ‖f(reiθ)‖dθ
2π

−
2π∫
0

log ‖f(eiθ)‖dθ
2π
.

The hyper-order and order of f are defined respectively by

ς(f) = lim sup
r→∞

log log Tf (r)

log r
, σ(f) = lim sup

r→∞

log Tf (r)

log r
.

The Casorati determinant of f is defined by

C(f) = det
(
f0

[w]
, . . . , fN

[w]
)

0≤w≤N
.

The definition of the function C(f) depends on the choice of the reduced representation
of f , but its divisor νC(f) does not depend on this choice.

For a positive integer d, we set

Td := {(i0, . . . , iN) ∈ NN+1
0 : i0 + · · ·+ iN = d}.

In this paper, we call each hypersurface in PN(C) a nonzero homogeneous polynomial Q
in C[x0, . . . , xN ] and denote by Q∗ its support, i.e.,

Q∗ = {(ω0 : · · · : ωN)|Q(ω0, . . . , ωN) = 0}.

We call each moving hypersurface of degree d a homogeneous polynomial P (z) of the form

P =
∑
I∈Td

aI(z)x
I ,

where xI = xi00 · · ·x
iN
N for I = (i0, . . . , iN) ∈ Td and aI (I ∈ Td) are holomorphic functions

on C without common zero. Then P (z) is a hypersurface in PN(C) for every z ∈ C. We
may also consider P as a holomorphic mapping from C into PM(C) where M =

(
N+d
N

)
−1.

If all the meromorphic functions aI are c-periodic, then we say that P is c-periodical
moving hypersurface.
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Since the number of moving hypersurfaces occurring in this paper is finite, by chang-
ing the homogeneous coordinates of PN(C), we may assume that aI0 6≡ 0, where I0 =
(d, 0, . . . , 0), for each given moving hypersurface P (z) =

∑
I∈Td

aI(z)x
I , and set

P̃ (z) =
∑
I∈Td

aI(z)

aI0(z)
xI .

The proximity function of f with respect to P , denoted by mf (r, P ), is defined by

mf (r, P ) =

∫ 2π

0

log
‖f(reiθ)‖d

|P (f(reiθ))|
dθ

2π
−
∫ 2π

0

log
‖f(eiθ)‖d

|P (f(eiθ))|
dθ

2π
.

This definition is independent of the choice of the reduced representation of f .

If Q is a slowly moving hypersurface with respect to f , i.e., ‖ TQ(r) = o(Tf (r)), then the
first main theorem in Nevanlinna theory for holomorphic maps and moving hypersurfaces
is stated as follows:

dTf (r) = mf (r,Q) +NQ(f)(r) + o(Tf (r)).

Definition 2.1. Let f be a holomorphic curve from C into a subvariety V ⊂ PN(C) with a
presentation (f0, . . . , fN). The map f is said to be P1

c -algebraic nondegenerate over Id(V )
for a positive integer d if there is no non-zero homogeneous polynomial Q ∈ P1

c [x0, . . . , xN ]
of degree d with V 6⊂ Q(z)∗ for some z ∈ C such that Q(f0, . . . , fN) ≡ 0. If f is P1

c -
algebraic nondegenerate over Id(V ) for every d ≥ 1 then f is said to be P1

c -algebraic
nondegenerate.

Let Q = {Q1, . . . , Qq} be a set of q moving hypersurfaces, degQj = dj ≥ 1, of the forms
Qj =

∑
I∈Tdj

ajIx
I(j = 1, . . . , q). Denote by KQ the smallest subfield of M containing all

functions
ajI

ajJ
(for ajJ 6≡ 0), and by CQ the set of all non-negative function h : C → [0,+∞],

which are of the form |u1|c1+···+|uk|ck

|v1|b1+···+|vl|bl
, where k, l ∈ N, ui, vj ∈ KQ\{0}, cj, bj ∈ R+. Then, for

every moving hypersurface Q in KQ[x0, . . . , xN ] of degree d, we have |Q(z)(x)| ≤ c(z)‖x‖d
for some c ∈ CQ.

Definition 2.2 (see [21, Definition 3.4]). Let V be a subvariety of PN(C). Let Q =
{Q1, . . . , Qq} be a family of moving hypersurfaces in PN(C) such that V 6⊂ Qj(z)

∗ for
generic points z and for all j = 1, . . . , q. The distributive constant of Q with respect to V
is defined by

∆Q,V := max
Γ⊂{1,...,q}

]Γ

dimV − dim
⋂
j∈ΓQj(z)∗ ∩ V

for generic points z ∈ C.

Remark 2.3. If Q1, . . . , Qq (q ≥ m+1) are in weakly l−subgeneral position with respect
to V then ∆Q,V ≤ l− dimV + 1 (see [21, Remark 3.7]). If V = PN(C), then we write ∆Q
for ∆Q,V and call it the distributive constant of the family Q.

For a = (a0, . . . , aN) ∈ ZN+1 we write xa for the monomial xa0
0 · · ·xaN

N and set

ai · c =
N∑
i=0

aici
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for c = (c0, . . . , cN) ∈ CN+1. Let V be a projective subvariety of PN(C) of dimension n
and of degree δ. By the usual theory of Hilbert polynomials,

HV (u) = δ · u
n

n!
+O(un−1).

The u-th Hilbert weight SV (u, c) of V with respect to the tuple c = (c0, . . . , cN) ∈ RN+1

is defined by

SV (u, c) := max

HV (u)∑
i=1

ai · c

 ,

where the maximum is taken over all sets of monomials xa1 , . . . ,xaHV (u) whose residue
classes modulo I(V ) form a basis of C[x0, . . . , xN ]u/Iu(V ).

(B) Some auxiliary results.

Lemma 2.4 (General Nochka’s weight [16, Lemma 1]). Let V be a complex projective
subvariety of PN(C) of dimension n (n ≤ N). Let Q1, . . . , Qq be q (q > 2m − n + 1)
hypersurfaces in PN(C) in m-subgeneral position with respect to V of the common degree
d. Then there are positive rational constants ωi (1 ≤ i ≤ q) satisfying the following:

i) 0 < ωi ≤ 1, ∀i ∈ {1, . . . , q}.
ii) Setting ω̃ = maxj∈Q ωj, one gets

q∑
j=1

ωj = ω̃(q − 2m+ n− 1) + n+ 1.

iii)
k + 1

2m− n+ 1
≤ ω̃ ≤ n

m
.

iv) For R ⊂ {1, . . . , q} with ]R = m+ 1, then
∑

i∈R ωi ≤ n+ 1.

v) Let Ei ≥ 1 (1 ≤ i ≤ q) be arbitrarily given numbers. For R ⊂ {1, . . . , q} with
]R = m+ 1, there is a subset Ro ⊂ R such that ]Ro = rank{Qi}i∈Ro = n+ 1 and∏

i∈R

Eωi
i ≤

∏
i∈Ro

Ei.

Lemma 2.5 (see [21, Lemma 3.8]). Let V be as in Lemma 3.3. Let Q1, . . . , Ql be l

hypersurfaces in PN(C) of the same degree d ≥ 1, such that
⋂l
i=1Q

∗
i ∩ V = ∅ and

dim

(
s⋂
i=1

Q∗
i

)
∩ V = n− u, ∀tu−1 ≤ s < tu, 1 ≤ u ≤ n,

where t0, t1, . . . , tn integers with 1 = t0 < t1 < · · · < tn = l. Then there exist n + 1
hypersurfaces P1, . . . , Pn+1 in PN(C) of the forms

Pu =
tu∑
j=1

cujQj, cuj ∈ C, u = 0, . . . , n,

such that
(⋂n+1

u=1 P
∗
u

)
∩ V = ∅.
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Lemma 2.6 (see [19, Lemma 3.9]). Let t0, t1, . . . , tn be n+ 1 integers such that 1 = t0 <

t1 < · · · < tn, and let ∆ = max
1≤s≤n

ts − t0
s

. Then for every n real numbers a0, a1, . . . , an−1

with a0 ≥ a1 ≥ · · · ≥ an−1 ≥ 1, we have

at1−t00 at2−t11 · · · atn−tn−1

n−1 ≤ (a0a1 · · · an−1)
∆.

Theorem 2.7 (see [8, Theorem 4.1]). Let V ⊂ PN(C) be an algebraic subvariety of
dimension n and degree δ. Let u > δ be an integer and let c = (c0, . . . , cN) ∈ RN+1

>0 . Then

1

uHV (u)
SV (u, c) ≥ 1

(n+ 1)δ
eV (c)− (2n+ 1)δ

u
·
(

max
i=0,...,N

ci

)
.

Here, eV (c) is the Chow weight of V with respect to c (see [8, 9] for detail definition).

Theorem 2.8 (see [20, Lemma 3.2]). Let Y be a projective subvariety of PR(C) of dimen-
sion n ≥ 1 and degree δY . Let m (m ≥ n) be an integer and let c = (c0, . . . , cR) be a tuple
of non-negative reals. Let H = {H0, . . . , HR} be a set of hyperplanes in PR(C) defined by
Hi = {yi = 0} (0 ≤ i ≤ R). Let {i0, . . . , im} be a subset of {0, . . . , R} such that:

(1) cim = min{ci0 , . . . , cim},
(2) Y ∩

⋂m−1
j=0 Hij 6= ∅,

(3) and Y 6⊂ Hij for all j = 0, . . . ,m.

Let ∆H,Y be the distributive constant of the family H = {Hij}mj=0 with respect to Y . Then

eY (c) ≥ δY
∆H,Y

(ci0 + · · ·+ cim).

Note that [20, Lemma 3.2] is stated for the case of number field, but its proof automat-
ically works for the case of C.

Lemma 2.9 (see [12, Lemma 7]). Let f : C → PN(C) be a P1
c -linearly non-degenerate

holomorphic map with ς(f) < 1. Let H1, . . . , Hq be q arbitrary hyperplanes in PN(C).
Then we have∥∥∥∥ ∫ 2π

0

max
J

log
∏
j∈J

‖f‖
|Hj(f)|

(reiθ)
dθ

2π
≤ (N + 1)Tf (r)−NC(f)(r) + o(Tf (r)),

where f = (f0, f1, . . . , fn) is a reduced representation of f , the maximal maxj∈J is taken
over all subsets J ⊂ {1, . . . , q} such that {Hj|j ∈ J } is linearly independent.

3. Proof of main results

Proof of Theorem 1.1. Without loss of generality, we may assume that ‖Qj‖ = 1 for

all j = 1, . . . , q. Also, replacing Qj by Q
d
dj if necessary, we may assume further that

Q1, . . . , Qq have the same degree d.

It suffices for us to consider the case where ∆Q,V <
q

n+ 1
. Note that ∆Q,V ≥ 1, and

hence q > n+ 1. If there exists i ∈ {1, . . . , q} such that
⋂q
j=1
j 6=i

Q∗
j ∩ V 6= ∅ then

∆Q,V ≥
q − 1

n
>

q

n+ 1
.



8 T. B. CAO, N. V. THIN, AND S. D. QUANG

This is a contradiction. Therefore,
⋂q
j=1
j 6=i

Q∗
j ∩ V = ∅ for all i ∈ {1, 2, . . . , q}.

Let I = {ζ1, . . . , ζλ} be the set of all bijections from {0, . . . , q−1} into {1, . . . , q}, where
λ = q!. For each ζi, since

⋂q−2
j=0 Q̃

∗
ζi(j)

∩V = ∅, there exists the smallest index li such that⋂li
j=0Q

∗
ζi(j)

∩ V = ∅.

Let f = (f0, . . . , fN) be a reduced representation of f . By [21, Lemma 3.2], there is a
positive constant A, chosen common for all ζi, such that

‖f(z)‖d ≤ A max
0≤j≤li

|Qζi(j)(f(z))| (∀ζi ∈ I).

Denote by S(i) the set of all z such that Qj(f(z)) 6= 0 for all j = 1, . . . , q and

|Qζi(0)(f(z))| ≤ |Qζi(1)(f(z))| ≤ · · · ≤ |Qζi(q−1)(f(z))|.
Therefore, for z ∈ S(i), we have

q∏
j=1

‖f(z)‖d

|Qj(f(z))|
≤ Aq−li−1

li∏
j=0

‖f(z)‖d

|Qζi(j)(f(z))|
≤ C

li∏
j=0

‖f(z)‖d

|Qζi(j)(f(z))|
,(3.1)

where C =
∑λ

i=1A
q−li−1

∏q−1
j=li+1.

Consider the mapping Φ from V into Pq−1(C), which maps a point x = (x0 : · · · : xN) ∈
V into the point Φ(x) ∈ Pq−1(C) given by

Φ(x) = (Q1(x) : · · · : Qq(x)),

where x = (x0, . . . , xN). Set Φ̃(x) = (Q1(x), . . . , Qq(x)).

Let Y = Φ(V ). Since V ∩
⋂q
j=1Q

∗
j = ∅, Φ is a finite morphism on V and Y is a complex

projective subvariety of Pq−1(C) with dimY = n and of degree

δ := deg Y ≤ dn. deg V.

For every a = (a1, . . . , aq) ∈ Zq
≥0 and y = (y1, . . . , yq) we set

ya = ya1
1 . . . yaq

q .

Let u be a positive integer. Define

Yu := Iu(Y ), nu := HY (u)− 1.(3.2)

We fix a basis {v0, . . . , vnu} of Yu and consider the holomorphic map F : C → Pnu(C)
which has a reduced representation

F = (v0(Φ̃ ◦ f), . . . , vnu(Φ̃ ◦ f)) : C → Cnu+1.

Hence F is P1
c -linearly nondegenerate, since f is P1

c -algebraically nondegenerate.

Now, we fix a point z 6∈
⋃q
j=1(Qj(f))

−1(0). Suppose that z ∈ S(i0). We define

cz = (c1,z, . . . , cq,z) ∈ Rq,

where

cj,z := log
‖f(z)‖d

|Qj(f(z))|
for j = 1, . . . , q.(3.3)
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We see that cj,z ≥ 0 for all j. By the definition of the Hilbert weight, there are
a0,z, . . . , anu,z ∈ Zq

≥0 with

ai,z = (ai,1,z, . . . , ai,q,z) with ai,s,z ∈ {0, . . . , u},

such that the residue classes modulo I(Y )u of ya0,z , . . . ,yanu,z form a basis of Iu(Y ) and

SY (u, cz) =
nu∑
i=0

ai,z · cz.(3.4)

We see that yai,z ∈ Yu (modulo I(Y )u). Then we may write

yai,z = Li,z(v0, . . . , vnu),

where Li,z (0 ≤ i ≤ nu) are linearly independent linear forms with coefficients in C. We
have

log
nu∏
i=0

|Li,z(F(z))| = log
nu∏
i=0

∏
1≤j≤q

|Qj(f(z))|ai,j,z

= −SY (m, cz) + ∆u(nu + 1) log ‖f(z)‖+O(u(nu + 1)).

This implies that

log
nu∏
i=0

‖F(z)‖ · ‖Li,z‖
|Li,z(F(z))|

=SY (u, cz)− du(nu + 1) log ‖f(z)‖

+ (nu + 1) log ‖F(z)‖+O(u(nu + 1)).

Here we note that Li,z depends on i, z and u, but the number of these linear forms is
finite. We denote by L the set of all Li,z occurring in the above inequalities. Then,

SY (u, cz) ≤max
J⊂L

log
∏
L∈J

‖F(z)‖ · ‖L‖
|L(F(z))|

+ ∆u(nu + 1) log ‖f(z)‖

− (nu + 1) log ‖F(z)‖+O(u(nu + 1)),

(3.5)

where the maximum is taken over all subsets J ⊂ L with ]J = nu + 1 and {L;L ∈ J }
is linearly independent. From Theorem 2.7 we have

1

u(nu + 1)
SY (u, cz) ≥

1

(n+ 1)δ
eY (cz)−

(2n+ 1)δ

u
max
1≤j≤q

cj,z.(3.6)

It is clear that

max
1≤j≤q

cj,z ≤
∑

1≤j≤q

log
‖f(z)‖d

|Qj(f(z))|
.
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Combining (3.5), (3.6) and the above remark, we get

1

(n+ 1)δ
eY (cz) ≤

1

u(nu + 1)

(
max
J⊂L

log
∏
L∈J

‖F(z)‖ · ‖L‖
|L(F(z))|

− (nu + 1) log ‖F(z)‖

)

+ d log ‖f(z)‖+
(2n+ 1)δ

u
max
1≤j≤q

cj,z +O(1)

≤ 1

u(nu + 1)

(
max
J⊂L

log
∏
L∈J

‖F(z)‖ · ‖L‖
|L(F(z))|

− (nu + 1) log ‖F(z)‖

)

+ d log ‖f(z)‖+
(2n+ 1)δ

u

∑
1≤j≤q

log
‖f(z)‖d

|Qj(f(z))|
+O(1).

(3.7)

We have V ∩
⋂li0
j=0Qζi0 (j) = ∅. Then by Theorem 2.8 and (3.1), we have

eY (cz) ≥
δ

∆Q,V
· (cζi0 (0),z + · · ·+ cζi0 (li0 ),z) =

δ

∆Q,V
· log

li0∏
j=0

‖f(z)‖d

|Qζi0 (j)(f(z))|

≥ δ

C∆Q,V
· log

q∏
j=1

‖f(z)‖d

|Qj(f(z))|
.

(3.8)

Then, from (3.7) and (3.8) we have

1

∆Q,V (n+ 1)
· log

q∏
j=1

‖f(z)‖d

|Qj(f(z))|

≤ 1

u(nu + 1)

(
max
J⊂L

log
∏
L∈J

‖F(z)‖ · ‖L‖
|L(F(z))|

− (nu + 1) log ‖F(z)‖

)

+ d log ‖f(z)‖+
(2n+ 1)δ

u

∑
1≤j≤q

log
‖f(z)‖d

|Qj(f(z))|
+O(1),

(3.9)

where the term O(1) does not depend on z.

By applying Lemma 2.9 to the P1
c -linear nondegenerate holomorphic map F and the

system of linear forms L, we get:∥∥∥∥ ∫ 2π

0

max
J⊂L

log
∏
L∈J

(
‖f‖
|L(f)|

(teiθ)

)
dθ

2π
≤ (nu + 1)TF (r)−NC(F )(r) + o(Tf (r)),(3.10)

where the maximum is taken over all subsets J of L, such that ]J = nu+1 and {L|L ∈ J }
is linearly independent.

Integrating both sides of (3.9), in the view of (3.10), we obtain∥∥∥∥ 1

∆Q,V

(
dqTf (r)−

q∑
i=1

NQi(f)(r)

)
≤ d(n+ 1)Tf (r)−

(n+ 1)

u(nu + 1)
NC(F )(r)

+
(2n+ 1)(n+ 1)δ

u

q∑
i=1

mf (r,Qi) + o(Tf (r)).

(3.11)
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We now estimate the quantity NC(F )(r). Fix a point z ∈ C. We set ci = ν
[nu]
Qi(f)(z) for

i = 1, . . . , q, and
c = (c1, . . . , cq) ∈ Zq

≥0.

Then, for i = 0, . . . , nu, there are

ai = (ai,1, . . . , ai,q), ai,s ∈ {1, . . . , u}
such that ya0 , . . . ,yanu is a basic of Iu(Y ) and

SYz(u, c) =
nu∑
i=0

ai · c.

Similarly as above, we write yai = Li(v0, . . . , vnu), where L0, . . . , Lnu are independent
linear forms with coefficients in C. By the property of the Casorati determinant, we see
that

C(F ) = c det
(
L0(Φ̃(f))

[w]

), . . . , Lnu(Φ̃(f))
[w])

0≤w≤nu
,

where c is a non zero constant. This yields that

νC(F )(z) ≥
nu∑
i=0

min
0≤w≤nu

ν
Li(f)

[w](z).

We easily see that

ν
Li(f)

[w](z) =

q∑
j=1

ai,jνQj(f)
[w](z) ≥

q∑
j=1

ai,jν
[nu,c]
Qj(f)

(z).

Thus, we have

νC(F )(z) ≥
nu∑
i=0

ai · c = SY (u, c).(3.12)

Take an index i0 such that ν
[nu,c]
Qζi0

(0)(f)
(z) ≥ ν

[nu,c]
Qζi0

(1)(f)
(z) ≥ · · · ≥ ν

[nu,c]
Qζi0

(q−1)(f)
(z). Hence,

ν
[nu,c]
Qζi0

(j)(f)
(z) = 0 for all j ≥ li0 . Then by Lemma 2.8 we have

∆Q,V eY (c) ≥ δ(cζi0 (0) + · · ·+ cζi0 (li0 )) = δ

q∑
j=1

ν
[nu,c]
Qj(f)

(z).

On the other hand, by Theorem 2.7 we have that

1

u(nu + 1)
SY (u, c) ≥ 1

(n+ 1)δ
eY (c)− (2n+ 1)δ

u
max
1≤i≤q

ci

≥
(

1

∆Q,V (n+ 1)
− (2n+ 1)δ

u

) q∑
j=1

ν
[nu,c]
Qζi0

(j)(f)
(z).

Combining this inequality and (3.12), we have

(n+ 1)

u(nu + 1)
ν0
C(F )(z) ≥

(n+ 1)

u(nu + 1)
SY (u, c) ≥

(
1

∆Q,V
− (2n+ 1)(n+ 1)δ

u

) q∑
j=1

ν
[nu,c]
Qζi0

(j)(f)
(z).
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Integrating both sides of this inequality, we obtain

(n+ 1)

u(nu + 1)
NC(F )(r) ≥

(
1

∆Q,V
− (2n+ 1)(n+ 1)δ

u

) q∑
j=1

N
[nu,c]
Qj(f)(r).(3.13)

Combining inequalities (3.11) and (3.13) and the first main theorem, we get∥∥∥∥ 1

∆Q,V

(
dqTf (r)−

q∑
i=1

NQi(f)(r)

)

≤ d(n+ 1)Tf (r)−
(

1

∆Q,V
− (2n+ 1)(n+ 1)δ

u

)
N

[nu,c]
Qj(f)(r)

+
(2n+ 1)(n+ 1)δ

u

q∑
i=1

(dTf (r)−NQi(f)(r)) + o(Tf (r)).

By setting m0 = 1
∆Q,V

− (2n+1)(n+1)δ
u

, the above inequality implies that∥∥∥∥ (q − n+ 1

m0

)
Tf (r) ≤

q∑
j=1

1

d
Ñ

[nu,c]
Qj(f)(r) + o(Tf (r)).

We choose u = d∆Q,V (2n+ 1)(n+ 1)dn deg V ((n+ 1)∆Q,V + ε)ε−1e. Then we have

u ≥ ∆Q,V (2n+ 1)(n+ 1)δ((n+ 1)∆Q,V ε
−1 + 1)

and hence

n+ 1

m0

≤ (n+ 1)∆Q,V + ε,

nu ≤ HY (u)− 1 ≤ dn deg V

(
u+ n

n

)
− 1.

Note that, we may suppose that ε < q −∆Q,V (n+ 1). Hence, if n = 1 then

nu + 1 < dn deg V (1 + u)

< dn deg V (∆Q,V (2n+ 1)(n+ 1)dn deg V ((n+ 1)∆Q,V ε
−1 + 1) + 2)

≤ dn
2+n(deg V )n+1en∆n

Q,V (2n+ 5)n((n+ 1)∆Q,V ε
−1 + 1)n.

Otherwise, if n ≥ 2, we have

nu + 1 < dn deg V en
(
1 +

u

n

)n
≤ dn deg V en

(
1 +

∆Q,V (2n+ 1)(n+ 1)dn deg V ((n+ 1)∆Q,V ε
−1 + 1) + 1

n

)n
≤ dn

2+n(deg V )n+1en∆n
Q,V (2n+ 5)n((n+ 1)∆Q,V ε

−1 + 1)n.

Therefore, we always have

nu ≤
[
dn

2+n(deg V )n+1en∆n
Q,V (2n+ 5)n((n+ 1)∆Q,V ε

−1 + 1)n
]
− 1 = L0 − 1.



DIFFERENCE ANALOGUE OF THE SECOND MAIN THEOREM FOR HYPERSURFACES 13

Then, we get ∥∥ (q −∆Q,V (n+ 1)− ε)Tf (r) ≤
q∑
j=1

1

d
Ñ

[L0−1,c]
Qi(f) (r) + o(Tf (r)).

The proof of the theorem is completed. �

Proof of Theorem 1.2. Take f = (f0, . . . , fN) be a reduced representation of f . Similarly
as the proof of Theorem 1.1, we may assume that all Qi (i = 1, . . . , q) have the same
degree d and ‖Qi‖ = 1.

Take an C-basis {[Ai]}nd
i=0 of Id(V ), where Ai ∈ C[x0, . . . , xN ]d. Consider a holomorphic

map F : C → PN(C) with a reduced representation F = (A0(f), . . . , And
(f)). Since f

is P1
c -nondegenerate over Id(V ), F is P1

c -linearly nondegenerate. Then C(F ) 6≡ 0. Let
{ωi}qi=1 be as in Lemma 2.4 for the family {Qi}qi=1. For each i ∈ {1, . . . , q}, there is a
linear form Li with coefficients in C such that [Qi] = Li([A0], . . . , [And

]). This implies
that Qi(f) = Li(F).

Let z be a fixed point such that Qi(f(z)) 6= 0. There is a permutation (i1, . . . , iq) of
{1, . . . , q} such that

|Qi1(f(z))| ≤ |Qi2(f(z))| ≤ · · · ≤ |Qiq(f(z))|.

Set R = {i1, . . . , il+1}. Since
⋂
j∈RQ

∗
j ∩ V = ∅, there exists a positive constant c > 1

(chosen not depending on z) such that ‖f(z)‖ ≤ cmaxj∈R |Qij(f(z))| = c|Qil+1
(f(z))|. We

choose Ro ⊂ R such that Ro ∈ R and Ro satisfies Lemma 2.4 v) with respect to numbers{
‖f(z)‖d

|Qi(f(z))|

}q
i=1

. Then, we get

‖f(z)‖d(
∑q

i=1 ωi)

|Qω1
1 (f(z)) · · ·Qωq

q (f(z))|
≤ cq

∏
j∈R

(
‖f(z)‖d

|Qj(f(z))|

)ωj

≤ cq
∏
j∈Ro

‖f(z)‖d

|Qj(f(z))|

= A
∏
j∈Ro

‖F(z)‖
|Lj(F(z))|

,

where A is a positive constant (chosen not depending on z). This implies that

log
‖f(z)‖d(

∑q
i=1 ωi)

|Qω1
1 (f(z)) · · ·Qωq

q (f(z))|
≤ max

J

∑
L∈J

log
‖F(z)‖
|L(F(z))|

+O(1),

where the maximum is taken over all subsets J ⊂ {L1, . . . , Lq} such that the family
{L|L ∈ J } is linearly independent.

Integrating both sides of the above inequality and applying Lemma 2.8 for the map F
and the system of linear forms L, we get

d(

q∑
i=1

ωi)Tf (r)−
q∑
i=1

ωiNQi(f)(r) ≤ (nd + 1)TF (r)−NC(F )(r) + o(Tf (r)).(3.14)

Claim.
∑q

i=1 ωiNQi(f)(r)−NC(F )(r) ≤
∑q

i=1 ωiÑ
[nd,c]
Qi(f)(r).
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Indeed, let z be a fixed point. We suppose that ν
[nd,c]
Q1(f)(z) ≥ ν

[nd,c]
Q2(f)(z) ≥ · · · ≥ ν

[nd,c]
Qq(f)(z).

Then, we have ν
[nd,c]
Qj(f)

(z) = 0 for all j ≥ l + 1. Put R = {1, . . . , l + 1}. Choose R1 ⊂ R

such that ]R1 = rank{Qi}i∈R1 = nd + 1 and R1 satisfies Lemma 3.3 v) with respect to

numbers
{
e
ν
[nd,c]

Qi(f)
(z)}q

i=1
. Then we have∑

i∈R

ωiν
[nd,c]
Qi(f)

(z) ≤
∑
i∈R1

ν
[nd,c]
Qi(f)

(z).

This yields that

νC(F )(z) = ν
deg

(
Li(f)

[w]
;0≤w≤nd,i∈R1

) ≥∑
i∈R1

ν
[nd,c]
Qi(f)

(z) ≥
∑
i∈R

ωiν
[nd,c]
Qi(f)

(z).

Hence
q∑
i=1

ωiνQi(f)(z)− νC(F )(z) =
∑
i∈R

ωiνQi(f)(z)− νC(F )(z)

=
∑
i∈R

ωiν̃
[nd,c]
Qi(f)

(z)) +
∑
i∈R

ωiν
[nd,c]
Qi(f)

(z)− νC(F )(z)

≤
∑
i∈R

ωiν̃
[nd,c]
Qi(f)

(z).

Integrating both sides of this inequality, we get
q∑
i=1

ωiNQi(f)(r)−NC(F )(r) ≤
q∑
i=1

ωiÑ
[nd,c]
Qi(f)(r).

This proves the claim.

Combining the claim and (3.14), we obtain

‖ d(q − 2l + n− 1− nd − n

ω̃
)Tf (r) ≤

q∑
i=1

ωi
ω̃
Ñ

[nd,c]
Qi(f)(r) + o(Tf (r))

≤
q∑
i=1

Ñ
[HV (d)−1,c]
Qi(f) (r) + o(Tf (r)).

Since ω̃ ≥ n+ 1

2l − n+ 1
, the above inequality implies that∥∥∥∥ d

(
q − (2l − n+ 1)HV (d)

n+ 1

)
Tf (r) ≤

q∑
i=1

Ñ
[HV (d)−1,c]
Qi(f) (r) + o(Tf (r)).

Hence, the theorem is proved. �

Proof of Theorem 1.3. As usual argument, we assume that Q1, . . . , Qq are of the same
degree d. Let I = {ζ1, . . . , ζλ} be the set of all bijections from {1, . . . , q} into itself, where
λ = q!. Take a point z0 such that all coefficients of Q̃i (1 ≤ i ≤ q) are holomorphic at z0

and

∆Q,f = max
Γ⊂{1,...,q}

]Γ

n− dim
⋂
j∈Γ Q̃i(z0)∗

.
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Similar as the proof of Theorem 1.1, we have
⋂q
j=1
j 6=i

Q̃j(z0)
∗ = ∅ and

⋂q
j=1
j 6=i

Q̃j(z)
∗ = ∅

generically, for all i ∈ {1, 2, . . . , q}. Let li be the smallest index such that
⋂li
j=1Qζv(j)(z0)

∗∩
V = ∅ for every j = 1, . . . , q. Let S be the set of all pole and zero of all nonzero coefficients
of Q̃j (1 ≤ j ≤ q). Then S is a discrete subset of C. Also, we may choose a function
α ∈ CQ such that for each given moving hypersurface Q ∈ P1

c [x0, . . . , xn] occurring in this
proof, we have

Q̃(z)(x) ≤ α(z)‖x‖deg Q̃

for all x = (x0, . . . , xn) ∈ Cn+1, z ∈ C.

For each ζv ∈ I, since
⋂q−2
j=0 Q̃ζv(j)(z0)

∗ = ∅, there exist integers tv,0 = 1 < tv,1 < . . . <

tv,n = lv such that
⋂lv
j=0 Q̃ζv(j)(z0)

∗ = ∅ and

dim
s⋂
j=1

Q̃ζv(j)(z0)
∗ = n− u ∀tv,u−1 ≤ s < tv,u, 1 ≤ u ≤ n.

Then, ∆Q,f ≥
tv,u − tv,0

u
for all 1 ≤ u ≤ n. Denote by P ′

v,1, . . . , P
′
v,n+1 the hypersurfaces

obtained in Lemma 2.5 with respect to the hypersurfaces Q̃ζv(1)(z0), . . . , Q̃ζv(lv)(z0). Now,

for each P ′
v,j constructed by P ′

v,j =
∑tv,j

s=1 av,j,sQ̃ζv(s)(z0) (av,j,s ∈ C) we define

Pv,j(z) =

tv,j∑
s=1

av,j,sQ̃ζv(s)(z).

Hence {Pv,j}n+1
j=1 ⊂ KQ[x0, . . . , xN ] with Pv,j(z0) = P ′

i,j. Then
⋂n+1
j=1 Pv,j(z0)

∗ = ∅, and

hence {Pv,j(z)}n+1
j=1 is in weakly general position. We may choose a positive constant

B ≥ 1, commonly for all ζv ∈ I, such that

|Pv,j(x)| ≤ B max
1≤s≤tv,j

|Q̃ζv(j)(x)|,

for all 1 ≤ j ≤ n+ 1 and for all x = (x0, . . . , xN) ∈ CN+1. Enlarging the set S by adding
to S all points z ∈ C such that

⋂n+1
j=1 Pv,j(z)

∗ 6= ∅ for some index v. Then S is still a
discrete subset of C.

Fix an element ζv ∈ I. Denote by S(v) the set of all points

z ∈ C \
{ q⋃
i=1

Q̃i(z)(f(z))
−1({0}) ∪

⋃
0≤j≤n

ζi∈I

Pi,j(z)(f(z))
−1({0})

}

such that |Q̃ζv(1)(z)(f(z))| ≤ |Q̃ζv(2)(z)(f(z))| ≤ · · · ≤ |Q̃ζv(q)(z)(f(z))|.
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Therefore, for generic points z ∈ S(v), By Lemma 2.6 we have

q∏
i=1

‖f(z)‖d

|Q̃i(z)(f(z))|
≤ A(z)q−lv

c(z)lv

lv−1∏
j=1

c(z)‖f(z)‖d

|Q̃ζv(j)(z)(f(z))|

≤ A(z)q−lv

c(z)lv

n∏
j=1

(
c(z)‖f(z)‖d

|Q̃ζv(tj)(z)(f(z))|

)tv,j+1−tv,j

≤ A(z)q−lv

c(z)lv

n∏
j=1

(
c(z)‖f(z)‖d

|Q̃ζv(tj)(z)(f(z))|

)∆Q,f

≤ C(z)
n∏
j=1

(
‖f(z)‖d

|Pv,j(z)(f(z))|

)∆Q,f

,

(3.15)

where C ∈ CQ, chosen commonly for all ζv ∈ I.

Now, for each non negative integer L, we denote by VL the vector space (over KQ) con-
sisting of all homogeneous polynomials of degree L in KQ[x0, . . . , xn] and the zero poly-
nomial. Denote by (Pv,1, . . . , Pv,n) the ideal in KQ[x0, . . . , xn] generated by Pv,1, . . . , Pv,n.

Lemma 3.16 (see [7, Proposition 3.3]). Let {Pi}qi=1 (q ≥ n+ 1) be a set of homogeneous
polynomials of common degree d ≥ 1 in KQ[x0, . . . , xn] in weakly general position. Then
for any nonnegative integer N and for any J := {j1, . . . , jn} ⊂ {1, . . . , q}, the dimension
of the vector space VL

(Pj1
,...,Pjn )∩VL

is equal to the number of n-tuples (s1, . . . , sn) ∈ Nn
0 such

that s1 + · · ·+ sn ≤ L and 0 ≤ s1, . . . , sn ≤ d− 1. In particular, for all L ≥ n(d− 1), we
have

dim
VL

(Pj1 , . . . , Pjn) ∩ VL
= dn.

Choose a positive integer L (large enough) divisible by d and for each (i) = (i1, . . . , in) ∈
Nn

0 with σ(i) =
∑n

s=1 is ≤
L
d
, we set

W v
(i) =

∑
(j)=(j1,...,jn)≥(i)

P j1
v,1 · · ·P jn

v,n · VL−dσ(j).

It is clear that W v
(0,...,0) = VL and W v

(i) ⊃ W v
(j) if (i) < (j) in the lexicographic ordering.

Hence, W v
(i) is a filtration of VL.

Let (i) = (i1, . . . , in), (i
′) = (i′1, . . . , i

′
n) ∈ Nn

0 . Suppose that (i′) follows (i) in the
lexicographic ordering. Similar as (3.4) in [16], we have

dim
W v

(i)

W v
(i′)

= dim
VL−dσ(i)

(Pv,1, . . . , Pv,n) ∩ VL−dσ(i)

.(3.17)

Set u = uL := dimVL =
(
L+n
n

)
. We assume that

VL = W v
(i1) ⊃ W v

(i2) ⊃ · · · ⊃ W v
(iK),
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where W v
(is+1) follows W v

(is)
in the ordering and (iK) = (L

d
, 0, . . . , 0). It is easy to see that

K is the number of n-tuples (i1, . . . , in) with ij ≥ 0 and i1 + · · ·+ in ≤ L
d
. Then we have

K =

(
L
d

+ n

n

)
.

For each k ∈ {1, . . . , K − 1} we set mv
k = dim

W v
(ik)

W v
(ik+1)

, and set mv
K = 1. Then by Lemma

3.16, mv
k does not depend on {Pv,1, . . . , Pv,n} and k, but on σ(ik). Hence, we set mk = mv

k.
We also note that

mk = dn(3.18)

for all k with L− dσ(ik) ≥ nd (it is equivalent to σ(ik) ≤ L
d
− n).

From the above filtration, we may choose a basis {ψv1 , · · · , ψvu} of VL such that

{ψvu−(ms+···+mK)+1, . . . , ψ
v
u}

is a basis of W v
(is)

. For each k ∈ {1, . . . , K} and l ∈ {u − (mk + · · · + mK) + 1, . . . , u −
(mk+1 + · · ·+mK)}, we may write

ψvl = P i1k
v,1 · · ·P ink

v,n hl, where (i1k, . . . , ink) = (ik), hl ∈ W v
L−dσ(ik).

Then we have

|ψvl (f(z))| ≤ |Pv,1(f(z))|i1k · · · |Pv,n(f(z))|ink |hl(f(z))|
≤ cv,l|Pv,1(f(z))|i1k · · · |Pv,n(f(z))|ink ||f(z)||L−dσ(ik)

= cv,l

(
|Pv,1(f(z))|
||f(z)||d

)i1k

· · ·
(
|Pv,n(f(z))|
||f(z)||d

)ink

||f(z)||L,

where cv,l ∈ CQ, which does not depend on f and z. Taking the product of the both sides
of the above inequalities over all l and then taking logarithms, we obtain

log
u∏
l=1

|ψvl (f(z))| ≤
K∑
k=1

mk

(
i1k log

|Pv,1(f(z))|
||f(z)||d

+ · · ·+ ink log
|Pv,n(f(z))|
||f(z)||d

)
+ uL log ||f(z)||+ log cI(z),

(3.19)

where cv =
∏u

l=1 cv,l ∈ CQ, which does not depend on f and z.

For each integer l (0 ≤ l ≤ L
d
), we set m(l) = mk, where k is an index such that

σ(ik) = l. Since mk only depends on σ(ik), the above definition of m(l) is well defined.
We see that

K∑
k=1

mkisk =

L
d∑
l=0

∑
k|σ(ik)=l

m(l)isk =

L
d∑
l=0

m(l)
∑

k|σ(ik)=l

isk.

Note that, by the symmetry (i1, . . . , in) → (iσ(1), . . . , iσ(n)) with σ ∈ S(n),
∑

k|σ(ik)=l isk
does not depend on s. We set

A :=
K∑
k=1

mkisk, which is independent of s and v.



18 T. B. CAO, N. V. THIN, AND S. D. QUANG

Hence, (3.19) gives

log
u∏
l=1

|ψvl (f(z))| ≤ A

(
log

n∏
i=1

|Pv,i(f(z))|
||f(z)||d

)
+ uL log ||f(z)||+ log cv(z),

i.e.,

A

(
log

n∏
i=1

||f(z)||d

|Pv,i(f(z))|

)
≤ log

u∏
l=1

||f(z)||L

|ψvl (f(z))|
+ log cv(z),

Combining the above inequality with (3.15), we obtain that

log

q∏
i=1

||f(z)||d

|Qi(f(z))|
≤ ∆Q

A
log

u∏
l=1

||f(z)||L

|ψvl (f(z))|
+ log c0,(3.20)

where c0 is a function in CQ. We now write

ψvl =
∑
J∈TL

cvlJx
J ∈ VL, cvlJ ∈ KQ,

where TL is the set of all (n+1)-tuples J = (i0, . . . , in) with
∑n

s=0 js = L, xJ = xj00 · · ·xjnn
and l ∈ {1, . . . , u}. For each l, we fix an index Jvl ∈ J such that cvlJv

l
6≡ 0. Define

µvlJ =
cvlJ
cvlJv

l

, J ∈ TL.

Set Φ = {µvlJ ; I ⊂ {1, . . . , q}, ]I = n, 1 ≤ l ≤ M,J ∈ TL}. Note that 1 ∈ Φ. Let B = ]Φ.
We see that B ≤ u

(
q
n

)
(
(
L+n
n

)
− 1) =

(
L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
. For each positive integer l, we

denote by L(Φ(l)) the linear span over C of the set

Φ(l) = {γ1 · · · γl; γi ∈ Φ}.

It is easy to see that

dimL(Φ(l)) ≤ ]Φ(l) ≤
(
B + l − 1

B − 1

)
.

We may choose a positive integer p such that

p ≤ p0 :=

[
B − 1

log(1 + ε
3(n+1)∆Q

)

]2

and
dimL(Φ(p+ 1))

dimL(Φ(p))
≤ 1 +

ε

3(n+ 1)∆Q
.

Indeed, if
dimL(Φ(p+ 1))

dimL(Φ(p))
> 1 +

ε

3(n+ 1)∆Q
for all p ≤ p0, we have

dimL(Φ(p0 + 1)) ≥ (1 +
ε

3(n+ 1)∆Q
)p0 .
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Therefore, we have

log(1 +
ε

3(n+ 1)∆Q
) ≤ log dimL(Φ(p0 + 1))

p0

≤
log
(
B+p0
B−1

)
p0

=
1

p0

log
B−1∏
i=1

p0 + i+ 1

i
<

(B − 1) log(p0 + 2)

p0

≤ B − 1
√
p0

≤
(B − 1) log(1 + ε

3(n+1)∆Q
)

B − 1

= log(1 +
ε

3(n+ 1)∆Q
).

This is a contradiction.

We fix a positive integer p satisfying the above condition. Put s = dimL(Φ(p)) and
t = dimL(Φ(p+ 1)). Let {b1, . . . , bt} be an C-basis of L(Φ(p+ 1)) such that {b1, . . . , bs}
be a C-basis of L(Φ(p)).

For each l ∈ {1, . . . , u}, we set

ψ̃vl =
∑
J∈TL

µvlJx
J .

For each J ∈ TL, we consider homogeneous polynomials φJ(x0, . . . , xn) = xJ . Let F be a
holomorphic map of C into Ptu−1(C) with a reduced representation F = (hbiφJ(f))1≤i≤t,J∈TL

,
where h is a nonzero meromorphic function on C with ‖ Th(r) = o(Tf (r)). Since f is as-
sumed to be P1

c -algebraically non-degenerate, F is P1
c -linearly non-degenerate. We also

see that there exist nonzero functions c1, c2 ∈ CQ such that

c1|h|.‖f‖L ≤ ‖F‖ ≤ c2|h|.‖f‖L.

For each l ∈ {1, . . . , u}, 1 ≤ i ≤ s, we consider the linear form Lvil in xJ such that

hbiψ̃
v
l (f) = Lvil(F).

Since f is P1
c -algebraically non-degenerate, one has that {biψ̃vl (f); 1 ≤ i ≤ s, 1 ≤ l ≤ u}

is linearly independent over C, and so is {Lvil(F); 1 ≤ i ≤ s, 1 ≤ l ≤ u}. This yields that
{Lvil; 1 ≤ i ≤ s, 1 ≤ l ≤ u} is linearly independent over C.

For every point z which is neither zero nor pole of any hbiψ
v
l (f), we see that

s log
u∏
l=1

||f(z)||L

|ψvl (f(z))|
= log

∏
1≤l≤u
1≤i≤s

||F(z)||
|hbiψvl (f(z))|

+ log c3(z)

= log
∏

1≤l≤u
1≤i≤s

||F(z)|| · ||Lvil||
|Lvil(F(z))|

+ log c4(z),
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where c3, c4 are nonzero functions in CQ, not depend on f and v, but on {Qi}qi=1. Com-
bining this inequality and (3.20), we obtain that

log

q∏
i=1

||f(z)||d

|Qi(f(z))|
≤ ∆Q

sA

max
v

log
∏

1≤l≤u
1≤i≤s

||F(z)|| · ||Lvil||
|Lvil(F(z))|

+ log c4(z)

+ log c0(z),(3.21)

for all z outside an discrete subset of C.

Since F is P1
c -linearly nondegenerate, C(F ) 6≡ 0. By Lemma 2.9, we have∥∥∥∥∥∥∥

∫ 2π

0

max
v

log
∏

1≤l≤u
1≤i≤s

||F(z)|| · ||Lvil||
|Lvil(F(z))|

 dθ

2π
≤ tuTF (r)−NC(F )(r) + o(Tf (r)).(3.22)

Integrating both sides of (3.21) and using (3.22), we obtain that∥∥∥∥∥ qdTf (r)−
q∑
i=1

NQi(f)(r) ≤
tu∆Q

sA
TF (r)− ∆Q

sA
NC(F )(r) + o(Tf (r)).(3.23)

We now estimate the quantity
∑q

i=1NQi(f)(r) − ∆Q
sA
NC(F )(r). Fix a point z1 ∈ C

which is neither zero nor pole of h and of any nonzero coefficients of Qi’s. Suppose

that ν
[tu−1,c]
Q1(f) (z) ≥ ν

[tu−1,c]
Q2(f) (z) ≥ · · · ≥ ν

[tu−1,c]
Qq(f) (z) and ζ1 is the identity mapping (i.e.,

ζ1(i) = i for all i = 1, . . . , q). One has ν
[tu−1,c]
Qj(f)

(z) = 0 for all j ≥ l1. Then by Lemma 2.6

we have

q∑
i=1

ν
[tu−1,c]
Qi(f)

(z1) ≤
l1∑
j=1

ν
[tu−1,c]
Qj(f)

(z1) ≤
n∑
j=1

(t1,j+1 − t1,j)ν
[tu−1,c]
Qt1,j (f)(z1)

≤ ∆Q

n∑
j=1

ν
[tu−1,c]
Qt1,j (f)(z1) ≤ ∆Q

n∑
j=1

ν
[tu−1,c]
P1,j(f)

(z1).

Similarly as in the proof of Theorem 1.1, we have

νC(F )(z1) ≥
∑
1≤l≤u
1≤i≤s

min
0≤w≤tu−1

ν0

L1
il(F)

[w](z1) ≥ s
∑

1≤l≤u

ν
[tu−1,c]

ψ̃v
l (f)

(z1)

≥ s
∑

σ(ik)≤L/d

n∏
j=1

ν
[tu−1,c]

P
ijk
vj (f)

(z1) ≥ s
∑

k|L−dσ(ik)≥0

n∏
j=1

ijkν
[tu−1,c]
Pvj(f)

(z1)

= As

n∏
j=1

ν
[tu−1,c]
Pvj(f)

(z1),

where ik = (i1k, . . . , ink). Thus

q∑
i=1

νQi(f)(z1)−
1

As
νC(F )(z1) ≤

q∑
i=1

νQi(f)(z1)−
q∑
i=1

ν
[tu−1,c]
Qi(f)

(z1) =

q∑
i=1

ν̃
[tu−1,c]
Qi(f)

(z1).
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This implies that∥∥ q∑
i=1

NQi(f)(r)−
1

As
NC(F )(r) ≤

n∑
j=1

Ñ
[tu−1,c]
Pvj(f)

(r) + o(Tf (r)).(3.24)

Now we give some estimates for A, t and s. We use some following estimate from [16]:

A ≥ dn
(

L
d

n+ 1

)
(see [16, page 622, line 1-2])

(1 + x)n ≤ 1 + (n+ 1)x for all x ∈
(

1,
1

(n+ 1)2

)
(see [16, ineq (3.18)]).

(3.25)

We chose L = dn+ 1 + 2∆Q(n+ 1)3ε−1ed. Then L is divisible by d and we have

(n+ 1)d

L− (n+ 1)d
=

(n+ 1)d

2∆Q(n+ 1)3ε−1d
≤ 1

2(n+ 1)2
.(3.26)

Therefore, using (3.25) and (3.26) we have

uL

dA
≤

(
L+n
n

)
L

dn+1
( L

d
n+1

) =
L · (L+ 1) · · · (L+ n)

1 · 2 · · ·n

/(L− nd) · (L− (n− 1)d) · · ·L
1 · 2 · · · (n+ 1)

= (n+ 1)
n∏
i=1

L+ i

L− (n− i+ 1)d
< (n+ 1)

( L

L− (n+ 1)d

)n
= (n+ 1)

(
1 +

(n+ 1)d

L− (n+ 1)d

)n
< (n+ 1)

(
1 +

(n+ 1)2d

2∆Q(n+ 1)3I(ε−1)d

)
≤ (n+ 1) +

(n+ 1)3d

2(n+ 1)3∆Qε−1
≤ n+ 1 +

ε

2∆Q
.

Then we have

tuL

dAs
≤
(

1 +
ε

3(n+ 1)∆Q

)(
n+ 1 +

ε

2∆Q

)
≤ n+ 1 +

ε

2∆Q
+

ε

3∆Q
+

ε

6∆Q
= n+ 1 +

ε

∆Q
.

(3.27)

Combining (3.23) and (3.27), we get∥∥ (q −∆Q(n+ 1)− ε)Tf (r) ≤
q∑
i=1

1

d
Ñ

[tu−1,c]
Qi(f) (r) + o(Tf (r)).(3.28)

Here we note that:

• L := dn+ 1 + 2∆Q(n+ 1)3ε−1ed,

• p0 :=

[
B − 1

log(1 + ε
3(n+1)∆Q

)

]2

≤

[(
L+n
n

)
(
(
L+n
n

)
− 1)

(
q
n

)
− 1

log(1 + ε
3(n+1)∆Q

)

]2

,

• tu ≤
(
L+n
n

)(
B+p
B−1

)
≤
(
L+n
n

)
pB−1 ≤

(
L+n
n

)
p
(L+n

n )((L+n
n )−1)(q

n)−2

0 = L0.
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By these estimates and by (3.28), we obtain

‖ (q −∆Q(n+ 1)− ε)Tf (r) ≤
q∑
i=1

1

d
Ñ

[L0−1]
Qi(f) (r) + o(Tf (r)).

The theorem is proved. �

Remark 3.29. If all hypersurfaces Qi (1 ≤ i ≤ q) are fixed then t = s = 1. Choosing
L = dn+ 1 + ∆Q(n+ 1)3ε−1ed, we have the estimate

(n+ 1)d

L− (n+ 1)d
≤ (n+ 1)d

∆Q(n+ 1)3ε−1d
≤ 1

(n+ 1)2
,

uL

dA
≤ (n+ 1)

(
1 +

(n+ 1)d

L− (n+ 1)d

)n
< (n+ 1)

(
1 +

(n+ 1)2d

∆Q(n+ 1)3ε−1d

)
≤ (n+ 1) +

(n+ 1)3d

(n+ 1)3∆Qε−1
≤ n+ 1 +

ε

∆Q
,

u =

(
L+ n

n

)
≤ en

(
1 +

L

n

)n
≤ en

(
n+ (n+ 1)d

n
+
d∆Q(n+ 1)3(ε−1)ed

n

)n
= end∆Q(n+ 1)2ε−1endn

(
1 +

1

n
+

n+ (n+ 1)d

nd∆Q(n+ 1)2ε−1ed

)n
≤ end∆Q(n+ 1)2ε−1endn ·

(
1 +

1

n
+

2

n(n+ 1)

)n
≤ end∆Q(n+ 1)2ε−1endn ·

(
1 +

2

n

)n
≤ en+2d∆Q(n+ 1)2ε−1endn

Therefore, from the proof of Theorem 1.3, we get the following theorem.

Theorem 3.30. Let f be a P1
c -algebraic nondegenerate holomorphic curve of C into

Pn(C) with hyperorder ς(f) < 1. Let Q = {Qi}qi=1 be a family of q hypersurfaces with the
distributive constant ∆Q. Let d = lcm(degQ1, . . . , degQq). Then for any ε > 0,

‖ (q −∆Q(n+ 1)− ε)Tf (r) ≤
q∑
i=1

1

degQi

Ñ
[Lj−1,c]

Qi(f) (r) + o(Tf (r)),

where Lj =
degQjL0

d
−
[

degQj

d

]
and L0 = en+2d∆Q(n+ 1)2ε−1endn.

We see that in the case of holomorphic curves into PN(C), the truncation level in this
result is better than that in Theorem 1.1.
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