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Abstract. In this paper, we study the uniqueness problem for linearly nondegenerate
meromorphic mappings from a Kähler manifold into Pn(C) satisfying a condition (Cρ)
and sharing hyperplanes in general position, where the condition that two meromorphic
mappings f, g have the same inverse image for some hyperplanes H is replaced by a
weaker one that f−1(H) ⊂ g−1(H). Moreover, we also give some improvements on the
uniqueness problem and algebraic dependence problem of meromorphic mappings which
share hyperplanes and satisfy (Cρ) conditions for different non-negative numbers ρ.

1. Introduction

Let f : M → Pn(C) be a meromorphic mapping of an m-dimensional complete con-
nected Kähler manifold M , whose universal covering is biholomorphic to a ball B(R0) =
{z ∈ Cm; ‖z‖ < R0} (0 < R0 ≤ +∞), into Pn(C). For ρ ≥ 0, we say that f satisfies the
condition (Cρ) if there exists a nonzero bounded continuous real-valued function h on M
such that

ρΩf + ddc log h2 ≥ Ric ω,

where Ωf is the full-back of the Fubini-Study form Ω on Pn(C), ω =
√
−1
2

∑
i,j hij̄dzi∧ dz̄j

is the Kähler form on M, Ric ω = ddc log
(
det
(
hij̄

))
, d = ∂ + ∂̄ and dc =

√
−1
4π

(∂̄− ∂).

Take a local holomorphic coordinates (U, z) of M , where z = (z1, . . . , zn) and U is a
Cousin II domain. Let f = (f0 : · · · : fn) be a (local) reduced representation of f on
U . Denote by Mp the field of all germs of meromorphic functions at a point p ∈ U .
Denote by Fκ the Mp-submodule of Mn+1

p generated by {(Dαf0, . . . ,Dαfn) : |α| ≤ κ} for

κ > 0 and F−1 = {0}. Here |α| =
∑m

j=1 αj and Dαϕ = ∂|α|ϕ
∂z

α1
1 ...∂zαm

m
for each meromorphic

function ϕ on U and α = (α1, . . . , αm) ∈ Nm. We define

rf (k) = rankMpFk
p − rankMpFk−1

p (k ≥ 0),

rf :=
∑
k≥0

rf (k)− 1 and `f :=
∑
k≥0

krf (k),

mf :=
∑
k,l

(k − l)+ min

n−1Hl,

(
rf (k)−

l−1∑
λ=0

n−1Hλ

)+
 ,
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where x+ = max{x, 0} for a real number x and n−1Hλ denotes the number of repeated
combinations of λ elements among n− 1 elements. One has

0 ≤ mf ≤ `f ≤
n(n + 1)

2
.

Let H be a hyperplane in Pn(C), we (throughout this paper) also denote by the same
letter H a linear form defining H, i.e., we may write

H(x0, . . . , xn) =
n∑

j=0

a1jxj,

Let f = (f0 : · · · : fn) be a locally reduced representation of f . We set

H(f) := a0f0 + · · ·+ anfn.

Then, the function H(f) is locally defined and depends on the choice of the local reduced
representation of f . However, its zero divisor νH(f) does not depend on this choice and
hence it is globally well-defined.

Two meromorphic functions f and g from M into Pn(C) are said to share the hyperplane
H without multiplicity if f−1(H) = g−1(H) and f = g on f−1(H). In 1986, H. Fujimoto
[5] proved the following uniqueness theorem for meromorphic mappings on a complete
Kähler manifold sharing a family of hyperplanes in Pn(C) in general position as follows.

Theorem A (see [5, Main Theorem]). Let M be a complete, connected Kähler manifold
whose universal covering is biholomorphic to B(R0) ⊂ Cm (0 < R0 ≤ +∞), and let f and
g be linearly nondegenerate meromorphic maps of M into Pn(C). If f and g satisfy the
condition (Cρ) and there exist hyperplanes {Hi}q

i=1 of Pn(C) in general position such that

(i) f−1(Hi) = g−1(Hi) (1 ≤ i ≤ q) and f = g on ∪q
i=1f

−1(Hi),
(ii) q > n + 1 + ρ(`f + `g) + mf + mg,

then f ≡ g.

Hence, Theorem A implies the previous uniqueness results for meromorphic mappings
from Cm into Pn(C) given by R. Nevanlinna [8], L. Smiley [12] and S. J. Drouilhet [2].
Recently, K. Zhou and L. Jin [14] considered the case of meromorphic mappings from Cm

into Pn(C) where the condition “f−1(Hi) = g−1(Hi)” is replaced by a weaker one that
fHi ⊂ g−1(Hi) for some hyperplane Hi. They proved the following.

Theorem B (see [14, Theorem 1.1]). Let f, g : Cm → Pn(C) be meromorphic maps. Let
H1, . . . , Hq be hyperplanes of Pn(C) in general position with f(Cm) * Hj, g(Cm) * Hj for
1 ≤ j ≤ q and dim f−1(Hi ∩Hj) ≤ m− 2 for 1 ≤ i < j ≤ q. Suppose that:

(a) f−1(Hj) = g−1(Hj) for 1 ≤ j ≤ p, and f−1(Hj) ⊆ g−1(Hj) for p < j ≤ q,
(b) f ≡ g on

⋃q
j=1 f−1(Hj).

Then f = g if any one of the following conditions is satisfied:

(i) f or g is nonconstant and p = 2n + 2, q > 3n + 3− 2
√

n.
(ii) f or g is linearly nondegenerate and p = 2n + 2, q ≥ 2n + 3.
(iii) f or g is nonconstant and p = 2n + 1, q ≥ 4n + 3.
(iv) Both f and g are linearly nondegenerate and p = n + 2, q ≥ n3 + n2 + n + 4.
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Motivated by the work of K. Zhou and L. Jin, our first aim in this paper is to extend
the above mentioned results to the case of meromorphic mappings on Kähler manifold.
Namely, we will prove the following result.

Theorem 1.1. Let M be a complete, connected Kähler manifold whose universal cover-
ing is biholomorphic to B(R0) ⊂ Cm (0 < R0 ≤ +∞). Let f, g : M → Pn(C) be lin-
early nondegenerate meromorphic mappings satisfying a condition (Cρ). Let H1, . . . , Hq

be hyperplanes of Pn(C) in general position with dim f−1(Hi ∩ Hj) ≤ m − 2 for every
1 ≤ i < j ≤ q, such that

(i) f−1(Hi) = g−1(Hi) ∀ 1 ≤ i ≤ p, f−1(Hi) ⊂ g−1(Hi) ∀ p + 1 ≤ i ≤ q,
(ii) f = g on

⋃q
i=1 f−1(Hi),

where n + 2 ≤ p ≤ 2n + 2. Then f ≡ g if

q > 2n + 2 + pn

(
n + 1

p− n− 1
− 1

)
+ 2ρ

(
`f +

n + 1

p− n− 1
`g

)

or q > 2n + 1 + pn

(
n

p− n− 1
− n− 1

n

)
+ 2ρ

(
`f +

n

p− n− 1
`g

)
.

Remark 1. The condition of p and q is fullfiled in the following cases:

(1) p = 2n + 2, q > 2n + 2 + 2ρ(`f + `g).
(2) p = 2n + 1, q > 4n + 2 + 2ρ(`f + `g).
(3) p = 2n, q > 6n + 2 + 2

n−1
+ 2ρ

(
`f + n

n−1
`g

)
, for n ≥ 2.

(4) p = n + 2, q > n3 + n2 + n + 3 + 2ρ (`f + n`g).

Then, our result implies the above mentioned result of K. Zhou and L. Jin for the case
of linearly nondegenerate meromorphic mappings. In order to prove the above result, we
have to develop our previous method on “funtions of small integration” and “functions of
bounded integeration” in [9, 10]. We will prove a key lemma (see Lemma 3.1 in Section
3), which generalizes and improves Proposition 3.5 of [10], and apply it to estimate the
divisor of the auxilliary functions.

With the useful of Lemma 3.1, we may improve the previous result on the unique-
ness problem and the algebraic degeneracy problem of meromorphic mappings on Kähler
manifolds. Moreover, we may consider the case of meromorphic mappings satisfying the
condition (Cρ) with different numbers ρ. Namely, we will prove the following result.

Theorem 1.2. Let M be as in Theorem 1.1. Let f, g : M → Pn(C) be linearly nondegen-
erate meromorphic mappings, which satisfy the condition (Cρf

) and (Cρg) for non-negative
constants ρf and ρg, respectively. Let H1, . . . , Hq be q hyperplanes of Pn(C) in general
position with dim f−1(Hi ∩Hj) ≤ m− 2 for every 1 ≤ i < j ≤ q, such that

(i) ν
[`]
Hi(f) = ν

[`]
Hi(g) for every i = 1, . . . , q,

(ii) f = g on
⋃

1≤i≤q(f
1)−1(Hi).

Then f ≡ g if any one of the following conditions is satisfied:

(a) ` = 1 and q > 2n + 2 + ρf,g(`f + `g), where ρf,g = 2
ρf ·ρg

ρf+ρg
.



4 SI DUC QUANG

(b) ` ≥ n+1 and q > 2n+1+max
{

3(p−2)p−(`−n)
3(p−2)p+(`−n)/n

, 2n−1
2n−1/n

}
+ρf,g(

4n2−1
2n2−1

(`f+`g)+`−n),

where p =
(

n+1
2n+2

)
.

For the case of more than two meromorphic mappings sharing a family of hyperplanes,
we prove the following two results.

Theorem 1.3. Let M be as in Theorem 1.1. Let f 1, f2, f3 : M → Pn(C) (n ≥ 2) be
linearly nondegenerate meromorphic mappings, which satisfy the condition (Cρf1 ), (Cρf2 )

and (Cρf3 ) for non-negative constants ρf1 , ρf2 and ρf3, respectively. Let H1, . . . , Hq be

q hyperplanes of Pn(C) in general position with dim(f 1)−1(Hi ∩ Hj) ≤ m − 2 for every
1 ≤ i < j ≤ q. Assume that f = g on

⋃
1≤u≤3
1≤i≤q

(fu)−1(Hi). Then f 1 ∧ f 2 ∧ f 3 = 0 if

q > n + 1 + 3nq
2q+2n−2

+ 2
(∑3

u=1
1

ρfu

)−1∑3
u=1 `fu .

Theorem 1.4. Let M be as in Theorem 1.1. Let f 1, . . . , fk : M → Pn(C) be k linearly
nondegenerate meromorphic mappings, which satisfy the conditions (Cρfu ), . . . , (Cρ

fk
) for

non-negative constants ρf1 , . . . , ρfk , respectively. Let H1, . . . , Hq be q hyperplanes of Pn(C)
in general position with dim(f 1)−1(Hi ∩Hj) ≤ m− 2 for every 1 ≤ i < j ≤ q such that

(i) ν
[n]

Hi(f1) = · · · = ν
[n]
Hi(fu) for every i = 1, . . . , q,

(ii) f = g on
⋃

1≤i≤q(f
1)−1(Hi).

Then f 1 ∧ · · · ∧ fk = 0 if q > n + 1 + knq
(k−1)q+k(n−1)

+ 2
(∑k

u=1
1

ρfu

)−1∑k
u=1 `fu .

Remark 2. (a) Theorems 1.2, 1.3 and 1.4 generalize and improve the recent results in
[10] (Lemma 4.3, Theorem 1.2) and [11] (Theorem 1.2).

(b) In this paper, we only concentrate on linearly nondegenerate meromorphic mappings.
But our method can be applied to study the case of nonconstant meromorphic mappings.
However, in that case the computation may be much more complicate, since there are
many more parameters appearing. Then, that problem is still an interesting open question.

2. Auxiliary results

Let E be a divisor on B(R0), which is usually regarded as a function from B(R0) into
Z. The support Supp(E) is defined as the closure of the set {z|E(z) 6= 0}. For a positive
integer k (may be +∞), we define E[k](z) = min{E(z), k} and

n[k](t, E) :=

{∫
Supp(E)∩B(t)

E[k]vm−1 if m ≥ 2, where vm−1(z) = (ddc‖z‖2)
m−1

,∑
|z|≤t E

[k](z) if m = 1.

The truncated counting function to level k of E is defined by

N [k] (r, r0; E) :=

∫ r

r0

n[k](t, E)

t2m−1
dt (r0 < r < R0) .

We omit the character [k] if k = +∞.
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Let ϕ be a non-zero meromorphic function on B(R0). We denote by ν0
ϕ (resp. ν∞ϕ ) the

divisor of zeros (resp. divisor of poles ) of ϕ and set νϕ = ν0
ϕ − ν∞ϕ . For convenience, we

will write Nϕ (r, r0) and N
[k]
ϕ (r, r0) for N

(
r, r0; ν

0
ϕ

)
and N [k]

(
r, r0; ν

0
ϕ

)
, respectively.

Let f : B(R0) −→ Pn(C) be a meromorphic mapping. Fix a homogeneous coordinates
system (w0 : · · · : wn) on Pn(C). We take a reduced representation f = (f0 : · · · : fn) and

set ‖f‖ =
(
|f0|2 + · · ·+ |fn|2

)1/2
. The characteristic function of f is defined by

Tf (r, r0) =

∫
‖z‖=r

log ‖f‖σm −
∫
‖z‖=r0

log ‖f‖σm, 0 < r0 < r < R0,

where σm(z) = dc log ‖z‖2∧(ddc log ‖z‖2)m−1. Here and throughout this paper, we assume
that the numbers r0 and R0 are fixed with 0 < r0 < R0.

Suppose that f is linearly nondegenerate. Then, there is an n+1-tuple α = (α0, . . . , αn) ∈
(Nm)n+1 such that (Dα0(f), . . . ,Dα`(k)−1) is a basis of Mp-module F `(k), where `(k) =
dimMp Fk for all k = 1, . . . , k0 = min{k : `(k) = n + 1}. The tuple α = (α0, . . . , αn) is
called the admissible set of f and

Wα0,...,αn(f0, . . . , fn) := det(Dαj(fi))0≤j,i≤n

is called the generalized Wronskian of f . We note that |α| =
∑n

i=0 |αi| = `f .

Proposition 2.1 (see [5, Proposition 2.12]). Let H1, . . . , Hq be q hyperplanes in Pn(C)
in general position. Let f be a linearly nondegenerate meromorphic mapping from the
ball Bm(R0) ⊂ Cm into Pn(C) with a reduced representation f = (f0, . . . , fn) and let
(α0, . . . , αn) be an admissible set of f . Then, for 0 < r0 < R0 and 0 < t`f < p < 1, there
exists a positive constant K such that for r0 < r < R < R0,∫

S(r)

∣∣∣∣zα0+···+αn
Wα0,...,αn(f0, . . . , fn)

H1(f) . . . Hq(f)

∣∣∣∣t·‖f‖t(q−n−1)σm ≤ K

(
R2m−1

R− r
Tf (R, r0)

)p

.

3. Main lemmas

Let f 1, . . . , fk be k meromorphic mappings from Bm(R0) into Pn(C). We fix a reduced
representation fu = (fu

0 : · · · : fu
n ) of fu and set ‖fu‖ = (|fu

0 |2 + · · · + |fu
n |2)1/2 for

u = 1, . . . , k.

Denote by C(Bm(R0)) the set of all functions g : Bm(R0) → [0, +∞] which is continuous
outside an analytic set of codimension two and only attain +∞ in an analytic thin set.

For a non negative integer l0, we denote by S(l0; f
1, . . . , fk) the set of all functions g

in C(Bm(R0)) such that there exist an element α = (α1, . . . , αm) ∈ Nm with |α| ≤ l0
satisfying: for every 0 ≤ tl0 < p < 1, there exists a positive number K with∫

S(r)

|zαg|tσm ≤ K

(
R2m−1

R− r

k∑
u=1

Tfu(r, r0)

)p

for all r with 0 < r0 < r < R < R0, where zα = zα1
1 · · · zαm

m .

Let p be a non negative integer. Denote by B(l0; (f
1, p1), . . . , (f

k, pk)) the set of all
meromorphic functions h on Bm(R0) such that there exists g ∈ S(l0; f

1, . . . , fk) satisfying

|h| ≤ ‖f 1‖p1 · · · ‖fk‖pk · g,
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outside a proper analytic subset of Bm(R0). We will write B(p, l0; f
1, . . . , fk) as in [10]

for B(l0; (f
1, p), . . . , (fk, p)).

We easily have the following fundamental properties of the families S(l0; {fu}k
u=1) and

B(l0; {(fu, pu)}k
u=1).

• If g is a constant function then g ∈ S(0; {fu}k
u=1).

• If gi ∈ S(li; {fu}k
u=1) (1 ≤ i ≤ s) then

∏s
i=1 gi ∈ S(

∑s
i=1 li; {fu}k

u=1) (see Propo-
sition 2.1 in [10]).

• A meromorphic mapping h belongs to B(0, l0; {fu}k
u=1) if and only if |h| ∈

S(l0; {fu}k
u=1).

• If hi ∈ B(li; {f 1, pi
1}, . . . , {fk, pi

k}) (1 ≤ i ≤ s) then

h1 · · ·hm ∈ B(
s∑

i=1

li; {f 1,

s∑
i=1

pi
1}, . . . , {fk,

s∑
i=1

pi
k}).

• Proposition 2.1 implies that if W (f) is the generalized wronskian of a linearly
nondegenerate meromorphic mapping f : Bm(R0) → Pn(C) and H1, . . . , Hq be

q hyperplanes in Pn(C) in general position then the function

∣∣∣∣W (f) · ‖f‖q−n−1

H1(f) . . . Hq(f)

∣∣∣∣
belongs to S(`f ; f).

Firstly, we prove the following key lemma.

Lemma 3.1. Let M = Bm(R0) (0 < R0 ≤ +∞) be a complete connected Kähler manifold.
Let k be a positive integer and for each u ∈ {1, . . . , k}, let fu be a linearly nondegenerate
meromorphic mapping from M into Pn(C), which satisfies the condition (Cρu) and has a
reduced representation fu = (fu

0 : · · · : fu
n ). Let {Hu

1 , . . . , Hu
qu
} (1 ≤ u ≤ k) be k families

of hyperplanes of Pn(C) in general position, where q1, . . . , qk are positive integers. Assume
that there exists a non zero holomorphic function h on B(R0) such that:

(a) h ∈ B(l0; {(fu, pu)}k
u=1), where l0 is a non-negative integer, p1, . . . , pk are positive

constants;

(b) νh ≥
∑k

u=1 λu

∑qu

i=1 ν
[n]
Hu

i (fu), where λu(1 ≤ u ≤ k) are positive constants.

Then there is an index u such that λu(qu − n− 1)− pu ≤ 0, or

k∑
u=1

[
λu(qu − n− 1)− pu

ρu

− 2λu`fu

]
≤ 2l0.

Here, we regard that x
0

= +∞ and −x
0

= −∞ for every x > 0.

Proof. Suppose contrarily that λu(qu − n− 1)− pu > 0, for all u = 1, . . . , k and

k∑
u=1

[
λu(qu − n− 1)− pu

ρu

− 2λu`fu

]
> 2l0.

We consider the following two cases.
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Case 1: R0 = +∞. By the second main theorem in Nevanlinna theory we have

k∑
u=1

λu(qu − n− 1)Tfu(r, 1) ≤
k∑

u=1

λu

qu∑
i=1

N
[n]
Hu

i (fu)(r, 1) + o(
k∑

u=1

Tfu(r, 1))

≤ Nh(r, 1) + o(
k∑

u=1

Tfu(r, 1))

=
k∑

u=1

puTfu(r, 1) + o(
k∑

u=1

Tfu(r, 1)),

for all r ∈ (1, +∞) outside a Lebesgue set of finite measure. This is a contradiction.

Case 2: R0 < +∞. For each u (1 ≤ u ≤ k), since fu is linearly nondegenerate, there
exists an admissible set (αu

0 , . . . , α
u
n) ∈ (Nm)n+1 such that the generalized Wronskian

W (fu) := det
(
Dαu

i (fu
j ); 0 ≤ i, j ≤ n

)
6≡ 0.

By usual argument in Nevanlinna theory, we have

νh ≥
k∑

u=1

λu

q∑
i=1

ν
[n]
Hu

i (fu) ≥
k∑

u=1

λu

(
q∑

i=1

νHu
i (fu) − νW (fu)

)
.

Put wu(z) := zαu
0+···+αu

n
W (fu)∏q

i=1 Hu
i (fu)

(1 ≤ u ≤ k).

Since h ∈ B(l0; {(fu, pu)}k
u=1), there exists a non-negative plurisubharmonic function

g ∈ S(l0; f
1, . . . , fk) and β = (β1, . . . , βm) ∈ Zm

+ with |β| ≤ l0 such that

∫
S(r)

∣∣zβg
∣∣t′ σm = O

(
R2m−1

R− r

k∑
u=1

Tfu(r, r0)

)l

,(3.2)

for every 0 ≤ l0t
′ < l < 1 and |h| ≤

∏k
u=1 ‖fu‖pkg. Put t = 2∑k

u=1(λu(qu−n−1)−pu)/ρu
> 0 and

φ := |w1|λ1 · · · |wk|λk · |zβh|, Then a = t log φ is a plurisubharmonic function on Bm(R0)
and

(
k∑

u=1

λu`fu + l0)t < 1.

Therefore, we may choose a positive number p such that 0 <
∑k

u=1 λut < p < 1.

Since fu satisfies the condition (Cρu), there is a continuous plurisubharmonic function
ϕu on Bm(R0) such that

eϕudV ≤ ‖fu‖2ρuvm.
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Note that in this case, ρu > 0 for all u. Then the function ϕ = λ′1ϕ1 + · · ·+ λ′kϕk + a is a

plurisubharmonic on Bm(R0), where λ′u = (λu(q−n−1)−pu)t
2ρu

. One has
∑k

u=1 λ′u = 1 and then

eϕdV = eλ′1ϕ1+···+λ′kϕk+t log φdV ≤ C ′ · et log φ ·
k∏

u=1

‖fu‖2λ′uρuvm = C ′ · |φ|t ·
k∏

u=1

‖fu‖2λ′uρuvm

= C ′′ · |zβg|t ·
k∏

u=1

(|wu|λut‖fu‖2λ′uρu+put)vm = C ′′ · |zβg|t ·
k∏

u=1

(|wu| · ‖fu‖(qu−n−1))tλuvm,

where C ′, C ′′ are positive constants. Setting xu =
∑k

i=1 λi`fi+l0

λu`fu
, y =

∑k
i=1 λi`fi+l0

l0
, we have∑k

u=1
1

xu
+ 1

l0
= 1. By integrating both sides of the above inequality over Bm(R0) and

applying Hölder inequality, we get∫
Bm(R0)

eϕdV ≤ C ′′
(∫

Bm(R0)

|zβg|ty
)1/y

·
k∏

u=1

(∫
Bm(R0)

(|wu| · ‖fu‖(qu−n−1))λutxuvm

)1/xu

= C ′′
(

2m

∫ 1

0

r2m−1

∫
S(r)

|zβg|tyvm

)1/y

×
k∏

u=1

(
2m

∫ 1

0

r2m−1

∫
S(r)

(|wu| · ‖fu‖(qu−n−1))λuxutvm

)1/xu

.

(3.3)

Subcase 2.a: We suppose that

lim
r→R0

sup

∑k
u=1 Tfu(r, r0)

log 1/(R0 − r)
< ∞.

We see that λutxu`fu = tyl0 = t(
∑k

i=1 λi`f i + l0) < p. By Proposition 2.1, there exists a
positive constant K such that, for every 0 < r0 < r < R < R0, we have∫

S(r)

(
|wu| · ‖fu‖(qu−n−1)

)λuxut
σm ≤ K

(
R2m−1

R− r
Tfu(R, r0)

)p

(1 ≤ u ≤ k),

and

∫
S(r)

|zβg|tyvm ≤ K

(
R2m−1

R− r
Tfu(R, r0)

)p

.

Choosing R = r+
R0 − r

e max1≤u≤k Tfu(r, r0)
, we have Tfu(R, r0) ≤ 2Tfu(r, r0), for all r outside

a subset E of (0, R0] with
∫

E
1

R0−r
dr < +∞. Then, the above inequality implies that∫

S(r)

(
|wu| · ‖fu‖(qu−n−1)

)λuxut
σm ≤ K ′

(R0 − r)p

(
log

1

R0 − r

)2p

(1 ≤ u ≤ k),

and

∫
S(r)

|zβg|tyvm ≤ K ′

(R0 − r)p

(
log

1

R0 − r

)2p

for all r outside E, and for some positive constant K ′. The inequality (3.3) yields that∫
Bm(R0)

eudV ≤ C ′′2m

∫ R0

0

r2m−1 K ′

R0 − r

(
log

1

R0 − r

)2p

dr < +∞.
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This contradicts the results of S.T. Yau [13] and L. Karp [6].

Subcase 2.b: We suppose that

lim
r→R0

sup

∑k
u=1 Tfu(r, r0)

log 1/(R0 − r)
= ∞.

By [4, Proposition 6.2], we have

k∑
u=1

puTfu(r, r0) ≥ Nh(r, r0) + S(r) ≥
k∑

u=1

λp

q∑
i=1

N
[n]
Hu

i (fu)(r, r0) + S(r)

≥
k∑

u=1

λu(qu − n− 1)Tfu(r, r0) + O
(
log+ 1

R0 − r
+ log+

k∑
u=1

Tfu(r0, r)
)
,

for every r excluding a set E with
∫

E
dr

R0−r
< +∞. This is a contradiction.

Hence, the supposition is false. The lemma is proved. �

Secondly, we prove the following generalization theorem for uniqueness problem of lin-
early nondegenerate meromorphic mappings on Kähler manifolds.

Lemma 3.4. Let M be a complete, connected Kähler manifold whose universal covering
is biholomorphic to B(R0) ⊂ Cm, where 0 < R0 ≤ ∞. Let f, g : M → Pn(C) be linearly
nondegenerate meromorphic mappings, which satisfy the condition (Cρf

), (Cρg) for non-
negative constants ρf , ρg, respectively. Let H1, . . . , Hq be q hyperplane of Pn(C) in general
position and let n + 2 ≤ p ≤ 2n + 2 < q. Assume that:

(a) dim f−1(Hi ∩Hj) ≤ m− 2 ∀ 1 ≤ i < j ≤ q,
(b) f−1(Hi) = g−1(Hi) ∀ 1 ≤ i ≤ p, f−1(Hi) ⊂ g−1(Hi) ∀ p + 1 ≤ i ≤ q,
(c) f = g on

⋃q
i=1 f−1(Hi).

Then f ≡ g if there exist non-negative numbers t ≤ 2
n

and α such that:

(1) (2 + t)(q − n− 1)− (2n + 2 + p(t + α)) > 0,
(2)

(
2 + α

n

)
(p− n− 1)− (2n + 2) > 0,

(3) (2+t)(q−n−1)−(2n+2+p(t+α))
ρf

+
(2+α

n)(p−n−1)−(2n+2)

ρg
> 2

(
(2 + t)`f + (2 + α

n
)`g

)
,

where t = 0 if p > q − n− 1 and t = 2
n

if p ≤ q − n− 1.

Proof. Since the universal covering of M is biholomorphic to B(R0), 0 < R0 ≤ +∞,
by using the universal covering if necessary, without loss of generality we assume that
M = B(R0) ⊂ Cm. Also, we may assume that t and α are rational numbers.

Suppose contrarily that f 6≡ g. Consider the simple graph H, where the set of vertice is

{1, 2, . . . , 2n + 2} and the set of edges is consist of all pairs {i, j} such that Hi(f)
Hj(f)

6≡ Hi(g)
Hj(g)

.

Since f 6≡ g, the degree of H at every vertex is at least (2n + 2)− n > 2n+2
2

. By Dirac’s
theorem, H has a Hamiltonian cycle, for instance it is (1, 2, 3, . . . , 2n + 2, 1). Therefore,

Pi = Hi(f)Hσ(i)(g)−Hi(g)Hσ(i)(f) 6≡ 0,



10 SI DUC QUANG

where σ(i) = i + 1 for i < q and σ(2n + 2) = 1. We easily see that

νPi
(z) ≥

∑
j=i,σ(i)

min
{
νHj(f)(z), νHj(g)(z)

}
+

q∑
j=1

j 6=i,σ(i)

min
{
νHj(f)(z), 1

}
for all z ouside the analytic subset

⋃
1≤u<v≤q f−1(Hu ∩Hv), which is of codimension two.

Then, by setting P =
∏2n+2

i=1 Pi 6≡ 0, we have

νP ≥ 2
2n+2∑
j=1

min
{
νHj(f), νHj(g)

}
+ 2n

2n+2∑
j=1

ν
[1]
Hj(f) + (2n + 2)

q∑
j=2n+3

ν
[1]
Hj(f)

≥ 2

p∑
j=1

(
ν

[n]
Hj(f) + ν

[n]
Hj(g) − nν

[1]
Hj(f)

)
+ 2n

p∑
j=1

ν
[1]
Hj(f) + (2n + 2)

q∑
j=p+1

ν
[1]
Hj(f)

= 2

p∑
j=1

ν
[n]
Hj(f) + 2

p∑
j=1

ν
[n]
Hj(g) + (2n + 2)

q∑
j=p+1

ν
[1]
Hj(f)

≥ 2

q∑
j=1

ν
[n]
Hj(f) + 2

p∑
j=1

ν
[n]
Hj(g) + 2

q∑
j=p+1

ν
[1]
Hj(f)

≥ (2 + t)

q∑
j=1

ν
[n]
Hj(f) − (t + α)

p∑
j=1

ν
[n]
Hj(f) + α

p∑
j=1

ν
[1]
Hj(f) + 2

p∑
j=1

ν
[n]
Hj(g)

≥ (2 + t)

q∑
j=1

ν
[n]
Hj(f) − (t + α)

p∑
j=1

νHj(f) +
(
2 +

α

n

) p∑
j=1

ν
[n]
Hj(g),

Take a positive integer k so that k(t + α) is an integer and consider the holomorphic
function P̃ = P k ·

∏p
j=1 Hj(f)k(t+α). It is clear that

νP̃ ≥ k(t + α)

p∑
j=1

νHj(f) + kνP ≥ k(2 + t)

q∑
j=1

ν
[n]
Hj(f) + k

(
2 +

α

n

) p∑
j=1

ν
[n]
Hj(g)

and P̃ ∈ B
(
0; (f, (2n+2+p(t+α))k), (g, (2n+2)k)

)
. By Lemma 3.1, one of the following

must hold:

• (2 + t)(q − n− 1)− (2n + 2 + p(t + α)) ≤ 0,
•
(
2 + α

n

)
(p− n− 1)− (2n + 2) ≤ 0,

• (2+t)(q−n−1)−(2n+2+p(t+α))
ρf

+
(2+α

n)(p−n−1)−(2n+2)

ρg
≤ 2

(
(2 + t)lf + (2 + α

n
)lg
)
.

This is a contradiction. Therefore, we must have f ≡ g. The lemma is proved. �

4. Uniqueness problem

Proof of Theorem 1.1. By Theorem 3.4, in order to show that f ≡ g we just show the
existence of the non-negative numbers t ≤ 2

n
and α satisfying the inequalities (1), (2), (3)
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of Theorem 3.4. We choose

α := n

(
2n + 2 + ε

p− n− 1
− 2

)
,

where ε is a positive constant small enough. Then the inequality (2) of Theorem 3.4 is
satisfied. The inequalities (1) and (3) of Theorem 3.4 become

(2 + t)(q − n− 1)− 2n− 2− p

(
t− 2n + n

2n + 2 + ε

p− n− 1

)
> 0,(4.1)

and

(2 + t)(q − n− 1)− 2n− 2− p

(
t− 2n + n

2n + 2 + ε

p− n− 1

)
+ ε

> 2ρ

(
(2 + t)`f +

2n + 2 + ε

p− n− 1
`g

)
.

(4.2)

Therefore, in order to show the existence of such t and α (equivalent to the existence of
ε > 0) we just to show that there is t ∈ [0, 2

n
] such that:

(2 + t)(q − n− 1)− 2n− 2−p

(
t− 2n + n

2n + 2

p− n− 1

)
> 2ρ

(
(2 + t)`f +

2n + 2

p− n− 1
`g

)
.

(4.3)

If put t = 0 then the inequality (4.3) is equivalent to that

q − n− 1 > n + 1 + pn

(
n + 1

p− n− 1
− 1

)
+ 2ρ

(
`f +

n + 1

p− n− 1
`g

)
⇔ q > 2n + 2 + pn

(
n + 1

p− n− 1
− 1

)
+ 2ρ

(
`f +

n + 1

p− n− 1
`g

)
.

If put t = 2
n

then the inequality (4.3) is equivalent to that

n + 1

n
(q − n− 1) > n + 1 + p

(
1− n2

n
+ n

n + 1

p− n− 1

)
+ 2ρ

(
n + 1

n
`f +

n + 1

p− n− 1
`g

)
⇔ q > 2n + 1 + pn

(
n

p− n− 1
− n− 1

n

)
+ 2ρ

(
`f +

n

p− n− 1
`g

)
.

Then, with the asumption of the themrem, the inequality (4.3) is satisfied for t = 0 or
t = 2

n
. Hence, f ≡ g. The proof of the theorem is completed. �

In order to prove Theorem 1.2, we need the following proposition of H. Fujimoto [3].

Proposition 4.4 (See H. Fujimoto [3]). Let G be a torsion free abelian group and A =
(a1, . . . , aq) be a q−tuple of elements ai in G. If A has the property (Pr,s) for some r, s
with q ≥ r > s > 1, then there exist i1, . . . , iq−r+2 with 1 ≤ i1 < · · · < iq−r+2 ≤ q such
that ai1 = ai2 = · · · = aiq−r+2 .

Here, the q-tuple A has the property (Pr,s) if any r elements al(1), . . . , al(r) in A satisfy the
condition that for any given i1, . . . , is (1 ≤ i1 < · · · < is ≤ r), there exist j1, . . . , js (1 ≤
j1 < · · · < js ≤ r) with {i1, . . . , is} 6= {j1, . . . , js} such that al(i1) · · · al(is) = al(j1) · · · al(js).
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Proof of Theorem 1.2. Similarly as in the proof of Lemma 3.4, we may suppose that
M = B(R0) ⊂ Cm. Suppose contrarily that f 6≡ g.

Consider the simple graph H, where the set of vertice is {1, 2, . . . , q} and the set of

edges consists of all pair {(i, j)|Hi(f)
Hj(f)

6≡ Hi(g)
Hj(g)

}. Since f 6≡ g, the degree of H at every

vertex is at least q− n > q
2
. By Dirac’s theorem, H has a Hamiltonian cycle, for instance

it is (1, 2, 3, . . . , q, 1). Therefore

Pi = Hi(f)Hσ(i)(g)−Hi(g)Hσ(i)(f) 6≡ 0,

where σ(i) = i + 1 for i < q and σ(q) = 1. We easily see that

νPi
(z) ≥

∑
j=i,σ(i)

min
{
νHj(f)(z), νHj(g)(z)

}
+

q∑
j=1

i6=j 6=σ(i)

min
{
νHj(f)(z), 1

}
for all z ouside the analytic subset

⋃
1≤u<v≤q f−1(Hu ∩Hv), which is of codimension two.

Define νi = min{1, |νHi(f) − νHi(g)|} and `′ = max{0, ` − n}. We see that if νi(z) 6= 0
then min{νHi(f), νHi(g)} ≥ `. Then, by setting P =

∏q
i=1 Pi 6≡ 0, we have

νP ≥ 2

q∑
j=1

min
{
νHj(f), νHj(g)

}
+ (q − 2)

q∑
j=1

ν
[1]
Hj(f)

≥ 2

q∑
j=1

(
ν

[n]
Hj(f) + ν

[n]
Hj(g) − nν

[1]
Hj(f) + `′νi

)
+ (q − 2)

q∑
j=1

ν
[1]
Hj(f)

= 2

q∑
j=1

(ν
[n]
Hj(f) + ν

[n]
Hj(g)) +

q − 2n− 2

2

q∑
j=1

(ν
[1]
Hj(f) + ν

[1]
Hj(g)) + 2`′

q∑
j=1

νi

≥ q + 2n− 2

2n

q∑
j=1

(ν
[n]
Hj(f) + ν

[n]
Hj(g)) + 2`′

q∑
j=1

νi.

(4.5)

It is clear that P ∈ B
(
q, 0; f, g). By Lemma 3.1, we have(

q + 2n− 2

2n
(q − n− 1)− q

)
·
(

1

ρf

+
1

ρg

)
≤ q + 2n− 2

n
(`f + `g)

⇒ q2 − (n + 3)q − (n + 1)(2n− 2)

q + 2n− 2
≤ 2ρfρg(`f + `g)

ρf + ρg

⇒ q(q − 2)

q + 2n− 2
≤ n + 1 + ρf,g(`f + `g).

This implies that

q ≤ q + 2n− 2

q − 2
(n + 1 + ρf,g(`f + `g)) .(4.6)

We now prove the theorem in the following two cases.

(a) Assume that ` = 1. Since q ≥ 2n + 2, one has q+2n−2
q−2

≤ 2. Then, from (4.6) we get

q ≤ 2n + 2 + 2ρf,g(`f + `g).
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This is a contradiction. Therefore, the supposition is false. Hence, f ≡ g.

(b) Assume that ` > n. Then `′ > 0. Because of Part a), it is enough for us to consider
the case where q ≤ 2n + 2 + 2ρf,g(`f + `g).

We set hi = Hi(f)
Hi(g)

(1 ≤ i ≤ q). Then hi

hj
=

Hi(f)·Hj(g)

Hj(f)·Hi(g)
does not depend on the choice of

the reduced representations of f and g respectively.

Take an arbitrary subset of 2n + 2 elements of the set {1, . . . , q}, for instance it is
{1, . . . , 2n + 2}. Denote by I the set of all combinations I = (i1, . . . , in+1) with 1 ≤ i1 <
... < in+1 ≤ q. For each I = (i1, . . . , in+1) ∈ I, put hI =

∏n+1
j=1 hij and define

AI = (−1)
(n+1)(n+2)

2
+i1+···+in+1 · det(airl; 1 ≤ r ≤ n + 1, 0 ≤ l ≤ n)

× det(ajsl; 1 ≤ s ≤ n + 1, 0 ≤ l ≤ n),

where J = (j1, . . . , jn+1) ∈ I such that I ∪ J = {1, 2, . . . , 2n + 2}. Since

n∑
k=0

aikfk − hi ·
n∑

k=0

aikgk = 0 (1 ≤ i ≤ 2n + 2),

one has

det (ai0, . . . , ain, ai0hi, . . . , ainhi; 1 ≤ i ≤ 2n + 2) = 0.

Therefore,
∑

I∈I AIhI = 0 (note that AI ∈ C∗).

Take I0 ∈ I. Denote by t the minimal number satisfying the following: There exist t
elements I1, . . . , It ∈ I \ {I0} and t nonzero constants bi ∈ C∗ such that

∑t
i=0 bihIi

= 0.
By the minimality of t, the family {hI1 , . . . , hIt} is linearly independent over C.

Case 1: t = 1. Then
hI0

hI1

∈ C∗.

Case 2: t ≥ 2. Consider the linearly nondegenerate meromorphic mapping F from
Bm(R0) into Pt−1(C) with a reduced representation F = (hI1d : · · · : hItd), where d is a
meromorphic function. We see that

t∑
i=0

ν
[1]
dhIi

(z) ≤
2n+2∑
j=1

]{i|j ∈ Ii, νHj(f)(z) > νHj(g)(z)}

+
2n+2∑
i=1

]{i|j 6∈ Ii, νHj(f)(z) < νHj(g)(z)}

=
2n+2∑
i=1

p

2
νi(z) ≤ p

2

q∑
i=1

νi(z),

for every z outside an analytic set of codimension two. Here by ]S we denote the number
of elements of the set S.

It is clear that TF (r, r0) ≤ (n + 1)(Tf (r, r0) + Tg(r, r0)). Let W (F ) be a generalized
Wronskian of F and set

G :=
∏

0≤s<l≤2

(
(hIl

d− hIsd) ·W (F )∏t
i=0(hIi

d)

)
.
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Then we have G ∈ B(0, 3(t − 1)(t + 1)/2; F ) ⊂ B(0, 3(p − 2)p/2; f, g). For each subset
J ⊂ {1, . . . , q}, set J c = {1, . . . , q} \ J . It is clear that⋃

0≤s<l≤2

((Il \ Is) ∪ (Is \ Il))
c = {1, . . . , q}.

We have

−νG = 3
t∑

i=0

νhIi
d − 3νW (F ) −

∑
0≤s<l≤2

νhIl
d−hIsd

≤ 3
t∑

i=0

ν
[t−1]
hIi

d −
∑

0≤s<l≤2

(ν0
hIl

/hIs−1)

≤ 3(t− 1)
t∑

i=0

ν
[1]
hIi

d −
∑

0≤s<l≤2

∑
i∈((Il\Is)∪(Is\Il))c

ν
[1]
Hi(f)

≤ 3(p− 2)
t∑

i=0

ν
[1]
hIi

d −
q∑

i=1

ν
[1]
Hi(f) ≤

3(p− 2)p

2
νi −

q∑
i=1

ν
[1]
Hi(f).

Then, we have

ν∏q
i=1 Pi

≥ q + 2n− 2

2n

q∑
i=1

(ν
[n]
Hi(f) + ν

[n]
Hi(g)) + 2`′

q∑
i=1

νi

≥ q + 2n− 2

2n

q∑
i=1

(
ν

[n]
Hi(f) + ν

[n]
Hi(g)

)
+

4`′

3(p− 2)p

(
q∑

i=1

ν
[1]
Hi(f) − νG

)
.

This yields that

νG4`′ (
∏q

i=1 Pi)3(p−2)p ≥
(

3(p− 2)p
q + 2n− 2

2n
+

2`′

n

) q∑
i=1

(
ν

[n]
Hi(f) + ν

[n]
Hi(g)

)
.

Note that G ∈ B(0, 3(p − 2)p/2; f, g) and Pi ∈ B(1, 0; f, g). Then G4`′(
∏q

i=1 Pi)
3(p−2)p

belongs to B(3q(p− 2)p, 6`′(p− 2)(p− 1); f, g). From Lemma 3.1, we have

q ≤ n + 1 +
3q(p− 2)p

3(p− 2)p q+2n−2
2n

+ 2`′

n

+ ρf,g

(
`f + `g +

6`′(p− 2)(p− 1)

3(p− 2)p q+2n−2
2n

+ 2`′

n

)

= n + 1 +
3(2n + 2 + 2ρf,g(`f + `g))

3 q+2n−2
2n

+ 2`′

n(p−2)p

+ ρf,g

(
`f + `g +

6`′(p− 2)(p− 1)

6(p− 2)p + 2`′

n

)

≤ n + 1 +
3(2n + 2)

6 + 2`′

n(p−2)p

+ ρf,g

(
`f + `g +

6`′(p− 2)(p− 1) + 2(`f + `g)

6(p− 2)p + 2`′

n

)

= 2n + 1 +
3(p− 2)p− `′

3(p− 2)p + `′/n
+ ρf,g (`f + `g + `′) .

This is a contradiction. Hence, this case does not happen.

Therefore, for each I ∈ I, there is J ∈ I \ {I} such that
hI

hJ

∈ C∗.
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Consider the torsion free abelian subgroup generated by the family {[h1], . . . , [hq]} of
the abelian group M∗

m/C∗. Then the family {[h1], . . . , [hq]} has the property Pq,n+1.
By Proposition 4.4, there exist q − 2n ≥ 2 elements, without loss of generality we may

assume that they are [h1], [hi] such that [h1] = [hi]. Then
h1

hi

= λ ∈ C∗. Suppose that

λ 6≡ 1. Since
h1(z)

hi(z)
= 1 for each z ∈

⋃q
k=2
k 6=i

f−1(Hk) \ (f−1(H1) ∪ f−1(Hi)), it implies that⋃q
k=2
k 6=i

f−1(Hk) = ∅. Hence
∑q

k=2
k 6=i

ν
[n]
Hk(f) =

∑q
k=2
k 6=i

ν
[n]
Hk(g) = 0. Then, by Lemma 3.1, we have

q − 2 ≤ n + 1 + ρf,g(`f + `g).

This is a contradiction. Thus, λ ≡ 1, i.e., h1 ≡ hi. Hence νH1(f) = νH1(g) and νHi(f) =
νHi(g). By the assumption, we note that 2 < i < q.

Now we consider

P1 = H1(f)H2(g)−H2(f)H1(g) =
H1(f)

Hi(f)
(Hi(f)H2(f)−H2(f)Hi(g)) 6≡ 0.

From this inequality, we easily see that

νP1 ≥ (νH1(f) + ν
[1]
H1(f)) + ν

[n]
H2(f) +

q∑
k=3

ν
[1]
Hk(f)(4.7)

and similarly

νPq ≥ (νH1(f) + ν
[1]
H1(f)) + ν

[n]
Hq(f) +

q−1∑
k=2

ν
[1]
Hk(f),

νPi−1
≥ (νHi(f) + ν

[1]
Hi(f)) + ν

[n]
Hi−1(f) +

q∑
k=1

k 6=i−1,i

ν
[1]
Hk(f),

νPi
≥ (νHi(f) + ν

[1]
Hi(f)) + ν

[n]
Hi+1(f) +

q∑
k=1

k 6=i,i+1

ν
[1]
Hk(f).

(4.8)

Then, similar as (4.5), with the help of (4.7) and (4.8), we have

νP (z) ≥ q + 2n− 2

2n

q∑
k=1

(
ν

[n]
Hk(f)(z) + ν

[n]
Hk(g)(z)

)
+ 2

∑
k=1,i

ν
[1]
Hk(f).(4.9)

Consider the simple graph H′, where the set of vertice is {1, . . . , q} \ {1, i} and the set

of edges consists of all pairs {u, v} such that Hi(u)
Hj(v)

6≡ Hu(g)
Hv(g)

. Since f 6≡ g, the degree of H′

at every vertex is at least q − 2 − n ≥ q−2
2

. By Dirac’s theorem, H′ has a Hamiltonian
cycle j1, . . . , jq−2, j1. Therefore,

P ′
u = Hju(f)Hσ′(u)(g)−Hju(g)Hσ′(u)(f) 6≡ 0,
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where σ′(u) = ju+1 for u < q − 2 and σ′(q − 2) = j1. We easily see that

νP ′
u
(z) ≥

∑
k=u,σ′(u)

min
{
νHju (f)(z), νHju (g)(z)

}
+

q−2∑
k=1

k 6=u,σ′(u)

ν
[1]
Hju (f)(z) +

∑
k=1,i

ν
[1]
Hk(f)(z)

for all z outside the analytic subset
⋃

1≤u<v≤q f−1(Hu ∩Hv), which is of codimension two.

Let P ′ =
∏q−2

u=1 P ′
u and similar as (4.5), we get

νP ′(z) ≥ q + 2n− 4

2n

q∑
k=2
k 6=i

(
ν

[n]
Hk(f)(z) + ν

[n]
Hk(g)(z)

)
+ (q − 2)

∑
k=1,i

ν
[1]
Hk(f)(z)

=
q + 2n− 4

2n

q∑
k=1

(
ν

[n]
Hk(f)(z) + ν

[n]
Hk(g)(z)

)
− (2n− 2)

∑
k=1,i

ν
[1]
Hk(f)(z).

It is clear that P n−1P ′ ∈ B(nq − 2, 0; f, g) and satisfying

νP n−1P ′ ≥ n(q + 2n− 2)− 2

2n

q∑
k=1

(
ν

[n]
Hk(f)(z) + ν

[n]
Hk(g)(z)

)
.

Then from Lemma 3.1, we have

q ≤ n + 1 + ρf,g(`f + `g) +
2n(nq − 2)

n(q + 2n− 2)− 2

≤ n + 1 + ρf,g(`f + `g) +
2n(2n2 + 2n− 2)

4n2 − 2
+

4n2ρf,g(`f + `g)

4n2 − 2

= 2n + 1 +
2n− 1

2n− 1/n
+ ρf,g

4n2 − 1

2n2 − 1
(`f + `g).

This is a contradiction.

Hence, we must have f ≡ g. The theorem is proved. �

5. algebraic dependence problem

Lemma 5.1 (See [11, Lemma 3.1]). Let f 1, f2, . . . , fk be as in Theorem 1.3 and M =
Bm(R0). Assume that each fu has a reduced representation fu = (fu

0 : · · · : fu
n ), 1 ≤ u ≤

k. Suppose that there exist integers 1 ≤ i1 < i2 < · · · < ik ≤ q such that

P := det
(
Hij(f

u)
)
1≤j,u≤k

6≡ 0.

Then we have

νP (z) ≥
k∑

j=1

(
min

1≤u≤k
{νHij

(fu)(z)} − ν
[1]

Hij
(f1)(z)

)
+ (k − 1)

q∑
i=1

ν
[1]

Hi(f1)(z),

for every z ∈ Bm(R0) outside an analytic set of codimension two.

Proof of Theorem 1.3. As usual, we may suppose that M = Bm(R0). For each 1 ≤ i ≤ q,
we put Vi := ((f 1, Hi), (f

2, Hi), (f
3, Hi)). We write Vi

∼= Vj if Vi ∧ Vj ≡ 0, otherwise we
write Vi 6∼= Vj.
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Suppose that f 1 ∧ f 2 ∧ f 3 6≡ 0. Without loss of generality, we may assume that

V1
∼= · · · ∼= Vl1︸ ︷︷ ︸

group 1

6∼= Vl1+1
∼= · · · ∼= Vl2︸ ︷︷ ︸
group 2

6≡ Vl2+1
∼= · · · ∼= Vl3︸ ︷︷ ︸
group 3

6∼= · · · 6∼= Vls−1
∼= · · · ∼= Vls︸ ︷︷ ︸
group s

,

where ls = q. For each 1 ≤ i ≤ q, we set

σ(i) =

{
i + n if i + n ≤ q,

i + n− q if i + n > q.

Since each group has at most n elements, Vi and Vσ(i) belong to two distinct groups, i.e.,
Vi ∧ Vσ(i) 6≡ 0. Then, we may choose another index, denoted by γ(i), such that

Vi ∧ Vσ(i) ∧ Vγ(i) 6≡ 0.

We set

Pi := det
(
Hi(f

u), Hσ(i)(f
u), Hγ(i)(f

u); 1 ≤ u ≤ 3
)
6≡ 0.

Then, by Lemma 5.1 we have

νPi
≥

∑
j=i,σ(i)

(
min

1≤u≤3
νHj(fu) − ν

[1]

Hj(f1)

)
+ 2

q∑
j=1

ν
[1]

Hj(f1)

≥
∑

j=i,σ(i)

(
3∑

u=1

ν
[n]
Hj(fu) − (2n + 1)ν

[1]

Hj(f1)

)
+ 2

q∑
j=1

ν
[1]

Hj(f1).

Summing-up both sides of the above inequality over all 1 ≤ i ≤ q, we have

ν∏q
i=1 Pi

≥ 2
3∑

u=1

q∑
j=1

ν
[n]
Hj(fu) + (2q − 4n− 2)

q∑
j=1

ν
[1]
Hj(fu) ≥

2q + 2n− 2

3n

3∑
u=1

q∑
j=1

ν
[n]
Hj(fu).

It is easy to see that
∏q

i=1 Pi ∈ B(q, 0; f 1, f2, f3). Then, by Lemma 3.1 we have

2q + 2n− 2

3n
(q − n− 1)− q ≤ 2

2q + 2n− 2

3n

(
3∑

u=1

1

ρfu

)−1 3∑
u=1

`fu ,

i.e.,

q ≤ n + 1 +
3nq

2q + 2n− 2
+ 2

(
3∑

u=1

1

ρfu

)−1 3∑
u=1

`fu .

This is a contradiction. Hence f 1 ∧ f 2 ∧ f 3 ≡ 0. The theorem is proved. �

Proof of Theorem 1.4. Denote by I the set of all k-tuples I = (i1, . . . , ik) ∈ Nk with
1 ≤ i1 < i2 < · · · < ik ≤ q. Suppose contrarily that f 1× f 2× · · · × fk is not algebraically
degenerate. Then for every I = (i1, . . . , ik) ∈ I,

PI := det
(
Hij(f

u)
)
1≤j,u≤k

6≡ 0.
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By Lemma 5.1, we have

νPI
≥

k∑
j=1

(
min

1≤u≤k
νHij

(fu) − ν
[1]

Hij
(f1)

)
+ (k − 1)

q∑
i=1

ν
[1]
Hi(f)

≥
k∑

j=1

(
ν

[n]

Hij
(f1) − ν

[1]

Hij
(f1)

)
+ (k − 1)

q∑
i=1

ν
[1]
Hi(f).

Setting P =
∏

I∈I PI and summing up both sides of the above inequality over all I ∈ I,
we get

νP ≥ ]I ·
q∑

i=1

(
k

q
ν

[n]

H(f1) +
((k − 1)q − k)

q
ν

[1]

Hij
(f1)

)

= ]I ·
(

1

q
+

((k − 1)q − k)

knq

) k∑
u=1

q∑
i=1

ν
[n]
Hi(fu).

(5.2)

Applying Lemma 3.1 for the function P ∈ B(]I, 0; f 1, . . . , fk), we get

k∑
u=1

]I ·
(

1
q

+ ((k−1)q−k)
knq

)
(q − n− 1)− ]I

ρfu

− 2
k∑

u=1

]I ·
(

1

q
+

((k − 1)q − k)

knq

)
`fu ≤ 0,

i.e.,

q ≤ n + 1 +
knq

(k − 1)q + k(n− 1)
+ 2

(
k∑

u=1

1

ρfu

)−1 k∑
u=1

`fu .

This is a contradition. Therefore, f 1 × · · · × fk is algebraically degenerate. The theorem
is proved. �
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