
zk-SNARKs from Codes with Rank Metrics

Xuan-Thanh Do1 , Dang-Truong Mac , and Quoc-Huy Vu2

1 Institute of Cryptography Science and Technology, Vietnam
2 Léonard de Vinci Pôle Universitaire, Research Center, Paris-La Défense, France

Abstract. Succinct non-interactive zero-knowledge arguments of knowl-
edge (zk-SNARKs) are a type of non-interactive proof system enabling
efficient privacy-preserving proofs of membership for NP languages. A
great deal of works has studied candidate constructions that are secure
against quantum attackers, which are based on either lattice assumptions,
or post-quantum collision-resistant hash functions. In this paper, we
propose a code-based zk-SNARK scheme, whose security is based on the
rank support learning (RSL) problem, a variant of the random linear
code decoding problem in the rank metric. Our construction follows the
general framework of Gennaro et al. (CCS’18), which is based on square
span programs (SSPs). Due to the fundamental differences between the
hardness assumptions, our proof of security cannot apply the techniques
from the lattice-based constructions, and indeed, it distinguishes itself by
the use of techniques from coding theory. We also provide the scheme
with a set of concrete parameters.

Keywords: Code-based Cryptography, Rank support learning problem, Square
span programs, zk-SNARKs

1 Introduction

Zero-knowledge proof systems [25], since its first appearance in 1985, have been
become the cornerstone of cryptography. They are an essential component
of many privacy-preserving cryptographic systems, including credentials and
digital currencies [4, 13, 3, 12, 20] as well as group signatures [15, 8, 19, 9] and
verifiable computation [22, 23, 10]. In a zero-knowledge proof of knowledge
system for an NP relation R, a prover can convince a verifier that a statement
is true without revealing anything more about the statement to the verifier.
For practical applications, succinct non-interactive zero-knowledge arguments of
knowledge (zk-SNARKs) [28, 31] are more desirable: we additionally require that
(i) the proof should consist of a single message from the prover to the verifier
(non-interactivity); (ii) the length of the proof and the verification complexity
is sublinear (ideally, polylogarithmic) in the size of the circuit computing R
(succinctness); and (iii) the proof also guarantees that the prover knows the
witness (argument of knowledge).

Constructions of succinct non-interactive zero-knowledge can be based on
numerous different assumptions, of which one may name collision-resistant hash

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

2 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

functions [5, 16], the discrete logarithm assumption [11], various pairing-based
assumptions [26], and lattice-based assumptions [24, 27]. On the other hand, the
advancing threat of quantum computers has given tremendous stimulant to the
cryptographic community to put more effort into cryptographic constructions
that would plausibly withstand the power of quantum attacks. However, present
post-quantum zk-SNARKs are only known from hash functions and lattice-based
assumptions.

Our result. In this work, following the method of [24], we introduce the first
(designated-verifier) zk-SNARK scheme in the rank metric context. Prior to this
work, there has been no construction in the code-based cryptography realm, so
the construction herein could be viewed as the first. Furthermore, being based on
code-based assumptions with rank metrics, our scheme is plausibly considered to
be secure under quantum attacks. We note that the work of Lipmaa [29] makes
use of error-correcting codes to improve the performance of span programs and
does not concern with code-based assumptions.

Overview of our technique. Our starting point is the framework of Gen-
naro et al. [24]. Conceptually, based on the techniques of [17] and [23], the
framework of [24] uses square span programs to characterize the complexity
class NP, leading to a simpler and faster designated-verifier zk-SNARK. The
main technical challenge in the framework of [24] is the growth of noise of the
lattice-based homomorphic operations. As mentioned there, this growth might
leak information of the witness to the verifier, thus violate the zero-knowledge
property. Fortunately, in the asset of lattice-based techniques, the so-called
noise-smudging technique can be used to overcome this leakage problem. The
idea is that after doing homomorphic addition, a noise with much larger weight
is added to the computed one, thus, the final noise is dominated by that of the
adding noise. (One might think of this technique as hiding “leaves” in “forest.”)
This technical challenge, resolved by smudging, also causes the setting of the
common reference string to become involved, that is, the natures of encodings
are not the same: some having small noise while others requiring much larger
one. The reason underlying this setting is to guarantee success of the reduction.

The naive scheme obtained when one carries out the construction to the rank
metric context is even worse since the noise grows linearly with respect to the
number of homomorphic operations. And in order to be able to decrypt these
ciphertexts, the length of the public code in used must be very large (and thus,
the degree of extension field as well) causing parameters of the whole system to
be out of concern. (We assume one uses the rank-quasi cyclic (RQC) encryption
scheme to design the underlying encoding scheme.) Out of this situation, a natural
question arises:

Can we design a SNARK in code-based cryptography (and even in lattice-based
cryptography) without using the smudging technique?

We put forth effort to resolve this question in code-based cryptography by making
use of the rank support learning problem. We now recall the main technical

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 3

ingredients of [24]’s framework, which lie in the way the common reference
string (CRS) is constructed. In particular, the CRS in the construction of
Gennaro et al. consists of encoding elements together with the description of a
square span program which computes the statement and public parameters of
some additively homomorphic “noisy” encoding scheme. In [24], their encoding
scheme is instantiated from lattice-based assumption. Let E denote this encoding
scheme. By examining the form of the CRS, we make the observation that the
encodings therein could be divided into three groups. The first group consists
of encodings of powers of a hidden element, say, E(1),E(s), . . . ,E(sd), where s
is kept secret. The second group consists of encodings of elements which are
resulted from the first group by a common mask, i.e., E(α),E(αs), . . . ,E(αsd),
where α plays the role of a mask. The third group consists of encodings of
elements which are values of polynomials at s masked by a common element, i.e.,
E
(
βt(s)

)
,E
(
βvℓu+1(s)

)
, . . . ,E

(
βvm(s)

)
. The crucial point is that the error for

each of these encodings has to be chosen carefully, so that addition of encodings
computationally hides the witness. This is needed when showing the zero-
knowledge property of the scheme, whose security proof is based on the smudging
technique. Furthermore, when paying closer attention to the way a proof is
generated, we observe that homomorphic evaluations (or rather additions) are
always performed between elements of each group together with a set of coefficients
in the prescribed finite field.

In rank metric code-based cryptography, it seems difficult to do so due to the
aforementioned reasons. However, these two observations lead us to the idea of
using one and the same vector space of noises for each group. More precisely,
let V1, V2, V3 be randomly chosen subspaces of prescribed dimensions, then for
i = 1, 2, 3, all elements of the ith group are produced by using noises coming
from Vi. The effect is that after doing homomorphic additions with coefficients
in the base field, the noise of the obtained ciphertext has the same magnitude
as that of its components. Furthermore, the magnitude of noises in the three
groups are slightly different, i.e., the one in the first group is of the smallest
value while the other two groups have the same magnitude of noises, and allow
“truly” homomorphic addition of order two, that is, any linear combination of two
independent encodings/ciphertexts is again a valid encoding/ciphertext. The
reason for this requirement will become clear in the proof of security. By further
adding another encoding, i.e., a mask, whose noises belong essentially to the
same vector space as that of each group, we can argue from this property that
the resulted ciphertext does not leak any potential information of the witness.

We also note that though the concrete parameters of our scheme do not
compete well with those of [24], we emphasize that the novelty of our work lies in
the way the encoding elements are divided and treated. We believe this method
may be of independent interest for other applications.

Organization of the paper. The rest of this work is organized as follows.
Section 2 recalls some basic matters needed; Section 3 and 4 describe an encoding
scheme and the corresponding zk-SNARK construction. The efficiency and some
examples of parameter are the content of Section 6.

4 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

2 Preliminaries

2.1 Notations

Vectors are denoted by bold low-case letters, e.g., vector v. Bold capital letters
are used to denote matrices, e.g., matrix A. The notation Snr is defined to be
the sphere of radius r in Fn

qm0 for some positive integer m0. We use the notation
[n] to denote the set {0, 1, . . . , n} for a positive integer n, ⌊x⌋ to denote the
greatest integer less than or equal to x, and a | b to denote a divides b. Negligible
functions are denoted by neg(·).

2.2 Background on Code-Based Cryptography

This section recalls some basic code-based notions as well as ingredients needed,
all of which could be found in [7]. Let m0, n be two positive integers and q a power
of a prime number. Let {α1, . . . , αm0} be a basis of Fqm0 over Fq. This basis can
be used to associate any vector x := (x1, . . . , xn) ∈ Fn

qm0 to the corresponding
matrix Ax ∈ Fn×m0

q asx1

...
xn

 =

a11 · · · a1m0

...
...

...
an1 · · · anm0

 ·
 α1

...
αm0

 .

The rank weight of x is defined to be the rank of matrix Ax, that is, ∥x∥ :=
rank(Ax). In this metric, the distance between two vectors x and y, denoted by
d(x,y), is defined to be equal the rank weight of x− y, i.e., d(x,y) := ∥x− y∥.

Now, let f(x) ∈ Fqm0 [x] be a polynomial of degree n and Rf := Fqm0 [x]/⟨f⟩.
Consider the following mapping:

ϕ : Fn
qm0 −→ Rf

(a0, . . . , an−1) 7−→ a0 + · · ·+ an−1x
n−1.

The inverse mapping, denoted by ϕ−1, simply maps a polynomial to the vector
formed by its coefficients. For the sake of simplicity, if a := (a0, . . . , an−1) ∈ Fn

qm0 ,
we let ϕ(a) = a0 + · · ·+ an−1x

n−1 = a(x). For a,b ∈ Fn
qm0 , their product a · b is

defined as
a · b := ϕ−1

(
a(x) · b(x)

)
.

Clearly, we have a · b = b · a. It is also not hard to see that

a · b = (a0, . . . , an−1) ·

 ϕ−1
(
b(x)

)
...

ϕ−1
(
xn−1b(x)

)
 . (1)

The right-most expression on the right-hand side of Equation 1 is usually referred
to as the ideal matrix generated by b(x) with respect to f(x). For ease of notation,

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 5

vectors are identified with their corresponding polynomials, i.e., xkb is understood
to be ϕ−1

(
xkb(x)

)
. Thus, the ideal matrix of a vector b with respect to f is

written as

b =


b

x · b
...

xn−1 · b

 .

In our construction, we will use 2- and 3-ideal codes. A 2-ideal code of length
2n with respect to a polynomial f(x) of degree n over Fqm0 is a code whose
parity-check matrix is of the form

H =
[
In | hT

]
, (2)

where h is the ideal matrix of a vector h with respect to f(x) in Fn
qm0 . Similarly,

a 3-ideal code of length 3n with respect to a polynomial f(x) of degree n over
Fqm0 is a code whose parity matrix is of the form

H =

(
In 0 hT

1

0 In hT
2

)
. (3)

For a given vector x ∈ Fn
qm0 , it is usually associated with the vector space

generated by its coordinates.

Definition 1. Let x := (x1, . . . , xn) ∈ Fn
qm0 . The vector space over Fq defined

by x1, . . . , xn is called the support of x, and denoted by supp(x). That is,

supp(x) := SpanFq
(x1, . . . , xn).

Next, we recall some definitions concerning code-based hardness assumptions.

Definition 2 (Rank Syndrome Decoding Problem). Let n, k, and w be

positive integers, H a random matrix over F(n−k)×n
qm0 , and y a random vector in

Fn−k
qm0 . The rank syndrome decoding problem, RSD(n, k, w), asks to find a vector

x ∈ Snw such that HxT = yT .

In the following definitions, for ν ∈ {2, 3}, let SP (n, ν) be the set of all parity
matrices of ν-ideal codes with respect to a polynomial P (x) of degree n over
Fqm0 , as defined in Equation 2 or 3, respectively.

Definition 3 (ν-IRSD Distribution). Let n,w be positive integers, P (x) ∈
Fq[x] an irreducible polynomial of degree n. The ν-IRSD(n,w) distribution chooses
uniformly at random a matrix H ∈ SP (n, ν) together with a vector x ∈ Fνn

qm0 such

that ∥x∥ = w and outputs
(
H,H · xT

)
.

Definition 4 (Computational ν-IRSD Problem). Let n,w be positive inte-
gers, P (x) ∈ Fq[x] an irreducible polynomial of degree n, H ∈ SP (n, ν) a random
matrix, and y← Fn

qm0 . The computational ν-IRSD(n,w) problem asks to find a

vector x ∈ Fνn
qm0 such that ∥x∥ = w and H · xT = yT .

6 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

Definition 5 (Decisional ν-IRSD Problem). The decisional ν-IRSD(n,w)
problem asks to decide with non-negligible advantage whether (H,yT) came from
the ν-IRSD(n,w) distribution or the uniform distribution over SP (n, ν)× Fn

qm0 .

Next, we recall the rank support learning problem. It made its first appearance
in [21], in the construction of a rank-metric based public-key encryption scheme,
and recently, in [6]. This problem can be viewed as a relaxation of the RSD
problem in which, instead of giving one syndrome instance as in the RSD case, it
gives a certain number of syndromes, all produced from the very same support
of errors. Its definition reads

Definition 6 (Rank Support Learning Problem). Let n, k, r,N be positive

integers. Given a matrix H ∈ F(n−k)×n
qm0 and N syndromes sTi = HeTi , where

ei ← V for all i = 1, 2, . . . , N, and V is a subspace of Fn
qm0 of dimension r, the

RSL(n, k, r,N) problem asks to find V.

When the number N increases, the problem becomes easier to solve. The
attack in [18] suggests that parameters should be chosen satisfying N < kr. The
decisional version of this problem is as follows.

Definition 7 (Decisional RSL Problem). Given an instance either from
(H,HE) or (H,U), where H is a full rank matrix of size (n − k) × n, U is a

random matrix in F(n−k)×N
qm0 , and E is a matrix formed from N randomly chosen

vectors ei’s in a vector space of dimension r, the decisional rank support learning
DRSL(n, k, r,N) asks to decide which is the case.

For our purpose, we also need another variant of this problem. In addition
to a set of N vectors, either produced from preimages of the same support or
from the uniform distribution, two additional vectors are also given, which are
Fq-linearly random combinations of these N vectors. The problem now still asks
to decide which is the case.

Definition 8 (Variant RSL Problem-vRSL). Given an instance either from

(H,HE,HE · aT ,HE · bT) or (H,U,U · aT ,U · bT), where H ∈ F(n−k)×n
qm0 is a

full rank matrix, U is a random matrix in F(n−k)×N
qm0 , a,b are randomly chosen

vectors in FN
q , and E is a matrix formed from N randomly chosen vectors ei’s in

a vector space of dimension r, the vRSL(n, k, r,N) problem asks to decide which
is the case.

The rationale behind this formulation is that what really affects the hardness
of the problem is the information of V given in the form of HE or, equivalently,
{HeTi }Ni=1. Adding one or two random Fq-linearly combinations of these vectors
does not leak more information about V. In fact, this problem is not easier than
the RSL problem. Given an RSL instance, one could create a vRSL instance by
randomly picking two vectors a,b ∈ FN

q , computing the corresponding linearly
combinations; these combinations together with the provided RSL instance then
form an instance of the vRSL problem. Therefore, if we can solve the vRSL
problem, then we can also solve the RSL problem. The hardness of this problem

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 7

is used to argue the zero-knowledge property of our scheme. Furthermore, the
hardness of this problem also guarantees the zero-knowledge property of the
linear coefficients, i.e., the random vectors a and b. An adversary, if being asked
for such a set of coefficients, has either to solve the RSL problem or to make a
guess, both of which succeed with negligible probability.

Remark 1. We remark that the problem in the above definition could be general-
ized to the case in which, in addition to the syndromes (either chosen uniformly or
not), a polynomial number of random Fq-linearly combinations of these syndromes
are also given. The reduction could be carried in the same manner.

In the above definitions, the matrix H can be assumed to have ideal structures,
and we also make the assumption that the problems corresponding to this
situation, namely, the ideal rank support learning (IRSL) problem and its variant
(vIRSL), are hard.

2.3 Succinct Non-Interactive Arguments

We recall the definition of (designated-verifier) succinct non-interactive arguments
of knowledge (SNARKs) below. We specialize our definitions to the problem of
Boolean circuit satisfiability.

Definition 9. Let C := {Cn}n∈N be a family of Boolean circuits. A designated-
verifier non-interactive argument system for an NP relation RC is a triple of
algorithms Π = (G,P,V) such that

– G(1λ, 1n): On input the security parameter λ and the circuit family parameter
n, the setup algorithm G generates a common reference string crs and a
verification key vrs.

– P(crs, u, w): On input the common reference string crs, a statement u, and
its witness w, the prover algorithm P generates a proof π.

– V(vrs, u, π): On input the verification key vrs, a statement u and a proof π,
the verification algorithm V outputs 1 if the proof π is valid, and 0 otherwise.

An argument of knowledge system is required to be complete and to have
knowledge soundness.

Definition 10 (Completeness). An argument of knowledge system Π for a
relation RC is complete if for all n ∈ N and for any pair (u,w) ∈ RCn , we have

Pr

 (crs, vrs)← G(1λ, 1n)
π ← P(crs, u, w)

s.t. V(vrs, u, π) = 1

 ≥ 1− neg(λ).

Definition 11 (Knowledge Soundness). An argument of knowledge system
Π for the relation RC is knowledge-sound if for any PPT adversary A, there
exists an extractor ExtA, given access to A’s inputs, such that

Pr

 (crs, vrs)← G(1λ,R)
(u, π;w)← (A ∥ ExtA)V(vrs,·)(crs)
s.t. (u,w) /∈ R ∧ V(vrs, u, π) = 1

 ≤ neg(λ),

8 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

where (y; z) ← (A ∥ ExtA) (x) signifies that on input x,A outputs y, and that
ExtA, given the same input x and A’s random tape, produces z.

Additionally, a system is said to be succinct if it satisfies the following property.

Definition 12 (Succinctness). There exists a fixed polynomial p(·) indepen-
dent of C such that for every large enough security parameter λ ∈ N, we have
that

– Fully Succinct: G runs in time p(λ+ log |Cn|), V runs in time p(λ+ |x|+
log |Cn|), and the length of the proof output by P is bounded by p(λ+log |Cn|).

– Preprocessing: G runs in time p(λ+|Cn|), V runs in time p(λ+|x|+log |Cn|),
and the length of the proof output by P is bounded by p(λ+ log |Cn|).

If an argument system has the property that the witness(es) is (computa-
tionally) hiding, then it is said to be zero-knowledge. This notion is captured
by the simulation paradigm: there exists a PPT algorithm S, called simulator,
such that given a statement u, it generates a valid proof whose distribution is
indistinguishable from that generated in the real protocol.

Definition 13 (Zero-knowledge). An argument of knowledge system Π is
zero-knowledge if there exists a PPT simulator S = (S1,S2) such that for any
PPT adversary A given access to an oracle O defined as

Oracle Ob(u,w):
If R(u,w) = false, return ⊥.
If b = 1, then π ← P(crs, u, w),
else π ← S2(td, u),
return π,

we have

Pr


(crs, vrs, td)← S1(1λ, 1n)

b← {0, 1}
b′ ← AOb(vrs)
s.t. b = b′

 ≤ 1

2
+ neg(λ).

Definition 14 (zk-SNARK). A succinct non-interactive zero-knowledge ar-
gument of knowledge (zk-SNARK) is a non-interactive argument system that is
complete, succinct, knowledge-sound and zero-knowledge.

2.4 Encoding Schemes

We recall the definition of encoding schemes with noise from [24], adapted to our
secret-key setting.

Definition 15. An encoding scheme Enc over a finite field Fq is a tuple of PPT
algorithms (K,E,D) such that:

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 9

– K(1λ): The key generating algorithm takes as input the security parameter λ
and outputs a public information pk and a secret state sk.

– E(sk,m): The non-deterministic encoding algorithm maps an element m ∈ Fq

into some encoding space S using the secret state sk, such that
{
{E(a)} | a ∈

Fq

}
partitions S, where {E(a)} denotes the set of the possible evaluations of

the algorithm E on a.
– D(sk, c): The decoding algorithm takes as input the secret state sk, an encoding

c and outputs an element m ∈ Fq.

An encoding scheme Enc must have the following properties:

– d-linearly homomorphic: there exists a PPT algorithm Eval which takes
pk, d encodings E(m1), . . . ,E(md), and coefficients (a1, . . . , ad) ∈ Fd

q as input

and outputs a valid encoding of
∑d

i=1 aimi with overwhelming probability
in λ.

– Quadratic root detection: there exists a PPT algorithm which takes
the public key pk, a set of encodings {E(m1), . . . ,E(mt)}, and a quadratic
polynomial P ∈ Fq[x1, . . . , xt] as input and checks for the correctness of the
equality P (m1, . . . ,mt) = 0.

– Image verification: there exists a PPT algorithm which takes the public
key pk and an element c as input and decides whether c is a valid encoding
of a field element or not.

2.5 Assumptions

The following assumptions are the adaptations of q-PDH and q-PKE assumptions
(cf. [24], [23]) to the code-based context together with the application of the rank
support learning problem. In the following, all the encodings are produced by
using a common vector space of noise.

Assumption 1 (q-PDH). Let Enc = (K,E,D) be an encoding scheme over a
finite field Fq. The q-power Diffie-Hellman assumption, q-PDH, holds for Enc if
for all PPT adversary A, we have

Pr

 (pk, sk)← K(1λ), s← Fq

y ← A
(
pk,E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q)

)
s.t. y = E(sq+1)

 ≤ neg(λ).

Assumption 2 (q-PKE). Let Enc = (K,E,D) be an encoding scheme over
a finite field Fq. The q-power of knowledge of exponent assumption, q-PKE,
holds for Enc if for all PPT adversary A, there exists a non-uniform knowledge
extractor ExtA, given access to A’s input, such that

Pr


(pk, sk)← K(1λ), α, s← Fq

σ ←
(
pk,E(s), . . . ,E(sq),E(α),E(αs), . . . ,E(αsq)

)
(c, ĉ; (a0, . . . , aq))← (A ∥ ExtA)(σ, z)
s.t. ĉ = αc ∧ c /∈

{
E
(∑q

i=0 ais
i
)}

 ≤ neg(λ),

for any auxiliary input z ∈ {0, 1}poly(λ) that is generated independently of α.

10 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

2.6 Square Span Programs

We briefly recall here the definition of a square span program [17].

Definition 16. A square span program over a finite field Fq consists in a tuple
of m + 1 polynomials v0(x), v1(x), . . . , vm(x) ∈ Fq[x] and a target polynomial
t(x) such that deg vi ≤ deg t for all 0 ≤ i ≤ m. We say that the square span
program ssp has size m and degree d = deg t. We say that ssp accepts an input
a1, . . . , aℓ ∈ {0, 1} if and only if there exist aℓ+1, . . . , am ∈ {0, 1} satisfying

t(x)
∣∣ (v0(x) + m∑

i=1

aivi(x)

)2

− 1.

We say that ssp verifies a boolean circuit C : {0, 1}ℓ → {0, 1} if it accepts exactly
those inputs (a1, . . . , aℓ) ∈ {0, 1}ℓ satisfying

C(a1, . . . , aℓ) = 1.

We follow [24]’s approach for the SSP generation. That is, on a boolean circuit
C of size d, it generates a finite field Fq of q elements such that q ≥ max{d, 8}. Next,
it randomly picks d elements r0, . . . , rd−1 and defines t(x) := (x−r0) · · · (x−rd−1).
It outputs ssp as (

v0(x), . . . , vm(x), t(x)
)
← SSP(C),

where v0, . . . , vm are m + 1 polynomials of degree at most d as in the above
definition.

3 Our Code-based Encoding Scheme

In this section, we describe our instantiation of an encoding scheme from coding
theory, which is based on the RQC cryptosystem. The description of the RQC
encryption scheme was originally published in [1], and can be found in [2] with
little changes. In this work, it is turned into a secret-key and used as an encoding
scheme in the following manner.

1. Setup(1λ): Generate parameters n := n(λ), k := k(λ), δ := δ(λ), w :=
w(λ), we := we(λ), wr := wr(λ). The plaintext space is Fk

qm0 . Output

param :=
(
n, k, δ, w,we, wr, P (x)

)
, where P (x) ∈ Fq[x] is an irreducible

polynomial of degree n which remains irreducible over Fqm0 [x].
2. KeyGen(param): Generate h ← Fn

qm0 ,x,y ← Snw, a generator matrix G ∈
Fk×n
qm0 of a public code C, which is capable of correcting up to δ errors. Output

the public parameters pp := (param,h,G) and sk := (x,y).
3. Enc(pp, sk,m): To encrypt a message m ∈ Fk

qm0 , randomly choose r1, r2 ←
Snwr

and e← Snwe
. Compute{

c1 ← r1 + h · r2,
c2 ← (x+ h · y) · r2 + e+m ·G.

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 11

Return c := (c1, c2).
We note that the noises vectors r1, r2, e are chosen from a common vector
space. Therefore, we also have wr = we.

4. Dec(sk, c): To decrypt, first compute c2 − y · c1, and then use the decoding
algorithm of the code C to recover m.

From the RQC encryption scheme describe above, our encoding scheme
(K,E,D) is defined in which K consists of Setup and KeyGen algorithms, the
encoding algorithm E is the encryption algorithm Enc, the decoding algorithm D
is the decryption algorithm Dec.

We aim at encoding of elements of the finite field Fq, we do it as follows.
For an element s ∈ Fq, define s = (s, 0, . . . , 0) ∈ Fk

q , i.e., the vector s is formed
by placing s in the first entry and 0 elsewhere. An encoding of s is defined
to be an encryption of s, i.e., E(s) := Enc(s). For two elements s1, s2 ∈ Fq,
if we denote t = s1s2, then we have t = s1 · s2 = (s1s2, 0, . . . , 0), and hence,
E(s1s2) = Enc(s1 · s2). Therefore, this mapping (from Fq to Fk

qm0) is well-defined.
To complete the description of our encoding scheme, its properties are defined

below.

– Eval(pk, c1, . . . , cd; a1, . . . , ad) computes and outputs c̃ = (c̃1, c̃2), where c̃b =∑d

i=1 aicb,i, for some prescribed positive integer d describing the number of
desired homomorphic additions and b ∈ {1, 2}.

– Quadratic root detection uses the decryption algorithm to invert ciphertexts
and evaluates value of the polynomial at the obtained messages.

– Image verification uses the decryption algorithm of RQC to test whether a
given vector c is a valid encoding of some plaintext or not.

By the hardness of IRSL problem, a random vector space of noise can be used
a couple of times, which is described in the problem. Our zk-SNARK construction
will exploit this variation in subsequent sections. Furthermore, similar to previous
work [24], we will assume that our encoding scheme satisfies the q-PDH and
q-PKE assumptions as described in Section 2.5.

3.1 Bound of Noise

The main point of this section is to give a feature of the sum of noises in a
particular case, that is, when the sum of noise’s weight is much smaller than
either the vector length or the degree of the field extension. Simply stated, the
weight of the sum is upper-bounded by the sum of every single noise’s weight.

Proposition 1. Let ℓ,m0, n, w1, . . . , wℓ be positive integers such that m0, n >
dw, where dw = w1+· · ·+wℓ. Let ti be randomly chosen from Snwi

for i = 1, . . . , ℓ,

and U = supp
(∑ℓ

i=1 ti
)
. Then, we have dimU ≤ dw.

Proof. The proof is quite straightforwards, since we have

U ⊆ supp t1 ⊕ · · · ⊕ supp tℓ.

12 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

As mentioned earlier, for our construction, noises used in the encodings (in
each group) share a common vector space and the linear coefficient would be in
the based field. Therefore, the noise of the resulted encoding would also belong
to the prescribed vector space. The above proposition proves to be helpful in
the security proof of our zk-SNARK later, and in fact, the equality holds with
overwhelming probability [30].

3.2 Additive Homomorphism

The purpose of this section is to show the additive homomorphism of the RQC
scheme. Intuitively, by the result of the previous section, the noise of the
homomorphic ciphertext grows linearly with respect to the number of additive
components. However, as long as the magnitude of the homomorphic noise is
within the decoding capability of the public code C, the decoding algorithm will
always succeed.

Proposition 2. Let d be the number of additive operations, w,we, wr be magni-
tudes of the secret key and noises from an RQC scheme whose public code can
decode errors of rank weight up to δ. If d(2wwr + we) ≤ δ, then c̃, which is the
output of Eval is a correct encoding.

Proof. Observe that c̃ = (c̃1, c̃2), where{
c̃1 =

∑d

i=1 air
(1)
i + h ·

(∑d

i=1 air
(2)
i

)
,

c̃2 = s ·
(∑d

i=1 air
(2)
i

)
+
∑d

i=1 aiei +
(∑d

i=1 aimi

)
·G.

Since ai’s are elements of Fqm0 , so ∥air(j)i ∥ = ∥r
(j)
i ∥ and ∥aiei∥ = ∥ei∥ for all

1 ≤ i ≤ d and j = 1, 2. By Proposition 1, we get
wrd ≤

∑d

i=1 air
(1)
i ,

wrd ≤
∑d

i=1 air
(2)
i ,

wed ≤
∑d

i=1 aiei.

Thus, ∥∥∥∥x · d∑
i=1

air
(2)
i − y ·

d∑
i=1

air
(1)
i +

d∑
i=1

aiei

∥∥∥∥
≤ w · wrd+ w · wrd+ wed

≤ δ,

which allows successful decryption.

4 Our Code-based zk-SNARK Scheme

In the following, let (K,E,D) be the encoding scheme described in Section 3. We
assume Our zk-SNARK scheme Π is detailed as:

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 13

– Setup. The setup algorithm takes as input the security parameter 1λ in the
unary form and the circuit C. It generates a square span program of degree d
over the field Fq of size q ≥ d that verifies C by running:

ssp =
(
v0(x), . . . , vm(x), t(x)

)
← SSP(C).

Then, it runs (pp, sk) ← K(1λ) using our encoding scheme. It samples
α, β, s← Fq such that t(s) ̸= 0, and returns the crs:

crs :=
(
ssp, pp,G1,G2,G3

)
,

where

G1 :=
{
E(1),E(s), . . . ,E(sd)

}
,

G2 :=
{
E(α),E(αs), . . . ,E(αsd)

}
,

G3 :=
{
E(βt(s)), {E(βvi(s))}mi=ℓu+1

}
,

and ℓu denotes the size of input u of circuit C. Elements in each group are
formed from the encoding scheme which uses three vector spaces of noises
V1, V2, V3, respectively. Furthermore, dimV1 = r, dimV2 = dimV3 = r,
where 0 < r − r.
Finally, it sets vrs = sk and td = (α, β, s) as the verification key and the
trapdoor, respectively.

– Prover. The prover algorithm, on input some statement u := (a1, . . . , aℓu),
and its witness w = (aℓu+1, . . . , am) such that (a1, . . . , am) is a satisfying
assignment for the circuit C. The {ai}i also satisfies

t(x)
∣∣ (v0(x) + m∑

i=1

aivi(x)

)2

− 1.

The prover samples γ ← Fq, sets v(x) = v0(x) +
∑m

i=1 aivi(x) + γt(x) and

h(x) =
v(x)2 − 1

t(x)
∈ Fq[x].

It computes

H = E
(
h(s)

)
, Ĥ = E

(
α · h(s)

)
, V̂ = E

(
α · v(s)

)
,

Vw = E

(
m∑

i=ℓu+1

aivi(s) + γt(s)

)
,

Bw = E

(
β ·
(m∑

i=ℓu+1

aivi(s) + γt(s)

))
.

The prover returns π :=
(
H, Ĥ, V̂ , Vw, Bw

)
.

We note that the prover computes H and Vw from the first encoding group
G1, Ĥ and V̂ from the second group G2, and Bw from the third group G3 in
the following manners. Assume that h(x) = h0 + h1x+ · · ·+ hdx

d, then

14 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

1. H = Eval
(
{E(si)}di=0; {hi}di=0

)
; the same kind of computation is used for

Vw;
2. Ĥ = Eval

(
{E(αsi)}di=0; {hi}di=0

)
; this is also applied for V̂ ;

3. Bw = Eval
(
E(βt(s)), {E(vi(s))}mi=ℓu+1; γ, 1, . . . , 1

)
with the observation

that
γE
(
βt(s)

)
= E

(
γβt(s)

)
.

– Verifier. Upon receiving a proof π and a statement u = (a1, . . . , aℓu), the
verifier, in possession of the verification key vrs first checks that

ĥs − α · hs = 0, v̂s − α · vs = 0,

v2s − 1− hs · ts = 0,

bs − β · vs = 0,

where (hs, ĥs, v̂s, vs, bs) are the values encoded in π =
(
H, Ĥ, V̂ , Vw, Bw

)
,

and ts, vs are computed as ts := t(s) and vs := v0+
∑ℓu

i=1 aivi(s)+ vs. (Recall
that t(s) and vi(s) are obtained from the CRS.)
The verifier checks that whether it is possible to perform one more homo-
morphic operation. (Thus, in our scheme, essentially d takes the value 2.) If
these checks pass, it outputs 1; otherwise, it outputs 0.

Theorem 1. If the q-PKE and q-PDH assumptions hold for the encoding scheme
(K,E,D) then the protocol above is a zk-SNARK with perfect completeness, com-
putational soundness and computational zero-knowledge.

The perfectness of the scheme is guaranteed by the fact that the decryption
step succeeds with probability 1. Therefore, we only need to concern ourselves
with the zero-knowledge and soundness property.

5 Security Analysis of Our zk-SNARK Scheme

5.1 Zero-Knowledge

The idea behind this property is that the distributions of the elements in a proof
does not differ from that of its components. The description of the simulator S
is as follows. On input td = (α, β, s) and u = (a1, . . . , aℓu),

1. S randomly picks an element γ ∈ Fq and computes

h =

(
v0(s) +

∑ℓu
i=1 aivi(s) + γ

)2 − 1

t(s)
.

2. It computes
H = E(h), Ĥ = E(αh),

V̂ = E
(
α(v0(s) +

∑ℓu
i=1 aivi(s) + γ)

)
, Vγ = E(γ),

Bγ = E(βγ).

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 15

3. It outputs (H, Ĥ, V̂ , Vγ , Bγ).

Proof. Since the encodings in each group Gi share a same vector space Vi for
i = 1, 2, 3, and all the polynomials in consideration are in Fq[x], therefore, after
homomorphically adding, the noises in the new encodings belong to the same
vector spaces as that of its component encodings.

Observe that in the real protocol, H and Vw are resulted from adding encodings
of G1, Ĥ and V̂ from G2, and Bw from G3, respectively. By the vIRSL(2n, n, r, N)
problem (for each group), these outputs are computationally indistinguishable
from truly random ones.

On the other hand, by the decisional IRSL(2n, n, r, N) problem, the distribu-
tion of the outputs of the simulated protocol are computationally indistinguishable
from the uniformly random. Therefore, by hybrid argument, we conclude that
the outputs distribution of the real execution and that of the simulation are
computationally indistinguishable.

We note also that the role of γt(s) in the scheme is to hide the witness and
is indispensable. Indeed, since the homomorphic linear coefficients are elements
of Fq, so they form a vector which can be viewed as a rank-1 vector over FN

qm0 .
In this particular situation, finding these low rank vectors can be performed as
follows. From the encodings of G3, except the first, form an n× (m− ℓu) matrix
whose columns are the first parts of these encodings. Note that, without adding
γt(s), the last term of the proof becomes

Bw = E

(
β ·
(m∑

i=ℓu+1

aivi(s)

))
= Eval

(
{E(βvi(s))}mi=ℓu+1; {ai}mi=ℓu+1

)
.

Regarding as a rank decoding problem and by applying algorithm in [14],
(aℓu+1, . . . , am) could be recovered in polynomial time. Thus, witness must
be concealed by the necessary use of the term γt(s).

One may hide the witness by further repeating one more time exactly the
encryption step of the RQC scheme, i.e., re-randomizing the resulted encoding
before outputting it (thus modifying the evaluation algorithm). By the hardness
of the IRSL problem, we can argue the (computational) indistinguishability of
the output. This is somewhat similar to the technique of [27].

5.2 Soundness

The idea of the proof follows the frame of [32] and [24] with some adaptations to
rank-code hardness assumptions.

Proof. Assume that there is an adversary A who can break the scheme Π with
non-negligible probability, we construct an algorithm B to solve q-PDH or q-PKE
problems. First, we show how B can use A for this purpose.

Let π be a proof produced by A which is accepted. Using an extractor of the
d-PKE assumption, B can recover the coefficients of the polynomials v(x), h(x).

16 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

Define

vmid(x) = v(x)− v0(x)−
ℓu∑
i=1

aivi(x).

Since the proof is accepted but the statement is false, so by the same arguments
as in the proof in [32], there are only two possibilities

(i) t(x)h(x) ̸= v2(x)− 1 but t(s)h(s) = v2(s)− 1, or
(ii) Bw is an encoding of βvmid(s) but vmid is not in the linear span of {vℓu+1, . . . ,

vm, t}

Claim. If (i) holds, then B can break the q-PDH assumption with q = 2d− 1.

Proof. Let p(x) = v2(x) − 1 − t(x)h(x). In this case, p(x) is a polynomial of
degree at most 2d having s as a root. Assume that pk is the leading coefficient
of p(x), define

p̂(x) = xk − p−1
k p(x).

We see that s is a root of xk−p̂(x), therefore, it also is a root of xq+1−xq+1−kp̂(x).
Observe that for q = 2d− 1, xq+1−kp̂(x) is a polynomial of degree at most 2d− 1.
Therefore, E

(
sq+1−kp̂(s)

)
can be computed from E(1),E(s), . . . ,E(s2d−1), which

form a challenge of the q-PDH assumption for q = 2d − 1. This means that B
can compute E(sq+1) = E

(
sq+1−kp̂(s)

)
and break the q-PDH assumption for

q = 2d− 1.

Claim. If (ii) holds, then B can break the q-PDH assumption with q = d.

Proof. First, B generates a uniformly random polynomial a(x) of degree q = d sub-
ject to the constraint that all the polynomials a(x)t(x) and {a(x)vi(x)}mi=ℓu+1 do
not contain the term xq. Since deg a(x) = d, so B can compute the value a(s) from
the challenge of the d-PDH assumption, namely, E(1),E(s), . . . ,E(sd),E(sd+2), . . . ,
E(s2d). Thus, when preparing inputs for adversary A, B sets β = a(s). The proof
is accepted, so the term Bw must be an encoding of a known polynomial in s,
i.e., the polynomial

a(s)vmid(s) = b0 + b1s+ · · ·+ b2qs
2q.

Since vmid is not in the linear span of {vℓu+1, . . . , vm, t}, so the above polynomial
has the term sq+1 with overwhelming probability (cf. [23]). B performs an
evaluation as

h = Eval

(
{E(si)}i∈[q+d]\{q+1}, {−bi}i∈[q+d]\{q+1}

)
.

Then b−1
q+1(h + Bw) is an encoding of sq+1, which is a solution to the q-PDH

assumption for q = d.

From these above analyses, B proceeds as follows.

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798

zk-SNARKs from Codes with Rank Metrics 17

– Target at the q-PDH problem with q = 2d − 1. (B can equally target the
q-PDH assumption with q = d, and follow the case (ii).)

– B, from its challenge E(1),E(s), . . . ,E(sq),E(sq+2), . . . ,E(s2q), prepares in-
puts for adversary A, i.e., the crs. That is , B randomly picks α, β ∈ Fq

and computes the corresponding terms in the crs from E(1),E(s), . . . ,E(sd)
(depending on which problem B would target) which form a subset of the set
of elements of the challenge. The elements of the first group come directly
from the challenge while the elements of the second and third groups are
produced by a further step of re-randomization, i.e., by adding some noises
from a common vector space to each encoding. (This operation could be
viewed as re-randomization.) The preparation for a value β is shown as in (ii).
All the encodings of the so-generated crs are ciphertexts sharing a common
vector space of noise, however, by the IRSL(2n, n, r, N) problem, the view of
A on this input is computationally indistinguishable from input of the real
protocol.

– By the contradictory assumption, A outputs a proof which is accepted,
however, the statement is false.

– By using the extractor of the d-PKE assumption, B obtains the coefficients
of polynomial v(x) and h(x).

– If (i) holds, B would find a solution for the q-PDH assumption as described
above and break the q-PDH assumption for q = 2d− 1.

– If (ii) holds, B aborts.

We note that the distribution of the input for A prepared by B is computationally
indistinguishable from that of the real scheme. Therefore, (i) and (ii) happen
with equal chance. Thus, B can break the targeted assumption with non-negligible
probability.

6 Efficiency and Parameters

6.1 Efficiency

– A proof consists of 5 encodings, each of which is a ciphertext of the underlying
RQC scheme. Therefore, the size of proof is |π| = 10m0n log q.

– A crs containsm+1 polynomials vi’s, a polynomial t(x), the public parameters
pp, and (m− ℓu + 2d+ 3) encodings. Each polynomial is of degree at most
d, hence needs (d + 1)m0 log q bits for its description. The size of pp is
dominated by (k + 1)m0n log q. Thus, the size of crs is

(2d+ 4 + k +m− ℓu)m0n log q+ (m+ 2)(d+ 1)m0 log q = O(mm0d log q).

6.2 Parameters

This section provides an example of parameters for the scheme. These parameters
are selected to target the security level of 128 bits and soundness error of the
same level.

18 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

Taking attacks in [18, 6] into consideration, for the IRSL(2n, n, r, N) problem
to be at the 128 bit-level of security, m0, n, and r are chosen such that

m0 >

⌊
m0n−N

2n− ⌊N
r
⌋

⌋
.

And to guarantee the success of decoding, n, r, r, w, and k are chosen such that
w(r+ r) ≤ n−k

2 . (We use the RQC version in which 1 belongs to the vector space
of the secret keys.) Also, the relation between m0 and n is always m0 ≥ n, since
a Gabidulin code is employed. To sum up, parameters are chosen to satisfy that

m0 >
⌊

m0n−N
2n−⌊N

r
⌋

⌋
,

w(r + r) ≤ n−k
2 ,

n ≤ m0.

The parameter d is fixed to be d = 213, and N = 4d is the number of given
“syndromes.” Recall that the size of a proof is |π| = 10m0n log q, so we get the
result.

N q = |F| m0 n k r r w |π| (kB)
215 ≈ 2143 503 491 3 59 61 2 44147

Acknowledgement

The authors would like to thank Vietnam Institute for Advanced Study in
Mathematics (VIASM) for providing a fruitful research environment and working
condition. XTD was supported by the KHMM-2022-C07 project. QHV was
supported in part by the French ANR projects CryptiQ (ANR-18-CE39-0015),
SecNISQ (ANR-21-CE47-0014), TCS-NISQ (ANR-22-CE47-0004), and by the
PEPR integrated project EPiQ ANR-22-PETQ-0007 part of Plan France 2030.

References

1. Aguilar, C., Blazy, O., Deneuville, J.C., Gaborit, P., Zémor, G.: Efficient encryption
from random quasi-cyclic codes. Cryptology ePrint Archive, Report 2016/1194
(2016), https://eprint.iacr.org/2016/1194

2. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O.,
Deneuville, J.C., Gaborit, P., Zémor, G., Couvreur, A., Hauteville, A.:
RQC. Tech. rep., National Institute of Standards and Technology (2019),
available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-2-submissions

3. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (Aug
2009). https://doi.org/10.1007/978-3-642-03356-8_7

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798
https://eprint.iacr.org/2016/1194
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://doi.org/10.1007/978-3-642-03356-8_7

zk-SNARKs from Codes with Rank Metrics 19

4. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO’89. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (Aug 1990).
https://doi.org/10.1007/0-387-34805-0_19

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge
with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019,
Part III. LNCS, vol. 11694, pp. 701–732. Springer, Heidelberg (Aug 2019).
https://doi.org/10.1007/978-3-030-26954-8_23

6. Bidoux, L., Briaud, P., Bros, M., Gaborit, P.: Rqc revisited and more cryptanalysis
for rank-based cryptography. arXiv preprint arXiv:2207.01410 (2022)

7. Blazy, O., Gaborit, P., Mac, D.T.: A rank metric code-based group signature
scheme. In: Wachter-Zeh, A., Bartz, H., Liva, G. (eds.) Code-Based Cryptography.
pp. 1–21. Springer International Publishing, Cham (2022)

8. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (Aug 2004).
https://doi.org/10.1007/978-3-540-28628-8_3

9. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.)
ACNS 16. LNCS, vol. 9696, pp. 117–136. Springer, Heidelberg (Jun 2016).
https://doi.org/10.1007/978-3-319-39555-5_7

10. Bootle, J., Cerulli, A., Groth, J., Jakobsen, S.K., Maller, M.: Arya: Nearly linear-
time zero-knowledge proofs for correct program execution. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 595–626. Springer,
Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03326-2_20

11. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium
on Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00020

12. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Heidelberg
(Aug 2016). https://doi.org/10.1007/978-3-319-31301-6_1

13. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (May
2001). https://doi.org/10.1007/3-540-44987-6_7

14. Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding
problem for rank distance codes. In: Kim, K., Matsumoto, T. (eds.) ASI-
ACRYPT’96. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (Nov 1996).
https://doi.org/10.1007/BFb0034862

15. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EURO-
CRYPT’91. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (Apr 1991).
https://doi.org/10.1007/3-540-46416-6_22

16. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random
oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol.
11892, pp. 1–29. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/

978-3-030-36033-7_1
17. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with

applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (Dec
2014). https://doi.org/10.1007/978-3-662-45611-8_28

https://doi.org/10.1007/0-387-34805-0_19
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/BFb0034862
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-662-45611-8_28

20 Xuan-Thanh Do , Dang-Truong Mac , and Quoc-Huy Vu

18. Debris-Alazard, T., Tillich, J.P.: Two attacks on rank metric code-based schemes:
RankSign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part I. LNCS, vol. 11272, pp. 62–92. Springer, Heidelberg
(Dec 2018). https://doi.org/10.1007/978-3-030-03326-2_3

19. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyen, P.Q. (ed.) Progress in Cryptology - VIETCRYPT 06. LNCS, vol. 4341,
pp. 193–210. Springer, Heidelberg (Sep 2006)

20. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Journal of Cryptology
32(2), 498–546 (Apr 2019). https://doi.org/10.1007/s00145-018-9281-4

21. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.P.: Identity-based encryption
from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part III. LNCS, vol. 10403, pp. 194–224. Springer, Heidelberg (Aug 2017).
https://doi.org/10.1007/978-3-319-63697-9_7

22. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (Aug 2010). https:

//doi.org/10.1007/978-3-642-14623-7_25

23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May
2013). https://doi.org/10.1007/978-3-642-38348-9_37

24. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-SNARKs from
square span programs. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM
CCS 2018. pp. 556–573. ACM Press (Oct 2018). https://doi.org/10.1145/

3243734.3243845

25. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC. pp. 291–304. ACM
Press (May 1985). https://doi.org/10.1145/22145.22178

26. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 305–326. Springer, Heidelberg (May 2016). https://doi.org/10.1007/

978-3-662-49896-5_11

27. Ishai, Y., Su, H., Wu, D.J.: Shorter and faster post-quantum designated-verifier
zkSNARKs from lattices. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp.
212–234. ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484572

28. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992). https:

//doi.org/10.1145/129712.129782

29. Lipmaa, H.: Succinct non-interactive zero knowledge arguments from span programs
and linear error-correcting codes. Cryptology ePrint Archive, Report 2013/121
(2013), https://eprint.iacr.org/2013/121

30. Mac, D.T.: On Certain Types of Code-Based Signatures. Ph.D. thesis, University
of Limoges (2021)

31. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS. pp. 436–453.
IEEE Computer Society Press (Nov 1994). https://doi.org/10.1109/SFCS.1994.
365746

32. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly practical
verifiable computation. Cryptology ePrint Archive, Report 2013/279 (2013), https:
//eprint.iacr.org/2013/279

https://orcid.org/0009-0001-6587-2710
https://orcid.org/0000-0001-9784-950X
https://orcid.org/0009-0000-4916-6798
https://doi.org/10.1007/978-3-030-03326-2_3
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/3243734.3243845
https://doi.org/10.1145/3243734.3243845
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1145/3460120.3484572
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://eprint.iacr.org/2013/121
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://eprint.iacr.org/2013/279
https://eprint.iacr.org/2013/279

	zk-SNARKs from Codes with Rank Metrics

