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Outline of Lecture 1

Our general purpose is to extend optimal transport (Wasserstein)
distances, defined on Borel probability measures on phase space, i.e.
Rd × Rd , to their quantum analogue, i.e. to density operators on
the Hilbert space L2(Rd)

In this first lecture, we

•recall some fundamental results on classical optimal transport
•recall some material trace-class and Hilbert-Schmidt operators
•introduce one first noncommutative extension of optimal transport
•present our quantum extension of the quadratic Wasserstein metric
•discuss some basic estimates and examples of computations
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A CRASH COURSE ON CLASSICAL OPTIMAL TRANSPORT

C. Villani: “Topics in Optimal Transportation”, AMS 2003

L. Ambrosio, N. Gigli, G. Savaré: “Gradient Flows in Metric Spaces
and in the Space of Probability Measures”, 2nd ed., Birkhäuser 2008

C.R. Givens, R.M. Shortt: Michigan Math. J. 31 (1984) 231–240

F. Golse Quantum Wasserstein 3/45



Monge & Kantorovich Problems

Monge’s pbm For µ, ν ∈ P1(Rn), find T : Rn → Rn measurable
s.t. T#µ = ν∫

Rn

|T (x)− x |µ(dx) = inf
F :Rn→Rn

F#µ=ν

∫
Rn

|F (x)− x |µ(dx)

where

Pk(Rn) :=

{
µ ∈ P(Rn) s.t.

∫
Rn

|x |kµ(dx) <∞
}

Kantorovich relaxation of Monge’s pbm For µ, ν ∈ P1(Rn), find

W1(µ, ν) := min
ρ∈C(µ,ν)

∫∫
Rn×Rn

|x − y |ρ(dxdy)

where C(µ, ν) :=

{
ρ∈P(R2n)

∣∣∣∣∣ρ(A×Rn)=µ(A),

ρ(Rn×A)=ν(A),
A ∈ Bor(Rn)

}
Remark T solves Monge’s pbm =⇒ ρ(dxdy) = µ(dx)δT (x)(dy)
solves the Kantorovich relaxed pbm
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Monge-Kantorovich Problem & Weak Topology on P1(Rn)

Kantorovich-Rubinstein Duality using convex duality shows that

W1(µ, ν) = sup
χ∈Lip(Rn,R)

Lip(χ)≤1

∣∣∣∣∫
Rn

χ(z)µ(dz)−
∫

Rn

χ(z)ν(dz)

∣∣∣∣
Consequences
(1) W1 is a metric on P1(Rn)
(2) Let µ ∈ P1(Rn) and µj be a sequence of elements of P1(Rn).
Then the three conditions below are equivalent

(a) W1(µn, µ)→ 0
(b) µj → µ weakly and

lim
R→∞

sup
j≥1

∫
|x |>R

|x |µj(dx) = 0

(c) µj → µ weakly and

lim
j→∞

∫
Rn

|x |µj(dx) =

∫
Rn

|x |µ(dx)
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The Wasserstein W2 Distance

Kantorovich pbm for µ, ν ∈ P2(Rn)

W2(µ, ν) :=

(
min

ρ∈C(µ,ν)

∫∫
Rn×Rn

|x − y |2ρ(dxdy)

)1/2

Kantorovich Duality for W2

W2(µ, ν)2 = sup
a(x)+b(y)≤|x−y|2

a,b∈Cb(Rn)

∫
Rn

a(x)µ(dx) +

∫
Rn

b(x)ν(dx)

Optimal Couplings
(a) (Knott-Smith Thm) ρ ∈ C(µ, ν) optimal coupling forW2 iff there
exists a proper convex l.c.s. function Φ : Rn → R ∪ {+∞} s.t.

supp(ρ) ⊂ graph(∂Φ)

(b) (Brenier’s Thm) if H− dim(S) ≤ n− 1 =⇒ µ(S) = 0, there is
a unique optimal coupling for W2

ρ(dxdy) = µ(dx)δ∇Φ(x)(dy) with Φ : Rn → R ∪ {+∞} convex
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Properties of W2

(1)W2 is a metric on P2(Rn) (the triangle inequality is not obvious).
In particular

W2(µ, ν) = 0 ⇐⇒ µ = ν

Optimal coupling ρ(dxdy)=µ(dx)δx(dy), transport map Id=∇1
2 |x |

2.
(2) Let µ ∈ P2(Rn) and µj be a sequence of elements of P2(Rn).
Then the two conditions below are equivalent

(a) W2(µn, µ)→ 0
(b) µj → µ weakly and

lim
R→∞

sup
j≥1

∫
|x |>R

|x |2µj(dx) = 0

(3) G1,G2 Gaussian with meansm1,m2 & covariance matrices A1,A2

W2(G1,G2)2 = |m1 −m2|2 + tr

(
A1 + A2 − 2

(√
A1A2

√
A1

) 1
2
)

W2(δm1 , δm2) = |m1 −m2|
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(QUANTUM) DENSITY OPERATORS

L. Hörmander: “The Analysis of Linear Partial Differential Operators
III”, Springer 1994

B. Simon: “Trace Ideals and Their Applications”, AMS 2005

F.G., T. Paul: C. R. Acad. Sci. Paris, Ser. I 356 (2018) 177–197
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Trace, Trace-Class Operators

Trace Hilbert space H := L2(Rd); for T ∈ L(H) s.t. T = T ∗ ≥ 0

tr(T ) :=
∑
j≥1

(ej |Tej) ∈ [0,+∞] for all Hilbert basis (ej)j≥0 of H

Trace-class L1(H) := {T ∈L(H) : ‖T‖1 :=tr(|T |) <∞} ⊂ K(H)
•the trace tr extends as a linear functional on L1(H) such that

A ∈ L(H) and T ∈ L1(H) =⇒ AT and TA ∈ L1(H)

tr(AT ) = tr(TA) and | tr(AT )| ≤ ‖A‖‖T‖1

•L1(H) is a Banach space for the trace-norm T 7→ ‖T‖1, with

K(H)′ = L1(H) , L1(H)′ = L(H)
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Partial Trace

Let T ∈ L1(H1 ⊗ H2); then one defines T1 = tr2(T ) ∈ L1(H1) by
the formula

trH1(T1A) = trH1⊗H2(T (A⊗ IH2)) , A ∈ L(H)

Similar definition for tr1(T ) ∈ L1(H2).

(Existence+uniqueness of T1:

K(H1) 3 A 7→ trH1⊗H2(T (A⊗ IH2)) ∈ C

is a norm-continuous linear functional on K(H), and is therefore
represented by a unique trace-class operator T1. That the identity
holds for all A ∈ L(H1) follows from a density argument.)
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Hilbert-Schmidt Operators

Hilbert-Schmidt class L2(H) := {T ∈ L(H) : tr(T ∗T ) <∞}
•The Hilbert-Schmidt class is a Hilbert space for the inner product

(T1|T2)2 := tr(T ∗1T2) , Hilbert-Schmidt norm ‖T‖2 :=
√

tr(T ∗T )

•L1(H) ⊂ L2(H) ⊂ K(H) ⊂ L(H) with continuous inclusions, and

‖T‖ ≤ ‖T‖2 ≤ ‖T‖1
•if T = T ∗ ∈ L2(H), there exists (ej)j≥1 Hilbert basis of H and
(τj)j≥1 ∈ `2(N∗; R) s.t.

T =
∑
j≥1

τjPj , ‖T‖22 =
∑
j≥1

|τj |2 and Pjφ := (ej |φ)Hej

Hence

Tφ(x) =

∫
Rd

t(x , y)φ(y)dy with t(x , y) :=
∑
j≥1

τjej(x)ej(y)

‖T‖22 =

∫∫
Rd×Rd

|t(x , y)|2dxdy
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Quiz 1: Trace-class and Hilbert-Schmidt Operators

Here H := L2(Rd).

(1) Prove that any T ∈ L1(H) can be put in the form T = T1T2
with T1,T2 ∈ L2(H) and ‖T‖1 ≤ ‖T1‖2‖T2‖2.

(2) For all T ∈ L1(H), can one find T1,T2 ∈ L2(H) such that
T = T1T2 and ‖T‖1 = ‖T1‖2‖T2‖2?

(3) Prove that for each T ∈ L1(H), there exists t ≡ t(x , y) such
that z 7→ t(x + z , x) belongs to Cb(Rd

z ; L1(Rd
x )), and

Tr(T ) =

∫
Rd

t(x , x)dx
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Quiz 2: Is a Volterra Operator Trace-Class?

Consider the Volterra operator V defined on L2([0, 1]) by the formula

Vφ(x) =

∫ x

0
φ(y)dy .

(1) Prove that V is the integral operator defined by the integral
kernel v(x , y) = 10≤y≤x .
(2) Is V Hilbert-Schmidt?
(3) Is x 7→ v(x , x) integrable on [0, 1]?
(4) Is V trace-class?
(5) What are the eigenvalues of V ?
(6) What is the spectral radius of V ?

F. Golse Quantum Wasserstein 13/45



(Quantum) Density Operators

Density operators on H := L2(Rd)

D(H) := {T ∈ L(H) s.t. T = T ∗ ≥ 0 and tr(T ) = 1} ⊂ L1(H)

Quantum analogue of P(Rd × Rd)
Dirac bra-ket notation for φ, ψ ∈ H, denote by |ψ〉 the vector ψ

and by 〈φ| the linear functional ψ 7→
∫

Rd

φ(x)ψ(x)dx = 〈φ|ψ〉

If ‖ψ‖H = 1, the notation |ψ〉〈ψ| = orthogonal projection on Cψ
Example: Schrödinger coherent state for q, p ∈ Rd , set

|q, p〉(x) := (2π~)−d/4 exp
(
− 1

2~ |x − q|2
)

exp
(
i
~p · (x −

q
2 )
)

One easily checks that

‖ |q, p〉 ‖H = 1 , so that |q, p〉〈q, p| ∈ D(H)︸ ︷︷ ︸
quantum analogue of δq,p∈P(Rd×Rd )
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Gaussian Wave-Packet: Envelope+Oscillations
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Figure: Oscillating structure of a Gaussian wave-packet
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Gaussian Wave-Packet: 3d Plot
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Figure: With ~ = 8 · 10−5, plot of Z = real part of the coherent state
centered at q = (0, 0) with momentum p = (1, 0) with space variable
(X ,Y ) ∈ R2
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How to Metrize D(H)? [F.G., T. Paul: CRAS2018]

Key example for (q1, p1) 6= (q2, p2), observe that

|q1, p1〉〈q1, p1|︸ ︷︷ ︸
R1

− |q2, p2〉〈q2, p2|︸ ︷︷ ︸
R2

= λ|e〉〈e| − λ|f 〉〈f |

with {e, f } orthonormal and λ ∈ R, since

(R1 − R2)∗ = (R1 − R2) , tr(R1 − R2) = 0 , rank(R1 − R2) = 2

Therefore

‖ |q1, p1〉〈q1, p1|︸ ︷︷ ︸
R1

− |q2, p2〉〈q2, p2|︸ ︷︷ ︸
R2

‖1 = 2λ =
√
2‖R1 − R2‖2

= 2
√

1− e−(|q1−q2|2+|p1−p2|2)/2~︸ ︷︷ ︸
→‖δq1,p1−δq2,p2‖TV as ~→0

→ 2 as ~→ 0

Conclusion ‖ · ‖1 fails to capture phase space distances � O(~1/2)
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NONCOMMUTATIVE MONGE DISTANCE

A. Connes: chapter 6 of “Noncommutative Geometry”, Academic
Press 1994

A. Connes: Ergod. Th. Dynam. Sys 9 (1989), 207–220
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Connes Distance

Let A be a unital C ∗-algebra (Banach ∗-algebra s.t. ‖a∗a‖ = ‖a‖2)
A state on A is a positive linear functional on A (i.e. ω(a∗a) ≥ 0)
of norm 1 (ω positive ⇐⇒ ω(1) = 1)
Examples of states
•A = L(H) and ω(A) := 〈ψ|A|ψ〉 for some ψ ∈ H with ‖ψ‖H = 1
•A = L(H) and ω(A) := tr(RA) for some R ∈ D(H)
Let (H,D) be a Fredholm module on A i.e.
(a) there is a ∗-linear representation π of A in H
(b) D = D∗ unbounded on H s.t. (I + D2)−1 ∈ K(H)
(c) {a ∈ A s.t. [D, π(a)] ∈ L(H)} is norm-dense in A
Theorem [Connes1989] Assume that

{a ∈ A s.t. ‖[D, π(a)]‖H ≤ 1}/C1 is bounded.

Then, the following formula metrizes the set of states on A

dist(ω1, ω2) := sup{|ω1(a)− ω2(a)| s.t. ‖[D, π(a)]‖H ≤ 1}
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Example: Dirac Operator as a Fredholm Module

Set A = C (M) where M =compact spin Riemannian manifold, with
H := L2(M; S) where S =spinor bundle on M, and A acting on H
by scalar multiplication, while D =Dirac operator

distg (x , y) = sup{|a(x)− a(y)| : a ∈ C (M) s.t. ‖[D, a]‖ ≤ 1}

Proof For γ(v)ζ :=Clifford multiplication of ζ ∈ Sx by v ∈ TxM,

([D, a]ξ)x =γ((grad a)x)ξx , ξ ∈ H =⇒ ‖[D, a]‖=‖grad a‖L∞(M)

=⇒ distg (x , y) ≤ sup
Lip(a)≤1

|a(x)− a(y)| ≤ distg (x , y)

(Upper bound obvious by definition; for the lower bound, it suffices
to pick a(z) := distg (z , y).)

F. Golse Quantum Wasserstein 20/45



Remarks on the Connes Distance

•Applies for instance to the case of Γ, a discrete group, with C ∗red(Γ)
defined as the C ∗ algebra generated by the left regular representation
on H := `2(Γ), with L : Γ→ R+ length function (e.g. word length)

L(1) = 0 , L(g−1)L(g) , L(gh) ≤ L(g) + L(h)

Then (H,D) is a Fredholm module on C ∗red(Γ), where

Dξ := (L(g)ξg )g∈Γ for all ξ = (ξg )g∈Γ ∈ `2(Γ)

•Is there a dual formulation of the Connes distance? see [D’Andrea,
Martinetti: J. Geometry Phys. (2021)]
•The Connes distance is a noncommutative analogue of the Monge
distance on the space of positions, not on a phase space
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A QUANTUM ANALOGUE TO W2

F.G., C. Mouhot, T. Paul: Commun. Math. Phys. 343 (2016),
165–205.

F.G. T. Paul: Arch. Ration. Mech. Anal. 223 (2017) 57–94.

Other approaches to defining a quantum analogue of W2:
G. De Palma, D. Trevisan: Ann. H. Poincaré 22 (2021), 3199–3234.
K. Zuckowski, W. Slominski: J. Phys. A 31 (1998), 9095–9104
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Transport Cost

Phase space coordinates position q ∈ Rd , momentum p ∈ Rd

Quantization rule (simplest)

a(q)→ multiplication by a(y) in L2(Rd
y ) , p 7→ −i~∇y

•Classical-to-quantum transport cost=operator on L2(Rd
y )

c~(x , ξ) := |x − y |2 + |ξ + i~∇y |2︸ ︷︷ ︸
quantization in (y ,η) of |x−q|2+|ξ−p|2

≥ d~IH

•Quantum-to-quantum transport cost=operator on L2(Rd
x ×Rd

y )

C~ := |x − y |2 − ~2(∇x −∇y ) · (∇x −∇y )︸ ︷︷ ︸
quantization of |q−q′|2+|p−p′|2

≥ 2d~IH⊗H

(Lower bounds implied by Heisenberg’s uncertainty inequality)
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Finite Energy Density Operators

Example
|q|2 + |p|2︸ ︷︷ ︸

phase space
Euclidean norm

→ |x |2 − ~2∆x︸ ︷︷ ︸
harmonic oscillator

Quantum analogue of P2(Rd × Rd)

D2(H) := {R ∈ D(H) s.t. tr(R
1
2 (|x |2 − ~2∆x)R

1
2 ) <∞}

For some {ψn∈L2(Rd,|x |2dx)∩H1(Rd)} orthonormal in H=L2(Rd)

R =
∑
n≥1

ρn|ψn〉〈ψn|∈D2(H) ⇐⇒


ρn ≥ 0 and

∑
n≥1

ρn = 1

∑
n≥1

ρn(‖xψn‖2H+~2‖∇ψn‖2H)<∞
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Couplings

•Denote C(µ, ν) the set of (classical) couplings of µ, ν ∈ P(R2d)

•Set of couplings of 2 quantum density operators R,S :

C(R, S) := {T ∈ D(H⊗H) s.t. tr(T (A⊗I+I⊗B)) = tr(RA+SB)}

•Coupling Q of a probability density f (x , ξ) on R2d with R ∈ D(H)

R2d 3 (x , ξ) 7→ Q(x , ξ) = Q(x , ξ)∗ ∈ L(H) s.t. Q(x , ξ) ≥ 0 a.e.

tr(Q(x , ξ)) = f (x , ξ) a.e., and
∫

R2d
Q(x , ξ)dxdξ = R

The set of couplings of f with R will be denoted C(f ,R)

Examples for all R,S ∈ D(H) and each f probability density on R2d

R⊗S ∈ C(R, S) , {fR = f ⊗CR : (x , ξ) 7→ f (x , ξ)R} ⊂ C(f ,R)
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Extending W2 to D := P2(Rd × Rd) ∪ D2(H)

•For µ, ν ∈ P2(R2d), set d(µ, ν) :=W2(µ, ν)

•For f (x , ξ)dxdξ ∈ P2(R2d) and R ∈ D2(H), set

d(f ,R) := inf
Q∈C(f ,R)

(∫
R2d

trH(Q(x , ξ)
1
2 c~(x , ξ)Q(x , ξ)

1
2 )dxdξ

) 1
2

•For R, S ∈ D2(H), set

d(R,S) := inf
T∈C(R,S)

(
trH⊗H(T

1
2C~T

1
2 )
) 1

2

Remark for f (x , ξ)dxdξ ∈ P2(R2d) and R,S ∈ D2(H)

d(f ,R) ≥
√
d~ and d(R, S) ≥

√
2d~

In particular d(R,R) > 0 (hence d is not a bona fide metric)
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Quiz 3: Finite Energy+2nd Moment Implies Finite d

Prove that d(f ,R) + d(R,S) < ∞ for all R,S ∈ D2(H) and all
probability density f with finite second order moments.
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Toeplitz Quantization

Wave packet For all q, p ∈ Rd , set

|q, p〉(x) := (π~)−d/4 exp(− 1
2~ |x − q|2) exp( i

~p · (x −
q
2 ))

Toeplitz map To m, Radon measure on Rd , associate the operator

T [m] :=

∫
Rd

|q, p〉〈q, p|m(dqdp)

The form-domain of T [m] is the set of φ ∈ H such that the function
(q, p) 7→ 〈q, p|ψ〉 belongs to L2(R2d ;m)
Basic properties
(1) T [1] = (2π~)d IH, while m ∈ P(Rd × Rd) =⇒ T [m] ∈ D(H)
(2) one has T [q] = (2π~)dx , while T [p] = (2π~)d(−i~∇x)
(3) if f is a quadratic form on Rd , then{

T [f (q)] = (2π~)d
(
f (x) + 1

4~(∆f )IH
)
and

T [f (p)] = (2π~)d
(
f (−i~∇x) + 1

4~(∆f )IH
)
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Husimi Transform

To T ∈ L(H), one associates its Husimi transform

H[T ](q, p) := 1
(2π~)d

〈q, p|T |q, p〉

Properties
(1) T = T ∗ =⇒ H[T ](q, p) ∈ R and T ≥ 0 =⇒ H[T ] ≥ 0
(2) One has H[T [m]] = e

~
2 ∆q,pm since

〈q, p|q′, p′〉 = e−
1
4~ (|q−q′|2+|p−p′|2)e−

i
~ (p·q′−q·p′)

(3) One has H[I ] = (2π~)−d , while{
H[f (x)](q, p) = (2π~)−d(I + 1

4~∆)f (q) and

H[f (−i~∇x)](q, p) = (2π~)−d(I + 1
4~∆)f (p)

(4) One has

tr(R∗T [f ]) = (2π~)d
∫∫

Rd×Rd

H[R](q, p)f (q, p)dqdp
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Explicit Computations/Estimates

Theorem 1
(1) For f , g probability densities on R2d with finite 2nd moments

d(T [f ], T [g ])2≤W2(f , g)2+2d~, d(T [f ], T [f ]) =
√
2d~

d(f , T [g ])2≤W2(f , g)2+d~, d(f , T [f ]) =
√
d~

(2) For R, S ∈ D2(H)

W2(H[R],H[S ])2 ≤ d(R,S)2 + 2d~
W2(f ,H[R])2 ≤ d(f ,R)2 + d~

(3) Moreover, if rank(R) = 1, then

d(R, S) = trH⊗H((R ⊗ S)
1
2C~(R ⊗ S)

1
2 )

1
2

d(f ,R) =

(∫
R2d

f (x , ξ) trH(R
1
2 c~(x , ξ)R

1
2 )dxdξ

) 1
2
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Geometric Interpretation

(g)

f

g

θ

Quantum densities

Set of classical densities

π/2

T

Figure: The second inequality in (1) can be recast as

d(f , T [g ])2 ≤ d(f , g)2 + d(g , T [g ])2

since d(g , T [g ]) =
√
d~ = min d

This suggests that
(1) “the segment [g , T [g ]] is orthogonal to the set of classical densities”,
(2) the “angle” θ is acute.
Hence the set of quantum densities lies on the “concave” side of the set
of classical densities
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Proof of Theorem 1 (1)

Let ∇Φ (with Φ convex) be the Brenier map pushing f to g . The
optimal coupling of f and g for W2 is

Λ := f (x , ξ)δ∇Φ(x ,ξ)(dydη)dxdξ

Hence

T [Λ]∈C(T [f ],T [g ]) and (x , ξ) 7→ f (x , ξ)T [δ∇Φ(x ,ξ)]∈C(f ,T [g ])

On the other hand

H[C~](q, p, q′, p′) = (2π~)−2d(|q − q′|2 + |p − p′|2 + 2d~)

H[c~(x , ξ)](q, p) = (2π~)−d(|x − q|2 + |ξ − p|2 + d~)
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Therefore

d(T [f ], T [g ])2 ≤ trH⊗H(T [Λ]
1
2C~T [Λ]

1
2 )

=

∫
R4d

(|q − q′|2 + |p − p′|2 + 2d~)︸ ︷︷ ︸
=(2π~)2dH[C~](q,p)

Λ(dqdpdq′dp′)

=W2(f , g)2 + 2d~

and

d(f , T [g ])2 ≤
∫

R2d
trH(T [δ∇Φ(x ,ξ)]

1
2 c~(x , ξ)T [δ∇Φ(x ,ξ)]

1
2 )f (x , ξ)dxdξ

=

∫
R2d

(|(x , ξ)−∇Φ(x , ξ)|2 + d~)︸ ︷︷ ︸
=(2π~)dH[c~(x ,ξ)](∇Φ(x ,ξ))

f (x , ξ)dxdξ =W2(f , g)2 + d~

q.e.d.

F. Golse Quantum Wasserstein 33/45



Proof of Theorem 1 (2)

Pick an, bn ∈ Cb(R2d ; R) such that

an(q, p) + bn(q′, p′) ≤ |q − q′|2 + |p − p′|2 , and∫
R2d

an(q, p)H[R](q, p)dqdp︸ ︷︷ ︸
=(2π~)−d trH(T [an]R)

+

∫
R2d

bn(q′, p′)H[S ](q′, p′)dq′dp′︸ ︷︷ ︸
=(2π~)−d trH(T [bn]S)

→W2(H[R],H[S ])2

On the other hand, for each T ∈ C(R,S), one has

(2π~)−d trH(T [an]R) + (2π~)−d trH(T [bn]S)

= (2π~)−d trH⊗H(T
1
2 (T [an]⊗ I + I ⊗ T [bn])T

1
2 )

= (2π~)−2d trH⊗H(T
1
2T [an ⊗ 1 + 1⊗ bn]T

1
2 )

≤ (2π~)−2d trH⊗H(T
1
2T [|q−q′|2+|p−p′|2]T

1
2 )
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Now, one has

T [|q−q′|2+|p−p′|2] = (2π~)2d(C~ + 2d~IH⊗H)

Thus, for all T ∈ C(R,S), one has

W2(H[R],H[S ])2 = lim
n→∞

(2π~)−d (trH(T [an]R) + trH(T [bn]S))

≤ trH⊗H(T
1
2 (C~ + 2d~IH⊗H)T

1
2 ) = trH⊗H(T

1
2C~T

1
2 ) + 2d~

Minimizing the r.h.s. in T ∈ C(R,S) leads to

W2(H[R],H[S ])2 ≤ d(R,S)2 + 2d~

q.e.d.
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Quiz 4: Another Proof of Theorem 1 (2)

(1) Start from

T [|q − q′|2 + |p − p′|2] = (2π~)2d(C~ + 2d~IH⊗H)

(2) For each T ∈ C(R, S), write

trH⊗H

(
T

1
2C~T

1
2

)
+2d~≥ 1

(2π~)d
trH⊗H

(
TT

[
|q−q′|2+|p−p′|2

1+ε|q−q′|2+ε|p−p′|2

])
=

∫
R4d
H[T ](q, p, q′, p′) |q−q′|2+|p−p′|2

1+ε|q−q′|2+ε|p−p′|2 dqdpdq
′dp′

(3) Conclude by monotone convergence, after observing that H[T ]
is a coupling of H[R] and H[S ]
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Proof of Theorem 1 (3)

Question structure of couplings for rank-1 density operators?

Lemma 2 Let R ∈ D(H). Then

rank(R) = 1 =⇒

{
C(f ,R) = {fR} , f ∈P(Rd×Rd)

C(R,S) = {R ⊗ S} , S ∈ D(H)

Remark Rank-1 density operators=quantum analogues of Dirac mass

C(µ, δz) = {µ⊗ δz} for all µ ∈ P(Rd × Rd)

Obviously Lemma 2 =⇒ Theorem 1 (3)

Proof Since rank(R) = 1, it is of the form R = |φ〉〈φ| with ‖φ‖H = 1

tr(((I − R)⊗ I )Q((I − R)⊗ I )) = tr(Q((I − R)2 ⊗ I ))

= tr(Q((I − R)⊗ I )) = tr(R(I − R)) = 0
=⇒ ((I − R)⊗ I )Q((I − R)⊗ I ) = 0
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Next, we deduce from the Cauchy-Schwarz inequality that

|〈ψ1 ⊗ ψ2|(R ⊗ I )Q((I − R)⊗ I )ψ′1 ⊗ ψ′2〉|2

≤ 〈ψ′1 ⊗ ψ′2|((I − R)⊗ I )Q((I − R)⊗ I )ψ′1 ⊗ ψ′2〉
×〈ψ1 ⊗ ψ2|(R ⊗ I )Q(R ⊗ I )ψ1 ⊗ ψ2〉

Hence
(R ⊗ I )Q((I − R)⊗ I ) = 0 = ((R ⊗ I )Q((I − R)⊗ I ))∗

= ((I − R)⊗ I )Q(R ⊗ I )

=⇒ Q = (R ⊗ I )Q(R ⊗ I )

so that Q = R ⊗ T where

〈ψ|T |ψ′〉 := 〈φ⊗ ψ|Q|φ⊗ ψ′〉

Finally, T = S , since, for all A ∈ L(H), one has

tr(SA) = tr(Q(I ⊗ A)) = tr((R ⊗ T )(I ⊗ A)) = tr(TA)

q.e.d.
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Quiz 5: Coupling Probability Densities with Pure States

Complete the proof of Lemma 2 in the case C(f ,R) with R a rank-1
density operator.
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QUANTUM OT IS CHEAPER

E. Caglioti, F. Golse, T. Paul: J. Statistical Phys. 181 (2020),
149–162
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Exploring the Structure of Quantum Optimal Couplings

With d = 1 and 0 < a < b, set

µ := 1
2(δ+a,0 + δ−a,0) and ν := 1

2(δ+b,0 + δ−b,0) ∈ P2(R× R)

Proposition 3
(1) One has

d(T [µ], T [ν])2 =W2(µ, ν)2 + 2~

(2) For ρ1, ρ2 ∈ P2(R2d) with optimal coupling Π for W2, one has

d(T [ρ1], T [ρ2])2 =W2(ρ1, ρ2)2 + 2d~
⇐⇒ T [Π] ∈ C(T [ρ1], T [ρ2]) optimal for d
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Figure: Left: equal masses; Right: unequal mass case
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For 0 < ε < 1, set

µ = 1
2(δ+a,0 + δ−a,0) and ρε = 1+ε

2 δ+a,0 + 1−ε
2 δ−a,0 ∈ P2(R× R)

Proposition 4
For each ε ∈ (0, 1), one has

d(T [µ], T [ρε])
2 <W2(µ, ρε)

2 + 2~

Idea of the proof Optimal coupling(s) in the unequal mass case

T =
∑

k,l ,m,n∈{±}

τklmn|k , l〉〈m, n| with |k , l〉 = |ka, 0〉 ⊗ |lb, 0〉

=
∑

k,l∈{±}

τklkl |k, l〉〈k , l |︸ ︷︷ ︸
Toeplitz coupling

+
∑

(k,l) 6=(m,n)∈{±}

τklmn|k , l〉〈m, n|︸ ︷︷ ︸
nonclassical contribution
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Remarks

Since density operators are characterized by their Husimi transforms,
and since the Husimi transform of a density operator is a probability
density, a natural idea to define optimal transport distances between
density operators is to set

dZS(ρ1, ρ2) =W2(H[ρ1],H[ρ2]) , ρ1, ρ2 ∈ D2(H)

This definition has some advantages over the one proposed here —
in the first place, one is always dealing with probability densities,
i.e. functions on phase space, which are easier to manipulate than
operators. This approach has been proposed by K. Zyczkowski and
W. Slomczynski [J. Phys. A 31 (1998), 9095–9104].

However, there is a rather heavy price to pay with this approach,
which is that the Husimi transform, and therefore dZS is not easy to
propagate by usual quantum dynamics.
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Quiz 6: Husimi Characterizes the Operator

(1) Let R ∈ D2(H). Prove that H[R] is a probability density, and
compute ∫∫

Rd×Rd

(|q|2 + |p|2)H[R](q, p)dqdp

(2) Let R,S ∈ D2(H), and assume that H[R] = H[S ]. Prove that
R = S . (Idea: let r ≡ r(y , y ′) be an integral kernel of R . Set

J(x , ξ) =

∫∫
Rd×Rd

r(y , y ′)e−(|y |2+|y ′|2)/2~ex ·(y+y ′)−iξ·(y−y ′)/~dydy ′

Prove that J extends as a holomorphic function on Cd × Cd , and
therefore is uniquely determined by its restriction to Rd ×Rd . Con-
clude by (a) computing the formula relating H[R] to J, and (b) by
computing the integral kernel r of R in terms of J.)
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