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Outline of Lecture 2

In this lecture, we shall discuss several applications of the quantum
Wasserstein pseudometric d introduced in lecture 1. These applica-
tions include

•various limits of many-body problems in quantum mechanics

•proofs of the uniform in ~ convergence of some numerical schemes
for quantum dynamics

•some observation inequalities for the Schrödinger and Heisenberg
equations
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BASICS OF QUANTUM DYNAMICS

J.-L. Basdevant, J. Dalibard: “Quantum Mechanics”, Springer 2002
C. Cohen-Tannoudji, B. Diu, F. Laloë: “Quantum Mechanics I”, Wi-
ley 1977
B.C. Hall: “Quantum Theory for Mathematicians”, Springer 2013
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Classical Mechanics

Point particle of mass m with position, momentum q(t), p(t) ∈ Rd

Hamiltonian

H(q, p) = |p|2/2m︸ ︷︷ ︸
kinetic

+ V (q)︸ ︷︷ ︸
potential

= energy

•Newton’s 2nd law of motion in Hamiltonian form

q̇(t) = ∂H/∂p = p(t)/m , ṗ(t) = −∂H/∂q = −∇V (q(t))

•Liouville equation for f ≡ f (t, x , ξ) = probability density of finding
the point at x with momentum ξ at time t

∂t f (t, x , ξ) + 1
mξ · ∇x f (t, x , ξ)−∇V (x) · ∇ξf (t, x , ξ)︸ ︷︷ ︸

={H,f (t,·,·)} (Poisson bracket)

= 0
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Quantum Mechanics

Wave function ψ ≡ ψ(t, x) ∈ L2(Rd ; C) =: H s.t. ‖ψ(t, ·)‖H = 1
Quantum Hamiltonian = unbounded operator on H

H = − ~2
2m∆x + V (x) = H∗

Correspondence principle

V (q)→ multiplication by V (x) and pj → −i~∂qj = ~Dqj

Schrödinger equation

i~∂tψ = Hψ =⇒ ψ(t, ·) = e−itH/~︸ ︷︷ ︸
unitary

ψ(0, ·)

von Neumann equation for R(t) = projection on Cψ(t, ·)

i~∂tR(t) = HR(t)− R(t)H︸ ︷︷ ︸
=:[H,R(t)]

=⇒ R(t) = e−itH/~R(0)e itH/~
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Quantum → Classical Mechanics

Asymptotic regime ~� “typical” action of the particle

(a) WKB ansatz seek wave function in the form of the formal series

ψ(t, x) =
∑
n≥0

~nan(t, x)e iS(t,x)/~ , S(t, x) and an(t, x) ∈ R

Leading order equations (usually only local in time due to caustics)

∂tS + H(∇xS , x) = 0 , ∂ta
2
0 + divx(a2

0∇xS(t, x)) = 0

(b) Schrödinger coherent states wave function |q(t), p(t)〉 =
plane wave with O(~) wavelength and a Gaussian envelope of width
O(
√
~); what is the (classical) dynamics of q(t), p(t) for such states

to approximately follow the quantum dynamics?
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Wigner Transform

Let R ∈ L(H) be the integral operator

Rφ(x) =

∫
Rd

r(x , y)φ(y)dy

Ex for R = projection on Cψ with ‖ψ‖H = 1, denoted R = |ψ〉〈ψ|

Rφ(x) =

(∫
Rd

ψ(y)φ(y)dy

)
︸ ︷︷ ︸

=:〈ψ|φ〉

ψ(x) =⇒ r(x , y) = ψ(x)ψ(y)

Wigner transform of R

W~[R](q, p) := 1
(2π)d

∫
Rd

r(q + 1
2~y , q −

1
2~y)e ip·ydy

Observe that

R = R∗ =⇒ W~[R](q, p) ∈ R BUT R ≥ 0 6=⇒ W~[R] ≥ 0

F. Golse Quantum Wasserstein 7/42



Quiz 1: Wigner and Husimi, Propagation

(1) Prove that

H[R](q, p) = exp(1
4~(∆q + ∆p))W~[R](q, p)

(Hint: recall the formula for the Fourier transform of a Gaussian.)

(2) Set H := −1
2~

2∆x + 1
2 |x |

2, and U(t) := e−itH/~. For each
R in ∈ D(H), write a PDE satisfied by W~[U(t)R inU(−t)].

(3) Same question with H := −1
2~

2∆x + V (x). What are the as-
sumptions needed on the potential V for the formal computation to
be made rigorous?
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Quantum → Classical Mechanics

Thm [Lions-Paul Rev.Mat. Iberoam.1993] Let R in
~ =(R in

~ )∗≥0 be s.t.

W~[R in
~ ]→ f in in S ′(Rd × Rd) as ~→ 0

where f in = probability density on Rd × Rd . Then

W~[e−itH/~R in
~ e itH/~]→ f (t, ·, ·) in S ′(Rd × Rd) as ~→ 0

where f is the probability density solution to the Liouville equation
with initial data f in.
Example WKB wave function with ‖ain‖L2 = 1 and S ∈ Lip(Rd ; R)

ψin
~ (x) = ain(x)e iS

in(x)/~ =⇒ f in(q, p) = |ain(q)|2δ(p −∇S in(q))
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Pair Dispersion

Classical dynamics with m = 1 and denoting L := Lip(∇V ), one
has {

Ẋ = Ξ

Ξ̇ = −∇V (X )
and

{
Ẏ = H

Ḣ = −∇V (Y )

=⇒ d
dt (|X − Y |2 + |Ξ− H|2) ≤ (1 + L)(|X − Y |2 + |Ξ− H|2)

Quantum dynamics since H = −~2
2 ∆x + V (x) = H∗ on L2(Rd

x )

i~∂tψ1 = Hψ1 and i~∂tψ2 = Hψ2

=⇒ d
dt

∫
Rd

|ψ1(t, x)− ψ2(t, x)|2dx = 0

Uniform in ~ > 0 estimate of ‖ψ1(t, ·) − ψ2(t, ·)‖L2(Rd ) without
assuming regularity on the potential V (e.g. for V ∈ L∞(Rd)) but...
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MEAN-FIELD AND CLASSICAL LIMITS
IN QUANTUM MECHANICS

F. G., C. Mouhot, T. Paul: Commun; Math. Phys. 343 (2016),
165–205

F. G., T. Paul: Archive Rational Mech. Anal. 223 (2017) 57–94
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Mean-Field Limit vs Classical Limit

Schrödinger N→∞−→ Hartree

↓ ↓

~→ 0 ↘ ~→ 0

↓ ↓

Liouville N→∞−→ Vlasov

•Uniformity as ~ → 0 of the upper horizontal (mean-field) limit
discussed in
[Graffi-Martinez-Pulvirenti: M3AS 13 (2003), 59–73]
[Pezzotti-Pulvirenti: Ann. Henri Poincaré 10 (2009), 145–187]
•Semiclassical limit of Hartree, no cvgce rate, including Coulomb:
[Lions-Paul Rev. Mat. Iberoam. 9 (1993), 553–618]
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Quantum N-Particle Dynamics

Assumptions on the interaction potential

V ∈ C 1,1(Rd) with V− ∈ L∞(Rd) and V (z) = V (−z) ∈ R

Quantum N-particle Hamiltonian with N � 1 and ~� 1

HN :=
N∑

k=1

−1
2~

2∆xk + 1
N

∑
1≤k<l≤N

V (xk−xl) , Dom(HN)=H2(RdN)

is self-adjoint on HN := H⊗N ' L2(RdN); let UN(t) := e−itHN/~.
•The operator RN(t) = UN(t)R in

NUN(t)∗ solves Heisenberg’s eqn:

i~∂tRN(t) = [HN ,R~,N(t)] , R~,N(0) = R in
N ∈ D(HN)

•Pure state RN(t) = |UN(t)ΨN〉〈UN(t)ΨN | with ‖ΨN‖HN
= 1
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Mean-Field Equations

Time-dependent Hartree equation for pure states

i~∂tψ(t, x) = −1
2~

2∆xψ(t, x) + ψ(t, x)V ?x |ψ|2(t, x) , x ∈ Rd

For mixed states

i~∂tR(t) = [−1
2~

2∆x + VR(t),R(t)] , R(0) = R in ∈ D(H)

with mean-field potential defined by the formula

VR(t)(x) := trH(V (· − x)R(t)) , x ∈ Rd

Vlasov equation: i
~ [·, ·]→ {·, ·} (Poisson bracket on C 1(Rd×Rd))

∂t f (t, x , ξ) + ξ ·∇x f (t, x , ξ)−(∇V ?x ,ξ f (t, x , ξ))·∇ξf (t, x , ξ)︸ ︷︷ ︸
{ 12 |ξ|2+V ?x,ξf (t,x ,ξ),f (t,x ,ξ)}

= 0

f (0, x , ξ) = f in(x , ξ) , x , ξ ∈ Rd
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Uniform as ~→ 0 Convergence Rate as N →∞
•From N-body Heisenberg to Hartree

Theorem 1 Setting L := 2 + max(4Lip(∇V )2, 1), choose an initial
(1-particle) distribution function f in such that f indxdξ ∈ P2(R2d).
Set the Hartree initial data to be R in = T [f in]. For each t > 0

d
(
R(t)⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗

)2
N︸ ︷︷ ︸

Normalized OT square pseudometric
per degree of freedom

≤2d~eLt︸ ︷︷ ︸
classical
~→0

+
8‖∇V ‖L∞

N−1
eLt−1

L︸ ︷︷ ︸
mean field
N→∞

In particular — see Theorem 1 (2) in Lecture 1 — one has

W2
(
H[R(t)⊗N ],H[UN(t)T [(f in)⊗N ]UN(t)∗]

)2
N︸ ︷︷ ︸

Normalized Wasserstein-2 distance
per degree of freedom

≤8‖∇V ‖L∞
N−1

eLt−1
L

+ 2d~
(
eLt + 1

)
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•From N-body Heisenberg to Vlasov

Theorem 2 Under the same assumptions as above,

d
(
f (t, ·)⊗N ,UN(t)T [(f in)⊗N ]UN(t)∗

)2
N︸ ︷︷ ︸

Normalized OT square pseudometric
per degree of freedom

≤d~eLt︸ ︷︷ ︸
classical
~→0

+
8‖∇V ‖L∞

N−1
eLt−1

L︸ ︷︷ ︸
mean field
N→∞

In particular — see Theorem 1 (2) in Lecture 1 — one has

W2
(
f (t, ·)⊗N ,H[UN(t)T [(f in)⊗N ]UN(t)∗]

)2
N︸ ︷︷ ︸

Normalized Wasserstein-2 distance
per degree of freedom

≤8‖∇V ‖L∞
N−1

eLt−1
L

+ d~
(
eLt + 1

)
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Sketch of Proof

(1) Pick Qin
N ∈ C(R in

N , (R
in)⊗N , ) and solve for QN(t) ∈ D(HN⊗HN)

i~∂tQN(t)=

[
HN⊗IHN

+ IHN
⊗

N∑
k=1

Jk,N(−~2
2 ∆+VR(t)),QN(t)

]
QN(0) = Qin

N , Jk,NA := I
⊗(k−1)
H ⊗ A⊗ I

⊗(N−k)
H

One checks, by taking partial traces and using uniqueness for the
solution of Heisenberg’s equation with time-dependent potential that

QN(t) ∈ C(RN(t),R(t)⊗N) , for all t ≥ 0

(2) Let DN(t) := 1
N trHN⊗HN

(QN(t)
1
2C~QN(t)

1
2 ) with C~ given by

C~Φ:≡
N∑
j=1

(|xj − yj |2Φ− ~2(divxj−divyj )((∇xj−∇yj )Φ))(XN ,YN)
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(3) By definition of DN(t), using (1) shows that

DN(t) ≥ 1
N d(RN(t),R(t)⊗N)2 , for all t ≥ 0

(4) On the other hand

i~
dDN

dt
= 1

N trHN⊗HN
(QN(t)

1
2 [HN ⊗ IHN

,C~]QN(t)
1
2 )

+
N∑

k=1

1
N trHN⊗HN

(QN(t)
1
2 [IHN

⊗ Jk,N(−1
2~

2∆ + VR(t)),C~]QN(t)
1
2 )

and it remains to compute

ZN = − i

~

[
HN ⊗ IHN

+ IHN
⊗

N∑
k=1

Jk,N(−1
2~

2∆ + VR(t)),C~

]
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(5) Denoting A ∨ B = AB + BA, one finds that

ZN =
N∑
j=1

(xj − yj) ∨ (−i~∇xj + i~∇yj )

+
N∑
j=1

1
N

N∑
k=1

(−∇V (xj − xk) +∇VR(t)(yj)) ∨ (−i~∇xj + i~∇yj )

and one uses the elementary operator inequality

AB∗ + BA∗ ≤ AA∗ + BB∗

to prove that

ZN ≤ 2C~ +
N∑
j=1

∣∣∣∣∣∇VR(t)(yj)− 1
N

N∑
k=1

∇V (xj − xk)

∣∣∣∣∣
2
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Split the summand so as to involve the difference between the N-
body and the mean-field potentials on the yj variables only

ZN ≤2C~ + 2
N∑
j=1

∣∣∣∣∣ 1
N

N∑
k=1

(∇V (yj − yk)−∇V (xj − xk))

∣∣∣∣∣
2

+ 2
N∑
j=1

∣∣∣∣∣∇VR(t)(yj)− 1
N

N∑
k=1

∇V (yj − yk)

∣∣∣∣∣
2

≤2C~ + 2
N Lip(∇V )2

N∑
j ,k=1

|(yj − yk)− (xj − xk)|2︸ ︷︷ ︸
≤2NC~

+ 2
N∑
j=1

∣∣∣∣∣∇VR(t)(yj)− 1
N

N∑
k=1

∇V (yj − yk)

∣∣∣∣∣
2
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(6) It remains to bound

N∑
j=1

trHN⊗HN

QN(t)
1
2

∣∣∣∣∣∇VR(t)(yj)− 1
N

N∑
k=1

∇V (yj − yk)

∣∣∣∣∣
2

QN(t)
1
2


=

N∑
j=1

trHN

∣∣∣∣∣∇VR(t)(yj)− 1
N

N∑
k=1

∇V (yj − yk)

∣∣∣∣∣
2

R(t)⊗N


Easy since QN(t) is replaced by the factorized density R(t)⊗N

Now, for each j , set Wk := ∇V (yk −yj)−∇VR(t)(yj); then one has

trH(WkR(t))=0 =⇒ trHN

∣∣∣∣∣ 1
N

N∑
k=1

Wk

∣∣∣∣∣
2

R(t)⊗N

=
trH(|W |2R(t))

N

q.e.d.
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Remarks (from Lecture 1)

Since density operators are characterized by their Husimi transforms,
and since the Husimi transform of a density operator is a probability
density, a natural idea to define optimal transport distances between
density operators is to set

dZS(ρ1, ρ2) =W2(H[ρ1],H[ρ2]) , ρ1, ρ2 ∈ D2(H)

This definition has some advantages over the one proposed here —
in the first place, one is always dealing with probability densities,
i.e. functions on phase space, which are easier to manipulate than
operators. This approach has been proposed by K. Zyczkowski and
W. Slomczynski [J. Phys. A 31 (1998), 9095–9104].

However, there is a rather heavy price to pay with this approach,
which is that the Husimi transform, and therefore dZS is not easy to
propagate by usual quantum dynamics.
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Quiz 6 (from Lecture 1)

(1) Let R ∈ D2(H). Prove that H[R] is a probability density, and
compute ∫∫

Rd×Rd

(|q|2 + |p|2)H[R](q, p)dqdp

(2) Let R,S ∈ D2(H), and assume that H[R] = H[S ]. Prove that
R = S . (Idea: let r ≡ r(y , y ′) be an integral kernel of R . Set

J(x , ξ) =

∫∫
Rd×Rd

r(y , y ′)e−(|y |2+|y ′|2)/2~ex ·(y+y ′)−iξ·(y−y ′)/~dydy ′

Prove that J extends as a holomorphic function on Cd × Cd , and
therefore is uniquely determined by its restriction to Rd ×Rd . Con-
clude by (a) computing the formula relating H[R] to J, and (b) by
computing the integral kernel r of R in terms of J.)
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TIME-SPLITTING SCHEMES FOR QUANTUM DYNAMICS

F.G., S. Jin, T. Paul: Found. Comput. Math. 21 (2021), 613–647
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Time-Splitting for Quantum Dynamics

Heisenberg equation with unkown R(t) = R(t)∗ ≥ 0

i~∂tR = [−1
2~

2∆x + V (x)︸ ︷︷ ︸
H~

,R] , R
∣∣
t=0 = R in

Time-split Heisenberg equation starting from R0 = R in

Rn+ 1
2 = exp( i~∆t

2 ∆x)Rn exp(− i~∆t
2 ∆x)

Rn+1 = exp( ∆t
i~ V (x))Rn+ 1

2 exp(−∆t
i~ V (x))

Error bound [S. Descombes-M. Thalhammer 2010]

‖〈~Dx〉R in〈~Dx〉‖1 =:M <∞ with 〈~Dx〉 :=(1−~2∆x)
1
2

=⇒ ‖R(n∆t)− Rn‖1 ≤ C (M, ‖V ‖W 2,∞) ∆t
~

Not uniform as ~→ 0, convergence requires ∆t � ~
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AP Scheme Methodology

Figure: The horizontal arrows represent the semiclassical limit ~� 1 and
the vertical arrows the convergence of the numerical scheme ∆t � 1.
•Uniform cvgce without rate [Bao-Jin-Markowich, J. Comp. Phys. 2003]
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Lie-Trotter Time Splitting for Liouville

Liouville equation with unknown f ≡ f (t, x , ξ) ≥ 0

∂t f (t, x , ξ) + {1
2 |ξ|

2 + V (x)︸ ︷︷ ︸
=H(x ,ξ)

, f (t, x , ξ)} = 0 , f
∣∣
t=0 = f in

Method of characteristics denoting Φt the Hamiltonian flow of H

f (t, x , ξ) = f in(Φ−t(x , ξ))

Lie-Trotter time-splitting

f n(y , η)=f in ((K−∆t ◦P−∆t)
n(y , η))

{
Kt(y , η) :=(y+tη, η)

Pt(y , η) :=(y,η−t∇V (y))
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Error Bound for the Simple Splitting for Liouville

Setting (Xt ,Ξt) := Φt(x , ξ) and (Yt ,Ht) := Pt ◦Kt(y , η), one finds

|Xt − Yt |2 + |Ξt − Ht |2 ≤ (|x − y |2 + |ξ − η|2)e(2+Λ)|t|

+ e(2+Λ)|t|−1
2+Λ

9
4Λ2(1

2 + Λ)2t2(1 + |y |2 + |η|2)

with
Λ := max(1,E , ‖∇2V ‖L∞) , E := |∇V (0)|

Lemma 3 Assume that f in is a probability density on R2d such that∫
(|x |2 + |ξ|2)f in(x , ξ)dxdξ <∞ .

Then, for each ∆t ∈ (0, 1) and each n = 0, . . . , [T/∆t], one has

W2(f n, f (n∆t)) ≤ CT [Λ,E , f in]∆t
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Propagation Estimate

Lemma 4 Let R in ∈ D2(H) and f in ∈ P2(R2d), and assume that
V ∈ C 1,1(Rd). For each λ > 0 consider{

∂t f + {1
2λ|ξ|

2 + V (x), f } = 0 , f
∣∣
t=0 = f in

i~∂tR = [−1
2~

2λ∆ + V ,R] , R
∣∣
t=0 = R in

Then d(f (t, ·),R(t)) ≤ d(f in,R in) exp(1
2 t(λ+ max(1, Lip(∇V )2))

•Using Lemma 4 first with λ = 1 and V = 0, and then with λ = 0

d(f n◦K−∆t ,R
n+ 1

2 ) ≤ d(f n,Rn)e
∆t
2

d(f n◦K−∆t ◦P−∆t ,R
n+1) ≤ d(f n◦K−∆t ,R

n+ 1
2 )e

∆t
2 max(1,Lip(∇V )2)

so that d(f n,Rn) ≤ d(f in,R in) exp
(1

2n∆t(1 + max(1, Lip(∇V )2))
)
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Error Bound

Theorem 5 Let f in ∈ P2(R2d), and set R in = T [f in]. Assume that
V ∈ C 1,1(Rd) and set Λ := max(1, Lip(∇V )).
The Lie-Trotter splitting scheme for the Heisenberg equation satisfies

d(Rn,R(n∆t)) ≤ CT [Λ, ‖V ‖W 2,∞ , f in]∆t + 2
√
d~e

T
2 (1+Λ2)

and the uniform in ~ convergence rate

sup
max(2‖φ‖L∞ ,Lip(φ))≤1

∣∣∣∣∫
R2d

φ(x , ξ)(H[Rn]−H[R(n∆t)])dxdξ

∣∣∣∣
≤ C ′T [Λ, ‖V ‖W 2,∞ , f in]∆t1/3

The uniform in ~ convergence rate follows from optimizing between
the uniform as ~→ 0 bound and the Descombes-Thalhammer bound.

There is a similar result with higher order splitting formulas, such as
Strang splitting, leading to a uniform O

(
∆t2/3

)
estimate
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OBSERVATION INEQUALITIES FOR QUANTUM DYNAMICS

FG-T. Paul: Math. Models Meth. Appl. Sci. 32 (2022) 941–963
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Observation Inequality for Heisenberg’s Equation

Heisenberg equation with unkown R(t) = R(t)∗ ≥ 0

i~∂tR = [−1
2~

2∆x + V (x)︸ ︷︷ ︸
H~

,R] , R
∣∣
t=0 = R in

Observing the solution R on a domain Ω ⊂ Rd during time T

1(= ‖R(t)‖1) ≤ COBS

∫ T

0
trH(1ΩR(t))dt

Specialists of control usually consider R(t) = |ψ(t, ·)〉〈ψ(t, ·)| with
i~∂tψ(t, x) = −1

2~
2∆xψ(t, x) + V (x)ψ(t, x)

Observing the wave function ψ on the domain Ω during time T
means that

1(= ‖ψ(t)‖2H) ≤ COBS

∫ T

0

∫
Ω
|ψ(t, x)|2dxdt
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Bardos-Lebeau-Rauch Geometric Condition

Classical Hamiltonian 1
2 |ξ|

2 + V (x), generating a flow on Rd × Rd

Ẋ = Ξ , Ξ̇ = −∇V (X ) , (X ,Ξ)(0; x , ξ) = (x , ξ)

Let K ⊂ R2d compact, consider a domain Ω ⊂ Rd and let T > 0

(GC )

{
for each (x , ξ) ∈ K there exists t ∈ (0,T )

such that X (t; x , ξ) ∈ Ω

Lemma 6 Assume that V ∈C 1,1(Rd) and that K ,Ω,T satisfy (GC).
Then

C [K ,Ω,T ] := inf
(x ,ξ)∈K

∫ T

0
1Ω(X (t; x , ξ))dt > 0

Proof Since Ω is open 1Ω is l.s.c., and by (GC)+Fatou’s lemma

K 3 (x , ξ) 7→
∫ T

0
1Ω(X (t; x , ξ))dt ∈ (0,+∞) is l.s.c.
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Illustration for the Geometric Condition

R

Φ (1/2;K) (1;K)ΦK

ξ

x
O

Ω ω

ω x

Figure: The geometric condition in space dimension d = 1, with V ≡ 0.
The classical free flow is Φ(t; x , ξ) := (X (t; x , ξ),Ξ(t; x , ξ))=(x + tξ, ξ).
The picture represents the image of the closed phase-space rectangle K
by the map (x , ξ) 7→ Φ(t; x , ξ) at time t = 1

2 and t = 1. The interval Ω
satisfies the geometric condition with T = 1, at variance with ω. Indeed,
phase-space points on the bottom side of K stay out of the strip ω × R
for all t ∈ [0, 1].

F. Golse Quantum Wasserstein 34/42



Metric and Propagation

Metric if R ∈ D2(H) while f is a probability density on Rd × Rd

with finite 2nd order moment

inf
Q∈C(f ,R)

∫∫
R2d

trH(Q(x , ξ)
1
2 (λ2|x−y |2+|ξ+i~∇y |2)Q(x , ξ)

1
2 )dxdξ

=: dλ(f ,R)2 ≥ λd~

Theorem 7 [F.G.-T. Paul (ARMA2017)] Assume V ∈ C 1,1(Rd)
such that H := −1

2~
2∆x + V (x) has a self-adjoint extension to H,

and let U(t) := e−itH/~, while Φ(t; x , ξ) = (X ,Ξ)(t; x , ξ) is the flow
of the classical Hamiltonian H(x , ξ) := 1

2 |ξ|
2 + V (x). Then

dλ(f in ◦ Φ(t, ·, ·),U(t)R inU(t)∗) ≤ dλ(f in,R in)eL|t|

with

L := 1
2

(
λ+

Lip(∇V )

λ

)
F. Golse Quantum Wasserstein 35/42



Observation Inequality with Explicit Constants

Theorem 8
Let V ∈ C 1,1(Rd) and (K ,Ω,T ) satisfying (GC). Then, for all initial
density operator R in ∈ D2(H), all probability density f in with finite
second order moment and all δ > 0, with Ωδ := Ω + B(0, δ), one
has ∫ T

0
trH(1ΩδU(t)R inU(t)∗)dt ≥ C [K ,Ω,T ]︸ ︷︷ ︸

geometric

− 1
δ

inf
λ>0

1
λ

exp
(
1
2T

(
λ+ Lip(∇V )

λ

))
−1

1
2

(
λ+ Lip(∇V )

λ

) inf
supp(f in)⊂K

dλ(f in,R in)︸ ︷︷ ︸
semiclassical correction

Rmk No need that ~→ 0; observation constant completely explicit
in terms of the Bardos-Lebeau-Rauch geometric data
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Example 1: Töplitz Initial Data

Assume that R in is of the form

R in :=

∫
R2d
|q, p〉〈q, p|µ(dqdp), µ∈P2(R2d)

where |q, p〉(x) := (π~)−d/4e−|x−q|
2/2~e ip·x/~

In that case (see [FG-T. Paul, ARMA2017] Thm. 2.4)

λd~ ≤ d~(f in,R in)2 ≤ max(1, λ2)W2(f in, µin)2 + λd~

so that

supp(µ) ⊂ K =⇒ inf
supp(f in)⊂K

dλ(f in,R in) =
√
λd~
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Example 2: Pure State

Assume that R(t) = |U(t)ψin〉〈U(t)ψin|, where U(t) = e−itH/~ is
the Schrödinger group.

Choosing f in(q, p) := |〈q,p|ψin〉|2
(2π~)d

= Husimi transform of ψin leads to

1
COBS

= C [K ,Ω,T ]

∫∫
K
|〈q, p|ψin〉|2 dqdp

(2π~)d
−D[T , Lip(∇V )]

Σ[ψin]

δ

where

D[T , L] :=4
e(1+L)T/2 − 1

1 + L

Σ[ψin]2 :=〈ψin| |x |2|ψin〉 − |〈ψin|x |ψin〉|2

+ 〈ψin| − ~2∆x |ψin〉 − |〈ψin| − i~∇x |ψin〉|2
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Proof

Call f (t, ·, ·) := f in ◦ Φ(t; ·, ·) and R(t) := U(t)R inU(t)∗. For all
Q(t) ∈ C(f (t, ·, ·),R(t)), one has∣∣∣∣trH(χR(t))−

∫∫
R2d

χ(x)f (t, x , ξ)dxdξ

∣∣∣∣
=

∣∣∣∣∫∫
R2d

trH((χ(x)− χ(y))Q(t, x , ξ)dxdξ

∣∣∣∣
≤ Lip(χ)

λ

(∫∫
R2d

trH(Q
1
2
t (λ2|x−y |2+|ξ + i~∇y |2)Q

1
2
t )dxdξ

) 1
2

so that∣∣∣∣trH(χR(t))−
∫∫

R2d
χ(x)f (t, x , ξ)dxdξ

∣∣∣∣ ≤ Lip(χ)
λ dλ(f (t, ·, ·),R(t))

≤ Lip(χ)
λ dλ(f in,R in) exp

(
1
2 t

(
λ+

Lip(∇V )

λ

))
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Since∫∫
R2d

χ(x)f (t, x , ξ)dxdξ =

∫∫
R2d

χ(X (t; x , ξ))f in(x , ξ)dxdξ

one has∫ T

0
trH(χR(t))dt ≥ inf

(x ,ξ)∈K

∫ T

0
χ(X (t; x , ξ))dt

∫∫
K
f in(x , ξ)dxdξ

−Lip(χ)

λ

exp
(

1
2T
(
λ+ Lip(∇V )

λ

))
− 1

1
2

(
λ+ Lip(∇V )

λ

) dλ(f in,R in)

Conclude by choosing χ(x) :=
(
1− dist(x ,Ω)

δ

)
+
, so that Lip(χ) = 1

δ .

q.e.d.
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Quiz: Quantum Heat Equation (from E. Carlen)

(1) Let µ, ν ∈ P2(Rn). Prove that

W2(et∆µ, et∆ν) ≤ W2(µ, ν) .

(Hint: represent et∆µ(x) by means of the Brownian motion, and
consider the process (x + Bt , y + Bt) ∈ Rn × Rn, with the SAME
Brownian motion Bt .)
(2) Find another proof of (1) without appealing to the representation
of the solution by means of the Brownian motion. (Hint: pick ρin ∈
C(µ, ν) and propagate ρin by a degenerate diffusion operator A∗A,
i.e. set

∂tρt + A∗Aρt = 0 , ρ0 = ρin

where A is a 1st order differential operator such that A|x−y |2 = 0.)
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(3) Set H := L2(R) and qψ(y) := yψ(y) while pψ(y) := −i~dψ
dy (y).

Consider the Quantum Heat Equation

∂tR = − 1
~2 [p, [p,R]]− 1

~2 [q, [q,R]] , R(0) = R in ∈ D2(H)

Prove that the Cauchy problem above is solved by a contraction
semigroup on L2(H), and that R(t) ∈ D2(H).
(4) Let R1,R2 be the solutions of

∂tR1 = − 1
~2 [p, [p,R1]]− 1

~2 [q, [q,R1]] , R1(0) = R in
1 ∈ D2(H)

∂tR2 = − 1
~2 [p, [p,R2]]− 1

~2 [q, [q,R2]] , R2(0) = R in
2 ∈ D2(H)

Prove that

d(R1(t),R2(t)) ≤ d(R in
1 ,R

in
2 ) , t ≥ 0

(Hint: consider the operators [p ⊗ I + I ⊗ p, q ⊗ I − I ⊗ q] and
[q ⊗ I + I ⊗ q, p ⊗ I − I ⊗ p].)
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