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Outline of Lecture 2

In this lecture, we shall discuss several applications of the quantum
Wasserstein pseudometric 0 introduced in lecture 1. These applica-
tions include

evarious limits of many-body problems in quantum mechanics

eproofs of the uniform in /& convergence of some numerical schemes
for quantum dynamics

esome observation inequalities for the Schrédinger and Heisenberg
equations
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BASICS OF QUANTUM DYNAMICS

J.-L. Basdevant, J. Dalibard: “Quantum Mechanics”, Springer 2002
C. Cohen-Tannoudji, B. Diu, F. Laloé: “Quantum Mechanics I", Wi-
ley 1977

B.C. Hall: “Quantum Theory for Mathematicians”, Springer 2013
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Classical Mechanics

Point particle of mass m with position, momentum q(t), p(t) € R
Hamiltonian

H(q,p) = |p|*/2m+ V(q) = energy
—_——— N~

kinetic potential

eNewton's 2nd law of motion in Hamiltonian form

q(t) =0H/0p = p(t)/m, p(t)=—-0H/0q=—-VV(q(t))

eLiouville equation for f = f(t, x,£) = probability density of finding
the point at x with momentum £ at time t

Oef(t, %, &) + & Vf(t,x,8) — VV(x) - Vef(t,x,€) =0

={H,f(t,,-)} (Poisson bracket)
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Quantum Mechanics

Wave function ) = ¢(t,x) € L2(R?;C) =: 9 s.t. ||o(t,")|ls =1
Quantum Hamiltonian = unbounded operator on $)

H=-12A,+ V(x)=H*

Correspondence principle

V(q) — multiplication by V(x) and p; — —ihdy; = hDy,

Schrédinger equation

ihde) = Hy = (t,-) = e ™/ y(0,")

unitary

von Neumann equation for R(t) = projection on Ct(t, )
ihdeR(t) = HR(t) — R(t)H = R(t) = e ™/"R(0)e™/"
S
=:[H,R(t)]
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Quantum — Classical Mechanics

Asymptotic regime i < “typical” action of the particle

(a) WKB ansatz seek wave function in the form of the formal series

Y(t,x) =Y hap(t,x)eS/M St x) and an(t, x) € R

n>0
Leading order equations (usually only local in time due to caustics)

0:S + H(VxS,x) =0, ead + dive(a2VS(t, x)) = 0

(b) Schrédinger coherent states wave function |q(t), p(t)) =
plane wave with O(%) wavelength and a Gaussian envelope of width
O(v/h); what is the (classical) dynamics of q(t), p(t) for such states
to approximately follow the quantum dynamics?
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Wigner Transform

Let R € £($) be the integral operator

RoG) = [ r(xy)oly)dy

Ex for R = projection on C¢ with [[7||s = 1, denoted R = |¢) (¢)|

0= ([ 5030y ) 56 = 1) = 0900)

=:(¢|¢)

Wigner transform of R

WiIRN(9.P) := Garye /Rd r(q+ hy,q — 3hy)ePYdy

Observe that
R=R* = W[R](g,p) R BUT R>0 = Wi[R]>0
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Quiz 1: Wigner and Husimi, Propagation

(1) Prove that
HIRI(q. p) = exp(3(Bq + B,)) WilR](q, p)
(Hint: recall the formula for the Fourier transform of a Gaussian.)

(2) Set H := —112A, + 1|x|?, and U(t) := e ™M/h For each
R" € D($), write a PDE satisfied by Wj[U(t)R™U(—t)].

(3) Same question with H := —1A2A, + V/(x). What are the as-
sumptions needed on the potential V for the formal computation to
be made rigorous?
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Quantum — Classical Mechanics

Thm [Lions-Paul Rev. Mat. Iberoam.1993] Let Ri"=(Ri")*>0 be s.t.
WiL[RI"] — ™ in S'(RY x RY) as h — 0

where " = probability density on RY x R?. Then

W [e ™M/MRine™/M 5 £(t,..) in S'(R? x RY) as h — 0

where f is the probability density solution to the Liouville equation
with initial data £
Example WKB wave function with ||a”||,2 = 1 and S € Lip(R9; R)

DiN(x) = a"(x)e" I — Fin(g, p) = [a™(q)P5(p — VS™(q))
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Classical dynamics with m = 1 and denoting L := Lip(V V), one

has
X== Y =H
) and )
{EZ—VV(X) {H:—VV(Y)
— LX - YP+Z-HP) <@+ L)(X = YP+|=-HP)

Quantum dynamics since H = —“ A, + V(x) = H* on L2(RY)
ihat¢1 = H’gZJl and ihaﬂ/)z — H¢2
— & [ 1oa(t) ~ valt. )Pk =0

Uniform in & > 0 estimate of |[¢1(t,-) — ¢2(t, )|l 2(re) Without
assuming regularity on the potential V (e.g. for V € L*°(R?)) but...
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| MEAN-FIELD AND CLASSICAL LIMITS |
[IN QUANTUM MECHANICS |

F. G., C. Mouhot, T. Paul: Commun; Math. Phys. 343 (2016),
165-205

F. G., T. Paul: Archive Rational Mech. Anal. 223 (2017) 57-94
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Mean-Field Limit vs Classical Limit
Schrddinger Nz

A \:
h—0 Ny h—0
\: 2

. . N—
Liouville] "= [Vlasov|

eUniformity as i — 0 of the upper horizontal (mean-field) limit
discussed in

[Graffi-Martinez-Pulvirenti: M3AS 13 (2003), 59-73]
[Pezzotti-Pulvirenti: Ann. Henri Poincaré 10 (2009), 145-187]
eSemiclassical limit of Hartree, no cvgce rate, including Coulomb:
[Lions-Paul Rev. Mat. Iberoam. 9 (1993), 553-618]
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Quantum N-Particle Dynamics

Assumptions on the interaction potential

Ve cH(RY)  with V- € L®(R?Y) and V(z)=V(-z)€R
Quantum N-particle Hamiltonian with N > 1 and h <« 1

N
Hy:=) —3W0x+5 Y V0a—x), Dom(Hy)=H*R™)
k=1 1<k<I<N

is self-adjoint on $p := HENV ~ [2(RIV); let Up/(t) := e tHn/D,

eThe operator Ry(t) = Un(t)RilUn(t)* solves Heisenberg's eqn:
ihd:Ry(t) = [Hn, Run(t)],  Run(0) = Ry € D($Hn)

ePure state Ry(t) = [Un(t)Vn) Un(t)V | with [[Wyllg, =1
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Mean-Field Equations

Time-dependent Hartree equation for pure states
W0 (t, x) = =SR2 Dab(t, x) + (t, x)V %, [*(t,x), x€RY
For mixed states

ihoeR(t) = [-1R2 A + Vr(e), R(t)], R(0) = R™ € D(9)

with mean-field potential defined by the formula
Vr(e)(x) = tra(V(- = x)R(t)) x € RY

Vlasov equation: %[, ] — {-,-} (Poisson bracket on C*(R9 x R9))

8tf(t7Xa 5) + f'vxf(taxvé)_(vv*&& f(t,X,f))'fo(t,X,&) =0

{% |£‘2+V*x,£ f(t,X,é),f(t,X,é)}
F(0.x.€) = f"(x.€), x,€ € R
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Uniform as i — 0 Convergence Rate as N — oo

eFrom N-body Heisenberg to Hartree

Theorem 1 Setting L := 2 + max(4Lip(V V)2, 1), choose an initial
(1-particle) distribution function £ such that fdxd¢ € P,(R?9).
Set the Hartree initial data to be R" = T[f]. For each t > 0

0 (RN, Un () T(Fm) 2N Uy (£)*) 8|V V|| et —1

<2dhelt+

N R N-1 L
classical
Normalized OT square pseudometric h—0 mean field
per degree of freedom N— oo

In particular — see Theorem 1 (2) in Lecture 1 — one has

W (HIR(1) M), (O T M (D))" _BIV Vi €1
N - N-1 L

Normalized Wasserstein-2 distance
per degree of freedom

+2dh (e“ + 1)
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eFrom N-body Heisenberg to Vlasov

Theorem 2 Under the same assumptions as above,

0 (F(£, )N, Un () TI(FM) @MU (£)*)? 8|V V|| ebt—1

Lt
<dhe~'+
N TN~ N-1 L
classical
Normalized OT square pseudometric h—0 mean field
per degree of freedom N—s oo

In particular — see Theorem 1 (2) in Lecture 1 — one has

Wa (£t )N, MU T MUn(£)T)° 8|V Ve e —1

N - N-1 L

Normalized Wasserstein-2 distance
per degree of freedom

+ dh (eLt + 1)
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Sketch of Proof

(1) Pick Qin € C(Rin, (R™)®N ) and solve for Qp(t) € D(HN@HN)

N
Hy® sy + oy @ > Jn(—5 A+ Vieyy), QN(f)]
k=1

(k=1)

on(0) =9k,  snA= 12 Ve Ag PR

One checks, by taking partial traces and using uniqueness for the
solution of Heisenberg's equation with time-dependent potential that

On(t) € C(Rn(t), R()®N), forall t >0

(2) Let Dy (t) = & traumny (Qn(t)Z GiQn(t)2) with Gy given by
N

GiP:=> (1% — yilP® — W (divig—divy, ) (Vi =V, )®)) (Xn, Yiv)
j=1
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(3) By definition of Dy(t), using (1) shows that

Dn(t) > xo(Run(t), R(t)N)?, for all t >0

(4) On the other hand

dDy
dt

N
+> A e (Qn(t )2l @ Jion(— 3720 + Viey), GilQn(t)
k=1

NI

ih )

= L troyene(Qn(1)Z[Hy @ Iy, GilON(2)

N

)

and it remains to compute

. N
1
Iy = % HN®/Y)N+/Y)N®ZJI<,N(_%E2A+ VR(t)),Q‘L
k=1
F. Golse Quantum Wasserstein
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(5) Denoting AV B = AB + BA, one finds that

N
Zn =) (%= y) V (—ihV, + ihV ;)
j=1
N N
D E Y (=VV(x = %) + V VR (1)) V (—ihV, + iV,
j=1 k=1

and one uses the elementary operator inequality

AB* + BA* < AA* + BB*

to prove that

2

N
ZN<2Ch+Z VVee () — 7 D VV(x — i)
Jj=1 k=1
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Split the summand so as to involve the difference between the N-
body and the mean-field potentials on the y; variables only

N N 2
Zn <2G+2) |ED(V — VV(x — )
j=11 k=1
N N 2
+2) | VVr () — & X YV — %)
j=1 k=1

=
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(6) It remains to bound

2

N N
D troyony (QN(t)é VVir(%) = % D VV(y — v)| Qn(t)
k=

N[

j=1 1 )
N N 2
— Ztry),v V Ve (%) — & vayj —yi)| R(t)®N
j=1 k=1

Easy since Qn(t) is replaced by the factorized density R(t)®V

Now, for each j, set Wi := VV(yx — ;) — V Vg(1)(y;); then one has
N
k=

D Wi

1

N

2
trg (Wi R(t)) =0 = trg, ( R(t)®’V) :M

g.e.d.
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Remarks (from Lecture 1)

Since density operators are characterized by their Husimi transforms,
and since the Husimi transform of a density operator is a probability
density, a natural idea to define optimal transport distances between
density operators is to set

dzs(p1, p2) = Wa(H[p1], Hp2]) p1, p2 € Da(H)

This definition has some advantages over the one proposed here —
in the first place, one is always dealing with probability densities,
i.e. functions on phase space, which are easier to manipulate than
operators. This approach has been proposed by K. Zyczkowski and
W. Slomczynski [J. Phys. A 31 (1998), 9095-9104].

However, there is a rather heavy price to pay with this approach,
which is that the Husimi transform, and therefore dzs is not easy to
propagate by usual quantum dynamics.
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Quiz 6 (from Lecture 1)

(1) Let R € Dy($). Prove that H[R] is a probability density, and
compute

J[[, (a2 + o2HIRI. p)dacp
RIxR4

(2) Let R, S € Dy($), and assume that H[R] = H[S]. Prove that
R =S. (Idea: let r = r(y,y’) be an integral kernel of R. Set

J(x,8) = //Rd N r(y,y")e~ WPHYP)/2hgx (v 4y ) =i (y=y) /Dy !
X

Prove that J extends as a holomorphic function on C9 x C9 and
therefore is uniquely determined by its restriction to RY x RY. Con-
clude by (a) computing the formula relating H[R] to J, and (b) by
computing the integral kernel r of R in terms of J.)
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TIME-SPLITTING SCHEMES FOR QUANTUM DYNAMICS

F.G., S. Jin, T. Paul: Found. Comput. Math. 21 (2021), 613-647
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Time-Splitting for Quantum Dynamics

Heisenberg equation with unkown R(t) = R(t)* >0

ihO:R = [-30° A+ V(x),R],  R|,_,=R"

Hp

Time-split Heisenberg equation starting from R® = R™"

R = exp(1RLA)R" exp(—£LA,)

R™1 = exp(4EV/(x))R™ 2 exp(— 41V (x))

Error bound [S. Descombes-M. Thalhammer 2010]

[(BD)RM (D) 1= M < 0o with (iDy):=(1—H2Ax)2
— [[R(nAt) = R"||1 < C(M, [|V[[w2e) 5t

Not uniform as i — 0, convergence requires At < h
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AP Scheme Methodology

von Neumann Liouville
R(nAt) By (f(nAt), R(nAb)) F(nAt)
A0
distarsea (Wa(BY), W (RAD)) | At 0 At — 0 |distariez (f(nAe), )
A0

En( ) "

R
time-split von Neumann time-split Liouville

Figure: The horizontal arrows represent the semiclassical limit & < 1 and
the vertical arrows the convergence of the numerical scheme At < 1.

eUniform cvgce without rate [Bao-Jin-Markowich, J. Comp. Phys. 2003]
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Lie-Trotter Time Splitting for Liouville

Liouville equation with unknown f = f(t,x,£) > 0

Oef (£, ) + {31€1° + V(x). F(t,x, )} =0, f|,_o=1F"
(x:€)
=H(x,

Method of characteristics denoting ¢, the Hamiltonian flow of H
F(t,x,€) = F"(®_¢(x,))
Lie-Trotter time-splitting

F(y,m)=F" ((K_atoP_nat)"(y, 1)) {g:gg;:g;ﬁgz/(y))
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Error Bound for the Simple Splitting for Liouville

Setting (X¢, =¢) := P¢(x, &) and (Yt, Hy) := Pro K¢(y,n), one finds

| Xt — Yt|2+|:t— ""t|2 (Ix = )/|2+|§ 77| )e (2+A)le
(2+/\)|t\
+EA N (G H AL+ |y + [nf)

with
A= max(1,E,||[V?V| =), E:=|VV(0)

Lemma 3 Assume that £ is a probability density on R?? such that
J 2 4 1€y F(x. ) < oc.

Then, for each At € (0,1) and each n=0,...,[T/At], one has
Wo(f", f(nAt)) < Cr[A, E, fM]At
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Propagation Estimate

Lemma 4 Let R™ € D,(H) and " € P»(R??), and assume that
V € CYY(RY). For each A > 0 consider

Ocf + BMNEP + V(x), F} =0, f],_o=Ff"
ihd:R = [-1*AA + V,R], R|,_y=R"

Then ((t,-), R(t)) < d(f™, R") exp(4 t(A + max(1, Lip(VV)?))
eUsing Lemma 4 first with A =1 and V =0, and then with A =0

o(f"oK_at, RM3 2) <o(f", R")ez

(F oK _proP_pe, R™1) < 0(F"0K_a¢, R” n+3 )e 3t max(1,Lip(VV)?)

so that ?(f", R") < o(f™", R exp (3nAt(1 + max(1,Lip(VV)?)))
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Theorem 5 Let " € P(R??), and set R = T[f™"]. Assume that
V € CH(RY) and set A := max(1, Lip(VV)).
The Lie-Trotter splitting scheme for the Heisenberg equation satisfies

O(R™, R(nAA)) < CrIA, [Vl waoe, F7JAE +2V/dheEEHN)

and the uniform in 1 convergence rate

o(x, E)(H[R"] = H[R(nAt)])dxd¢

R2d

sup
max(2[|$||Loc ,Lip(¢))<1

< C%’[/\a H VHW2’°°7 fin]Atl/?’

The uniform in i convergence rate follows from optimizing between
the uniform as i — 0 bound and the Descombes-Thalhammer bound.

There is a similar result with higher order splitting formulas, such as
Strang splitting, leading to a uniform O (At?/3) estimate
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OBSERVATION INEQUALITIES FOR QUANTUM DYNAMICS

FG-T. Paul: Math. Models Meth. Appl. Sci. 32 (2022) 941-963
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Observation Inequality for Heisenberg's Equation

Heisenberg equation with unkown R(t) = R(t)* > 0
ih0R = [~3R2Ds + V(x),R],  R|,_o=R"

Hp

Observing the solution R on a domain Q C R during time T
T
1(= |R()]R) < Coss | trs(1aR()et
0

Specialists of control usually consider R(t) = |¢(t,-))(¥(t,-)| with
ihdep(t, x) = —3R2Dab(t, x) + V(x)¥(t, x)

Observing the wave function 1) on the domain Q during time T
means that

1(= [0 (1)|2) < Coss /0 /Q (e, %) Paedt

F. Golse Quantum Wasserstein 32/42



Bardos-Lebeau-Rauch Geometric Condition

Classical Hamiltonian 1[¢[? + V/(x), generating a flow on RY x R

X==, =Z=-VV(X), (X,2)(0; x,8) = (x,€)

Let K € R?? compact, consider a domain Q C R? and let T >0
(GC) for each (x, &) € K there exists t € (0, T)
such that X(t; x,&) € Q

Lemma 6 Assume that V € C11(RY) and that K, Q, T satisfy (GC).

Then T
CIK,Q, T]:= inf / 1o(X(t;x,€))dt >0
(x:£)eK Jo

Proof Since Q is open 1q is I.s.c., and by (GC)+Fatou's lemma
T
K> (x,€) r—>/ 1o(X(t;x,€))dt € (0,400) is |.s.c.
0
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[[lustration for the Geometric Condition

K D (U2;K) D (1K)

e

oXxR

o

Figure: The geometric condition in space dimension d = 1, with V = 0.

The classical free flow is ®(t; x, &) := (X(t; x,£), =(t; x,£))=(x + t&, &).
The picture represents the image of the closed phase-space rectangle K

by the map (x,&) — ®(t;x, &) at time t = 1 and t = 1. The interval Q

satisfies the geometric condition with T = 1, at variance with w. Indeed,
phase-space points on the bottom side of K stay out of the strip w x R

for all t € [0,1].
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Metric and Propagation

Metric if R € D»($) while f is a probability density on RY x R
with finite 2nd order moment
1 1
inf t 62 (N2 x—y? ihV, |2 ,€)2)dxd
o o [ (@ R0k y €+, )@, ) e
=:05(f,R)> > \dh

Theorem 7 [F.G.-T. Paul (ARMA2017)] Assume V € CL1(R9)
such that H := —2h%2A, + V/(x) has a self-adjoint extension to 9,
and let U(t) := e ™M/7 while d(t; x, £) = (X, Z)(t; x, £) is the flow
of the classical Hamiltonian H(x, &) := (£ + V(x). Then

0(FM o d(t,-,-), U(t)RMU(t)*) < or(F, R™M)etlH

with
L=

(o 1252)

N[
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Observation Inequality with Explicit Constants

Theorem 8

Let V € CLY(RY) and (K, Q, T) satisfying (GC). Then, for all initial
density operator R™ € Dy($)), all probability density £ with finite
second order moment and all § > 0, with Qs := Q + B(0,0), one
has

T .
/ trs (Lo, U(E)R™U(8)")dt = CK,Q, T]
geometric

BT L)
_SA'TBX %(A+L'P(Vv)> Supp('?}:)cKDA(f ,R")

semiclassical correction

Rmk No need that i — 0; observation constant completely explicit
in terms of the Bardos-Lebeau-Rauch geometric data

F. Golse Quantum Wasserstein

36/42



Example 1: Toplitz Initial Data

Assume that R is of the form

R | 19.0)a.pluldadp). e Pa(R¥)

where |q, p)(x) := (Wh)7d/4e*‘X*q‘2/2heip-x/h

In that case (see [FG-T. Paul, ARMA2017] Thm. 2.4)

Adh < 0p(F™, R™M?2 < max(1, X2)Wa(F™, 1i'")? + \dh

so that

supp(p) C K = inf  0\(F" R™ =V Adh
supp(f")CK
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Example 2: Pure State

Assume that R(t) = |U(t)y™)(U(t)™|, where U(t) = e~tH/" is
the Schrédinger group.

Choosing f"(q, p) := % = Husimi transform of 1)/ leads to

1 - . [y"]
= ClK,Q, T )2 2992, _D[T, Lip(VV
oo = UK. T] [ LtauplomP 3o, DT, Lip(T V)]
where
(1+0)T/2 _
D[T, L] :=4° !

1+1L
TP = X — [ x|y 2
+ (W] = B ALJY™) =[] = iV [
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Call £(t,-,-) := £ 0 &(t;-,) and R(t) = U(t)R"U(2)". For al
Q(t) € C(f(t,-,-), R(t)), one has

tr (X R(t // f(t,x,& dxdg‘
- ’// tr ((x(x) — x(v)) Q(t, x, §) dxd§

3 1
<// tro(QF (N |x—yP+[& + ihV, %) f)dxdg>
R2d

NI=

so that
tro (XR(t / / F(t.x,€ dxdf' < B0, ((t, -, ), R(t))
< L|p(x) (fm R’”)exp( <)\_|_ LIp(V\/)>>

A
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Since

//de F(t, x, &) dxdé = // X(t: %, €))F(x. €) e

one has

[ wsernar > int [T aoxexenae [ o
exp< A (

(x:€)
. + Lip(VV) _1 ' .
B LIP)EX) % (()\ " Llp(vv))>> a)\(fm’ Rln)

Conclude by choosing x(x) := (1 — M)# so that Lip(x) = %.

g.e.
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Quiz: Quantum Heat Equation (from E. Carlen)

(1) Let pu,v € Po(R™). Prove that
WZ(etA:u7 etAV) < W2(/'L7 V) .

(Hint: represent et24(x) by means of the Brownian motion, and
consider the process (x + B,y + Bt) € R” x R”, with the SAME
Brownian motion B;.)

(2) Find another proof of (1) without appealing to the representation
of the solution by means of the Brownian motion. (Hint: pick p;, €
C(u,v) and propagate pj, by a degenerate diffusion operator A*A,
i.e. set

Ope + A" Apy =0, PO = Pin

where A is a 1st order differential operator such that A|x —y|? = 0.)
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(3) Set  := L2(R) and qi(y) := y(y) while pip(y) := =i (v).
Consider the Quantum Heat Equation

0:R = —%[p.[p, Rl — %10, [0, Rll.  R(0) = R™ € Dy($)

Prove that the Cauchy problem above is solved by a contraction
semigroup on £2(£)), and that R(t) € Da($).
(4) Let Ry, Ry be the solutions of

OiR1 = — (b, [p, Rl — la,[a, Rl Ru(0) = Ry" € Da($)
0:Ra = —zlp, [p, Rll — 72la. [a, Rall,  Ra(0) = Ry € Da($)

Prove that
(Ri(t), Ra(t)) <O(RI™ REMY,  t>0

(Hint: consider the operators [p® [ + 1 ® p,g® | — | ® q] and
qel+I®q,pel—13p].)
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