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Outline of Lecture 3

This last lecture discusses various features of our extension of optimal
transport to the quantum setting. In particular, the following topics
will be studied

•Kantorovich-type duality for quantum optimal transport
•triangle inequality for the quantum pseudometric d on D
•structure of optimal couplings for the pseudometric d
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RESTRICTED TRIANGLE INEQUALITY

F.G., T. Paul: J. Math. Pures Appl. 151 (2021), 257–311.

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Restricted Triangle Inequality

Theorem 1 For all ρ1, ρ2, ρ3 ∈ D = P2(Rd ×Rd)∪D2(H), one has

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3)

provided that ρ2 is a probability density in Rd ×Rd or one of the ρjs
is a rank-1 density operator on H.

Recall that

c~(x , ξ; y , ~∇y ) = |x − y |2 + |ξ + i~∇y |2

C~(x , ~∇x , y , ~∇y ) = |x − y |2 − ~2|∇x −∇y |2
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Operator Inequalities: Quantum “Intermediate Point”

Lemma 2 For all α > 0, one has

|x − z |2 + |ξ − ζ|2 ≤(1 + α)c~(x , ξ; y , ~∇y )

+ (1 + 1
α)c~(z , ζ; y , ~∇y )

c~(x , ξ; z , ~∇z) ≤(1 + α)c~(x , ξ; y , ~∇y )

+ (1 + 1
α)C~(y , ~∇y , z , ~∇z)

C~(x , ~∇x , z , ~∇z) ≤(1 + α)C~(x , ~∇x , y , ~∇y )

+(1 + 1
α)C~(y , ~∇y , z , ~∇z)

These operator inequalities mean that, for all φ ∈ S(R2d
x ,ξ×Rd

y×R2d
z,ζ)

〈φ|r .h.s.− l .h.s.|φ〉 ≥ 0

Proof Write
C~(x , ~∇x , z , ~∇z) =|x − y + y − z |2 − ~2|∇x −∇y +∇y −∇z |2

=C~(x , ~∇x , y , ~∇y ) + C~(y , ~∇y , z , ~∇z)

+ 2(x−y)·(y−z)−2~2(∇x−∇y )·(∇y−∇z)
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Use the Peter-Paul elementary inequality

2(x−y)·(y−z) ≤ α|x−y |2 + 1
α |y−z |2

and, for operators A,B , the analogous inequality

A∗B + B∗A ≤ α|A|2 + 1
α |B|2

with A = A∗ = −i~(∂xj − ∂yj ) and B = B∗ = −i~(∂yj − ∂zj ) for all
indices j = 1, . . . , d . (Observe that these operators commute, which
is inessential here). The operator inequality comes from expanding

0 ≤
∣∣∣α 1

2A− α− 1
2B
∣∣∣2 = α|A|2 + 1

α |B|2 − A∗B − B∗A

Hence

2(x−y)·(y−z)−2~2(∇x−∇y )·(∇y−∇z)

≤ αC~(x , ~∇x , y , ~∇y ) + 1
αC~(y , ~∇y , z , ~∇z)

With the previous inequality involving C~(x , ~∇x , z , ~∇z), we arrive
at the 3rd inequality of Lemma 2. q.e.d.
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Operator Inequalities: Classical Intermediate Point

Lemma 3 For all α > 0, one has

c~(x , ξ; z , ~∇z) ≤(1 + α)(|x − y |2 + |ξ − η|2)

+ (1 + 1
α)c~(y , η; z , ~∇z)

C~(x , ~∇x , z , ~∇z) ≤(1 + α)c~(x , ~∇x , y , η)

+(1 + 1
α)c~(y , η, z , ~∇z)

These operator inequalities mean that

〈φ|r .h.s.− l .h.s.|φ〉 ≥ 0

for all φ ∈ S(R2d
x ,ξ × Rd

y ,η × R2d
z,ζ)

Same method of proof as for Lemma 2.
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Quiz 1

Write the proof of Lemma 3
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Proof of Thm 1: the Rank-1 Case

Assume for example that ρ1 and ρ2 ∈ D2(H) while ρ3 is a rank-1
density operator, and let Q ∈ C(ρ1, ρ2). Set

T := Q ⊗ ρ3 , T13 = tr2 T ∈ C(ρ1, ρ3)

Hence, by the 3rd inequality in Lemma 3

d(ρ1, ρ3)2 ≤ trH⊗2(T
1
2
13C~(x , ~∇x , z , ~∇z)T

1
2
13)

= trH⊗3(T
1
2C~(x , ~∇x , z , ~∇z)T

1
2 )

≤ (1 + α) trH⊗3(T
1
2C~(x , ~∇x , y , ~∇y )T

1
2 )

+(1 + 1
α) trH⊗3(T

1
2C~(y , ~∇y , z , ~∇z)T

1
2 )

= (1 + α) trH⊗2(Q
1
2C~(x , ~∇x , y , ~∇y )Q

1
2 )

+(1 + 1
α) trH⊗2((ρ2 ⊗ ρ3)

1
2C~(y , ~∇y , z , ~∇z)(ρ2 ⊗ ρ

1
2
3 )︸ ︷︷ ︸

=d(ρ2,ρ3)2

F. Golse Quantum Wasserstein 9/52



Minimizing the last r.h.s. in Q ∈ C(ρ1, ρ2) shows that

d(ρ1, ρ3)2 ≤ (1 + α)d(ρ1, ρ2)2 + (1 + 1
α)d(ρ2, ρ3)2

Minimizing the r.h.s. in α > 0, i.e. setting

α :=
d(ρ2, ρ3)

d(ρ1, ρ2)
assuming d(ρ1, ρ2) > 0

leads to

d(ρ1, ρ3)2 ≤ d(ρ1, ρ2)2 + d(ρ2, ρ3)2 + 2d(ρ1, ρ2)d(ρ2, ρ3)

Conclude by taking the square root of both sides of this inequality.
q.e.d.
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Quiz 2

Complete the proof by justifying the equality

trH⊗2(T
1
2
13C~(x , ~∇x , z , ~∇z)T

1
2
13)

= trH⊗3(T
1
2C~(x , ~∇x , z , ~∇z)T

1
2 )

(1) Prove this identity when C~ is replaced with (IH⊗2 + 1
nC~)−1C~

(2) Using the Fatou lemma for trace-class operators, prove that

lim
n→∞

trH⊗2

(
T

1
2
13

C~(x ,~∇x ,z,~∇z )

IH⊗2+ 1
n
C~(x ,~∇x ,z,~∇z )

T
1
2
13

)
= trH⊗2

(
T

1
2
13C~(x , ~∇x , z , ~∇z)T

1
2
13

)
lim
n→∞

trH⊗3

(
T

1
2

C~(x ,~∇x ,z,~∇z )

IH⊗3+ 1
n
C~(x ,~∇x ,z,~∇z )

T
1
2

)
= trH⊗3

(
T

1
2C~(x , ~∇x , z , ~∇z)T

1
2

)
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Quiz 3

Complete the proof of Theorem 1 by treating the missing cases where
one of the ρjs is a rank-1 density operator.
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Disintegration w.r.t. a Classical Density

Lemma 4 Let f be a probability density on Rd ×Rd , let R ∈ D(H)
and Q ∈ C(f ,R). There exists a weakly measurable map

Rd × Rd 3 (x , ξ) 7→ Qf (x , ξ) ∈ L1(H)

defined a.e. so that

Qf (x , ξ) = Qf (x , ξ)∗ ≥ 0 , tr(Q(x , ξ)) = 1

and

Q(x , ξ) = f (x , ξ)Qf (x , ξ) a.e. in (x , ξ) ∈ Rd × Rd

Proof First replace f with a Borel representative, and consider the
set N := f −1({0}) which is Borel measurable. Pick u ∈ H such that
‖u‖H = 1, and set

Qf (x , ξ) :=
Q(x , ξ) + 1N (x , ξ)|u〉〈u|

f (x , ξ) + 1N (x , ξ)
∈ L(H)
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Obviously

Q(x , ξ)=Q(x , ξ)∗≥0 & f (x , ξ)≥0 =⇒ Qf (x , ξ)=Qf (x , ξ)∗≥0

Moreover

trH(Q(x , ξ) + 1N (x , ξ)|u〉〈u|) = f (x , ξ) + 1N (x , ξ)

so that
trH(Qf (x , ξ)) = 1

Finally

f (x , ξ)Qf (x , ξ) =
f (x , ξ)Q(x , ξ)

f (x , ξ) + 1N (x , ξ)
= Q(x , ξ)

Indeed, since Q(x , ξ) = Q(x , ξ)∗ ≥ 0 and trH(Q(x , ξ) = f (x , ξ),
then f (x , ξ) = 0 =⇒ Q(x , ξ) = 0. q.e.d.
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Proof of Triangle Inequality with Classical Mid-Point

Consider for example the case where both ρ1 and ρ3 ∈ D2(H), and
assume that ρ2 = f (y , η)dydη ∈ P2(Rd × Rd). Choose couplings
Q1 ∈ C(ρ1, f ) while Q3 ∈ C(f , ρ3). Call Q3

f the disintegration of Q3

w.r.t. f as in Lemma 4. Set

T (y , η) := Q1(y , η)⊗ Q3
f (y , η) .

By construction
T (y , η) = T (y , η)∗ ≥ 0

and
tr1(T (y , η)) =f (y , η)Q3

f (y , η) = Q3(y , η)

tr3(T (y , η)) =Q1(y , η) trH(Q3
f (y , η)) = Q1(y , η)

In particular ∫
R2d

T (y , η)dydη =: Q ∈ C(ρ1, ρ3)
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By the 2nd inequality in Lemma 3

d(ρ1, ρ3)2 ≤ trH⊗2(Q 1
2C~(x , ~∇x , z , ~∇z)Q 1

2 )

=

∫
R2d

trH⊗2(T (y , η)
1
2C~(x , ~∇x , z , ~∇z)T (y , η)

1
2 )dydη

≤ (1 + α)

∫
R2d

tr1
(

tr3(T (y , η)
1
2 c~(x , ~∇x , y , η)T (y , η)

1
2 )
)
dydη

+(1 + 1
α)

∫
R2d

tr3
(

tr1(T (y , η)
1
2 c~(x , ~∇x , y , η)T (y , η)

1
2 )
)
dydη

≤ (1 + α)

∫
R2d

trH(Q1(y , η)
1
2 c~(x , ~∇x , y , η)Q1(y , η)

1
2 )dydη

+(1 + 1
α)

∫
R2d

trH

(
Q3

f (y , η)
1
2 c~(x , ~∇x , y , η)Q3

f (y , η)
1
2

)
f (y , η)dydη

Minimizing the last r.h.s. in Q1 ∈ C(ρ1, ρ2) and in Q3 ∈ C(ρ2, ρ3)

d(ρ1, ρ3)2 ≤ (1 + α)d(ρ1, ρ2)2 + (1 + 1
α)d(ρ2, ρ3)2

and we conclude as in the rank-1 case. q.e.d.
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Quiz 4

(1) Complete the missing details in the proof of Theorem 1 in the
case where ρ1, ρ3 ∈ D2(H) and ρ2 = f (y , η)dydη. In particular,
prove the identity

trH⊗2(Q 1
2C~(x , ~∇x , z , ~∇z)Q 1

2 )

=

∫
R2d

trH⊗2(T (y , η)
1
2C~(x , ~∇x , z , ~∇z)T (y , η)

1
2 )dydη

(2) Write the proof of Theorem 1 in the missing cases.
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APPLICATIONS OF RESTRICTED TRIANGLE INEQUALITY

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Definition of d on P2(Rd × Rd)×D2(H)

So far we have defined d(µ,R) = d(R, µ) for µ ∈ P2(Rd ×Rd) and
R ∈ D2(H) only when µ = f (x , ξ)dxdξ — i.e. only when µ� dxdξ.
Theorem 5
For each R ∈ D2(H), the map f 7→ d(f ,R), defined for all f such
that f (x , ξ)dxdξ∈P2(Rd×Rd) has a unique extension to P2(Rd×Rd)
satisfying

|d(µ,R)− d(ν,R)| ≤ W2(f , g) , µ, ν ∈ P2(Rd × Rd)

Proof For all f , g probability densities with finite 2nd order moments
on Rd × Rd , one has the triangle inequality

d(f ,R) ≤ d(f , g) + d(g ,R)

so that
d(f ,R)− d(g ,R) ≤ d(f , g) =W2(f , g)

Exchanging f and g in the inequality above implies that

|d(f ,R)− d(g ,R)| ≤ W2(f , g)
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The function f 7→ d(f ,R) is Lipschitz-continuous for the metricW2.
It has a unique Lipschitz-continuous extension to P2(Rd × Rd) by
the following density argument. q.e.d.
Lemma 6
Let µ ∈ P2(Rn) and let χε(x) = χ(x/ε)/εn be an even C∞ mollifier
with support in Bε(0). Then fε := χε ? µ is a C∞ probability density
on Rn and

W2(fε, µ)→ 0 as ε→ 0

Proof For all φ ∈ C0(Rn), one has ‖φ−φ?χε‖L∞(Rn) → 0 as ε→ 0.
Hence fε → µ weakly in P(Rn).
It remains to establish the tightness property. Assuming χ is even∫

Rn

1|x |>R |x |2χε ? µ(x)dx =

∫
Rn

χε ? (1|x |>R |x |2)µ(dx)
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On the other hand, for all ε ∈ (0, 1)

χε ? (1|x |>R |x |2) ≤1|x |+1≥R

∫
Rn

|x − εy |2χ(y)dy

≤21|x |+1≥R

|x |2 + ε2
∫

Rn

|y |2χ(y)dy︸ ︷︷ ︸
≤1


Hence

sup
0<ε<1

∫
Rn

1|x |>R |x |2χε ? µ(x)dx ≤ 2
∫

Rn

1|x |+1>R(|x |2 + 1)µ(dx)→ 0

as R →∞, by dominated convergence.

Therefore
W2(χε ? µ, µ)→ 0 as ε→ 0

q.e.d.
F. Golse Quantum Wasserstein 21/52



W2 is the Classical Limit of d

Theorem 7
Let R~,S~ ∈ D2(H) and µ, ν ∈ P2(Rd × Rd). Assume that µ, ν are
the classical limits of R~,S~ respectively, i.e.

d(µ,R~) + d(ν, S~)→ 0 as ~→ 0

Then
lim
~→0

d(R~,S~) = d(µ, ν)
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Proof By the restricted triangle inequality

d(R~,S~) ≤ d(R~, µ) + d(µ, ν) + d(ν, S~)

so that
lim
~→0

d(R~,S~) ≤ d(µ, ν) =W2(µ, ν)

On the other hand, by Theorem 1 (2) of Lecture 1

d(R~, µ)2 ≥W2(H[R~], µ)2 − d~ =⇒ lim
~→0
W2(H[R~], µ) = 0

d(S~, ν)2 ≥ W2(H[S~], ν)2 − d~ =⇒ lim
~→0
W2(H[S~], ν) = 0
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Hence
d(R~,S~)2 ≥ W2(H[R~],H[S~])2 − 2d~

implies that

lim
~→0

d(R~, S~) ≥ lim
~→0
W2(H[R~],H[S~]) =W2(µ, ν)

Summarizing

W2(µ, ν) ≤ lim
~→0

d(R~,S~) ≤ lim
~→0

d(R~,S~) ≤ W2(µ, ν)

q.e.d.
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QUANTUM KANTOROVICH DUALITY

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417

E. Caglioti, F.G., T. Paul: arXiv: 2101.03256 [math-ph], to appear
in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
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Quantum Duality 1 [F.G.-T. Paul JFA2022]

First we consider the case of d(f ,R) where f is a probability density
on Rd × Rd with finite 2nd order moments and R ∈ D2(H).

Define the set k of test Kantorovich potentials as follows

k := {(a,B) : a ∈ Cb(Rd × Rd) and B = B∗ ∈ L(H)

s.t. a(x , ξ)IH + B ≤ c~(x , ξ)}

The operator inequality means that for all φ ∈ H1(Rd)∩L2(Rd ; |y |2dy)

a(x , ξ)‖φ‖2H + 〈φ|B|φ〉 ≤ 〈φ|c~(x , ξ)|φ〉 , x , ξ ∈ Rd

Theorem 8 Under the above conditions on f and R

d(f ,R)2 = min
Q∈C(f ,R)

∫
R2d

trH

(
Q(x , ξ)

1
2 c~(x , ξ)Q(x , ξ)

1
2

)
dxdξ

= sup
(a,B)∈k

(∫
R2d

a(x , ξ)f (x , ξ)dxdξ + trH(BR)

)
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Sketch of the Proof of Thm 8

Set E := Cb(R2d ;L(H)) with ‖T‖E := supx ,ξ∈Rd ‖T (x , ξ)‖L(H),

G (T ) :=

{
0 if T (x , ξ) = T (x , ξ)∗ ≥ −c~(x , ξ)

+∞ otherwise

and

H(T ) :=



∫
R2d

af (x , ξ)dxdξ + trH(BR) if

{
T (x , ξ)=T (x , ξ)∗

= a(x , ξ)IH + B

+∞ otherwise

Theorem 8 follows from the Fenchel-Rockafellar duality formula

inf
T∈E

(G (T ) + H(T )) = max
Λ∈E ′

(−G ∗(−Λ)− H∗(Λ))
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Quantum Duality 2 [E. Caglioti-F.G.-T. Paul, AnnSNS]

Next we consider the case of d(R, S) where R,S ∈ D2(H).

Define the set K of test Kantorovich potentials as follows

K := {(A,B) : A = A∗ and B = B∗ ∈ L(H)

s.t. A⊗ IH + IH ⊗ B ≤ C~}

The operator inequality means that for all Φ ≡ Φ(x , y) ∈ H⊗H s.t.
(∇x −∇y )Φ ∈ L2(Rd × Rd) and Φ ∈ L2(Rd ; |x − y |2dxdy)

〈Φ|A⊗ IH + IH ⊗ B|Φ〉 ≤ 〈Φ|C~|Φ〉

Theorem 9 For all R,S ∈ D2(H), one has

d(R,S)2 = min
T∈C(R,S)

trH⊗H(T
1
2C~T

1
2 ) = sup

(A,B)∈K
trH(AR + BS)
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GENERALIZED TRIANGLE INEQUALITY

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Generalized Triangle Inequality

In general, we do not know how to disintegrate Q12 ∈ C(R1,R2)
w.r.t. R2 for R1,R2 ∈ D2(H), and we do not know how to glue along
R2 couplings Q12 ∈ C(R1,R2) and Q23 ∈ C(R2,R3). Therefore, the
proof of the triangle inequality for W2 does not seem to have an
analogue for d when the mid-point is a density operator of rank > 1.

Theorem 10
For all ρ1, ρ2, ρ3 ∈ D, one has

d(ρ1, ρ3) < d(ρ1, ρ2) + d(ρ2, ρ3) +
√
d~

In particular

d(ρ1, ρ3) < d(ρ1, ρ2) + d(ρ2, ρ3) + 1√
2
d(ρ2, ρ2)

Remark Compare this result with the De Palma-Trevisan triangle
inequality for their distance [Ann. H. Poincaré 2021]
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A Consequence of Duality

Lemma 11 For each R,S ∈ D2(H), one has

d(R, S)2 ≥ d(R,H[S ])2 − d~

Proof of Thm 10 Using H[ρ2] as mid-point, the restricted triangle
inequality implies that

d(ρ1, ρ3) ≤ d(ρ1,H[ρ2]) + d(H[ρ2], ρ3)

Lemma 11 implies that

d(ρ1,H[ρ2]) ≤
√

d(ρ1, ρ2)2 + d~ < d(ρ1, ρ2) + 1
2

√
d~

d(H[ρ2], ρ3) ≤
√
d(ρ2, ρ3)2 + d~ < d(ρ2, ρ3) + 1

2

√
d~

The second inequalities above result from the following elementary
observation

X > Y > 0 =⇒
√
X 2 + Y 2 ≤ X + 1

2Y
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With the restricted triangle inequality above, this implies the first
generalized triangle inequality.
To get the second inequality, observe that

ρ2 ∈ D2(H) =⇒ d(ρ2, ρ2) ≥
√
2d~

q.e.d.
Remark in fact, we have proved the more precise inequality

d(ρ1, ρ3) ≤
√

d(ρ1, ρ2)2 + d~ +
√

d(ρ2, ρ3)2 + d~
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Proof of Lemma 11

For all a ∈ Cb(Rd × Rd) and B = B∗ ∈ L(H) satisfying

a(x , ξ)IH + B ≤ c~(x , ξ)

one applies the Toeplitz map to the variables x , ξ, to find

T [a]⊗ IH + (2π~)d IH ⊗ B ≤(2π~)d
∫
|q, p〉〈q, p|c~(q, p)dqdp

≤(2π~)d (C~ + d~IH⊗H)

(see the formula of Lecture 1 for the image of quadratic functions
by the Toeplitz map). Thus, for all T ∈ C(R, S), one has

(2π~)d
(
TrH⊗H(T

1
2C~T

1
2 ) + d~

)
≥ trH⊗H

(
T

1
2 (T [a]⊗ IH + (2π~)d IH ⊗ B

)
T

1
2 )

= trH⊗H

(
T (T [a]⊗ IH + (2π~)d IH ⊗ B

)
)

= trH(RT [a]) + (2π~)d trH(SB)
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Transforming trH(RT [a]) into an integral involving the functions a
and H[R], i.e. (see lecture 1, formula (4) on Husimi transforms)

trH(RT [a]) = (2π~)d
∫

R2d
H[R](q, p)a(q, p)dqdp

we arrive at the formula

(2π~)d
(
TrH⊗H(T

1
2C~T

1
2 ) + d~

)
≥ (2π~)d

(∫
R2d
H[R](q, p)a(q, p)dqdp + trH(SB)

)
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Maximizing the r.h.s. in a ∈ Cb(Rd × Rd) and B = B∗ ∈ L(H) s.t.

a(x , ξ)IH + B ≤ c~(x , ξ)

and applying the duality formula shows that

(2π~)d
(
TrH⊗H(T

1
2C~T

1
2 ) + d~

)
≥ (2π~)dd(H[R],S)2

i.e.
TrH⊗H(T

1
2C~T

1
2 ) ≥ d(H[R],S)2 − d~

Minimizing the l.h.s. in T ∈ C(R,S) leads to the desired inequality.
q.e.d.
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Quiz 5

Use Lemma 11 to recover the following result (already proved in
Lecture 1)

d(R,S)2 ≥ d(H[R],H[S ])2 − 2d~

Remark If you include the proof of the duality formula, this is the
longest and most difficult proof of the inequality above... On the
other hand, Lemma 11 is a (much) stronger statement — it is the
key to the generalized triangle inequality. That its proof is more
involved is only natural.
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Remarks

Summarizing, in order to prove the triangle inequality for d when the
intermediate point is not a classical density and none of the density
operator involved is a rank-1 projection, you
(1) first use the exact triangle inequality

d(ρ1, ρ3) ≤ d(ρ1,H[ρ2]) + d(H[ρ2], ρ3)

(2) and then pay the price for replacing ρ2 with its Husimi function

d(ρ1, ρ3) ≤
√

d(ρ1, ρ2)2 + d~ +
√

d(ρ2, ρ3)2 + d~

by Kantorovich duality for the the classical-to-quantum distance.
The end of the proof is Kindergarten analysis.

The reason for the detour through H[ρ2] instead of ρ2 is due to the
fact that we do not know how to solve the following quiz — which
is, up to our (=FG+TP) knowledge, a (partially) open question

F. Golse Quantum Wasserstein 37/52



Quiz 6

Before working on this exercise, it is a good idea to review the proofs
of Theorem 7.3 (triangle inequality for Wp) and Lemma 7.6 (disin-
tegration+glueing of couplings) in [Villani: TOT, AMS 2003].
Pick ρ1, ρ2, ρ3 ∈ D2(H), all of them or rank ≥ 2 — otherwise, there
is nothing to prove. Pick R12 and R23 to be optimal couplings of
ρ1, ρ2 and ρ2, ρ3 (recall briefly why such couplings exist...)

(1) Assume there exists T ∈ D(H⊗ H⊗ H) such that

tr1(T ) = R23 and tr3(T ) = R12

Prove that
d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3)

(Hint: observe that tr2(T ) ∈ C(ρ1, ρ3).)

Therefore, proving the triangle inequality boils down to proving the
existence of such a T . The classical analogue of this is precisely the
content of Lemma 7.6 in Villani’s book.
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Let us consider this problem in finite dimension: H = C2 (2 is the first
interesting dimension, because if one of the densities ρj for j = 1, 2, 3
has rank one, the triangle inequality is known).
(2) Let R,R ′ ∈ M2(C). Find a necessary and sufficient condition on
R,R ′ such that there exists A,B,C ∈ M2(C) for which the block-
wise matrix

T :=

(
A B
B∗ C

)
, A = A∗ , C = C ∗

satisfies

τ ′(T ) := A + C = R and τ(T ) :=

(
tr(A) tr(B)

tr(B∗) tr(C )

)
= R ′
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(3) Assume now that R,R ′ ∈ M2(M2(C)). Find a necessary and suf-
ficient condition on R,R ′ such that there exists A,B,C ∈ M2(M2(C))
for which the block-wise matrix

T :=

(
A B
B∗ C

)
, A = A∗ , C = C ∗

satisfies

τ ′(T ) = A + C = R and
(

trM2(C)(A) trM2(C)(B)
trM2(C)(B∗) trM2(C)(C )

)
= R ′

The notations need being explained. An element of B ∈ M2(M2(C))
is of the form

B =

(
B11 B12
B21 B22

)
with Bkl ∈ M2(C)
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There’s the Rub...

Then

B∗ :=

(
BT

11 BT
21

BT
12 BT

22

)
while

trM2(C)(B) := B11 + B22

(4) Explain how (3) is related to the problem of finding T as in (1),
in the case where ρ1, ρ2, ρ3 ∈ D(C2).
(5) Assuming that R,R ′ ∈ D(C2), does (the) block-wise matrix
(matrices) T obtained in (3) satisfy T = T ∗ ≥ 0?
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TOWARDS QUANTUM OPTIMAL TRANSPORT

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Constructing Elements of k

Denote z := (x , ξ) ∈ Rd × Rd and Z := (y ,−i~∇y ), with

z · Z := x · y − i~ξ · ∇y

Thus c~(x , ξ) = |Z |2 + |z |2IH−2z ·Z ≥ d~IH and by Weyl’s theorem

B̃ ∈ L(H) =⇒ c~(z)−1B̃ ∈ K(H) =⇒ ess-spec(c~(z)− B̃) = ∅

Assume that B̃ = B̃∗ is such that c~(z) − B̃ has nondegenerate
ground state for each z ∈ R2d — for instance choose for B̃ a bounded
multiplication operator (see [Reed-Simon IV, Thm XIII.47]) — and
define next

ã(z) := min spec(c~(z)− B̃) = inf
‖φ‖H=1

〈φ|c~(z)− B̃|φ〉

=⇒ c~(z)− B̃ ≥ ã(z)IH
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Besides z 7→ ã(z) is continuous (even real-analytic) by the Kato-
Rellich theorem (cf. [Reed-Simon IV, Thm XII.8]), and

ã(z) ≤ 〈z |c~(z)− B̃|z〉 = d~− 〈z |B̃|z〉 ≤ d~ + ‖B̃‖
ã(z) ≥ d~ + inf

‖φ‖H=1
〈φ| − B̃|φ〉 ≥ d~− ‖B̃‖

Hence ã ∈ Cb(Rd × Rd) and we have obtained in this way

(ã, B̃) ∈ k

The Kato-Rellich theorem also implies the existence of a continuous
(even real-analytic) map

Rd × Rd 3 z 7→ ψz ∈ H s.t.

{
(c~(z)− B̃)ψz = ã(z)ψz

and ‖ψz‖H = 1, z ∈ R2d
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Quantum Optimal Transport P2(Rd × Rd)→ D2(H)

Theorem 12
Under the assumptions above, for each probability density f with
finite 2nd order moments, the map z 7→ f (z)|ψz〉〈ψz | is an optimal
coupling for the pseudometric d between f and the operator

T B̃ [f ] :=

∫
R2d

f (z)|ψz〉〈ψz |dz ∈ D2(H) .

Example Take for example B̃ = 0; then, one easily checks that

ã(z) = d~ , ker(c~(z)− d~IH) = C|z〉

where |z〉 is the Schrödinger coherent state centered at z , so that
T 0[f ] = T [f ] is the Toeplitz operator of symbol f . We already knew
from Theorem 1 (1) in lecture 1 that

d(f , T [f ]) =
√
d~ = inf

P2(R2d )×D2(H)
d
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Proof of Theorem 12

Set Q(z) := f (z)|ψz〉〈ψz |, so that Q(z)
1
2 =

√
f (z)|ψz〉〈ψz |, and∫

R2d
trH

(
Q(z)

1
2 c~(z)Q(z)

1
2

)
dz =

∫
R2d
〈ψz |c~(z)|ψz〉f (z)dz

=

∫
R2d

(ã(z)〈ψz |ψz〉+ 〈ψz |B|ψz〉)f (z)dz

=

∫
R2d

ã(z)f (z)dz + trH

(
B̃T B̃ [f ]

)
Since (ã, B̃) ∈ k and Q ∈ C(f , T B̃ [f ]), this implies that∫

R2d
trH

(
Q(z)

1
2 c~(z)Q(z)

1
2

)
dz

= min
T∈C(f ,T B̃ [f ])

∫
R2d

trH

(
T (z)

1
2 c~(z)T (z)

1
2

)
dz = d

(
f , T B̃ [f ]

)2
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This also implies that∫
R2d

ã(z)f (z)dz + trH

(
B̃T B̃ [f ]

)
= sup

(a,B)∈k

∫
R2d

a(z)f (z)dz + trH

(
BT B̃ [f ]

)
— so that in this case, the sup is attained in k (not true in general).

q.e.d.

Remark Thus the optimal transport map for d between P2(Rd×Rd)
and D2(H) can be thought of as a deformation of the Toeplitz
quantization, at least when B̃ is such that c~(z) − B̃ has a ground
state of geometric multiplicity 1.

Question In Brenier’s theorem, the classical optimal transport map is
the gradient of a convex function. Is there some analogous property
in the quantum setting?
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Legendre Dual of an Operator

If (ã, B̃) ∈ k, one has

|Z |2 + |z |2IH − 2z · Z︸ ︷︷ ︸
=c~(z)

≥ ã(z)IH + B̃ ⇐⇒ a(z) + B ≥ z · Z

with
a(z) := 1

2(|z |2 − ã(z)) , B = 1
2(|Z |2 − B̃)

One has Dom(c~(z))=Dom(|Z |2)= H2(Rd) ∩ L2(Rd , |y |4dy)=:D
Definition Let B satisfy |Z |2 − 2B ∈ L(H). The Legendre dual of
B is the convex function (upper enveloppe of affine functions)

BL(z) := sup
φ∈D
‖φ‖H=1

(z · 〈φ|Z |φ〉 − 〈φ|B|φ〉)
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Operator Legendre Duality and Quantum Optimal Transport

Theorem 13
(1) Under the same assumptions as in Theorem 12, setting

a(z) := 1
2(|z |2 − ã(z)) , B := 1

2(|Z |2 − B̃)

one has
a = BL

(2) Besides
∇a(z) = z −∇ã(z) = 〈ψz |Z |ψz〉

Proof (1) follows from the definition and the variational formula for
the ground state. As for (2), differentiate in z the identity

Bψz − z · Zψz + a(z)ψz = 0

and take the inner product with ψz to get

〈ψz |B − z · Z + a(z)|ψ̇z〉︸ ︷︷ ︸
=0 since B=B∗,Z=Z∗, a(z)∈R

+〈ψz | − Z +∇a(z)|ψz〉 = 0

q.e.d.
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Remarks

(1) In the Knott-Smith theorem, optimal couplings for W2 are sup-
ported in the graph of the subdifferential of a l.c.s. convex function,
while, in the Brenier theorem, the optimal transport map is the gra-
dient of a convex function — in both cases, the function is obtained
from an optimal Kantorovich potential by the same transformation as
ã 7→ a. Theorem 13 (2) is a partial analogue of this crucial piece of
information, except that, in the quantum setting, density operators
are not “functions of Z ”.

(2) In classical optimal transport, there exist an optimal pair (a, b)
of Kantorovich potentials; they are l.c.s. proper convex functions
and are Legendre duals of each other, so that ∇a ◦∇b = Id; besides
a ∈ L1

µ and b ∈ L1
ν . In the present case, how should one define a

“quantum gradient” of B?
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(2’) The idea is to use the phase space symplectic structure. For a
smooth function α ≡ α(x , ξ) on Rd × Rd , one has

∂xjα = {ξj , α} , ∂ξjα = −{xj , α} , j = 1, . . . , d

This suggests to define

∂Qyj B := i
~ [−i~∂yj ,B] , ∂QηjB := − i

~ [yj ,B]

Since

Bψz = z · Zψz + a(z)ψz , B = B∗ , Z = Z ∗ and a(z) ∈ R

one easily checks that{
xj = 〈ψz |∂Qyj B|ψz〉
ξj = 〈ψz |∂QηjB|ψz〉

j = 1, . . . , d

This formula can be viewed as the inverse transform of Thm 13 (2)
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(3) Analogous ideas on a definition of an optimal transport “map”
between elements ofD2(H) can be found in Caglioti-F.G.-Paul [arXiv:
2101.03256 [math-ph], Ann. SNS Pisa, to appear]. Partial results
analogous to Theorem 13 have been obtained, but much remains to
be done.

The proof of Theorem 13 suggests viewing the operator

−1
2(|x |2 − ~2∆x − A)

as the “smallest eigenvalue” of the operator

1
2(|y |2 − ~2∆y − B)− x · y + ~2∇x · ∇y

viewed as a “matrix” whose entries are operators in the x-variables.
New ideas on this problem are obviously needed.
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