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Outline of Lecture 3

This last lecture discusses various features of our extension of optimal
transport to the quantum setting. In particular, the following topics
will be studied

eKantorovich-type duality for quantum optimal transport

etriangle inequality for the quantum pseudometric 0 on ©
estructure of optimal couplings for the pseudometric d
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RESTRICTED TRIANGLE INEQUALITY

F.G., T. Paul: J. Math. Pures Appl. 151 (2021), 257-311.
F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Restricted Triangle Inequality

Theorem 1 For all p1, p2, p3 € © = Po(RY x RY)UD,(6), one has

o(p1, p3) < 0(p1, p2) + 0(p2, p3)

provided that po is a probability density in R? x RY or one of the pjs
is a rank-1 density operator on $).

Recall that

an(x, &y, hV,) = |x — y|*> + |€ + ihV,
Cu(x, iV, y, BV ) = |x — y|* = I*|Vx = V, 2

F. Golse Quantum Wasserstein 4/52



Operator Inequalities: Quantum “Intermediate Point”

Lemma 2 For all & > 0, one has

x =z +|€ = ¢ <(1+ a)an(x, &y, hVy)
+ (14 Han(z, ¢y, hVy)
cn(x,& 2, hV,) <(1+ a)eu(x, &y, AV ,)
)

+(1+ )Gy, hVy,2z,hV,)
Gi(x,hVx,z,hV;) <(1 + a)Gy(x, AV «, y,hV )
+(1 + E)Cﬁ(ya hvyvzv hvz)

These operator inequalities mean that, for all ¢ € S(R)%ff5 X R}‘f X Rgi.)
(d|r.hs. — I.hs|d) >0
Proof Write
Co(x, AV, 2, AN ,) =|x —y +y — 2> = B3|V, =V, + V, — V|2
=Cu(x,hV,y,hV ) + Gi(y,hV,, 2z, hV;)
+2(x=y)-(y—2)=21*(Vx—V,)-(V,~ V)
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Use the Peter-Paul elementary inequality
20x—=y)-(y—2) < alx—y + ty—z
and, for operators A, B, the analogous inequality
A*B + B*A < a|A* + 1|BJ?

with A= A* = —ih(0x, — 0),) and B = B* = —ih(0), — Jz,) for all
indices j = 1,...,d. (Observe that these operators commute which
is inessential here). The operator inequality comes from expanding

2
0< |azA—a"2B| =alA? + 1B — A*B - B*A
Hence

2(x—y)-(y—2)=20*(Vx—=V,)-(V, V)
< aGy(x,hVy,y,hV,) + gch(% hV,,z,hV,)
With the previous inequality involving Cy(x, AV, z, AV ), we arrive

at the 3rd inequality of Lemma 2. g.ed.
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Operator Inequalities: Classical Intermediate Point

Lemma 3 For all @ > 0, one has

an(x,&2,hV;) <(L+a)(|x = y[> + € = nl?)
+ (14 Danly,m 2, hV.)
Ch(x, AV, z, hV;) <(1 + a)cn(x, hVx, y, )
+(1+ euly,n,z,hV )

These operator inequalities mean that
(¢|r.h.s. — I.h.s.|¢) >0
for all ¢ € S(Riflg x RY % Rif’c)

Same method of proof as for Lemma 2.
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Write the proof of Lemma 3
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Proof of Thm 1: the Rank-1 Case

Assume for example that p1 and p2 € Da($) while p3 is a rank-1
density operator, and let Q € C(p1, p2). Set

T=Q®p3, Tiz=troT €C(p1,p3)

Hence, by the 3rd inequality in Lemma 3

1

(p1, p3)° < tryj@z(T%C (x,hVx,z, AV ;) T)

— trges(T2 Gi(x, hVx, 2, hV,) T?)

< (1+a)traes(T2Cu(x, hVy, y, hV,) T2)

+(1+ L) trges(T2 Gy, hV,, 2, AV,) T?)

= (1 + a) trgez(Q2 Cy(x, hVx, v, AV, ) Q2)

(14 1) trgea((p2 @ p3)} Gy, iV, 2, h9.) (02 © p3)

=0(p2,p3)?
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Minimizing the last r.h.s. in Q € C(p1, p2) shows that
(p1, p3)” < (L4 )o(p1, p2)° + (1+ 2)o(p2, p3)°
Minimizing the r.h.s. in « > 0, i.e. setting

0
o= ()02, P3)

assuming 0(p1,p2) >0
0(;017[’2)

leads to

a(pla p3)2 < a(pla 02)2 + a(p27 p3)2 + 2D(p17p2)0(p27 p3)

Conclude by taking the square root of both sides of this inequality.
g.ed.
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Complete the proof by justifying the equality
1 1
tr;j@z( T123 Ch(X7 hVy, z, hvz) T123)
= try)®3(T% Ch(Xg hvx; Z, hvz) T%)

(1) Prove this identity when Cj is replaced with (Ige2 + £ C;) "Gy
(2) Using the Fatou lemma for trace-class operators, prove that

)

1 1
== tl’5®2 <T123 Cﬁ(Xa hvxa 27 th) T123>

. 1 1
lim tryes <T2 Cr(x,/1Vx,2,1V ) T2)

00 ls@3+3+ Cri(x,hVx,2,hV ;)

NI

1
(T2 Ch(X’th7Z7hvz) T

lim tr
troee 131502+ Ci(x,hVx,2,hVz) © 1

n—o0

w

— trﬁ®3 <T% C}&L(X7 hvx, Z, hVZ)T%>
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Complete the proof of Theorem 1 by treating the missing cases where
one of the pjs is a rank-1 density operator.
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Disintegration w.r.t. a Classical Density

Lemma 4 Let f be a probability density on RY x RY, let R € D($)
and Q € C(f, R). There exists a weakly measurable map

R? x RY 3 (x,€) — Qf(x,&) € LY(H)
defined a.e. so that
Qr(x,§) = Qe(x,£)" >0, tr(Q(x,€)) =1
and
Q(x,€) = f(x, ) Qr(x,€) ae in (x,€) € R x R?

Proof First replace f with a Borel representative, and consider the
set N := f~1({0}) which is Borel measurable. Pick u € $ such that
|lulls =1, and set

Q(x, &) + 1a(x,&)|u)(ul
f(x,€) + 1a(x,€)
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Obviously
Q(x,§)=Q(x,€)">0 & f(x,)>0 = Qr(x,£)=Qr(x,£)" >0
Moreover

tr(Q(x, &) + Ln(x, §)lu)(u]) = F(x, €) + 1n(x, )

so that
tro(Qr(x,€)) =1
Finally

f(x,§)Q(x,¢)
(x,8) + 1n(x,€)

Indeed, since Q(x,&) = Q(x,£)* > 0 and try(Q(x,&) = f(x,¢),
then f(x,£) =0 = Q(x,&) =0. q.ed.

= Q(va)

f(ng)Qf(X7£) = f
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Proof of Triangle Inequality with Classical Mid-Point

Consider for example the case where both p; and p3 € Dy($), and
assume that py = f(y,n)dydn € Po(RY x RY). Choose couplings
Q! € C(p1, f) while Q3 € C(f, p3). Call @2 the disintegration of @3
w.r.t. f asin Lemma 4. Set

T(y.n) == Q"(y,n) ® Q(y.n).

By construction
T(y,n)=T(y,n)" =0

and
tri(T(y,n)) =F(y.n)Q(y,n) = @*(y.n)

tr3(T(y,n)) =Q" (v, n) trs(QF(y,n)) = Q*(v.n)

In particular

/de T(y,n)dydn =: Q € C(p1, p3)
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By the 2nd inequality in Lemma 3
o(p1, p3)? < tre2(Q2 Gulx, iVx, 2, V) Q2)

:/ dtrf)@z(T(y,77)%C;L(x,hVX,z,hVZ)T(y,n)%)dydn

R2

<+a) [ (s(Tomle
R2d

+a+ D) [ (on(Tm)ie
R2d

I\)\»—l

(X hvmy’ dyd77

N\i—l

w(, WV y, ) T(y, 77)1 )dydn

<+ a) [ tral@(mEanlx iy, m@ (y.n) ey

+(1+é)/ try <Qf(y )z cn(x, iV, y, n) Q2(y, n)? )f(y,n)dydn
R2d

Minimizing the last r.h.s. in Q! € C(p1,p2) and in Q3 € C(p2, p3)

3(p1,p3)* < (14 a)(p1, p2)* + (1 + 2)3(p2, p3)°

and we conclude as in the rank-1 case. g.ed.
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(1) Complete the missing details in the proof of Theorem 1 in the
case where p1,p3 € Dy($) and p2 = f(y,n)dydn. In particular,
prove the identity
1 1
'tl"g@Z(QE Ch(X7 th7z7th)Q§)
= [, (T () Gl V29 Tm) el
R2

(2) Write the proof of Theorem 1 in the missing cases.
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APPLICATIONS OF RESTRICTED TRIANGLE INEQUALITY

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Definition of ? on Pg(Rd X Rd) X Dy($)

So far we have defined 2(u, R) = (R, 1) for 1 € P2(RY x RY) and
R € Dy($H) only when p = f(x,§)dxd{ — i.e. only when p < dxd¢.
Theorem 5
For each R € D,($), the map f — d(f, R), defined for all f such
that f(x, £)dxd¢ € Po(RIxR?) has a unique extension to Pp(RYxR9)
satisfying

0(i, R) = 2(v, R)| < Wa(f,g),  p,v € P2(RYxRY)
Proof For all f, g probability densities with finite 2nd order moments
on RY x RY, one has the triangle inequality

o(f,R) <o(f,g) +0(g,R)

so that

Exchanging f and g in the inequality above implies that
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The function f — 9(f, R) is Lipschitz-continuous for the metric W5.
It has a unique Lipschitz-continuous extension to P>(R? x RY) by
the following density argument. g.ed.
Lemma 6

Let € P2(R") and let x(x) = x(x/€)/€" be an even C>° mollifier
with support in B.(0). Then f. := xxpu is a C* probability density
on R" and

Wh(fe, 1) -0 ase—0

Proof For all ¢ € Co(R"), one has [|¢—@xXel|oo(rn) — 0 as e — 0.
Hence f. — p weakly in P(R").
It remains to establish the tightness property. Assuming x is even

[ ol e = [ (1o plx P e)

F. Golse Quantum Wasserstein
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On the other hand, for all € € (0,1)

Xe * (Lo rIx[2) <Lpiasr /R Ix — ey Px(y)dy

ST IV /R yPx(y)dy

—_—
<1

Hence

sup [ Lol 1)k <2 [ gyl + () 0
0<e<lJRn R"

as R — oo, by dominated convergence.

Therefore
Wha(xe * p, 1) — 0 ase—0
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W is the Classical Limit of ?

Theorem 7

Let Ry, Sy € Do($) and 1, v € P2o(RY x RY). Assume that p, v are
the classical limits of Ry, Sy, respectively, i.e.

o(p, Ry) +0(v,S,) -0 ash—0
Then
lim o(Ry, Sp) = o(u, v)
h—0

D1($) pseudometric d h

P2(R??) metric W
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Proof By the restricted triangle inequality
(R, Sn) < o(Rp, p) +3(p, v) +0(v, Sp)

so that o
lim 9(Rp, Sn) < 0(p, v) = Wa(p,v)
h—0

On the other hand, by Theorem 1 (2) of Lecture 1
O(Ru, )2 = WalHIR, 1)? = dh = lim Wa(H[Ri], ) = 0
[
(S, v)* = Wa(H[Sh],v)? — dh = lim Wa(H[S3],v) =0
11—
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Hence
O(Ry, Sn)? = Wa(H[Rs], H[Sh])? — 2dh

implies that

}!Linoa(Rh, Sh) > I|m WQ(H[Rh] H[Sh]) WQ(,u, V)

Summarizing

Wa(p,v) < lim 9(Ry, Sp) < I|m D(R;;,Sr) < Wh(p,v)
h—0

g.e.d.
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’ QUANTUM KANTOROVICH DUALITY

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417

E. Caglioti, F.G., T. Paul: arXiv: 2101.03256 [math-ph], to appear
in Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
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Quantum Duality 1 [F.G.-T. Paul JFA2022]

First we consider the case of 9(f, R) where f is a probability density
on R? x R? with finite 2nd order moments and R € Dy($).

Define the set £ of test Kantorovich potentials as follows

t:={(a,B) : a€ Co(RY x R?) and B = B* € L(%)
s.it. a(x, &)y + B < cn(x,€)}

The operator inequality means that for all ¢ € H1(RY)NL2(RY; |y|?dy)

a(x, &)[[0l3 + (#|Blo) < (dlen(x,E)|¢),  x,€ € R?

Theorem 8 Under the above conditions on f and R

o(f,R)> = min / trg (Q(X,f)%cﬁ(x,g)Q(x,f)%> dxd§
R2d

QeC(f,R)

= sup (/de a(x,{)f(x,g)dxdﬁ+trﬁ(BR)>

(a,B)et
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Sketch of the Proof of Thm 8

Set £ := Cp(R*; £(9)) with [|T||g := sup, ccra | T(x,€)ll ().

G(T) — {0 if T(ng) = T(ng)* > _Cﬁ(x7§)

4+ 00 otherwise

and

/ af (x,&)dxd¢ + trg(BR)  if { T(x,(f)z)lr(: g)*
H(T) = ® = a(x, &)l
+oo otherwise

Theorem 8 follows from the Fenchel-Rockafellar duality formula

inf (G(T) + H(T)) = max (~G*(=A) — H*(V))
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Quantum Duality 2 [E. Caglioti-F.G.-T. Paul, AnnSNS]

Next we consider the case of 9(R,S) where R, S € Dy(9).

Define the set & of test Kantorovich potentials as follows

R:={(A,B) : A=A" and B=B* € L(9)
s.t. A@Iﬁ‘F/ﬁ@BgCh}

The operator inequality means that for all = ®(x,y) € H ® H s.t.
(Vx —V,)® € L2(R? x R?) and ® € L2(RY; |x — y|?dxdy)

(P|A® I + Iy @ B|®) < (0] Cy|®)
Theorem 9 For all R, S € D1($)), one has
AR, S = min traen(T2CiT2)= sup try(AR + BS)

TEeC(R,S) (A,B)es
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GENERALIZED TRIANGLE INEQUALITY

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Generalized Triangle Inequality

In general, we do not know how to disintegrate Q12 € C(Ri, R2)
w.r.t. Ry for Ry, Ry € D»($)), and we do not know how to glue along
Ry couplings Q12 € C(R1, R2) and Qa3 € C(R», R3). Therefore, the
proof of the triangle inequality for VW, does not seem to have an
analogue for 0 when the mid-point is a density operator of rank > 1.

Theorem 10
For all p1, p2, p3 € D, one has

O(PlzP3) < D(p17p2) +0(P27P3) + v dh
In particular
0(p1,p3) < 0(p1, p2) +0(p2, p3) + %D(Pmpz)

Remark Compare this result with the De Palma-Trevisan triangle
inequality for their distance [Ann. H. Poincaré 2021]
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A Consequence of Duality

Lemma 11 For each R, S € D,($), one has
(R, S)* > o(R, H[S])?> — dh

Proof of Thm 10 Using #[p2] as mid-point, the restricted triangle
inequality implies that

o(p1, p3) < 0(p1, H[pz2]) + 0(H[p2], p3)

Lemma 11 implies that

(p1, H[pa]) < 1/0(p1, p2)? + dh < d(p1, p2) + 3Vdh
(Ml ) < o o < (g ) + 1

The second inequalities above result from the following elementary
observation

X>Y>0= VX2+Y2<X+3Y
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With the restricted triangle inequality above, this implies the first
generalized triangle inequality.
To get the second inequality, observe that

p2 € Da(H) = (p2, p2) > V2dh

g.e.d.
Remark in fact, we have proved the more precise inequality

0(p1.p3) < \/0(pr. p2)? + dh+ \/0(p2, p3)? + dh

F. Golse Quantum Wasserstein
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Proof of Lemma 11

For all a € (R x RY) and B = B* € L($) satisfying
a(x, &)y + B < cn(x, &)
one applies the Toeplitz map to the variables x, &, to find
Tlal ® Iy + (27h) I, @ B <(27h)? / \a, p){, plcn(q, p)dadp

<(27h)? (G, + dhlsgg)

(see the formula of Lecture 1 for the image of quadratic functions
by the Toeplitz map). Thus, for all T € C(R,S), one has

(2rh)? (Trﬁ@a(T% CiT2)+ dh)

> troes ( T2(T[a) ® Iy + (27h) g ® B) T3)
— troms (T(T[a] @ I + (27h) Iy, @ B) )

= trg(RT[a]) + (27h)9 trg(SB)
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Transforming trg(R7[a]) into an integral involving the functions a
and H[R], i.e. (see lecture 1, formula (4) on Husimi transforms)

tro(RTLa]) = (2 | HIRI(a. p)a(a. p)dcy
we arrive at the formula
(271)? (Trses(T2 G T#) + dn)

> nt)? ([ HIRI(a.p)aa p)dac + t(58) |

R2d
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Maximizing the r.h.s. in a € Co(R? x RY) and B = B* € L(9) s.t.

a(X7E)I~VJ +B < Cﬁ(X7€)

and applying the duality formula shows that

(2rh)? (Trﬁm(r%chré) + dh) > (2rh)%d(H[R], S)?

Traosn(T2CiT2) > 3(H[R], S)? — dh

Minimizing the l.h.s. in T € C(R, S) leads to the desired inequality.
g.e.d.
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Use Lemma 11 to recover the following result (already proved in
Lecture 1)
(R, S)? > o(H[R], H[S])? — 2dh

Remark If you include the proof of the duality formula, this is the
longest and most difficult proof of the inequality above... On the
other hand, Lemma 11 is a (much) stronger statement — it is the
key to the generalized triangle inequality. That its proof is more
involved is only natural.
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Summarizing, in order to prove the triangle inequality for @ when the
intermediate point is not a classical density and none of the density
operator involved is a rank-1 projection, you

(1) first use the exact triangle inequality

o(p1, p3) < 0(p1, H[pz2]) + 0(Hp2], p3)

(2) and then pay the price for replacing p, with its Husimi function

2(p1,p3) < \/D(PL p2)* +dh+ \/a(pz,Pa)2 +dh
by Kantorovich duality for the the classical-to-quantum distance.
The end of the proof is Kindergarten analysis.

The reason for the detour through H][p2] instead of ps is due to the
fact that we do not know how to solve the following quiz — which
is, up to our (=FG+TP) knowledge, a (partially) open question
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Before working on this exercise, it is a good idea to review the proofs
of Theorem 7.3 (triangle inequality for W,) and Lemma 7.6 (disin-
tegration+glueing of couplings) in [Villani: TOT, AMS 2003|.

Pick p1, p2, p3 € Da($), all of them or rank > 2 — otherwise, there
is nothing to prove. Pick Rj> and Rx3 to be optimal couplings of
p1,p2 and po, p3 (recall briefly why such couplings exist...)

(1) Assume there exists T € D(H ® H ® 9) such that
trl(T) = Ry3 and tl’3(T) = Rip
Prove that
0(p1, p3) < 0(p1, p2) + d(p2, p3)
(Hint: observe that tra(T) € C(p1,p3).)

Therefore, proving the triangle inequality boils down to proving the
existence of such a T. The classical analogue of this is precisely the

content of Lemma 7.6 in Villani's book.
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Let us consider this problem in finite dimension: $ = C? (2 is the first
interesting dimension, because if one of the densities p; for j = 1,2,3
has rank one, the triangle inequality is known).

(2) Let R, R" € M»(C). Find a necessary and sufficient condition on
R, R’ such that there exists A, B, C € M(C) for which the block-
wise matrix

A B % -
T._<B* c)’ A=A C=C

satisfies

A(T):=A+C=R and ~(T):= (ttrr((é\*)) Eé?;) e

F. Golse Quantum Wasserstein
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(3) Assume now that R, R" € My(M>(C)). Find a necessary and suf-
ficient condition on R, R’ such that there exists A, B, C € My(M,(C))
for which the block-wise matrix

A B * i
T._(B* C), A=A C=C

satisfies

trvc)(A)  tra(c)(B) :
(TY=A+C=R and ( Ma(CON 2(€) =R
m(7) tran(c)(B*)  trac)(C)

The notations need being explained. An element of B € My(M,(C))
is of the form

_ (Bi1 B -
B = <B21 822> with By € MQ(C)
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There's the Rub...

Then o
B* = Bl-,i B27i
T BT F
12 22
ter(c)(B) = B11 + B»

(4) Explain how (3) is related to the problem of finding T as in (1),
in the case where p1, p2, p3 € D(C?).

(5) Assuming that R, R’ € D(C?), does (the) block-wise matrix
(matrices) T obtained in (3) satisfy T = T* > 07

while
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TOWARDS QUANTUM OPTIMAL TRANSPORT

F.G., T. Paul: J. Functional Anal. 282 (2022) 109417
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Constructing Elements of £

Denote z := (x,&) € R x RY and Z := (y, —ihV,), with
z-Z:=x-y—Iih&-V,

Thus cp(x, &) = | Z|>+|z|?lg — 2z Z > dhlg and by Weyl's theorem

BeL(H) = c(z) B e K(H) = ess-spec(cy(z) — B) = @

Assume that B = B* is such that ¢,(z) — B has nondegenerate
ground state for each z € R2¢ — for instance choose for B a bounded
multiplication operator (see [Reed-Simon IV, Thm XII1.47]) — and
define next

5(z) := minspec(cp(z) — B) = ||¢i‘£f:1<¢|cﬁ(z) — B|o)

— o(z) — B > 3(2)l5
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Besides z + 3(z) is continuous (even real-analytic) by the Kato-
Rellich theorem (cf. [Reed-Simon IV, Thm XII.8]), and

3(z) < (z|en(z) — Blz) = dh — (z|B|z) < dh + || B]|
i(z) > dhi+ inf (¢|— B|¢) > dh— | B

8lls=
Hence 3 € C,(RY x RY) and we have obtained in this way
(3,B) et
The Kato-Rellich theorem also implies the existence of a continuous

(even real-analytic) map

RIxRISzy. €9 st {(CE(Z) " Bz = 3(2)0

and [[¢,]ls = 1, z € R*
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Quantum Optimal Transport P>(R? x R?) — Dy($)

Theorem 12

Under the assumptions above, for each probability density f with
finite 2nd order moments, the map z — f(z)[¢),)(¢,| is an optimal
coupling for the pseudometric ? between f and the operator

T[] = /R  F(@l2)(waldz € Da(s9).

Example Take for example B = 0; then, one easily checks that
i(z) = dh, ker(cy(z) — dhly) = C|z)

where |z) is the Schrédinger coherent state centered at z, so that
TO[f] = T|f] is the Toeplitz operator of symbol f. We already knew
from Theorem 1 (1) in lecture 1 that

o(f, T[f]) = Vdh = inf 0

P2(R29)x D> ($)
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Proof of Theorem 12

Set Q(z) := f(2)[12) (1], so that Q(z)2 = \/F(2)[2) (W], and
| (Q@ka@e@?) d = | wiavr()d:
_ /R (B(2)Weliz) + (| Bluiz) ) (2)dz
— / 3(z)f(z)dz + trg (éTé[f])
R2d

Since (4,B) € t and Q € C(f, Té[f]), this implies that

/de trg (Q(z)%ch(z)Q(z)%) dz

1

= mn, | (T@a@T@)}) d =0 (r.7810)°

Tec(f, TB[f]




This also implies that
/ 3(2)f(2)de + tro (BT])
R2d

= sup/ a(z)f(z)dz + trg (B’Té[f]>
(a,B)et JR2d

— so that in this case, the sup is attained in £ (not true in general).
g.e.d.

Remark Thus the optimal transport map for 0 between P>(R? x RY)
and D>($)) can be thought of as a deformation of the Toeplitz
quantization, at least when B is such that c;(z) — B has a ground
state of geometric multiplicity 1.

Question In Brenier's theorem, the classical optimal transport map is
the gradient of a convex function. Is there some analogous property
in the quantum setting?

F. Golse Quantum Wasserstein

47/52



Legendre Dual of an Operator

If (4, B) € ¢, one has

1Z12+ |zl —22-Z> 4(2)lg + B <= a(z)+B>z-Z

=cn(z)

with .

a(z) = 3(|z]> - 4(2)),  B=3(Z|* - B)
One has Dom(c;(z)) =Dom(|Z|?)= H?(RY) N L2(RY, |y|*dy)=: D
Definition Let B satisfy |Z|?> — 2B € L($)). The Legendre dual of
B is the convex function (upper enveloppe of affine functions)

B(z) == sup (z-(91Z19) ~ (9IBI¢))

lollg=1
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Operator Legendre Duality and Quantum Optimal Transport

Theorem 13
(1) Under the same assumptions as in Theorem 12, setting

a(z):=3(|21* —4(2)),  B:=3(1Z - B)
one has
a=Bt
(2) Besides
Va(z) =z = Va(z) = (Yz|Z]z)
Proof (1) follows from the definition and the variational formula for
the ground state. As for (2), differentiate in z the identity

By, —z-Zy,+ a(z)y, =0
and take the inner product with v, to get
(028 — 2 Z + a(2)|ih2) +{tbz] — Z + Va(2)iz) = 0
=0 since B=B*,Z=27*,a(z)€eR

g.ed.
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(1) In the Knott-Smith theorem, optimal couplings for W, are sup-
ported in the graph of the subdifferential of a l.c.s. convex function,
while, in the Brenier theorem, the optimal transport map is the gra-
dient of a convex function — in both cases, the function is obtained
from an optimal Kantorovich potential by the same transformation as
d+— a. Theorem 13 (2) is a partial analogue of this crucial piece of
information, except that, in the quantum setting, density operators
are not “functions of Z".

(2) In classical optimal transport, there exist an optimal pair (a, b)
of Kantorovich potentials; they are l.c.s. proper convex functions
and are Legendre duals of each other, so that Vao Vb = Id; besides
ac Li and b € Lll,. In the present case, how should one define a
“quantum gradient” of B?
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(2') The idea is to use the phase space symplectic structure. For a
smooth function o = a(x, €) on RY x RY, one has

O = {§j,a}, Osa=—{x,a}, j=1,...,d
This suggests to define
03B := {[=ihdy, B], 03B :=—ily;, Bl
Since
By, =z-Zvy,+a(z)y,, B=B", Z=2Z7"anda(z) eR
one easily checks that

{xj- = (1[0 Bly.)

i=1.....d
&= (00080,

This formula can be viewed as the inverse transform of Thm 13 (2)
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(3) Analogous ideas on a definition of an optimal transport “map”
between elements of Dy($)) can be found in Caglioti-F.G.-Paul [arXiv:
2101.03256 [math-ph], Ann. SNS Pisa, to appear|. Partial results
analogous to Theorem 13 have been obtained, but much remains to
be done.

The proof of Theorem 13 suggests viewing the operator
—1(Ix|* = B’ A, — A)
as the “smallest eigenvalue” of the operator
L(y?—r*Ay —B)—x-y +1EVy -V,

viewed as a “matrix’ whose entries are operators in the x-variables.
New ideas on this problem are obviously needed.
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