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I. PROGRAM

Monday, July 21, 2025

Morning
Chair: Le Tuan Hoa

07:30 – 08:45 Registration

08:45 – 09:00 Opening

09:00 – 09:45 Bernd Ulrich (Purdue University)
The syzygies of the residue field of Golod rings

09:45 – 10:00 Coffee break

10:00 – 10:45 Hai Long Dao (University of Kansas)
On componentwise linear ideals

11:00 – 11:45 Hidefumi Ohsugi (Kwansei Gakuin University)
Commutative algebra and graph coloring theory

Afternoon
Chair: Aldo Conca

14:00 – 14:45 Winfried Bruns (Universität Osnabrück)
Jürgen Herzog: life and work

14:45 – 15:00 Coffee break

15:00 – 15:45 Naoki Terai (Okayama University)
The v-numbers of squarefree monomial ideals

16:00 – 16:45 Hop D. Nguyen (Institute of Mathematics, VAST)
Koszul property and finite linearity defect

over g-stretched local rings
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Tuesday, July 22, 2025

Morning
Chair: Hai Long Dao

09:00 – 09:45 David Eisenbud (MSRI, Berkeley)
Observations (and a few results) on

infinite free resolutions

09:45 – 10:00 Group picture & Coffee break

10:00 – 10:45 Giulio Caviglia (Purdue University)
Quadratic linear strands of prime ideals

10:55 – 11:10 Arindam Banerjee (IIT Kharagpur)
Some results on Castelnuovo–Mumford regularity

of ideals related to graphs

11:15 – 11:30 Guangjun Zhu (Soochow University)
Generalized binomial edge ideals of bipartite graphs

11:35 – 11:50 Ramakrishna Nanduri (IIT Kharagpur)
On toric ideals of weighted oriented graphs

Afternoon
Chair: Hema Srinivasan

14:00 – 14:45 Claudia Polini (University of Notre Dame)
Behrend function and blowup algebras

14:45 – 15:00 Coffee break

15:00 – 15:45 Matteo Varbaro (Università di Genova)
Singularities of Herzog varieties

16:00 – 16:45 Emanuela De Negri (Università di Genova)
Invariants of toric double determinantal rings
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Wednesday, July 23, 2025

Morning
Chair: Jugal Verma

09:00 – 09:45 Steven Dale Cutkosky (University of Missouri)
Degree functions through intersection theory

09:45 – 10:00 Coffee break

10:00 – 10:45 Tài Huy Hà (Tulane University)
Asymptotic regularity of graded families

of homogeneous ideals

10:55 – 11:10 Kazuho Ozeki (Nihon University)
The first Hilbert coefficient of stretched ideals

11:15 – 11:30 Mousumi Mandal (IIT Kharagpur)
Upper bounds for second Hilbert coefficients

11:35 – 11:50 Dipankar Ghosh (IIT Kharagpur)
Complexity and curvature of (pairs of) Cohen–Macaulay

modules, and their applications

Afternoon
Chair: Jugal Verma

14:00 – 14:45 Sara Saeedi Madani (Amirkabir Univ. of Technology)
Binomial edge ideals and some other related ideals

14:45 – 15:00 Coffee break
15:00 – 17:00 Poster Session
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Thursday, July 24, 2025

Morning
Chair: Tim Römer

09:00 – 09:45 Kei-ichi Watanabe (Nihon University)
Almost Gorenstein and nearly Gorenstein properties of

2-dimensional normal rings; using
resolution of singularities

09:45 – 10:00 Coffee break

10:00 – 10:45 Volkmar Welker (Philipps-Universität Marburg)
Generalized binomial edge ideals and the

Cartwright–Sturmfels property

10:55 – 11:10 Clare D’Cruz (Chennai Mathematical Institute)
Joint reduction and adjoint of ideals

11:15 – 11:30 Pham Hong Nam (Thai Nguyen Univ. of Sciences)
Unmixed torsions and sequentially Cohen–Macaulay modules

11:35 – 11:50 Shreedevi K. Masuti (IIT Dharwad)
Artinian Gorenstein algebras with a binomial

Macaulay dual generator

Afternoon
Chair: Tài Huy Hà

14:00 – 14:45 Marc Chardin (Sorbonne Université)
Cohomology and free resolutions over a product

of projective spaces

14:45 – 15:00 Coffee break

15:00 – 15:45 Tony J. Puthenpurakal (IIT Bombay)
On lengths of modules over certain Artinian

complete intersections

16:00 – 16:45 Zhongming Tang (Soochow University)
Symmetric algebras and s-sequences

17:30 – 19:30 Conference banquet
at Vietnam Institute for Advanced Study

in Mathematics
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Friday, July 25, 2025

Morning
Chair: Zhongming Tang

09:00 – 09:45 Le Tuan Hoa (Institute of Mathematics, VAST)
New bounds on Castelnuovo–Mumford regularity of

monomial curves and application to sumsets

09:45 – 10:00 Coffee break

10:00 – 10:45 Hema Srinivasan (University of Missouri)
Numerical semigroups inspired by Judy Sally

11:00 – 11:45 Dumitru Stamate (University of Bucharest)
Asymptotic properties for shifted families

of numerical semigroups

Afternoon
Chair: Ngo Viet Trung

14:00 – 14:45 Srikanth Iyengar (University of Utah)
On Herzog’s conjecture on cotangent homology

of commutative algebras

14:45 – 15:00 Coffee break

15:00 – 15:45 Ayesha Asloob Qureshi (Sabancı University)
On squarefree powers of simplicial trees

16:00 – 16:45 Jugal Verma (Indian Inst. of Tech. Gandhinagar)
Joint reductions of complete modules and their mixed

Buchsbaum–Rim polynomials
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II. ABSTRACTS OF TALKS



1. Some results on Castelnuovo–Mumford regularity of ideals re-
lated to graphs

Arindam Banerjee (Indian Institute of Technology, Kharagpur,
123.arindam@gmail.com)

Castelnuovo–Mumford regularity of ideals with some underlying combinatorial struc-
ture has been a very active area of research in last few decades. In this talks we shall
discuss few recent results on regularity of edge ideals and weighted oriented edge ideals.

2. Jürgen Herzog: life and work
Winfried Bruns (Universität Osnabrück, wbruns@uos.de)

I will give an overview of Jürgen Herzog’s life and his most important mathematical
achievements. Some pictures will help us to refresh our memories of a remarkable
colleague and friend.

3. Quadratic linear strands of prime ideals
Giulio Caviglia (Purdue University, gcavigli@purdue.edu)

We prove sharp estimates on the quadratic strand of the resolution of any homo-
geneous prime ideal in a standard graded polynomial ring over an arbitrary field. Our
bounds only depend on the height of the prime ideal, and they are optimal since for
every h ≥ 1 we show that there exists a prime ideal of height h achieving them. In
particular, we show that a prime ideal of height h can contain at most h2 quadratic
minimal generators, and that there exists a prime ideal minimally generated by h2

quadrics.
This is joint work with Alessandro De Stefani.

4. Cohomology and free resolutions over a product of projective
spaces

Marc Chardin (Sorbonne Université, mchardin@imj-prg.fr)

In the standard graded situation (one projective space), the Castelnuovo–Mumford
regularity and the a∗-invariant of a graded module provide two links between coho-
mology vanishing and shifts in a minimal free resolution. I will report about how this
correspondence, and other classical results about Hilbert functions, complete intersec-
tions or degree truncations of modules, extend to the case of a standard multigraded
polynomial algebra. This is based on the work of many colleagues and collaborators
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and includes some recent advances.

5. Degree functions through intersection theory
Steven Dale Cutkosky (University of Missouri, CutkoskyS@missouri.edu)

We prove some theorems about intersection theory above a local ring, and obtain as
a corollary a geometric proof of a theorem of Rees about degree functions. We discuss
an extension of degree functions to graded families of ideals. This is joint work with
Jonathan Montaño.

6. On componentwise linear ideals
Hai Long Dao (University of Kansas, hdao@math.ku.edu)

Componentwise linear ideals were introduced by Herzog–Hibi and are now a very
active area of research. Let I, J be componentwise linear ideals in a polynomial ring
S. We study necessary and sufficient conditions for I + J to be componentwise lin-
ear. We provide a complete characterization when dim S = 2. As a consequence, any
componentwise linear monomial ideal in k[x, y] has linear quotients using generators
in non-decreasing degrees. In any dimension, we show that under mild compatibil-
ity conditions, one can build a componentwise linear ideal from a given collection of
componentwise linear monomial ideals using only sum and product with square-free
monomials. We provide numerous examples to demonstrate the optimality of our re-
sults. This is joint work with Sreehari Suresh-Babu.

7. Invariants of toric double determinantal rings
Emanuela De Negri (Università di Genova, emanuela.denegri@unige.it)

Double determinantal rings and varieties were introduced by Li as instances of
Nakajima quiver varieties, but they are also a natural generalization of classical deter-
minantal rings.

In this talk, we focus on toric double determinantal rings and show that they co-
incide with the Hibi rings associated to certain finite distributive lattices. Using this
fact we compute the number of minimal generators, the multiplicity, the regularity, the
a-invariant and the Hilbert function of these toric rings. We also characterise the rings
of this class which are Gorenstein, thereby answering a question posed by Li in the
toric setting.

8. Joint reduction and adjoint of ideals

11



Clare D’Cruz (Chennai Mathematical Institute, clare4004@gmail.com)

Using joint reductions of complete ideals, we find formulas for the core and adjoints
of the product of complete ideals and formulas for their colengths in a two-dimensional
regular local rings. This strengthens a generalization of Briançon–Skoda Theorem due
to D. Rees and J. Sally in dimension two. (This is joint work with Saipriya Dubey and
J. K. Verma)

9. Observations (and a few results) on infinite free resolutions
David Eisenbud (Mathematical Sciences Research Institute, Berkeley,

de@berkeley.edu)

For many years the Kaplansky–Serre problem—“Is the Poincaré series of every local
ring rational?”—dominated the subject of infinite free resolutions. It motivated a great
deal of work and many positive partial results were obtained, but eventually David
Anick showed that the answer in general is “no”, leaving the field without a central
problem.

Meantime, however, improvements in computation make it possible to look “into”
free resolutions in new ways. In work with Cuong, Dao, Kobayashi, Polini and Ulrich
(in various combinations) we have noticed some surprising (apparent) regularities that
have little to do with Betti numbers. I’ll describe the current state of our observations,
conjectures, and results.

10. Complexity and curvature of (pairs of) Cohen–Macaulay mod-
ules, and their applications

Dipankar Ghosh (Indian Institute of Technology Kharagpur,
dipankar@maths.iitkgp.ac.in)

The complexity and curvature of a module, introduced by Avramov, measure the
growth of Betti and Bass numbers of a module, and distinguish the modules of infinite
homological dimension. The notion of complexity was extended by Avramov–Buchweitz
to pairs of modules that measure the growth of Ext modules. The related notion of
Tor complexity was first studied by Dao. Inspired by these notions, we define Ext and
Tor curvature of pairs of modules. The aim of this talk is to study (Ext and Tor) com-
plexity and curvature of pairs of certain CM (Cohen–Macaulay) modules and establish
lower bounds of complexity and curvature of pairs of modules in terms of that of a
single module. It is well-known that the complexity and curvature of the residue field
characterize complete intersection local rings. As applications of our results, we provide
some upper bounds of the curvature of the residue field in terms of curvature and mul-
tiplicity of any nonzero CM module. As a final upshot, these allow us to characterize
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complete intersection local rings (including hypersurfaces and regular rings) in terms
of complexity and curvature of pairs of certain CM modules. In particular, under some
additional hypotheses, we characterize complete intersection local rings via injective
curvature of the ring or that of the module of Kähler differentials. This is joint work
with Souvik Dey and Aniruddha Saha.

11. Asymptotic regularity of graded families of homogeneous ide-
als

Tài Huy Hà (Tulane University, tha@tulane.edu)

We discuss when the asymptotic regularity of a graded family (In)n≥0 of ho-
mogeneous ideals, i.e., the limit limn→∞ reg In/n, exists. We consider several cases
when this question has an affirmative answer; for example, when the family (In)n≥0
consists of Artinian ideals, or Cohen–Macaulay ideals of the same codimension over
an uncountable base field of characteristic 0, or when its Rees algebra is Noethe-
rian. We provide a combinatorial interpretation of the limit limn→∞ reg In/n in terms
of the associated Newton–Okounkov region in various situations. We give a nega-
tive answer to the question of whether the limits limn→∞ reg (In

1 + · · · + In
p )/n and

limn→∞ reg (In
1 ∩ · · · ∩ In

p )/n exist, for p ≥ 2 and homogeneous ideals I1, . . . , Ip. We
also examine ample evidence supporting a negative answer to the question of whether
the asymptotic regularity of the family of symbolic powers of a homogeneous ideal
always exists.

12. New bounds on Castelnuovo–Mumford regularity of mono-
mial curves and application to sumsets

Le Tuan Hoa (Institute of Mathematics, Vietnam Academy of Science and Tech-
nology (VAST), lthoa@math.ac.vn)

A monomial curve C is defined by a sequence of coprime integers 0 = a0 < a1 <
· · · < ar = d. A gap of this sequence is ai+1 − ai − 1. Gruson–Lazarsfeld–Peskine bound
says that reg(C) ≤ d − r + 2, which is equal to the sum of all gaps plus 2. L’vovsky
(1996) showed that it is enough to take the sum of two largest gaps. Under some specific
conditions there are several bounds that are better than L’vovsky’s bound. In ongoing
joint work with D. Q. Tien, using bounds on Frobenius number, we give some new
bounds and apply them to studying the structure of sumsets.

13. On Herzog’s conjecture on cotangent homology of commuta-
tive algebras

13



Srikanth Iyengar (University of Utah, iyengar@math.utah.edu)

This talk is going to be about the cotangent complex of a map of commutative
algebras. The focus is on algebras that are essentially of finite type over a field of
characteristic zero, and a conjecture of Herzog about the homology of the cotangent
complex, that appears in his (soon to be published) manuscript titled “The homological
properties of the module of differentials”, based on his lectures in Recife, Brazil, in 1980.
My goal is to explain where this conjecture is coming from, how it is connected with
some other long-standing questions in commutative algebra, and what we know about
it at the moment. My talk is based on ongoing joint work with Greg Stevenson and
Benjamin Briggs.

14. Upper bounds for second Hilbert coefficients
Mousumi Mandal (Indian Institute of Technology Kharagpur,

mousumi@maths.iitkgp.ac.in)

Some upper bounds are given for the second Hilbert coefficient of an m-primary
ideal in a Noetherian local ring of dimension at least two, involving sectional genera of
the ideal. We characterize the situation when some upper bounds are attained in terms
of the depth of the associated graded ring.

15. Artinian Gorenstein algebras with a binomial Macaulay dual
generator

Shreedevi K. Masuti (Indian Institute of Technology, Dharwad,
shreedevi@iitdh.ac.in)

In this talk we will discuss key properties of Artinian Gorenstein K-algebras having
binomial Macaulay dual generators. In codimension 3, we show that all such algebras
satisfy the strong Lefschetz property, and provide an explicit characterization of when
they form a complete intersection.

This is joint work with N. Altafi, R. Dinu, S. Faridi, R. M. Miró-Roig, A. Seceleanu,
and N. Villamizar.

16. Symbolic powers of polymatroidal ideals
Somayeh Moradi (Ilam University, so.moradi@ilam.ac.ir)

In this talk, I will explore two conjectures concerning the symbolic powers of poly-
matroidal ideals. Specifically, for a polymatroidal ideal I, we conjecture that every
symbolic power I(k) is componentwise linear, and that the Castelnuovo–Mumford reg-
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ularity satisfies reg I(k) = reg Ik for all k ≥ 1. I will present several cases in which
these conjectures are confirmed. Additionally, I will discuss conditions under which the
symbolic and ordinary powers of polymatroidal ideals coincide, thereby providing a
proof of the Conforti–Cornuéjols conjecture in the case of matroidal ideals.

17. On toric ideals of weighted oriented graphs
Ramakrishna Nanduri (Indian Institute of Technology Kharagpur,

nanduri@maths.iitkgp.ac.in)

Let D = (V (D), E(D), w) be a (vertex) weighted oriented graph and I(D) its edge
ideal. In this talk, we present various properties of primitive binomial generators of
the toric ideal ID of I(D). We classify the circuit binomials of D and their explicit
formulas in terms of the minors of the incident matrix of D. We also discuss the robust
and strongly robust properties of ID. This is joint work with Tapas Kumar Roy.

18. Unmixed torsions and sequentially Cohen–Macaulay modules
Pham Hong Nam (Thai Nguyen University of Sciences, namph@tnus.edu.vn)

We characterize the sequential Cohen–Macaulayness of a module M in two ways: (1)
in terms of the relationship between numerical invariants of certain module associated
with some non-zero Hilbert coefficients and the components in the dimension filtration
of M , and (2) in terms of relationship between the unmixed torsion associated with a
certain cohomological degree and the arithmetic degree.

19. Koszul property and finite linearity defect over g-stretched
local rings

Hop D. Nguyen (Institute of Mathematics, Vietnam Academy of Science and Tech-
nology (VAST), ndhop@math.ac.vn)

The linearity defect is a measure for the non-linearity of minimal free resolutions
of modules over Noetherian local rings. A tantalizing open question due to Herzog and
Iyengar asks whether a Noetherian local ring (R,m) is Koszul if its residue field R/m
has a finite linearity defect. We provide a positive answer to this question when R is
a Cohen–Macaulay local ring of almost minimal multiplicity with the residue field of
characteristic zero. The proof depends on the study of Noetherian local rings (R,m)
such that m2 is a principal ideal, which we call g-stretched local rings. The class of
g-stretched local rings subsumes stretched Artinian local rings studied by Sally, and
generic Artinian reductions of Cohen–Macaulay local rings of almost minimal multi-
plicity. An essential part in the proof of our main result is a complete characterization
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of one-dimensional complete g-stretched local rings. Beside partial progress on Herzog–
Iyengar’s question, another consequence of our study is a numerical characterization
of all g-stretched Koszul rings, strengthening previous work of Avramov, Iyengar, and
Şega. This is from joint work with Do Van Kien.

20. Commutative algebra and graph coloring theory
Hidefumi Ohsugi (Kwansei Gakuin University, ohsugi@kwansei.ac.jp)

In this talk, based on the joint works with Mori, Motomura, Shibata, and Tsuchiya,
we discuss connections between commutative algebra and graph coloring theory. Let
G be a graph on the vertex set [n] = {1, 2, . . . , n} with the edge set E(G). A subset
S ⊂ [n] is called a stable set (or an independent set) of G if {i, j} /∈ E(G) for all i, j ∈ S
with i ̸= j. In particular, the empty set ∅ and any singleton {i} with i ∈ [n] are stable.
Denote S(G) = {S1, . . . , Sm} the set of all stable sets of G. Given a subset S ⊂ [n],
we associate the (0, 1)-vector ρ(S) =

∑
j∈S ej . Here ej is the jth unit coordinate

vector in Rn. For example, ρ(∅) = (0, . . . , 0) ∈ Rn. Let K[t, s] := K[t1, . . . , tn, s]
be the polynomial ring in n + 1 variables over a field K. Given a nonnegative integer
vector a = (a1, . . . , an) ∈ Zn

≥0, we write ta := ta1
1 ta2

2 · · · tan
n ∈ K[t, s]. The stable

set ring of G is K[G] := K[tρ(S1)s, . . . , tρ(Sm)s] ⊂ K[t, s]. We regard K[G] as a
homogeneous algebra by setting each deg(tρ(Si)s) = 1. Note that K[G] is a toric ring.
Let K[x] := K[x1, . . . , xm] denote the polynomial ring in m variables over K with each
deg(xi) = 1. The stable set ideal IG of G is the kernel of the surjective homomorphism
π : K[x] → K[G] defined by π(xi) = tρ(Si)s for 1 ≤ i ≤ m. Then IG is a toric ideal,
and generated by homogeneous binomials. It turns out that the question of when the
stable set ideal is generated by quadratic binomials is linked to the classical graph-
theoretical concept of Kempe equivalence. By using this result, we give an algebraic
method to examine Kempe equivalence.

21. The first Hilbert coefficient of stretched ideals
Kazuho Ozeki (Nihon University, ozeki.kazuho@nihon-u.ac.jp)

In this talk we explore the almost Cohen–Macaulayness of the associated graded ring
of stretched m-primary ideals with small first Hilbert coefficient in a Cohen–Macaulay
local ring (A,m). In particular, we explore the structure of stretched m-primary ideals
satisfying the inequality e1(I) ≤ e0(I) − ℓA(A/I) + 4 where e0(I) and e1(I) denote
the multiplicity and the first Hilbert coefficient respectively.

22. Behrend function and blowup algebras
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Claudia Polini (University of Notre Dame, cpolini@nd.edu)

I will survey preliminary results of joint work with Alessio Sammartano and Bernd
Ulrich. Given a scheme X of finite type over the complex numbers, the Behrend func-
tion, introduced in [1], is a constructible function vX : X(C) → Z that allows to
compute the degree of the virtual fundamental class of X under suitable assumptions,
leading to the solution of numerous problems in enumerative geometry (see e.g. [2, 3]).
Even in simple cases though, the Behrend function is very difficult to compute. In this
talk I will explain how we compute the Behrend function of arbitrary zero-dimensional
monomial ideals in any number of variables and its connections to Rees rings and Rees
valuations.

REFERENCES
[1] K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of

Math. (2) 170 (2009), 1307–1338.

[2] R. Pandharipande and R. P. Thomas, 13/2 ways of counting curves, Moduli spaces,
London Math. Soc. Lecture Note Ser., vol. 411, Cambridge Univ. Press, Cambridge,
2014, pp. 282–333.

[3] B. Szendroi, Cohomological Donaldson-Thomas theory, String-Math 2014, Proc.
Sympos. Pure Math., vol. 93, Amer. Math. Soc., Providence, RI, 2016, pp. 363–396.

23. On lengths of modules over certain Artinian complete inter-
sections

Tony J. Puthenpurakal (Indian Institute of Technology Bombay,
tputhen@gmail.com)

Let (Q, n) be a regular local ring of dimension c ≥ 2 with algebraically closed residue
field k = Q/n. Let f1, f2, . . . fc−1, g be a regular sequence in Q such that fi ∈ n2 for
all i and g ∈ n. Set A = Q/(f1, . . . , fc−1, gr) with r ≥ 2. Notice A is an Artinian
complete intersection of codimension c. We show that there exists αA ∈ Pc−1(k) such
that there exists integer mA ≥ 2 (depending only on A) that divides ℓ(M) for every
finitely generated A-module M with αA /∈ V(M) (here ℓ(M) denotes the length of M
and V(M) denotes the support variety of M). As an application we prove that if k
is a field, A = k[X1, . . . , Xc]/(Xa1

1 , . . . , Xac
c ) with ai ≥ 2, and p is a prime number

dividing two of the ai’s, then p divides ℓ(E) for any A-module E with bounded Betti
numbers.

24. On squarefree powers of simplicial trees
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Ayesha Asloob Qureshi (Sabancı Univ., ayesha.asloob@sabanciuniv.edu)

Let I be a squarefree monomial ideal. The k-th squarefree power I [k] of I is the
ideal generated by the squarefree monomials among the generators of Ik. The study of
squarefree powers of squarefree monomial ideals is closely connected with the classical
theory of matchings in hypergraphs. Moreover, squarefree powers of I provide impor-
tant information about the ordinary powers of I, since the multigraded minimal free
resolution of I [k] appears as a subcomplex of the multigraded minimal free resolution
of Ik.

The investigation of squarefree powers of edge ideals of graphs was initiated in two
joint works of Herzog, first with Bigdeli and Zaare-Nahandi, and later with Erey, Hibi,
and Madani, which establish fundamental results on the connection between matchings
of graphs and their edge ideals.

This talk is based on joint work with Elshani Kamberi, Francesco Navarra, and
Dharm Veer. We will discuss squarefree powers of facet ideals associated with simpli-
cial trees (equivalently, totally balanced hypergraphs), focusing on the linearity of the
minimal free resolutions and the Castelnuovo-–Mumford regularity of such ideals.

25. Binomial edge ideals and some other related ideals
Sara Saeedi Madani (Amirkabir University of Technology,

sarasaeedi@aut.ac.ir)

This is an overview talk mainly on binomial edge ideals of graphs which were intro-
duced by Herzog, Hibi, Hreinsdóttir, Kahle and Rauh in 2010 and at about the same
time by Ohtani.

Our special attention is on the results related to the minimal graded free resolution
of such ideals. In particular, we discuss the linear strand as well as the Castelnuovo–
Mumford regularity of binomial edge ideals.

Furthermore, we briefly talk about some other (related) types of ideals, such as
determinantal facet ideals, generalized binomial edge ideals, and Hankel edge ideals
of graphs. We also mention some problems that are still open and interesting in the
literature.

This talk is mostly based on some joint works with J. Herzog and D. Kiani.

26. Numerical semigroups inspired by Judy Sally
Hema Srinivasan (University of Missouri, srinivasanh@missouri.edu)

We will report on some recent works on a class of numerical semigroups which
are called Sally semigroups and some modifications of those. We will describe their
minimal generators and construct minimal resolutions for some of them. Classes of
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numerical semigroups have been studied fixing some of their natural invariants such
as the multiplicity, e, embedding dimension, n, or width, w. We study the numerical
semigroups of Sally-type with e − w = 1.

27. Asymptotic properties for shifted families of numerical semi-
groups

Dumitru Stamate (Univ. of Bucharest, dumitru.stamate@fmi.unibuc.ro)

Given positive integers r1 < r2 < · · · < rk, their associated shifted family consists
of the affine semigroups Mn = ⟨n, n+ r1, . . . , n+ rk⟩ for all n > 0. Algebraic properties
of the semigroup rings K[Mn] are commonly explored in terms of the semigroups Mn.

Answering a conjecture of Herzog and Srinivasan, T. Vu proved that the Betti
numbers of K[Mn] become eventually periodic in n, for n large enough. This opened a
path of finding periodic properties for large n. In this talk I will report on joint work
with F. Strazzanti which is concerned with the behaviour of a more subtle invariant,
the residue, and the nearly Gorenstein property in the shifted family of a numerical
semigroup.

28. Symmetric algebras and s-sequences
Zhongming Tang (Suzhou University, zmtang@suda.edu.cn)

Symmetric algebra is an important topic in commutative algebra and algebraic
geometry. In this talk, we will introduce the concept of s-sequences, which uses the
idea of Gröbner basis, to study some invariants of symmetric algebras. We will mainly
discuss the symmetric algebra of the first syzygy module of the maximal ideal of a
polynomial ring and certain determinantal ideals.

29. The v-numbers of squarefree monomial ideals
Naoki Terai (Okayama University, terai@okayama-u.ac.jp)

This talk is based on joint work with T. Kataoka and Y. Muta. We express the
v-number of a Stanley–Reisner ideal in terms of its Alexander dual complex and prove
that the v-number of a cover ideal is just two less than the initial degree of the its
syzygy module. We give some relation between the v-number of a Stanley–Reisner
ideal and the Serre-depth of the quotient ring of the second symbolic power of the
Stanley–Reisner ideal of its Alexander dual. We also show that the v-number of the
Stanley–Reisner ideal of a 2-pure simplicial complex is equal to the dimension of its
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Stanley–Reisner ring.

30. The syzygies of the residue field of Golod rings
Bernd Ulrich (Purdue University, bulrich@purdue.edu)

We provide a recurrence relation for high syzygies of the residue field of Golod rings.
For Noetherian local rings of embedding dimension two that are not Artinian complete
intersections, we describe all syzygy modules explicitly in terms of their direct sum
decomposition into indecomposables. This is joint work with D.T. Cuong, H. Dao, D.
Eisenbud, T. Kobayashi, and C. Polini.

31. Singularities of Herzog varieties
Matteo Varbaro (Università di Genova, varbaro@dima.unige.it)

Let S be a polynomial ring over a field and I a homogeneous ideal. We say that I is
a Herzog ideal if there exists a monomial order < on S such that in<(I) is squarefree. In
this talk we will discuss Herzog ideals and the projective varieties they define, and will
present a recent result with Amy Huang, Jonah Tarasova and Emily Witt affirming
that the Herzog smooth projective curves have genus 0. This answers in the case of
curves a question raised with Conca some years ago, which later was formulated as
conjecture together with Constantinescu and De Negri.

32. Joint reductions of complete modules and their mixed Buchs-
baum–Rim polynomials

Jugal Verma (Indian Institute of Technology Gandhinagar,
jugal.verma@iitgn.ac.in)

We offer new definitions of joint reductions and mixed Buchsbaum–Rim multiplic-
ity for certain collections of modules over a Noetherian local ring and illustrate their
application to give two different proofs of a joint-reduction- number-zero theorem for
integrally closed modules over two-dimensional regular local rings.

We also relate the mixed Buchsbaum–Rim multiplicity of modules to the Euler–
Poincaré characteristic of a natural Koszul complex and relate it to the mixed Buchsbaum–
Rim multiplicity of ideals by generalising a lemma from intersection theory.

33. Almost Gorenstein and nearly Gorenstein properties of 2-
dimensional normal rings; using resolution of singularities
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Kei-ichi Watanabe (Nihon University, watnbkei@gmail.com)

“Which Cohen–Macaulay rings are near to Gorenstein rings?” is the question that
has challenged many commutative algebraists. Goto–Takahashi–Taniguchi (= Endo)
proposed “almost Gorenstein rings” and Herzog–Hibi–Stamate proposed “nearly Goren-
stein” rings. In this talk, I will explain a method to compute canonical trace ideal of a
2-dimensional rational singularities, using resolution of singularities. It turns out that
non-Gorenstein nearly Gorenstein rings are rather few among 2-dimensional normal
local rings, while all 2-dimensional rational and elliptic singularities are almost Goren-
stein.

This talk is based on joint work in progress with Tomohiro Okuma and Ken-ichi
Yoshida.

34. Generalized binomial edge ideals and the Cartwright–Sturmfels
property

Volkmar Welker (Philipps-Universität Marburg, welker@mathematik.uni-marburg.de)

This is joint work with Aldo Conca and Emanuela De Negri.
A Zn-graded ideal I in a polynomial ring S over a field is Cartwright–Sturmfels if

its multigraded generic initial ideal is radical.
In this talk we associate to a simple undirected graph G = ([n], E) and a num-

ber m an ideal IG(m). The ideal is generated by those 2-minors of an m × n-matrix
(xij)i∈[m],j∈[n] of indeterminates which arise by selecting two arbitrary rows and two
columns j, k for which {j, k} is an edge in E.

We show that IG(m) is Cartwright–Sturmfels for all m and G. For the complete
graph G = Kn or for m = 2 this is a known result from work by Conca, Gorla and De
Negri.

We also provide examples which show that in general an analogous result for 3-
minors associated to a 3-uniform hypergraph is false. We give necessary conditions on
the hypergraph which imply the Cartwright–Sturmfels property.

35. Generalized binomial edge ideals of bipartite graphs
Guangjun Zhu (Soochow University, zhuguangjun@suda.edu.cn)

Connected bipartite graphs whose binomial edge ideals are Cohen–Macaulay have
been classified by Bolognini et al. In this talk, we compute the depth, Castelnuovo–
Mumford regularity, and dimension of the generalized binomial edge ideals of these
graphs.
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III. ABSTRACTS OF POSTERS



1. Canonical module and test module of (extended) Rees algebra
Rahul Ajit (University of Utah, rahulajit@math.utah.edu)

Various properties (Cohen–Macaulay, Gorenstein, rationality...) of associated graded
ring, Rees and extended Rees algebra have been studied extensively by many mathe-
maticians. Here, we give a decomposition of test module of (extended) Rees algebra and
answer a conjecture of Hara–Watanabe–Yoshida on F-rationality in full generality. Us-
ing different techniques, very recently Koley–Kummini and Kotal–Kummini obtained
similar results in a restricted setup.

2. The v-number of binomial edge ideals
Siddhi Balu Ambhore (Indian Institute of Technology Gandhinagar,

siddhi.ambhore@iitgn.ac.in)

The invariant v-number was introduced very recently in the study of Reed–Muller-
type codes. Jaramillo and Villarreal started the study of the v-number of edge ideals.
Inspired by their work1, we have initiated the study of the v-number of binomial edge
ideals. We have studied some properties and the bounds of the v-number of binomial
edge ideals. We have explicitly found the v-number of binomial edge ideals locally at
the associated prime ideal corresponding to the cut set ∅. We have shown that the
v-number of Knutson binomial edge ideals is less than or equal to the v-number of
their initial ideals. We have classified all binomial edge ideals whose v-number is 1. We
have further tried to relate the v-number with the Castelnuovo–Mumford regularity of
binomial edge ideals and have given a conjecture in this direction.

This is joint work with Kamalesh Saha and Indranath Sengupta.

3. Symmetric decomposition of the Hilbert function of an ideal
Meghana Bhat (Indian Institute of Technology Dharwad, 212071001@iitdh.ac.in)

Let (R,m) be a local ring over a field k and J an ideal in R such that A = R/J is an
Artinian Gorenstein (AG) k-algebra. In 1989, A. Iarrobino introduced the symmetric
decomposition of the Hilbert function of A. This became a very powerful tool for
classifying the Hilbert functions of AG k-algebras. This poster introduces the symmetric
decomposition of the Hilbert function of any ideal I in A. Our hope is that this result
will be useful in classifying the possible Hilbert function of an ideal in an AG k-algebra.
We illustrate this by giving a complete list of 2-admissible sequences of length at most

1Jaramillo, D.; Villarreal, R. H., The v-number of edge ideals, J. Combin. Theory Ser. A 177 (2021),
105310, 35 pp.
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3 starting with h0 = 2 that are realizable by an ideal in an AG k-algebra.

4. Complexity, curvature and homological dimension of modules
under linkage

Subhadip Bhowmick (Indian Institute of Technology Kharagpur,
sbhowmick712@kgpian.iitkgp.ac.in)

We analyze how (projective and injective) complexity, curvature, and complete in-
tersection dimension behave under linkage of modules and ideals. Let R be a Gorenstein
local ring. Consider a Gorenstein perfect ideal a (e.g., a is generated by an R-regular
sequence). Let M and N be two Cohen–Macaulay R-modules linked by a. We prove
that cxR(M) = inj cxR(N) and curvR(M) = inj curvR(N). In particular, when R is
complete intersection, cxR(M) = cxR(N) and curvR(M) = curvR(N). Furthermore,
we show that pdR(M) = pdR(N) and CI-dimR(M) = CI-dimR(N). If any of these
dimensions is finite, it is equal to ht(a). Similar results are obtained for linkage of ideals.
All these results highly extend a classical result of Peskine and Szpiro in many direc-
tions. We construct several examples that complement our results. These also show how
properties like ‘integrally closed’, ‘m-full’ and ‘Burch’ behave under linkage of ideals.
This is joint work with Dipankar Ghosh.

5. On the strong persistence property of path and cover ideals of
some graphs

Hafsa Bibi (Institute of Technology Bandung, hafsaliaqat600@gmail.com)

Monomial ideals play an important role in combinatorial commutative algebra. In
a commutative Noetherian ring R, the associated primes are connected to the primary
decomposition of ideals. There are some known classes of monomial ideals that satisfy
the strong persistence property. These classes include: edge ideals of simple graphs,
graphs with loops; vertex cover ideals of perfect graphs, cycle graphs of odd orders,
and wheel graphs of even orders; and irreducible ideals. In a polynomial ring R, I
explore new classes of monomial ideals to understand the strong persistence property.
Specifically, examine the path ideal of length 2 for various centipede-related graphs, the
path ideal of line graphs, and the cover ideal of the sunlet graph (an imperfect graph).
The results show that these ideals satisfy the strong persistence property. Additionally,
compute the index of stability and describe the stable set of associated primes of the
cover ideal of different graphs.

6. Asymptotic behaviour and stability index of v-numbers of
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graded ideals
Prativa Biswas (Indian Institute of Technology Kharagpur,

prativabiswassnts@gmail.com)

Let I be a graded ideal in S = K[x1, . . . , xn]. By v(I), we denote the v-number of I.
Recently, Ficarra and Sgroi initiated the study of v-numbers of powers of graded ideals.
They proved that for a graded ideal I, v(Ik) is a linear function in k for k ≫ 0. Later,
Ficarra conjectured that if I is a monomial ideal with linear powers, then v(Ik) =
α(I)k − 1 for all k ≥ 1, where α(I) denotes the initial degree of I. We generalize this
conjecture for graded ideals and prove it for several classes of graded ideals: principal
ideals, ideals I with depth(S/I) = 0, cover ideals of graphs, t-path ideals, monomial
ideals generated in degree 2, edge ideals of weighted oriented graphs. We simplify the
conjecture for several classes of graded ideals (including square-free monomial ideals)
by showing it is enough to prove the conjecture for k = 1 only. Additionally, we define
the stability index of the v-number for graded ideals and investigate this index for edge
ideals of graphs.

7. Support-2 monomial ideals that are Simis
Paromita Bordoloi (Indian Institute of Technology, Jammu,

2022rma0026@iitjammu.ac.in)

A monomial ideal I ⊆ K[x1, . . . , xn] is called a Simis ideal if I(s) = Is for all
s ≥ 1, where I(s) denotes the s-th symbolic power of I. Let I be a support-2 monomial
ideal such that its irreducible primary decomposition is minimal. We prove that I is
a Simis ideal if and only if

√
I is Simis and I has standard linear weights. This result

thereby proves a recent conjecture for the class of support-2 monomial ideals proposed
by Mendez, Pinto, and Villarreal. Furthermore, we give a complete characterization of
the Cohen–Macaulay property for support-2 monomial ideals whose radical is the edge
ideal of a whiskered graph. Finally, we classify when these ideals are Simis in degree 2.

8. Regularity of integral closures of equigenerated monomial ide-
als in three variables

Yijun Cui (Soochow (Suzhou) University, 237546805@qq.com)

Let I ⊂ S = K[x1, x2, x3] be a monomial ideal generated in degree d. In our
research, we proved that reg(I) ≤ reg(I). In particular, we proved I = I when I =
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I1 + I2, where Ii = xai
1 (x

bi,1
2 x

ci,1
3 , . . . , x

bi,ℓi
2 x

ci,ℓi
3 ) for i ∈ [2] and a1 < a2.

9. Admissible matchings and the Castelnuovo–Mumford regular-
ity of square-free powers

Kanoy Kumar Das (Chennai Mathematical Institute, India,
kanoydas0296@gmail.com)

Let I be any square-free monomial ideal, and HI denote the hypergraph associated
with I. Refining the concept of k-admissible matching of a graph defined by Erey and
Hibi, we introduce the notion of generalized k-admissible matching for any hypergraph.
Using this, we provide a sharp lower bound on the (Castelnuovo–Mumford) regularity
of I [k], where I [k] denotes the kth square-free power of I. In the special case when I
is equigenerated in degree d, this lower bound can be described using a combinatorial
invariant aim(HI , k), called the k-admissible matching number of HI . Specifically, we
prove that reg(I [k]) ≥ (d − 1)aim(HI , k) + k, whenever I [k] is non-zero. Even for the
edge ideal I(G) of a graph G, it turns out that aim(G, k) + k is the first general lower
bound for the regularity of I(G)[k]. In fact, when G is a forest, aim(G, k) coincides
with the k-admissible matching number introduced by Erey and Hibi. We discuss two
instances where this general lower bound is attained. We show that if G is a block graph,
then reg(I(G)[k]) = aim(G, k) + k, and this result can be seen as a generalization of
the corresponding regularity formula for forests. Additionally, for a Cohen–Macaulay
chordal graph G, we prove that reg(I(G)[2]) = aim(G, 2) + 2. Finally, we propose a
conjecture on the regularity of square-free powers of edge ideals of chordal graphs.

10. Density functions of filtrations of homogeneous ideals
Suprajo Das (IIT Madras, dassuprajo@gmail.com)

Let R be a standard graded Noetherian domain over a field. Let {In} be a (not
necessarily Noetherian) filtration of homogeneous ideals in R. We shall associate a
continuous function, called the density function, which keeps track of the growth of
the graded pieces of In systematically. This is motivated by an earlier construction of
the Hilbert–Kunz density function due to Trivedi. We further show that this density
function is continuously differentiable when we deal with saturated filtrations. The
equality of density functions will also be discussed. This poster will be based on two
ongoing joint projects: (1) with S. Roy and V. Trivedi, and (2) with S. Roy and H. L.
Truong.

11. On the unmixed and Cohen–Macaulay parity binomial edge
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ideals of chordal graphs
Deblina Dey (IIT Madras, deblina.math@gmail.com)

In this poster, we characterize all unmixed and Cohen–Macaulay parity binomial
edge ideals of chordal graphs in terms of the graph structure. We introduce an algorithm
for chordal graphs to construct maximal trees along with certain disconnector sets, and
show that these structures interact well with the unmixedness property. This is a joint
work with A. V. Jayanthan and Sarang Sane.

12. Quasilifting of hulls and depth of tensor product of modules
Sutapa Dey (Indian Institute of Technology Hyderabad,

ma20resch11002@iith.ac.in)

A quasilift type construction is used to obtain some bounds on the depth of the
tensor product of certain modules over a local T E ring. In the process, we recover a
result of Celikbas, Sadeghi and Takahashi for local complete intersection rings.

13. Cochordal zero divisor graphs and Betti numbers of their
edge ideals

Le Xuan Dung (Hong Duc University, Thanh Hoa, Vietnam,
lexuandung@hdu.edu.vn)

This is joint work with Vu Q. Thanh. We associate a sequence of positive integers,
termed the type sequence, with a cochordal graph. Using this type sequence, we compute
all graded Betti numbers of its edge ideal. We then classify all positive integer n such
that the zero divisor graph of Z/nZ is cochordal and determine all the graded Betti
numbers of its edge ideal.

14. The canonical trace of Cohen–Macaulay algebras of codimen-
sion 2

Antonino Ficarra (Basque Center for Applied Mathematics (BCAM),
aficarra@bcamath.org)

In this poster, we investigate a conjecture of Jürgen Herzog. Let S be either a regular
local ring with residue field K or a positively graded K-algebra, I ⊂ S be a perfect ideal
of grade 2, and let R = S/I with canonical module ωR. Jürgen Herzog conjectured
that the canonical trace tr(ωR) is obtained by specialization from the generic case of
maximal minors. The conjecture is established in several cases; for instance, when R
is generically Gorenstein. This latter result is applied to numerical semigroup rings
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generated by three elements, and to perfect generic monomial ideals of height 2. The
perfect monomial ideals of height 2 are classified in terms of a certain graph and certain
integer sequences attached to the ideal. As the final conclusion of all of our results, the
nearly Gorenstein monomial ideals of height 2 are classified.

15. Affine modifications in cancellation and embedding problems
Parnashree Ghosh (Tata Institute for Fundamental Research,

ghoshparnashree@gmail.com)

We will explore two fundamental problems in affine geometry: the “Embedding
problem” and the “Cancellation problem”. The affine modification technique, intro-
duced by Kaliman and Zaidenberg, has played a crucial role in achieving significant
breakthroughs in these areas. In this presentation, we will discuss recent advancements
in these problems through the application of this construction. Specifically, we will
outline a general framework that produces various families of hyperplanes satisfying
the “Abhyankar–Sathaye embedding conjecture” and introduces a new class of coun-
terexamples to the “Zariski cancellation problem” in positive characteristic.

16. Zariski’s finiteness theorem and properties of some rings of
invariants

Buddhadev Hajra (Chennai Mathematical Institute, hajrabuddhadev92@gmail.com)

We have found a short proof, using a new idea, of an important special case of
Zariski’s result about the finite generation in connection with the famous Hilbert’s
Fourteenth Problem. This result is useful for invariant subrings of unipotent or con-
nected semisimple groups. Our proof is a combination of commutative algebra, alge-
braic geometry and algebraic topology. Additionally, we will present a generalization of
a well-known result by Andrzej Tyc. Our result proves that the quotient space under
a regular Ga-action on an affine space over the field of complex numbers has at most
rational singularities, under an assumption about the quotient morphism. I will also
sketch the main idea of the proof of a result that is analogous to Masayoshi Miyanishi’s
result for the invariant ring of a Ga-action on the polynomial ring R[X, Y , Z], where R
is an affine Dedekind domain. This proof involves some classical topological methods.
The content of this poster is based on joint work with R.V. Gurjar and S.R. Gurjar.

17. Symbolic powers of path ideals of simple graphs
Ritam Halder (Indian Institute of Technology Kharagpur,
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ritamhalder10@gmail.com)

This poster contains my recent joint work with Arindam Banerjee. We studied four
path ideals for which the symbolic and ordinary powers coincide. We also gave some
generalized results for n-path ideals. We gave a necessary condition for any n-path
ideal to have identical ordinary and symbolic powers. Also we introduced the k-uniform
Erdös-Rényi random hypergraph and showed under some probability regime w.h.p. for
k-uniform Erdös-Rényi random hypergraphs the ordinary and symbolic powers do not
coincide.

18. On some rings of differentiable type
Sayed Sadiqul Islam (IIT Bombay, 22d0786@iitb.ac.in)

Let K be a field of characteristic 0 and S = K[x1, . . . , xr]/I an affine domain
over K. Let R = SP where P ∈ Spec(S) such that R is regular. Let F be any quasi-
coefficient field of R containing K. We show that DF (R), the ring of F -linear differential
operators on R is left and right Noetherian and have finite global dimension.. We also
prove similar result for Rh, the Henselization of R. As an application we prove that
DF (R)/DF (R)P ∼= E(κ(P )), where E(κ(P )) is the injective hull of residue field of
R.

19. Linear quotients of connected ideals of graphs
Omkar Deepak Javadekar (IIT Bombay, omkarjavadekar@gmail.com)

We study a higher analogue of the edge ideal, called the t-connected ideal Jt(G),
which is generated by monomials corresponding to connected subsets of size t in a
graph G. This generalizes the edge ideal, which arises when t = 2. Our main results
establish conditions for Jt(G) to have a linear resolution. We show that for chordal
graphs, Jt(G) has a linear resolution if and only if the graph is t-gap-free, and that this
is equivalent to Jt(G) having linear quotients. We further prove that if G is gap-free
and t-claw-free, then Jt(G) has linear quotients and, consequently, a linear resolution.
In addition, our results recover some of the known results on the linearity of resolution
of t-path ideals of graphs. The poster is based on joint work with H. Ananthnarayan
and Aryaman Maithani.

REFERENCE

H. Ananthnarayan, Omkar Javadekar, and Aryaman Maithani, Linear quotients of con-
nected ideals of graphs, accepted for publication in the Journal of Algebraic Combina-
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torics.

20. Closed subsets defined by annihilators of Ext modules
Kaito Kimura (Nagoya University, m21018b@math.nagoya-u.ac.jp)

It is classically known, via Nagata’s criterion, that the singular locus and the non-
Gorenstein locus of a reasonably nice ring are closed subsets. Iyengar and Takahashi
[3] introduced the notion of cohomology annihilators and proved that it is a defining
ideal of the singular locus under mild assumptions. The cohomology annihilator of a
ring R is the ideal consisting of elements a such that there exists an integer n with
a Extn

R(M , N) = 0 for all finitely generated modules M , N . They also discovered a
relationship between the behavior of the cohomology annihilator and the strong gen-
eration of the module and derived categories. Their results raise the natural question:
Which Ext modules have annihilator ideals being equal to the defining ideal of the
singular locus?

By the method of Dey and Takahashi [2], the above question for the singular locus
can be reduced to a similar question for the non-Gorenstein locus. When R is a Co-
hen–Macaulay local ring of dimension d with canonical module, Dao, Kobayashi, and
Takahashi [1] show that the ideal consisting of elements a such that a Extd+1

R (M , R) = 0
for any finitely generated module M coincides with the trace of the canonical module,
and hence is a defining ideal of the non-Gorenstein locus. In this poster, we provide
a non-Cohen–Macaulay analog of this result, thereby explicitly describing the defining
ideals of the singular locus and the non-Gorenstein locus in terms of annihilators of
Ext modules. This poster is based on [4].

REFERENCES

[1] H. Dao; T. Kobayashi; R. Takahashi: Trace ideals of canonical modules, annihilators
of Ext modules, and classes of rings close to being Gorenstein, J. Pure Appl. Algebra
225 (2021), no. 9, Paper No. 106655, 18 pp.

[2] S. Dey; R. Takahashi: Comparisons between annihilators of Tor and Ext, Acta Math.
Vietnam. 47 (2022), no. 1, 123–139.

[3] S. B. Iyengar; R. Takahashi: Annihilation of cohomology and strong generation of
module categories, Int. Math. Res. Not. IMRN (2016), no. 2, 499–535.

[4] K. Kimura: Stability of annihilators of cohomology and closed subsets defined by
Jacobian ideals, preprint (2024), arXiv:2409.17934.
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21. Frobenius Betti numbers for graded Cohen–Macaulay rings
of finite type

Nirmal Kotal (Institute of Mathematical Sciences Chennai,
nirmalk@imsc.res.in)

Frobenius Betti numbers provide a powerful homological invariant that refines the
Hilbert–Kunz multiplicity and offers deep insight into the nature of singularities in rings
of positive characteristic. Despite their conceptual importance, explicit computations
of these invariants are known in only a handful of cases. In this poster, we focus on
the classifications of Cohen–Macaulay graded rings of finite type and provide explicit
computations of their Frobenius Betti numbers. Our results highlight a rich interplay
between the structure of maximal Cohen–Macaulay modules, the Frobenius endomor-
phism, and homological dimensions. This study not only broadens the landscape of
known examples but also points toward deeper connections between singularity theory
and the homological behavior of the Frobenius functor.

22. Koszul complexes and Tate resolutions
Ganapathy Krishnamoorthy (Indian Institute of Technology Madras,

ganapathy.math@gmail.com)

Over a commutative Noetherian ring R, the Koszul complex on a sequence of ele-
ments x = x1, . . . , xn encodes several properties of the ideal (x). The Koszul complex
on x is a free resolution of R/(x) if and only if x is a regular sequence. When the
Koszul complex is not a resolution, one has the Tate resolution, which is obtained by
killing the non-zero homology modules of the Koszul complex in an inductive manner.

In joint work with Sarang Sane, we show that there exists a chain complex (DG-
algebra) map from the Tate resolution on the powers of x to the Koszul complex on x.
We also provide some applications of this result.

23. The slope of the v-function and the Waldschmidt constant
Manohar Kumar (Indian Institute of Technology Kharagpur,

manhar349@gmail.com)

In this paper, we study the asymptotic behaviour of the v-number of a Noetherian
graded filtration I = {I[k]}k≥0 of a Noetherian N-graded domain R. Recently, it was
shown that v(I[k]) is periodically (or quasi-) linear in k for k ≫ 0. We show that all
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these linear functions have the same slope, i.e. limk→∞
v(I[k])

k
exists, which is equal to

limk→∞
α(I[k])

k
, where α(I) denotes the minimum degree of a non-zero element in I.

In particular, for any Noetherian symbolic filtration I = {I(k)}k≥0 of R, it follows that

limk→∞
α(I(k))

k
= α̂(I), the Waldschmidt constant of I. Next, for a non-equigenerated

square-free monomial ideal I, we prove that

v(I(k)) ≤ reg(R/I(k))

for k ≫ 0. Also, for an ideal I having the symbolic strong persistence property, we
give a linear upper bound on v(I(k)). As an application, we derive some criteria for a
square-free monomial ideal I to satisfy v(I(k)) ≤ reg(R/I(k)) for all k ≥ 1, and provide
several examples in support. In addition, for any simple graph G with the cover ideal
J(G), we establish that

v(J(G)(k)) ≤ reg(R/J(G)(k))

for all k ≥ 1, and v(J(G)(k)) = reg(R/J(G)(k)) = α(J(G)(k))− 1 for all k ≥ 1 if and
only if G is a Cohen–Macaulay very-well covered graph.

24. ϕ-conducive rings
Rahul Kumar (Birla Institute of Technology and Science Pilani,

kumar.rahul@pilani.bits-pilani.ac.in)

Let H be the set of all commutative rings with unity whose nilradical is a divided
prime ideal. If R ∈ H, then there is a ring homomorphism ϕ : tq(R) → RNil(R) given by
ϕ(r/s) = r/s where r ∈ R and s ∈ R \ Z(R). A ring R ∈ H is said to be a ϕ-conducive
ring if for each overring T of ϕ(R), other than RNil(R), Nil(ϕ(R)) ⊂ (ϕ(R) : T ). We
study various properties of a ϕ-conducive ring.

25. Rees algebras and Gd−2 condition
Suraj Kumar (Indian Institute of Technology Delhi,

Suraj.Kumar@maths.iitd.ac.in)

Let R = k[x1, . . . , xd] be a polynomial ring over a field k and I = (f1, . . . , fd+1) be
a height two perfect ideal that is linearly presented. Furthermore, we suppose that the
ideal I satisfies Gd−2 but satisfies neither Gd−1 nor Gd. The Gs bounds the minimal
number of generators of Ip by the height of p for all primes p up to height s − 1. In
this setting, we provide explicit formulas for the defining ideal of the Rees algebra of I,
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denoted by R(I). We further demonstrate that R(I) is not always a Cohen–Macaulay
ring. While the attempts to find the defining ideal of the Rees algebra of ideals satisfying
Gd or Gd−1 conditions are well documented, the Gd−2 case is still unexplored.

26. Application of Betti splittings to the regularity of binomial
edge ideals

Paramhans Kushwaha (Indian Institute of Technology Jammu,
2022rma2004@iitjammu.ac.in)

Betti splitting is an important tool to study some of the invariants of an ideal such
as projective dimension, Castelnuovo–Mumford regularity etc. In this poster session,
we will prove an upper bound for the binomial edge ideals of trees using Betti splitting.
Also, we provide a lower bound for the regularity. As a consequence, we give the exact
regularity for binomial edge ideals for certain classes of trees.

27. Ideals generated by some minors of a generic m × n matrix
Vivek Bhabani Lama (Indian Institute of Technology Kharagpur, vivekbhabanil-

ama@kgpian.iitkgp.ac.in)

We characterize the primality of ideals generated by some 2-minors of a 3 × n matrix
in terms of the row and column graphs of these ideals under the condition of graph
connectivity. This generalizes a well-known result in the case of binomial edge ideals.
This is joint work with Arindam Banerjee and Kanoy Kumar Das.

28. Popescu-type approximation of complete local rings and ap-
plications

Shiji Lyu (University of Illinois, slyu@uic.edu)

For concreteness, let k be a field of characteristic 0 and R be the power series
ring k[[T1, . . . , Tn]]. Finite type schemes over R were used in, for example, Hironaka’s
resolution of singularities and work of de Fernex–Ein–Mustata on ACC of log canonical
thresholds. We discuss a systematic way of approximating finite type schemes over R
using schemes essentially of finite type over k, preserving various types of singularities
and homological properties. This allows us to extend known results and constructions
for varieties to finite type schemes over R, including formulas for multiplier ideals,
deformation of singularities, and big Cohen–Macaulay algebras. Our construction works
in arbitrary characteristic, and has applications to étale cohomology of rigid analytic
spaces, and more. This is joint work in preparation with Shizhang Li and Bogdan
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Zavyalov.

29. On a graph with respect to the idempotents of a commutative
ring

Praveen Mathil (Birla Institute of Technology and Science Pilani,
maithilpraveen@gmail.com)

Let R be a ring with unity. The idempotent graph GId(R) of a ring R is an undi-
rected simple graph whose vertices are the set of all the elements of ring R and two
vertices x and y are adjacent if and only if x+ y is an idempotent element of R. Razaghi
et al.2 studied basic properties of GId(R) such as connectedness, diameter and girth.
In this poster, first, we correct a result obtained by Razaghi et al. and determine the
precise structure of the idempotent graph of a local ring. Further, we obtain a neces-
sary and sufficient condition on the ring R such that GId(R) is planar. We prove that
GId(R) is an outerplanar graph if and only if R is a local ring. Moreover, we classify
all the finite commutative rings R such that GId(R) is a claw-free, cograph, split graph
and threshold graph, respectively. We conclude that for a finite non-local commutative
ring, the latter two graph classes of GId(R) are equivalent if and only if R is a Boolean
ring.

30. Standard multigraded Hibi rings and Cartwright–Sturmfels
ideals

Koji Matsushita (Univ. of Tokyo, koji-matsushita@g.ecc.u-tokyo.ac.jp)

Let L be a finite lattice and k be a field. Let SL = k[xα : | α ∈ L] be a polynomial
ring over k and IL be an ideal of SL generated by

FL := {fα,β : α, β ∈ L are incomparable},

where fα,β := xαxβ − xα∧βxα∨β for incomparable elements α, β ∈ L. A compatible
monomial order is a monomial order ⪯ on SL such that in⪯(fα,β) = xαxβ for all
incomparable elements α, β ∈ L. It is known that the followings are equivalent ([2], see
also [1, Chapter 6]):

(1) IL is a prime ideal;

(2) L is a distributive lattice;

(3) FL is a Gröbner basis of IL with respect to a compatible monomial order.
2A graph with respect to idempotents of a ring. J. Algebra Appl., 20(6): Paper No. 2150105, 8, 2021.
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When the equivalent condition holds, the residue ring SL/IL is called a Hibi ring.
Usually, the Hibi ring SL/IL is regarded as a standard Z-graded ring by setting

deg(xα) = 1. However, in this poster presentation, we consider endowing the Hibi ring
with a standard multigraded ring structure. In particular, we address the following
problems:

• How should we equip SL with a standard multigrading so that IL is homogeneous?

• Compute the Hilbert series of SL/IL.

• Under what conditions is IL a Cartwright–Sturmfels ideal?

We will give answers to the above questions.
This poster presentation is based on joint work with Koichiro Tani.
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31. Analysis in the calculation of Hilbert–Kunz multiplicity
Cheng Meng (Yau Mathematical Sciences Center, Jingzhai, Tsinghua University,

cheng319000@tsinghua.edu.cn)

We present theoretical and computational results concerning the h-function, a nu-
merical invariant for local rings of characteristic p that recovers several important
invariants, including the Hilbert–Kunz multiplicity, F -signature, F -threshold, and F -
signature of pairs with principal divisors.

The main result in the theoretical part consists of a novel integration formula for the
h-function of hypersurfaces defined by polynomials of the form ϕ(f1, . . . , fs), where ϕ
is a polynomial and fi are polynomials in independent sets of variables. A key example
we analyze is the diagonal hypersurface xd1

1 + · · ·+ xds
s , which serves as a fundamental

case for our results. In the computational part, we demonstrate applications of this in-
tegration formula through three key results: we establish the asymptotic behavior of the
Hilbert–Kunz multiplicity for Fermat hypersurfaces of degree 3, extending the degree
2 case previously resolved by Gessel and Monsky. We prove an inequality conjectured
by Watanabe and Yoshida for all odd primes, generalizing Trivedi’s prior work that
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was limited to the case of sufficiently large primes. We further generalize an inequality
initially established by Caminata, Shideler, Tucker, and Zerman, extending its validity
to almost all primes.

32. On upper bounds for the dimension of the singularity cate-
gory of a commutative ring

Yuki Mifune (Nagoya University, yuki.mifune.c9@math.nagoya-u.ac.jp)

Let R be a commutative Noetherian ring. Denote by mod R the category of finitely
generated R-modules, by Db(R) the bounded derived category of mod R. The singular-
ity category, introduced by Buchweitz [1], is defined as the Verdier quotient of Db(R)
by the category of perfect complexes over R; that is,

Dsg(R) = Db(R)/thickR.

This category reflects the singularity of R in the sense that Dsg(R) is trivial if and only
if R is regular.

For an essentially small triangulated category T , we can define the Rouquier di-
mension of T , denote by dim T . This invariant measures how many times one needs
to take mapping cones starting from a single object to generate the entire category.
Concerning upper bounds for the Rouquier dimension of Dsg(R), Liu [3] obtained the
following result.

Theorem (Liu). Let (R,m, k) be an equicharacteristic excellent local ring with an
isolated singularity, and I an m-primary ideal of R contained in the annihilator of
Dsg(R). Then one has

dim Dsg(R) ≤ (µ(I) − depth R + 1)ℓℓ(R/I) − 1.

Here, the annihilator of Dsg(R) is defined as the set of elements r ∈ R such that r
annihilates the endomorphism rings of all objects in Dsg(R). We denote by µ(I) the
minimal number of generators of the ideal I, and by ℓℓ(R/I) the Loewy length of
R/I. In the case where R is Cohen–Macaulay, the theorem was proved by Dao and
Takahashi [2]. Our main result generalizes a theorem of Liu to arbitrary commutative
Noetherian rings.

This poster is based on the preprint [4].

REFERENCES
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36



[2] H. Dao; R. Takahashi, Upper bounds for dimensions of singularity categories, C. R.
Math. Acad. Sci. Paris 353 (2015), no. 4, 297–301.

[3] J. Liu, Annihilators and dimensions of singularity category, Nagoya Math. J. 250
(2023), 533–548.

[4] Y. Mifune, Upper bounds for dimensions of singularity categories and their annihi-
lators, preprint (2024), arXiv:2408.12206.

[5] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008), no. 2,
193–256.

33. When do pseudo-Gorenstein become Gorenstein?
Sora Miyashita (University of Osaka, u804642k@ecs.osaka-u.ac.jp)

We discuss the relationship between the trace ideal of the canonical module and
pseudo-Gorensteinness. In particular, under certain mild assumptions, we show that
every positively graded domain that is both pseudo-Gorenstein and nearly Gorenstein
is Gorenstein. As an application, we clarify the relationships among nearly Gorenstein-
ness, almost Gorensteinness, and levelness—notions that generalize Gorensteinness—in
the context of standard graded domains. Moreover, we give a method for constructing
quasi-Gorenstein rings by taking a Veronese subalgebra of certain Noetherian graded
rings.

34. Dominating ideals and closed neighborhood ideals of graphs
Aslı Tuğcuoğlu Musapaşaoğlu (Sabancı University, Turkey,

atmusapasaoglu@sabanciuniv.edu)

In comparison to the edge ideals and cover ideals associated with graphs which
are well-known and extensively studied, relatively little is known in the case of closed
neighborhood ideals and dominating ideals of graphs. In this poster, we present several
results concerning the closed neighborhood ideals and the dominating ideals of graphs,
specifically focusing on certain classes of trees and cycles, as well as the dominating
ideals of path graphs. We investigate whether these ideals are normally torsion-free,
and if they are not, we inquire whether they exhibit the persistence property for some
classes. Additionally, we demonstrate the componentwise linearity of the dominating
ideals of path graphs by describing a linear quotient order for their minimal generat-
ing sets, and we provide formulas for their Betti numbers, regularity, and projective
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dimension.

35. Binomial ideals and rook polynomials of polyominoes
Francesco Navarra (Sabancı University, Turkey,

francesco.navarra@sabanciuniv.edu)

The study of ideals generated by arbitrary set of minors of a generic matrix has deep
roots in commutative algebra, algebraic geometry and combinatorics. In this context,
the polyomino ideal was introduced in a recent work of A.A. Qureshi as the ideal gen-
erated by those sets of 2-minors of a matrix that can be combinatorially characterized
as a polyomino, that is, a collection of equally sized squares joined edge to edge, similar
to a pruned chessboard.

This poster focuses on the theory of the rook polynomial of a polyomino and its con-
nection with the corresponding polyomino ideal. The rook problem involves counting the
number of ways to place k non-attacking rooks on a given polyomino P . The rook num-
ber of P , denoted by r(P), is the maximum number of non-attacking rooks that can be
placed on it.
The rook polynomial of P is defined as

rP(t) =
r(P)∑
k=0

r(k, P)tk,

where r(k, P) is the number of ways to arrange k non-attacking
rooks on P . For instance, the polyomino P here has rP(t) =
1 + 11t + 31t2 + 24t3 and r(P) = 3.

Determining the rook number and the rook polynomial for
a pruned chessboard remains a highly difficult combinatorial
problem. However, recent work has shown that these problems can be approached
using algebraic invariants associated with the polyomino ideal. In particular, it has
been conjectured that the rook number and the rook polynomial of P (and one of its
reformulations) correspond, respectively, to the Castelnuovo–Mumford regularity and
the h-polynomial of the coordinate ring of P . In this poster, we present the current
state of the art, along with several recent results and combinatorial techniques.

36. An approach to Martsinkovsky invariant via Auslander ap-
proximation theory
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Yuya Otake (Nagoya University, m21012v@math.nagoya-u.ac.jp)

Auslander and Buchweitz [ABu] developed the Cohen–Macaulay approximation the-
ory over Gorenstein local rings, and Auslander, in his unpublished paper [Aus], estab-
lished the theory of the δ-invariant using the Cohen–Macaulay approximation. The
delta invariant has been studied by many researchers, and it has interesting connec-
tions to ideal theory, as exemplified by index theory [DinI, DinII, Her]. Martsinkovsky
[MarI, MarII] extended the theory of the delta invariant to the ξ-invariant over gen-
eral Noetherian local rings. We present an approach to analyzing the ξ-invariant using
Auslander’s approximation theory, based on the preprint [O].
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37. Pseudo-Frobenius numbers and defining ideals in stretched
numerical semigroup rings

Taiga Ozaki (Inst. of Science Tokyo3, taigaozaki0422.math@gmail.com)

This research4 is based on joint work with Do Van Kien of Hanoi Pedagogical
University No. 2 and Naoyuki Matsuoka of Meiji University.

3Mathmatics Graduate Major, Institute of Science Tokyo
4Pseudo-Frobenius numbers and defining ideals in stretched numerical semigroup rings,

https://arxiv.org/abs/2501.06415.
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Let H = ⟨a1, a2, . . . , an⟩ be a numerical semigroup, and R = k[H ] be the numerical
semigroup ring of H over a field k. Then we denote by IH the defining ideal of k[H ],
which is the kernel of the homomorphism S = k[X1, . . . , Xn] → k[H ] with Xi 7→ tai

for 1 ≤ i ≤ n.
The structure of k[H ] is determined by its defining ideal. Therefore, examining the

defining ideals, for instance, finding a minimal system of generators, has long been stud-
ied as a classical problem in commutative algebra. By J. Herzog’s remarkable result5,
investigating the structure of the defining ideal for 3-generated numerical semigroups
has been completely solved. However, the case of 4 or more generators is too compli-
cated to investigate.

Moreover, we have an important invariant

PF(H) = {z ∈ Z \ H | z + h ∈ H for all h ∈ H \ {0}}

and call an element α ∈ PF(H) a pseudo-Frobenius number of H.
Under these notations, we show the following criterion:

Theorem. Assume k[H ]/(ta1) is stretched. Then the following are equivalent:

(1) There exist homogeneous elements of positive degree f1, . . . , fn, g1, . . ., gn ∈ S such
that

IH = I2

(
f1 · · · fn

g1 · · · gn

)
where I2(M) denotes the ideal of S generated by 2-minors of a matrix M .

(2) There exist h ∈ Z≥0 and α ∈ Z>0 such that

PF(H) = {h + α, h + 2α, . . . , h + (n − 1)α}.

Here, an Artinian local ring (A,m) is called stretched if the number of minimal
generators of m2 is at most 1.

D. T. Cuong, D. V. Kien, N. Matsuoka and H. L. Truong expected that this equiva-
lent holds true in general. This result provides a partial solution of their conjecture.

Thus, these theorem and conjecture are also interesting in that they suggest an
extension of Herzog’s results to the case of four or more generators.

In this poster, we introduce the main theorem and its applications with examples.

38. Coherent functors, powers of ideals, and asymptotic stability
5J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math-

ematica 3 (1970), no. 2, 175-193.
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Siddhartha Pramanik (Indian Institute of Technology Kharagpur,
siddharthap@kgpian.iitkgp.ac.in, pramaniksiddhartha2@gmail.com)

Let R be a Noetherian ring, I1, . . . , Ir be ideals of R, and N ⊆ M be finitely
generated R-modules. For n = (n1, . . . , nr) ∈ Nr, set Gn := M/InN , where In =
In1

1 · · · Inr
r . Suppose F is a coherent functor on the category of finitely generated R-

modules. We prove that the set AssR(F (Gn)) of associate primes and grade(J , F (Gn))
stabilize for all n ≫ 0, where J is a non-zero ideal of R. Furthermore, if the length
λR(F (Gn)) is finite for all n ≫ 0, then there exists a polynomial P in r variables over
Q such that λR(F (Gn)) = P (n) for all n ≫ 0. When R is a local ring, we give a
sharp upper bound for the total degree of P . As applications, when R is a local ring,
we show that for each fixed i ≥ 0, the i-th Betti number βR

i (F (Gn)) and Bass number
µi

R(F (Gn)) are given by polynomials in n for all n ≫ 0. Thus, in particular, the
projective dimension pdR(F (Gn)) (resp., injective dimension idR(F (Gn)) is constant
for all n ≫ 0.

This is joint work with Souvik Dey, Dipankar Ghosh, Tony J. Puthenpurakal, and
Samarendra Sahoo.

39. The type of finite complemented affine semigroups
Om Prakash (Chennai Math. Institute, India, omprakash@cmi.ac.in)

We prove that the type of an affine semigroup ring is equal to the number of max-
imal elements in the Apéry set with respect to the set of exponents corresponding to
a maximal regular sequence of monomials. Furthermore, we classify all finite comple-
mented submonoids of Nd that have type one.

40. Bounds on the Castelnuovo–Mumford regularity and the Ratliff–
Rush index

Shruti Priya (Indian Institute of Technology Kharagpur,
shruti96312@kgpian.iitkgp.ac.in)

For a Cohen–Macaulay local ring (R,m) of dimension d, and I an m-primary ideal,
we derive upper bounds on the Ratliff–Rush index in terms of higher Hilbert coefficients
and the reduction number of I w.r.t. to a minimal reduction J . In the specific case of
two-dimensional Cohen–Macaulay local rings, the established bounds on the Ratliff–
Rush index consequently lead to bounds on the Castelnuovo–Mumford regularity of
the associated graded ring of I.

41. Stanley–Reisner ideals of higher independence complexes
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Amit Roy (Chennai Math. Institute, amitiisermohali493@gmail.com)

For t ≥ 2, the t-independence complex Indt(G) of a graph G is the collection of all
A ⊆ V (G) such that each connected component of the induced subgraph G[A] has at
most t − 1 vertices. The topology of Indt(G) is intimately related to the combinatorial
property of G. We consider the Stanley–Reisner ideal It(G) of Indt(G) and focus on
their algebraic properties. We prove that for a chordal graph G and for all t

reg(R/It(G)) = (t − 1)νt(G) and pd(R/It(G)) = bight(It(G)),

where νt(G) denotes the induced matching number of the corresponding hypergraph
of It(G), and reg, pd and bight stand for the regularity, projective dimension, and
big height, respectively. As a consequence of the above results, we combinatorially
characterize when the Stanley–Reisner ideal of t-independence complex of a chordal
graph has a linear resolution as well as when it satisfies the Cohen–Macaulay property.
The above formulas and their consequences can be seen as a nice generalization of the
classical results corresponding to the edge ideals of chordal graphs.

42. The Ratliff property of the edge ideals of weighted-oriented
graphs

Pritam Roy (Indian Institute of Technology Kharagpur,
pritamroy.1929@gmail.com)

In this project, we prove that the edge ideal I(D) of each of the following weighted-
oriented graphs satisfies the Ratliff (or strong persistence) property: graphs having
an outward leaf vertex; graphs having an inward leaf vertex, and that leaf vertex has
the sink neighbor; graph having an inward leaf vertex, and that leaf vertex has the
neighbor of weight 1. Next, we show (I(D)2 : I(D)) = I(D) for the edge ideal I(D)
of all weighted-oriented graphs and (I(D)3 : I(D)) = I(D)2 for each of the edge
ideals of weighted-oriented cycles and weighted-oriented trees having an inward leaf
vertex. Finally, we prove for a weighted-oriented graph without any source vertex that
if a prime ideal (that is not the irrelevant maximal ideal) happens to be an associated
prime of some power of the edge ideal, then that is also an associated prime of all the
subsequent powers. We also prove for a weighted-oriented graph that has no source
vertex but has all vertices of weight more than 1 and has a vertex of in-degree 1, that
the irrelevant maximal ideal is an associated prime of every positive power of the edge
ideal.

43. Numerical characterizations of S2-ifications of Rees algebras
of homogeneous ideals
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Sudeshna Roy (Indian Institute of Technology Madras,
sudeshnaroy.11@gmail.com)

The multiplicity-based integral dependence criterion goes back to D. Rees and is an
essential tool in commutative algebra and singularity theory. However, Rees’ theorem
works only for ideals that are primary to the maximal ideal in a local ring. Since then,
much research has been done to produce such criteria for arbitrary ideals. Recently, with
S. Das and V. Trivedi, we obtained new localization-free criteria for integral dependence
in terms of well-known invariants. This naturally came up as an application of various
density functions that we developed. Our constructions were motivated by the Hilbert–
Kunz density function due to Trivedi. When the base ring is a normal domain, one
could interpret the above results as numerical characterizations of the graded pieces of
the integral closure of the Rees algebra of the ideal in its quotient field. An S2-ification
criterion of the Rees algebras was first given by C. Ciupercă for ideals primary to the
maximal ideal in terms of the first two Hilbert coefficients. He further defined a j-
multiplicity type invariant to provide a criterion (involving localization) for arbitrary
ideals. This presentation discusses another characterization of the S2-ification of the
Rees algebra of a homogeneous ideal in a standard-graded normal domain R over a
field. For this, we will introduce the beta density function associated with the adic
filtration of a homogeneous ideal in R. A novelty of our approach is that it does not
involve localization and is amenable to computation.

This poster is based on ongoing joint work with S. Das and H. L. Truong.

44. Toric ideals of weighted oriented graphs
Tapas Kumar Roy (Indian Institute of Technology Kharagpur,

tapasroy147@kgpian.iitkgp.ac.in)

We explicitly compute circuit binomials of toric ideals of weighted oriented graphs.
A toric ideal is called strongly robust if its Graver basis is equal to its set of indis-
pensable binomials. For certain classes of weighted oriented graphs, we prove that its
toric ideal is strongly robust. For any weighted oriented graph D, if its toric ideal ID is
generalized robust or weakly robust, then we show that D has no subgraphs of certain
structures. For certain classes of weighted oriented graphs, we prove that robustness,
strongly robustness, generalized robustness, weakly robustness are equivalent. We ex-
plicitly compute Graver basis of toric ideal of some classes of weighted oriented graphs.
If D is a weighted oriented graphs consisting of certain number of cycles sharing a path,
then we show that the Graver basis, universal Gröbner basis, reduced Gröbner basis
with respect to degree lexicographic order of ID coincide. Also, for certain classes of
weighted oriented graphs, we show that the Graver basis and the circuit binomials of
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its toric ideal are equal.

45. Vanishing of co-homologies, and Cohen–Macaulay modules of
minimal multiplicity

Aniruddha Saha (Indian Institute of Technology Hyderabad,
ma20resch11001@iith.ac.in, sahaa43@gmail.com)

Let (R,m, k) be a commutative Noetherian local ring. Let M be a CM (Cohen–
Macaulay) R-module of dimension r. It is well-known that the multiplicity e(M) ≥
µ(mM) + (1 − r)µ(M), where µ(M) denotes the minimal number of generators of M .
When equality holds, M is said to have minimal multiplicity. For example, a module
M of finite length has minimal multiplicity if and only if m2M = 0. We show that
Cohen–Macaulay modules with minimal multiplicity are Ext-test modules (depending
on whether e(M) < 2µ(M) or e(M) > 2µ(M)), which detect finiteness of projective
and injective dimensions of a given module. Most notably, we verify the long-standing
Auslander–Reiten conjecture for every CM module of minimal multiplicity. As conse-
quences of the above results, we show a number of characterizations of various local
rings.

46. Quasi-pure resolutions and some lower bounds of Hilbert co-
efficients of Cohen–Macaulay modules

Samarendra Sahoo (Indian Institute of Technology Bombay,
mathematicsbabul@gmail.com)

Let (A,m) be a Gorenstein local ring and let M be a finitely generated Cohen–
Macaulay A module. Let G(A) = ⊕n≥0mn/mn+1 be the associated graded ring of
A and G(M) = ⊕n≥0mnM/mn+1M be the associated graded module of M . If A is
regular and if G(M) has a quasi-pure resolution then we show that G(M) is Cohen–
Macaulay. If G(A) is Cohen–Macaulay and if M has finite projective dimension then
we give lower bounds on e0(M) and e1(M). Finally let A = Q/(f1, . . . , fc) be a strict
complete intersection with ord(fi) = s for all i, and let M be a Cohen–Macaulay
module with cxA(M) = r < c, we give lower bounds on e0(M) and e1(M).

47. Hilbert coefficients versus Buchsbaumness of blow-up alge-
bras

Kumari Saloni (Indian Inst. of Tech. Patna, sin.saloni@gmail.com)

Let (A,m) be a Noetherian local ring of dimension d > 0 with infinite residue
field and I ⊆ A an m-primary ideal with a minimal reduction J . Let f0(I) de-
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note the multiplicity of the special fiber cone Fm(I). If A is Cohen–Macaulay and
f0(I) = e1(I)− e0(I)− e1(J)+ ℓ(A/I)+µ(I)− d+ 1, then Fm(I) need not be Cohen-
Macaulay. Let I be an I-good filtration. We consider the equality e1(I) − e1(J) =
2e0(I) − 2ℓ(A/I1) − ℓ(I1/(I2 + J)) where J ⊆ I is a minimal reduction of I. In
particular for I = {In}, when both the above equalities hold, then we prove, under
mild conditions, that (1) if A is generalized Cohen–Macaulay, then Fm(I) is general-
ized Cohen–Macaulay; In addition, if depth A > 0, then depth Fm(I) = depth A and
(2) if A is Buchsbaum and depth A ≥ d − 1, then Fm(I) is Buchsbaum. We also dis-
cuss the Buchsbaumness and I-invariant of the associated graded ring G(I). This is
collaborative work with Anoot Kumar Yadav.

48. Complexity and curvature of pairs of Burch ideals and mod-
ules

Mouma Samanta (Indian Institute of Technology Kharagpur,
mouma17@kgpian.iitkgp.ac.in)

The complexity and curvature of a module were first introduced by Avramov to
distinguish modules of infinite homological dimension. Later, complexity was extended
by Avramov–Buchweitz to every pair of modules, which measures the polynomial
growth rate of minimal number of generators of their Ext modules. Dao studied a
similar notion of Tor-complexity. Recently, Dey–Ghosh–Saha initiated the study of
Ext and Tor curvature of a pair of modules, which measures the exponential growth
rate of the corresponding Ext and Tor, respectively. On the other hand, the con-
cept of Burch ideals was introduced by Dao–Kobayashi–Takahashi. It includes large
well-studied classes of ideals in a Noetherian local ring (R,m, k). For examples, every
non-zero ideal of the form am (e.g., mn for n ≥ 1), and under mild conditions ev-
ery integrally closed ideal I with depth(R/I) = 0 are Burch ideals. Suppose I and
J are Burch ideals such that I is m-primary. One of the main results of this poster
is cxR(I, J) = tcxR(I, J) = cxR(k). Moreover, we show that R is complete inter-
section ⇐⇒ cxR(I, J) is finite ⇐⇒ tcxR(I, J) is finite ⇐⇒ curvR(I, J) ≤ 1
⇐⇒ tcurvR(I, J) ≤ 1.

This is joint work with Dipankar Ghosh.

49. On a relative dependency formula
Shashi Ranjan Sinha (Indian Institute of Technology Hyderabad,

ma20resch11005@iith.ac.in)

Celikbas, Liang and Sadeghi established a one-sided inequality for the relative ver-
sion of Jorgensen’s dependency formula and questioned whether it would be an equality.
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In this poster, we show that the inequality can be indeed strict, and prove a relative
dependency formula. Along the way, we obtain some bounds on s(M , N), a notion
related to the vanishing of relative homology under specific assumptions.

50. Minimal bigraded free resolution of Rees algebra of almost
complete intersections

Chitra Venugopal (Indian Institute of Technology Hyderabad,
ma19resch11002@iith.ac.in)

An almost complete intersection ideal in a polynomial ring can be seen as a d-
sequence ideal, with the minimal number of generators being one more than its height.
We present the minimal bigraded free resolutions of Rees algebras associated with these
ideals, realized as a mapping cone of two complexes. As a result, we can give the explicit
bigraded free resolutions of the Rees algebra of almost complete intersections of grade
2 and grade 3. Furthermore, we obtain bounds on the Rees algebra’s diagonals (c, e),
which guarantee Koszulness and Cohen–Macaulayness of the corresponding diagonal
subalgebras. These bounds are given in terms of the invariants associated with the
almost complete intersections.

51. Betti numbers of normal edge rings
Zexin Wang (Soochow University, zexinwang6@outlook.com)

We introduce a novel approach named the induced-subgraph approach for investi-
gating the Betti numbers of normal edge rings. Utilizing this approach, we compute all
the multi-graded Betti numbers of the edge rings associated with two-ear graphs, com-
pact graphs and multi-path graphs. In this context, the two-ear graph is a non-bipartite
graph introduced by Hibi et al. in 2014, a compact graph is a simple graph containing no
even cycles while satisfying the odd-cycle condition, and a multi-path graph is a simple
graph formed by multiple paths with identical start and end vertices. In particular, we
show that for two-ear graphs, compact graphs of type 1 or 2 and multi-path graphs,
their multi-graded Betti numbers are always equal to the top multi-graded Betti num-
bers of some of their induced subgraphs. In contrast, some of the multi-graded Betti
numbers of compact graphs of type 3 are not the top multi-graded Betti numbers of
any of their induced subgraph. We speculate that our approach can be applicable to
many other normal edge rings. The poster content is derived from

Z. Wang, D. Lu, The Betti numbers of normal edge rings I, arXiv:2404.10672 and
Z. Wang, D. Lu, The Betti numbers of normal edge rings II, arXiv:2503.03171.
Additionally, this approach can also be applied to compute Betti numbers of certain

monomial ideals, as shown in
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Z. Wang, D. Lu, Betti numbers of edge ideals of weighted oriented crown graphs,
arXiv:2505.06992.

52. A note on a conjecture of Rossi for reduction numbers of
ideals and their Ratliff–Rush filtrations

Anoot Kumar Yadav (Indian Institute of Technology Patna,
anoot_2021ma06@iitp.ac.in)

Let (A,m) be a Cohen–Macaulay local ring of dimension d ≥ 3 and I an m-primary
ideal with a minimal reduction J . In this poster, we prove that rJ (I) ≤ e1(I)− e0(I) +
ℓ(A/I) + 1 if e3(I) = e2(I)(e2(I) − 1) and ei(I) = 0 for i ≥ 4 where rJ (I) is the
reduction number of I with respect to J and ei(I) are the Hilbert coefficients. Our result
affirms a conjecture of M. E. Rossi. We also prove that (i) e3(I) ≤ e2(I)(e2(I)− 1) for
any I-admissible filtration I and (ii) e3(I) ≤ e2(I)(e2(I) − e1(I) + e0(I) − ℓ(A/I))
for an integrally closed ideal I. To our best knowledge, the above bound for e3(I) in
the case of m-primary ideals is better than the earlier known bounds. Further, the
respective boundary cases in the above bounds along with the vanishing of ei(I) for
4 ≤ i ≤ d force certain “good behaviour of the Ratliff-Rush filtration of I” which
is a weaker condition than depth GI(A) ≥ d − 1, however we show that it has many
interesting consequences on the Hilbert coefficients. We also discuss bounds for the
stability index and the reduction number of the Ratliff–Rush filtration.

47



IV. LIST OF PARTICIPANTS

1. Sarfraz Ahmad, COMSATS University Islamabad, Pakistan,
sarfrazahmad@cuilahore.edu.pk

2. Rahul Ajitt, University of Utah, USA,
rahulajit@math.utah.edud

3. Siddhi Balu Ambhore, Indian Institute of Technology Gandhinagar, India,
siddhi.ambhore@iitgn.ac.in

4. Tran Nguyen An, Thai Nguyen University of Education, Vietnam,
antn@tnue.edu.vn

5. Quach Nam Anh, Hong Bang International University, Vietnam,
namanhquach27@gmail.com

6. Le Tuan Anh, Hanoi University of Science and Technology, Vietnam,
anhlt1618033989@gmail.com

7. Phan Quang Nhu Anh, University of Da Nang, Vietnam,
pqnanh@ued.udn.vn

8. Abhishek Banerjee, Indian Institute of Science, Bangalore, India,
abhishekbanerjee1313@gmail.com

9. Arindam Banerjee, Indian Institute of Technology, Kharagpur, India,
123.arindam@gmail.com

10. Meghana Bhat, Indian Institute of Technology Dharwad, India,
212071001@iitdh.ac.in

11. Subhadip Bhowmick, Indian Institute of Technology Kharagpur, India,
sbhowmick712@kgpian.iitkgp.ac.in

12. Hafsa Bibi, Institute of Technology Bandung, Indonesia,
hafsaliaqat600@gmail.com

13. Prativa Biswas, Indian Institute of Technology Kharagpur, India,
prativabiswassnts@gmail.com

48



14. Paromita Bordoloi, Indian Institute of Technology, Jammu, India,
2022rma0026@iitjammu.ac.in

15. Winfried Bruns, Universität Osnabrück, Germany,
wbruns@uos.de

16. Giulio Caviglia, Purdue University, USA,
gcavigli@purdue.edu

17. Marc Chardin, Sorbonne Université, France,
mchardin@imj-prg.fr

18. Tran Do Minh Chau, Thai Nguyen University of Education, Vietnam,
chautdm@tnue.edu.vn

19. Gong Cheng, Soochow Uinversity, China,
cgong@suda.edu.cn

20. Aldo Conca, Università di Genova, Italy,
aldo.conca@unige.it

21. Yijun Cui, Soochow (Suzhou) University, China,
237546805@qq.com

22. Doan Trung Cuong, Institute of Mathematics, VAST, Vietnam,
dtcuong@math.ac.vn

23. Nguyen Tu Cuong, Institute of Mathematics, VAST, Vietnam,
ntcuong@math.ac.vn

24. Steven Dale Cutkosky, University of Missouri, USA,
CutkoskyS@missouri.edu

25. Clare D’Cruz, Chennai Mathematical Institute, India,
clare4004@gmail.com

26. Hai Long Dao, University of Kansas, USA,
hdao@math.ku.edu

27. Kanoy Kumar Das, Chennai Mathematical Institute, India,
kanoydas0296@gmail.com

28. Suprajo Das, IIT Madras, India,
dassuprajo@gmail.com

49



29. Nguyen Ba Dat, Hanoi University of Science and Technology, Vietnam,
dat.nb2400097@sis.hust.edu.vn

30. Emanuela De Negri, Università di Genova, Italy,
emanuela.denegri@unige.it

31. Deblina Dey, IIT Madras, India,
deblina.math@gmail.com

32. Sutapa Dey, Indian Institute of Technology Hyderabad, India,
ma20resch11002@iith.ac.in

33. Saipriya Dubey, Chennai Mathematical Institute, India,
saipriya721@gmail.com

34. Hoang Phi Dung, Posts and Telecommunications Institute of Technology, Hanoi,
Vietnam,
hpdung83@gmail.com

35. Nguyen Thi Dung, Thai Nguyen University of Agriculture and Forestry, Vietnam,
nguyenthidung@tuaf.edu.vn

36. Nguyen Viet Dung, Institute of Mathematics, VAST, Vietnam,
vietdung@math.ac.vn

37. Le Xuan Dung, Hong Duc University, Thanh Hoa, Vietnam,
lexuandung@hdu.edu.vn

38. David Eisenbud, Mathematical Sciences Research Institute, Berkeley, USA,
de@berkeley.edu

39. Krizal John C. Espacio, University of the Philippines Los Baños, Philippines,
kcespacio@up.edu.ph

40. Antonino Ficarra, Basque Center for Applied Mathematics (BCAM), Spain,
aficarra@bcamath.org, antficarra@unime.it

41. Dipankar Ghosh, Indian Institute of Technology Kharagpur, India,
dipankar@maths.iitkgp.ac.in

42. Parnashree Ghosh, Tata Institute for Fundamental Research, India,
ghoshparnashree@gmail.com

43. Kriti Goel, University of Missouri, USA,
kritigoel.maths@gmail.com

50



44. Yan Gu, Soochow University, China,
guyan@suda.edu.cn

45. Jin Guo, Hainan University, China,
guojinecho@163.com

46. Punam Gupta, Devi Ahilya Vishwavidyalaya, India,
punam2101@gmail.com

47. Tài Huy Hà, Tulane University, USA,
tha@tulane.edu

48. Le Minh Ha, Vietnam Institute for Advanced Study in Mathematics, Vietnam,
leminhha@viasm.edu.vn

49. Buddhadev Hajra, Chennai Mathematical Institute, India,
hajrabuddhadev92@gmail.com

50. Ritam Halder, Indian Institute of Technology Kharagpur, India,
ritamhalder10@gmail.com

51. Vo Huyen Bao Han, Vietnam National University, Ho Chi Minh City, Vietnam,
vobaohanlqd@gmail.com

52. Nguyen Thi Anh Hang, Thai Nguyen University of Education, Vietnam,
hangnthianh@gmail.com

53. Nguyen Thu Hang, Thai Nguyen College of Sciences, Vietnam,
nguyenthuhang0508@gmail.com

54. Pham My Hanh, An Giang University, Vietnam,
pmhanh@agu.edu.vn

55. Takayuki Hibi, Osaka University, Japan,
hibi@math.sci.osaka-u.ac.jp

56. Nguyen Gia Hien, 136 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam,
hiennguyengia450@gmail.com

57. Truong Thi Hien, Hong Duc University, Thanh Hoa, Vietnam,
hientruong86@gmail.com

58. Ha Thi Thu Hien, Foreign Trade University, Hanoi, Vietnam,
thuhienha504@gmail.com

51



59. Dang Tuan Hiep, Da Lat University, Vietnam,
hiepdt@dlu.edu.vn

60. Nguyen Duc Hieu, Vietnam Japan University, Vietnam,
22110125@st.vju.ac.vn

61. Duong Xuan Hieu, Hanoi Open University, Vietnam,
hieu.dx1302@gmail.com

62. Le Tuan Hoa, Institute of Mathematics, VAST, Vietnam,
lthoa@math.ac.vn

63. Tran Quang Hoa, Hue University, Vietnam,
tranquanghoa@hueuni.edu.vn

64. Do Trong Hoang, Hanoi University of Sciences and Technology, Vietnam,
hoang.dotrong@hust.edu.vn

65. Jen-Chieh Hsiao, National Cheng Kung University, Taiwan,
jhsiao@mail.ncku.edu.tw

66. Yisong Huang, Chinese Academy of Science and Technology, China,
huangyisong@amss.ac.cn

67. Duong Thi Huong, Thang Long University, Hanoi, Vietnam,
duonghuongtlu@gmail.com

68. Nguyen Khac Huy, Budapest University of Technology and Economics, Romania,
nkhzim@gmail.com

69. Sayed Sadiqul Islam, IIT Bombay, India,
22d0786@iitb.ac.in

70. Srikanth Iyengar, University of Utah, USA,
iyengar@math.utah.edu, Srikanth.B.Iyengar@utah.edu

71. Omkar Deepak Javadekar, IIT Bombay, India,
omkar@math.iitb.ac.in, omkarjavadekar@gmail.com

72. Aryampillymana Vishnu Jayanthan, Indian Institute of Technology Madras, In-
dia,
jayanav@iitm.ac.in

73. Ajay P. Joseph, National Institute of Technology, Karnataka, India,
ajaymath.217ma001@nitk.edu.in

52



74. Himanshu Kesarwani, MNNIT Allahabad, India,
kesarwanih8@gmail.com

75. Vu Cong Dang Khoa, Vietnam National University, Ho Chi Minh City, Vietnam,
khoavu0112@gmail.com

76. Do Van Kien, Hanoi Pedagogical University 2, Vietnam,
dovankien@hpu2.edu.vn

77. Kaito Kimura, Nagoya University, Japan,
m21018b@math.nagoya-u.ac.jp

78. Mitra Koley, Indian Institute of Science Education and Research, Thiruvanan-
thapuram, India,
mitra@iisertvm.ac.in

79. Nirmal Kotal, Institute of Mathematical Sciences Chennai, India,
nirmalk@imsc.res.in

80. Ganapathy Krishnamoorthy, Indian Institute of Technology Madras, India,
ganapathy.math@gmail.com

81. Manohar Kumar, Indian Institute of Technology Kharagpur, India,
manhar349@gmail.com

82. Rahul Kumar, Birla Institute of Technology and Science Pilani, India,
kumar.rahul@pilani.bits-pilani.ac.in

83. Suraj Kumar, Indian Institute of Technology Delhi, India,
Suraj.Kumar@maths.iitd.ac.in

84. Shinya Kumashiro, Osaka Institute of Technology, Japan,
shinya.kumashiro@oit.ac.jp

85. Paramhans Kushwaha, Indian Institute of Technology Jammu, India,
2022rma2004@iitjammu.ac.in

86. Ching-Jui Lai, National Cheng Kung University, Taiwan,
10608012@gs.ncku.edu.tw

87. Ha Minh Lam, Institute of Mathematics, VAST, Vietnam,
hmlam@math.ac.vn

88. Vivek Bhabani Lama, Indian Institute of Technology Kharagpur, India,
vivekbhabanilama@kgpian.iitkgp.ac.in

53



89. Dinh Van Le, FPT University, Hanoi, Vietnam,
dinhlv2@fe.edu.vn

90. Cao Huy Linh, University of Education, Hue University, Vietnam,
huylinh2002@yahoo.com

91. Nguyen Xuan Linh, Hanoi University of Civil Engineering, Vietnam,
nxlinhxd@gmail.com

92. Phan Van Loc, Hanoi Pegagogical University 2, Vietnam,
phanvanloc@hpu2.edu.vn

93. Nguyen Tuan Long, National Economics University, Hanoi, Vietnam,
ntlong81@gmail.com

94. Dancheng Lu, Soochow Univeristy, China,
ludancheng@suda.edu.cn

95. Zheng Lu, Hainan University, China,
zhenglumath@163.com

96. Shiji Lyu, University of Illinois Chicago, USA,
slyu@uic.edu

97. Mousumi Mandal, Indian Institute of Technology Kharagpur, India,
mousumi@maths.iitkgp.ac.in

98. Muneeba Mansha, COMSATS University Islamabad, Pakistan,
muneeba.math@gmail.com

99. Shreedevi K. Masuti, Indian Institute of Technology, Dharwad, India,
shreedevi@iitdh.ac.in

100. Praveen Mathil, Birla Institute of Technology and Science Pilani, India,
maithilpraveen@gmail.com

101. Koji Matsushita, University of Tokyo, Japan,
koji-matsushita@g.ecc.u-tokyo.ac.jp

102. Cheng Meng, Yau Mathematical Sciences Center, Jingzhai, Tsinghua University,
China,
cheng319000@tsinghua.edu.cn

103. Yuki Mifune, Nagoya University, Japan,
yuki.mifune.c9@math.nagoya-u.ac.jp

54



104. Nguyên Công Minh, Hanoi University of Sciences and Technology, Vietnam,
minh.nguyencong@hust.edu.vn

105. Sora Miyashita, Osaka University, Japan,
u804642k@ecs.osaka-u.ac.jp

106. Vivek Mukundan, Indian Institute of Technology Delhi, India,
vmukunda@iitd.ac.in
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