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1. General Overview

Warning. These notes are really in a draft version and might contain many typos and mistakes.
They are for the eyes of the participants to the Summer School on Quantum Topology 2025 at
VIASM Hanoi only ! If you’re reading these notes and you find some typos or mistakes please do
not hesitate to inform me. Also the bibliography is incomplete and, mainly in the introduction I
should add many more references to important papers and works existing in the litterature.

In these lecture notes we will define the notion of TQFT and provide different examples of their
construction, typically in dimension (3, 2) (aka 2 + 1) and (4, 3) (aka 3 + 1). As we will see, a
TQFT is a functor from a source category of manifolds and their cobordisms to a target category
which can be Vect, GrVect, H −Mod (for some algebra H) but sometimes is more involved as
H −Bimods. So for the time being, a general definition of what is a TQFT is the following:

Rough definition 1.1. Let Cob be a category whose objects are smooth n-dimensional manifolds
(of some sort) endowed with a monoidal structure (tensor product) and a braiding, and C a target
braided category. A TQFT is a braided monoidal functor Z : Cob→ C.

The above definition becomes correct if one specifies the categories Cob, C and the structure of
the monoidal functor Z (as we will see later on, a monoidal functor is not just a functor but a pair
given by the functor and a suitable natural transformation...). In particular we will see various
versions of Cob which are pertinent:

(1) Cob (plain vanilla), whose objects are n-dimensional closed oriented smooth manifolds and
morphisms are their cobordisms up to diffeomorphism. The monoidal structure is disjoint
union.

(2) Cobnc (non compact), the subcategory of Cob in which each connected component of a
morphism must have non-empty negative boundary.

(3) Cob∂ (with boundary), whose objects are n-dimensional compact oriented smooth mani-
folds with boundary Sn−1, and morphisms are connected cobordisms with a side boundary
Sn−1×[−1, 1]. The monoidal structure is induced by “glueing along a pant”, or equivalently
by boundary connected sum along Sn−1.

(4) In dimension 2 + 1, for each of the above, their “version extended with signature” de-
noted respectively Cobσ,Cobσ,nc,Cobσ∂ , in which the objects are decorated by a suitable
lagrangian subspace of the H1 and the cobordism carry an integer which sums up under
composition with a specific rule given by the Maslov index.

(5) In dimension 2 + 1 Cobnc,σ,ω, whose objects are further decorated by cohomology classes
with coefficients in some abelian group (e.g. C/2Z).

A TQFT starting from a category as above “without the σ” will be called “anomaly free”, else
“with anomaly”.
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Similarly the possible target categories are varied and we shall mainly consider the following:

(1) V ect, the category of vector spaces with its standard monoidal structure and symmetry
(2) GrV ect, the category of graded vector spaces with its standard monoidal structure and

supersymmetry
(3) H−mod (or H-comod) the category of finite dimensional modules (resp. co-modules) over

a Hopf algebra H with suitable properties
(4) BimH a category whose objects are algebra-comodules over a Hopf algebra H and mor-

phism their bimodules up to isomorphism.

To build examples of TQFTs, various strategies have been invented, depending on Cob and on C:
• Present Cob (for instance as the category “generated by a single object with suitable

morphisms satisfying some relations). Then to get Z it is sufficient to find objects with
similar properties in C. This is the idea underlying for instance the cobordism hypothesis.
But we will see it in action in easier and more concrete cases.
• Present the category Cob by a list of generating morphisms and their relations. We will

apply this strategy to get 2 + 1 and 3 + 1-dimensional TQFTs out of modular categories
and more in general categories with modified trace and “chromatic morphisms”.
• Use the “universal construction” to extend a quantum invariant (i.e. the value of Z only

on the endomorphisms of the empty manifold) to a whole TQFT.

So after a series of recalls on category theory and Hopf algebras, here is a table of what we
are going to study (if time permits !) where the numbers indicate the order we will follow, but I
actually do not expect we will be able to see 4), 5) and 6).
SourceTarget Vec GrVec H-mod BimH

Cob 1) Dim 1+1 2) Dim2+1 TV,CGPV 3)Dim 3+1 CKY,CGHP
Cobnc 2) Dim2+1 CGPV 3)Dim 3+1 CGHP
Cob∂ 5) CL-CF
Cobσ 2’) WRT

Cobσ,nc 6) BCGP
Cobσ∂ 4) KL

1.1. Higher categories, extended TQFTs and the cobordism hypothesis. Although the
previous section summarizes what we are going to deal with, it is important to be aware of a much
larger framework which allows to encapsulate most of the concepts we are going to provide. It
is that of the “cobordism hypothesis”, due to Baez and Dolan [4] and of which a detailed sketch
of proof has been provided by Lurie [37]. The idea behind this result, is that if one allows to
cut the manifolds not only along hypersurfaces but along hypersurfaces in hypersurfaces and so
on, then he will be able to decompose each n-manifold in basic objects as points, arcs connecting
them, discs etc etc. These can be though of as an example of a n-category, in which the points are
0-morphisms, the arcs generate the 1-morphisms and so on.

Although according to my poor knowledge there is not yet a complete agreement on the notion
of the algebraic notion of n-category , the notion of (∞, n) category has been formalised: roughly
speaking in an ∞-category there are morphisms of all orders but their composition is not well
defined, rather it is defined only up to higher morphisms. Also in an (∞, n)-category the morphisms
higher than n are to be invertible.

There is a natural way of associating to a standard category C an ∞ category: the nerve
N(C) whose objects and 1-morphisms are those of C and whose n morphisms are sequences of
n-composable morphisms in C. These simplicial spaces turn out to be a model for (∞, 1) cat-
egories (which are typically defined as simplicial sets satisfying the Segal condition, which by
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Grothendieck’s nerve theorem is satisfied iff the simplicial set is the nerve of any category). The
definition of (∞, n) is more involved (it is a n-fold complete Segal space, but this means nothing
without a proper definition...). What we will recall though, is that there is one 4-category called
BrTens given by Brochier, Jordan, Safronov and Snyder, [8] whose:

0 -morphisms are braided k-linear categories
1 -morphisms are monoidal klinear categories seen as central bimodules categories
2 -morphisms are k-linear categories seen as bimodules categories
3 -morphisms are functors between categories
4 -morphisms are natural transformations

The statement of the cobordism hypothesis is that if one wants to “represent” the fully extended
category Cobn (i.e. the one containing the point as 0-morphism etc.etc.) then it will be sufficient
to find in the target n-category a “fully dualisable” object, namely a 0-object coming with a dual
object, and duality morphisms satisfying the standard duality conditions up to higher morphisms,
together with duality datas also for these morphisms, all the way up...

Whatever this means, [8] showed that there are plenty of fully dualisable objects in BrTens: all
the modular categories are ! Therefore to each such category there should be a fully extended 4-
TQFT, which, in particular, associates numbers to closed 4-manifolds, vector spaces to 3-manifolds,
categories to surfaces etc etc...

Warning. Actually the previous statements are true for the category Cobfr of framed cobor-
disms. If one wants to actually consider Cob as we do, he/she should find a is fully dualisable
SO(n)-homotopy fixed point object. We will not consider this major difficulty here.

We will see in this course what is supposed the “tip” of such a TQFT, (conjecturally): we will
indeed build a family of (4, 3)-TQFT out of any modular category with suitable structure (this
construction is taken from [12] and generalises to the non semi-simple setting the Crane-Yetter
construction).

In a previous work Douglas, Schommer-Pries and Snyder [16], build a 3-category Tens whose
objects are monoidal categories, morphisms are bimodule categories etc..: it was shown in [8] that
this category is MorBrTens(1, 1). Always by the cobordism hypothesis, a fully dualisable object
of Tens can be used to obtain a fully extended 3-TQFT. How does this morally relate to the
previous construction ? Given a closed 3-manifold M , pick two 4-manifolds W± whose boundaries
are ±M respectively. Then one can consider the closed 4-manifold W+ ∪M W− and consider it as
a 4-manifold where one applies the trivial TQFT (associated to 1 ∈ BrTens) except that there is
a “topological defect” along M3 and the defect is encoded by a category C ∈ Ob(Tens) (seen as
a bimodule over the trivial braided category 1 = V ectk). The resulting invariant is morally the
“Turaev-Viro” invariant associated to C, which should be actually extendable until the point. We
will indeed see the tip of this construction by providing a (3, 2)-TQFT associated to each spherical
(non necessarily semi-simple) category C (this construction is taken from [13] and encompasses
previous fundamental constructions due to Turaev-Viro and Barrett-Westbury in the semi-simple
case).

If one looks closely to the previous framework he/she will be surprised because to a braided
tensor category is associated a 4-TQFT and not a 3-TQFT as it is usually the case for the
Reshetikhin-Turaev-Witten theories. This has been explained by Kevin Walker, and developed
by Freed, Teleman and many others. The crux of the idea is the following (my apologies for over
simplifying): as before let M be a closed 3-manifold colored by a braided tensor category C but
now color W+ with the trivial object and W− with the category C. From this point of view the
color of M is to be seen as a bimodule category from 1 → C. If before the choice of W± did not
matter in the computation of the invariant of W because they were “colored by the trivial object
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1 ∈ BrTens”, here W− is colored by a non trivial theory and so its topology will have to be taken
into account. Fortunately though, the theory associated to C is supposed to be invertible, i.e. the
invariant of each closed 4-manifold is an invertible scalar and the vector space associated to each
M3 is a 1-dimensional vector space. From this point of view the inclusion of V ect into C given by
the left monoidal action of V ect on C provides a trivialisation of such a line bundle making it k and
the application of the TQFT associated to the braided modular category C to the cobordism W−
gives a linear map to k, so a scalar which is then RTW (M) (but depends on W−, so this notation
is abusive for the moment). In order to have a theory which only depends on M and not on the
choice of W− it is necessary to decorate M with enough information to be able to “forget” W−
and replace it with this sufficient data. For semisimple modular categories (Crane-Yetter theories)
this datum is basically the signature of W−. One can further play with a decomposition of W−
into two sub 4-manifolds W ′ ◦W ′′ whose boundary splits M into two 3-manifolds with boundary
M ′ ◦M ′′ glued along a surface S, to understand how this extends to a (3, 2) TQFT. In this case,
the question is : what structure should one put on S in order to “remember” enough of W ′ and
W ′′ to be able to compute when glueing M ′ and M” the signature of W ? By Wall’s signature
formula, the answer is a lagrangian subspace of H1(S,R). This explains why in the WRT theo-
ries one has to deal with the anomalies associated to signatures. Actually in Walker, Freed and
Teleman’s wording, the Crane-Yetter theory is the anomaly for the WRT theory, or, better, the
WRT theory is a “boundary condition” for the Crane-Yetter theory. From this point of view, the
anomalous non semi-simple (3, 2)-TQFTs associated to non-semisimple modular categories in [21]
should be the boundary conditions to the (4, 3)-theories from [12] we are going to build in this
course. If time permits in this course we will construct WRT theories and their non semi-simple
version (aka DGGPR theories from [21]) but without taking care of the anomaly problem: we will
therefore obtain projective TQFTs and not proper TQFTs.

As stated above, associated to an invertible object of BrTens should be a fully extended 4-
TQFT. In particular this theory should associate to each 3-manifold a vector space and to each
surface a category. If time permits, we will see that this is indeed the case, or, more precisely,
that associated to some modular categories is indeed associated a category for each surface (the
category of modules over its stated skein algebra) and a vector space to each 3-manifold (its stated
skein module). To be more precise we will make this construction work for the subcategory Cob∂
above. This is the content of the recent paper [9], which extends previous work of [10], [33],[34].

Acknowledgements These lecture notes are basically a recollection of previous works in col-
laboration with (in alphabetical order) Matthieu Faitg, Nathan Geer, Benjamin Haioun, Thang
Le, Bertrand Patureau, Alexis Virelizier, and I wish to thank all of them for the great time we had
whil doing maths together. Of course all false statements are due only to me.

2. The categories Cob and Cobnc

From now on, all manifolds will be smooth compact and oriented and all the maps will be
smooth unless explicitly stated the contrary.

Definition 2.1. Two diffeomorphisms between manifolds f, g : M → N are :

• homotopic : if there exists a map h : M× [0, 1]→ N such that h|M×{0} = f and h|M×{1} =
g.

• pseudo-isotopic: if there exists an embedding h : M×[0, 1]→ N×[0, 1] such that h|M×{0} =
f × {0}, h|M×{1} = g × {1}.

• isotopic: if there exists an embedding h : M×[0, 1]→ N×[0, 1] such that h|M×{0} = f×{0},
h|M×{1} = g × {1} and for each t, ht := h|M×{t} ⊂ N × {t}.
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Remark 2.2. Clearly isotopy =⇒ pseudo-isotopy =⇒ homotopy. The reverse implications are
false in general in dimensions ≥ 3 (see for instance [20] for an example in dimension 3 of maps
which are pseudo-isotopic but non isotopic). On contrast, in dimension 2 they are all true: this is
the content of Baer’s theorem.

Definition 2.3. The category Cob is the category whose objects are the n − 1-dimensional
manifolds (which typically we will denote with the letters Σ) and whose morphisms are 5-uples
Mor(Σ−,Σ+) = {(W,∂+W, f+, ∂−W, f−)}/ ∼ where

(1) W is a n-manifold,
(2) ∂W = ∂−W t ∂+W (oriented with the outward vector first convention),
(3) f− : Σ− → ∂W− (resp. f+ : Σ+ → ∂W+) are diffeomorphisms which reverse (resp.

preserve) the orientation,

and we say that two 5-uples (W,∂+W, f+, ∂−W, f−) and (W ′, ∂+W
′, f+, ∂−W

′, f−) are equivalent
(∼) if there exists an orientation preserving diffeomorphism ψ : W →W ′ such that:

ψ(∂+W ) = ∂+W
′, f ′+ = ψ ◦ f+, ψ(∂−W ) = ∂−W

′, f ′− = ψ ◦ f−.

The composition of cobordisms :

W1 = (W1, ∂+W1, f+, ∂−W1, f−) ∈ Mor(Σ−,Σ) and

W2 = (W2, ∂+W2, g+, ∂−W2, g−) ∈ Mor(Σ,Σ+) is defined as

W2 ◦W1 = (W2 tg−◦f−1
+
W1, ∂+W2, g+, ∂−W1, f−) ∈ Mor(Σ−,Σ+), where

W2 tg−◦f−1
+
W1 := (W1 tW2)/{x ∼ y ⇐⇒ x ∈ ∂−W2, y ∈ ∂+W1 and x = g− ◦ f−1

+ (y)}.

Observe that the identity morphism IdΣ is (Σ × [−1, 1],Σ × {−1}, Id,Σ × {1}, Id). More in
general if f ∈ Diff+(Σ) then we define the cobordism Cf := (Σ× [−1, 1],Σ×{−1}, f,Σ×{1}, Id):
the following holds :

Lemma 2.4. (1) The semigroup Mor(∅, ∅) is the abelian semigroup freely generated by ori-
ented diffeomorphism classes of connected n + 1-manifolds. Its only inversible element is
the class of the empty manifold.

(2) For each Σ the map Diff+(Σ) 3 f → Cf ∈ Mor(Σ,Σ) is a homomorphism whose kernel is
{f | f is pseudo-isotopic to the identity}.

Proof. 1).The fact that Mor(∅, ∅) is a semigroup is true in general, furthermore, by definition of
the composition of two cobordisms, if those cobordisms have empty boundary, their composition
is the diffeomorphism class of their disjoint union. The identity cobordism is ∅ × [−1, 1] = ∅ and
it is invertible.

2). We need to prove that Cf ◦ Cg = Cf◦g. By definition the cobordism Cg can be also
represented as (Σ×[−1, 1],Σ×{−1}, f ◦g,Σ×{1}, f) (indeed the diffeomorphism f can be extended
to the whole Cg via f × Id). Now it becomes evident that the composition of the two cobordisms
the composition Cf ◦ Cg is the cobordism (Σ × [−1, 3],Σ × {3}, Id,Σ × {−1}, f ◦ g) = Cf◦g.
The cobordism Cf is equivalent to the cobordism CId = IdΣ iff there exists a diffeomorphism
φ : Σ× [−1, 1]→ Σ× [−1, 1] such that

φ(x, 1) = (x, 1) and φ(f(x),−1) = (x,−1) ∀x ∈ Σ.

Up to a reparametrization of the [−1, 1] factor this is precisely saying that f is pseudo-isotopic to

Id (see Definition 2.1). 2.4
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The category Cob has naturally much more structure than what was given above. Observe first
that a monoidal structure in Cob is given by the disjoint union : Σ1⊗Σ2 := Σ1 tΣ2, and the unit
object id is the empty manifold ∅. Furthermore, the natural diffeomorphisms Σ1 t Σ2 → Σ2 t Σ1

induce a symmetry on the monoidal structure: Cob is then a symmetric monoidal category.
Observe furthermore Cob is a rigid category: each object Σ has a left and right dual object

Σ which is the same manifold with the opposite orientation and there are morphisms η : I →
Σ ⊗ Σ ( defined as η := (Σ × [−1, 1],Σ × {±1}, Id t Id, ∅, ∅)) and ε : Σ ⊗ Σ → I (defined as
ε := (Σ× [−1, 1], ∅, ∅,Σ× {±1}, Id t Id)) which satisfy the triangle identities (namely

(Σ // I⊗ Σ
η⊗id// Σ⊗ Σ⊗ Σ

id⊗ε // Σ) = IdΣ , and (Σ // Σ⊗ I
id⊗η// Σ⊗ Σ⊗ Σ

ε⊗id // Σ) = IdΣ. )

Let Cobnc be the largest subcategory of Cob such that each component of every cobordism has a
nonempty source, and we also include the empty object in Cob. The category Cobnc is a symmetric
monoidal subcategory of Cob, but notice it is not rigid.

Definition 2.5. A non-compact (2+1)-TQFT is a symmetric monoidal functor Cobnc → VectK.
A non-compact (2+1)-TQFT is finite dimensional if it takes values in the subcategory of finite
dimensional vector spaces.

2.1. Presenting Cob and Cobnc (following Juhasz). In [23], Juhász gives a presentation of
Cob whose generators {eΣ,S, ed} are indexed by framed k-spheres S in a (n − 1)-manifold Σ and
diffeomorphisms d : Σ→ Σ′ between (n−1)-manifolds, see Section 2.2. These generators correspond
to k + 1-handles and mapping cylinders that we now describe.

Let Σ be an oriented (n− 1)-manifold. For k ∈ {0, 1, 2, . . . n− 1}, a framed k-sphere in Σ is an
orientation reversing embedding S : Sk × D2−k ↪→ Σ. Then we can perform surgery on Σ along
S by removing the interior of the image of S and gluing in Dk+1 × S1−k, getting a well defined
topological manifold Σ(S) which, using the framing of the sphere, can be endowed with a canonical
smooth structure. The associated oriented cobordism (Σ × [0, 1]) ∪S (Dk+1 ×D2−k) represents a
morphism W (S) in Cob from Σ→ Σ(S). Juhász considers two additional types of framed sphere,
namely S = 0 and S = ∅, where Σ(0) = Σ t Sn−1 and Σ(∅) = Σ with associated the cobordisms
W (0) = Σ× [−1, 1] tDn : Σ→ Σ(0) and W (∅) = Σ× [−1, 1] : Σ→ Σ(∅).

Finally, recall that any orientation preserving diffeomorphism d : Σ → Σ′ between closed ori-
ented (n−1)-manifolds gives rise to the morphism cd : Σ→ Σ′ in Cob represented by the cylindrical
cobordism whose underlying manifold is Σ× [0, 1] with boundary (−Σ×{0})t(Σ×{1}) parameter-
ized by (x, 0) 7→ x and (x, 1) 7→ d(x) for all x ∈ Σ. In Juhász’s presentation, the formal generators
eΣ,S and ed correspond to the above cobordisms W (S) and cd respectively.

The generators of Cobnc are the same with exception of those associated with the formal spheres
S = 0 since the cobordisms W (0) do not belong to Cobnc.

2.2. Juhász’s presentation of Cob and Cob′. Following [23], we consider the subcategory Cob′

of cobordism such that each component of every cobordism has a nonempty source and nonempty
target. Here, we consider the empty surface as an object of Cob′.

Let G be the directed graph described as follows. The vertices are closed oriented surfaces.
There are two kinds of edges of G. First, for each orientation preserving diffeomorphism d : Σ→ Σ′

between closed oriented surfaces, there is an edge ed going from Σ to Σ′. Second, for each framed
sphere S in a closed oriented surface Σ, there is an edge eΣ,S from Σ to Σ(S). Let Gnc (resp. G′)
be the subgraph of G obtained by removing the empty surface and the edges eΣ,S where S = 0
(resp. where S = 0 or S is a framed 2-sphere). Denote by F(G) (resp. F(Gnc), resp. F(G′)) the
free categories generated by G (resp. Gnc, resp. G′).
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In [23, Definition 1.4], Juhász considers a set of relations R in F(G) which we recall now. If w
and w′ are words consisting of composable arrows, then we write w ∼ w′ if w = w′ is a relation in
R.

(R1) For composable diffeomorphisms d and d′ between closed oriented surfaces, we have the
relation ed◦d′ ∼ ed ◦ ed′ . We also have the relations eΣ,∅ ∼ eidΣ

and ed ∼ eidΣ
if d : Σ→ Σ

is a diffeomorphism isotopic to the identity.
(R2) Let d : Σ → Σ′ be an orientation preserving diffeomorphism between closed oriented sur-

faces and S be a framed sphere in Σ. Consider the framed sphere S′ = d ◦ S in Σ′ and
denote by dS : Σ(S)→ Σ′(S′) the induced diffeomorphism. Then the commutativity of the
following diagram defines a relation:

Σ

ed

��

eΣ,S // Σ(S)

e
dS

��
Σ′

eΣ′,S′// Σ′(S′)

(R3) Let S,S′ be disjoint framed sphere in an oriented surface Σ. Notice that Σ(S)(S′) =
Σ(S′)(S) and denote this surface by Σ(S,S′). The commutativity of the following diagram
defines a relation:

Σ

eΣ,S′

��

eΣ,S // Σ(S)

eΣ(S),S′

��
Σ(S′)

eΣ(S′),S// Σ(S,S′)

(R4) Let S be a framed k-sphere in an oriented surface Σ and S′ a framed k′-sphere in Σ(S). If the

attaching sphere S′(Sk′ ×{0}) ⊂ Σ(S) intersects the belt sphere {0}×S−k+1 ⊂ Σ(S) once
transversely, then there is a diffeomorphism (well defined up to isotopy) φ : Σ → Σ(S,S′)
(see [23, Definition 2.17]) and the following is a relation:

eΣ(S),S′ ◦ eΣ,S ∼ eφ.

(R5) For each be a framed k-sphere S in an oriented surface Σ, there is a relation eΣ,S ∼ eΣ,S̄,

where the framed k-sphere S̄ : Sk ×D2−k ↪→ Σ is defined by S̄(x, y) = S(rk+1(x), r2−k(y))
for any x ∈ Sk ⊂ Rk+1 and y ∈ D2−k ⊂ R2−k, with rm(x1, x2, . . . , xm) = (−x1, x2, . . . , xm).

Let Rnc and R′ be the subset of relations involving only edges in Gnc and G′ respectively.
Following [23, Definition 1.5], let c : G → Cob be the map which is the identity on vertices,

assigns the cylindrical cobordism cd to the generator ed associated to a diffeomorphism d, and
assigns the cobordism W (S) to the edge eΣ,S. This extends to a symmetric strict monoidal functor
c : F(G) → Cob. Recall that given a category F and a set of relations ∼ on its morphisms, the
quotient category F/∼ has the same objects as F and equivalence classes of morphisms of F as
morphisms. The following was proved by Juhász [23, Theorem 1.7]:

Theorem 2.6. The functor c : F(G) → Cob induces isomorphisms of symmetric monoidal cate-
gories

F(G)/R → Cob and F(G′)/R′ → Cob′.

In [13] the same statement was proved for c : F(Gnc)→ Cobnc and relations Rnc.
8
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2.3. The universal construction. Let us agree on the following:

Definition 2.7. A functor (not necessarily monoidal) Z : Cob → Vect is non-degenerate (or
cobordism generated) if for each Σ it holds

Z(Σ) = spanC{Z(Mor(∅,Σ)}.

Proposition 2.8 (Universal construction, [5]). Let Z : Mor(∅, ∅)→ C be a diffeomorphism invari-
ant of oriented n+ 1-manifolds which is multiplicative under disjoint union. There exists a unique
non-degenerate functor Z : Cob→ V ectC whose restriction to Mor(∅, ∅) is Z.

Proof. Define V (Σ) := span{Mor(∅,Σ)} and V ′(Σ) := span{Mor(Σ, ∅)}. Define a pairing 〈·, ·〉 :
V ′(Σ)⊗ V (Σ)→ C by extending linearly the bracket defined on the bases as 〈M2,M1〉 = Z(M2 ◦
M1). Let then Z(Σ) := V (Σ)/{v ∈ V (Σ)|〈w, v〉 = 0∀w ∈ V ′(Σ)} and similarly let Z ′(Σ) :=
V ′(Σ)/{w ∈ V ′(Σ)|〈w, v〉 = 0∀v ∈ V (Σ)}. It is straightforward to check that this defines a functor

into Vect which by construction is non-degenerate. 2.8

In general the following holds :

Theorem 2.9 (Turaev, Theorem 3.7 [47]). If Z1 and Z2 are two TQFT whose invariants of closed
manifolds coincide and if Z1 is non-degenerate, then Z1 and Z2 are isomorphic.

Corollary 2.10. If Z is a degenerate TQFT the result of the universal construction on Z is a
functor but not a TQFT.

3. Warm up : (2, 1)-TQFTs

3.1. Frobenius algebras.

Definition 3.1 (Frobenius algebra object). A Frobenius algebra object A in a monoidal category
C is a quintuple (A,µ, 1,∆, ε) where :

(1) µ : A⊗A→ A is associative (i.e. µ ◦ (µ⊗ Id) = µ ◦ (Id⊗ µ))
(2) 1 ∈ Mor(1, A) is such that µ ◦ (1⊗ Id) = Id = µ ◦ (Id⊗ 1);
(3) ∆ : A→ A⊗A is co-associative (i.e. ∆⊗ Id ◦∆ = Id⊗∆ ◦∆);
(4) ε : A→ 1 is a co-unit i.e. it is such that ε⊗ Id ◦∆ = Id = Id⊗ ε ◦∆.
(5) The Frobenius Law holds : ∆ ◦ µ = (Id⊗ µ) ◦ (∆⊗ Id) = (µ⊗ Id) ◦ (Id⊗∆).

Furthermore, if C is symmetric with symmetry s we say that A is commutative if it holds µ◦s = µ,
cocommutative if s ◦∆ = ∆.

Let Sn be the n-dimensional sphere seen as the round unit sphere in Rn+1 and oriented as
the outside of the round unit radius ball Bn of center the origin. Let 1 ∈ Mor(∅,Sn) be the
cobordism represented by Bn and let µ be the n + 1 cobordism from Sn ⊗ Sn → Sn formed by
the “pant” i.e. the complement of two disjoint copies of the round ball of radius 1 whose centers
are in coordinates (±2, 0, · · · , 0) ∈ Rn+1 inside the round ball of radius 4 and center the origin
(the boundary components of µ are to identified with Sn by means of the obvious compositions
of translations and positive homotheties). Similarly let ∆, ε be the n+ 1-cobordisms obtained by
reversing the orientations of µ and 1 respectively.

Lemma 3.2. (Sn, µ, 1,∆, ε) is a commutative Frobenius algebra object in Cobn.

Let’s observe first that if n = 2 then each object of Cob is a tensor product of circles and so to
know a TQFT it is sufficient to know Z(S1) which is a Frobenius algebra:
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Theorem 3.3 (Dijkgraaf? Abrams?, well detailed by Kock [19]). A 1+1-TQFT is uniquely deter-
mined by the commutative Frobenius algebra structure of Z(S1). Reciprocally, given a commutative
finite dimensional Frobenius algebra A there exists a unique TQFT Z such that Z(S1) = A.

Exercise 3.4. Let A be a commutative Frobenius algebra. Prove that then the bilinear form
〈x, y〉 := ε(xy) is non-degenerate and satisfies 〈xy, z〉 = 〈x, yz〉, ∀x, y, z ∈ A. Reciprocally prove
that if A is a commutative, unital algebra equipped with a non-degenerate form having these
properties then A is a Frobenius algebra.

We will use extensively the following exercise in what follows :

Exercise 3.5. Let A be a commutative Frobenius algebra and fix a basis xi of A as a C-vector
space; let x∗i ∈ A be the element defined so that ε(x∗i xj) = δi,j and finally let θ =

∑
i xix

∗
i . If Z is

a 1 + 1-TQFT such that Z(S1) = A then the value of Z on a closed surface of genus g ≥ 0 is ε(θg).
In particular its value on S1 × S1 is dimC(A).

From now on let us fix the following notation (for this section). Let Σg,h := Σg t Σh and
Yk = Σk \D2.

Exercise 3.6. Let A be the de Rham cohomology of your favorite compact complex manifold
where ε is given by integrating on the fundamental class. It is a commutative Frobenius algebra.
In particular for CP1 one gets the algebra C[X]/X2 which is at the base of the construction of
Khovanov homology. Notice that ∆(1) = 1 ⊗ x + x ⊗ 1 and ∆(x) = x ⊗ x and that these values
can be computed starting from the ε form (evaluation on the fundamental cycle of CP1). The
associated TQFT evaluates each sphere to 0 each torus to 2 and each other connected surface to
0. Apply the universal construction and show that it yields a TQFT (i.e. a monoidal functor).

Solution 3.7. Let Σg be the complement of a disc in a genus g oriented surface. If we apply the
universal construction we immediately see that Z(S1) = spanC{Σ0,Σ1} and it is not difficult to
realize that the vectors Σi,j , Yk, i, j, k ∈ {0, 1} generate Z(S1 t S1) but they are not independent
as the coupling matrix (i.e. expressing ε ◦m) written in the basis Σ0,0,Σ1,0,Σ0,1,Σ1,1, Y0, Y1 is :

0 0 0 4 0 2
0 0 4 0 2 0
0 4 0 0 2 0
4 0 0 0 0 0
0 2 2 0 2 0
2 0 0 0 0 0


whose rank is 4. Actually as the rank of the first 4× 4 minor is 4 the vectors Σi,j form a basis of
Z(S1 t S1). More in general it is not difficult to check that Z(S1 t · · · t S1) is Z(S1)⊗ · · · ⊗Z(S1)
and thus Z is a TQFT. Indeed, denoting Σi the cobordism from S1 to ∅ represented by a genus
g surface with one boundary component, then one can verify that IdS1 = 1

2

(
Σ0 ◦ Σ1 + Σ1 ◦ Σ0

)
.

This allows to split any cobordism from ∅ to a S1 t · · · t S1 into a linear combination of surfaces
with only one boundary component thus of elements of Z(S1)⊗ · · · ⊗ Z(S1).

In the case of the previous exercice, if we apply the universal construction to invariants of the
TQFT associated to the Frobenius algebra H∗(CP1) we recover the initial TQFT. But this is not
always the case as the following examples show.

Exercise 3.8. If A = H∗(CPn) what is the value of Z(Xg) where Xg is the connected surface of
genus g?

10
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Solution 3.9. In the Frobenius algebra C[x]/xn+1 we have ε(xa) = 0 unless a = n, so that
θ =

∑n
i=0m(xi ⊗ xn−i) = (n + 1)xn. Hence Z(Xg) = 0 unless g = 1 in which case we have

Z(S1 × S1) = n+ 1.

Exercise 3.10. Let A = H∗(CP1 × CP1;C) i.e. A = C[x, y]/{x2, y2}. Then θA = 4xy and
θgA = 0 ∀g > 1 so that ZA(S2) = 0, ZA(S1×S1) = 4 and ZA(Σg) = 0 ∀g > 1. These values coincide

with those of the case A′ = H∗(CP3). Prove that this TQFT is not isomorphic to the previous
one, even though they have the same invariants.

Exercise 3.11. Let Σg be the complement of a disc in a genus g oriented surface. If we apply
the universal construction to the functor Z of the preceding example then we have Z(S1) =
spanC{Σ0,Σ1}, and it is not difficult to check that Z(S1tS1) is generated by the images through Z
of Σ0,0,Σ1,0,Σ0,1,Σ1,1, Y0, Y1 and writing the pairing matrix in the basis Σ0,0,Σ1,0,Σ0,1,Σ1,1, Y0, Y1

we get : 
0 0 0 16 0 4
0 0 16 0 4 0
0 16 0 0 4 0
16 0 0 0 0 0
0 4 4 0 4 0
4 0 0 0 0 0


whose rank is > 4 : then dimC(Z(S1tS1)) > 4 and so Z is not a TQFT but just a finite functor.

(Prove finiteness as an exercice !) Remark furthermore that the so-obtained functor is different
from both functors ZA and ZA′ associated to the Frobenius algebras A and A′ in the preceding
exercices : indeed those functors were by TQFTs (i.e. monoidal) by Theorem 3.3 while Z is not;
moreover dimC(Z(S1)) = 2,dimC(ZA(S1)) = 4 = dimC(ZA′(S1)).

Exercise 3.12. Contrast the previous 3 exercices with the statements of Theorem 2.9 and Corol-
lary 2.10.

Exercise 3.13. Let us now go back to the case of general n. Let Z be the multiplicative invariant
of n-manifold to be defined on connected ones as Z(M) = exp(χ(M)) (the Euler caracteristic).
Then the universal construction gives for every Σ ∈ Cob that Z(Σ) = C and Z(W ) = exp(χ(W )−
χ(∂W+)) for each morphism W .

Exercise 3.14. Let us keep general n. For each connected manifold M let Z(M) = kb1(M) for
some k ∈ R\{±1} (the exponential of the first Betti number). Applying the universal construction
one sees that, with the notation of the preceding example, Σg = k2gΣ0 in Z(S1) and that thus
Z(S1) is one dimensional. Similarly in Z(S1 t S1) it holds Yh = k2hY0 and Y0 and Σ0 t Σ0 are
easily seen to be equa so that Z(S1 t S1) = spanC{ Σ0 t Σ0}.

Exercise 3.15. Let n = 2 and for each connected manifold M let Z(M) = b1(M) (the first Betti
number). Extend this invariant multiplicatively under disjoint unions. Applying the universal
construction one sees that Z(S1) is 2-dimensional indeed letting Σg be the connected genus g
surface with one boundary component, the pairing of the TQFT is Z(Σg ◦Σh) = 2(g+ h) and the
infinite dimensional matrix whose (i, j)th entry is 2(i+j) has rank 2. In particular the generators of
Z(S1) = spanC{Z(Σ0), Z(Σ1)}. If one computes Z(S1tS1) then he sees that actually its dimension
is at least 5 : this shows that Z is only a functor and not a TQFT. Indeed letting Σh,k := Σh tΣk
and Yk the complement of two discs in a genus k surface, then one sees that the coupling between
Z(S1 t S1) and itself, written in the base Σ0,0,Σ1,0,Σ0,1,Σ1,1, Y1 is :
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
0 0 0 4 0
0 0 4 8 2
0 4 0 8 2
4 8 8 16 4
0 2 2 4 2


whose rank is 5.

4. Our general strategy to build (3, 2) and (4, 3)-TQFTs

In the next sections we will build families of (3, 2) and (4, 3)-TQFTs depending on an algebraic
initial datum namely a unimodular spherical (resp. modular) category C which will be either
semi-simple or not.

At a first approximate level, the final results we will be discussing, are the following (we will see
that the hypotheses on C can be relaxed slightly):

Theorem 4.1 ((3, 2)-dimensional TQFT, [13]). Let C be a unimodular spherical finite tensor
category endowed with a non degenerate modified trace. Then associated to C is a (3, 2)-TQFT
ZC : Cobnc → Vect. Furthermore, it extends to the full category Cob (obtaining then a “compact
theory”) iff C is semi-simple with non-zero dimension and in this case it coincides with the Barrett-
Wesbury (Turaev-Viro) theory associated to C.

Theorem 4.2 ((4, 3)-dimensional TQFT, [12]). Let C be a “chromatic non degenerate” category.
Then associated to C is a (4, 3)-TQFT ZC : Cobnc → Vect. Furthermore, it extends to the full
category Cob (obtaining then a “compact theory”) if C is semi-simple and in this case it coincides
with the Crane-Yetter theory associated to C.

In both the above constructions, the strategy will be first to assign to each object of Cob (i.e. to
each n−1-manifold) a finite dimensional vector space: it is going to be the space of its “C-admissible
skeins”. This vector space will naturally come with an action of the group of diffeomorphisms of
the manifold up to isotopy. Then for each operation of handle-glueing we will have to describe a
linear map on the skein spaces associated to the handle glueing. We will progressively describe it
starting from the highest index handles:

n-handle Since the vector space associated to the n−1-sphere is going to be isomorphic to k this will
correspond to fixing an element of the dual of this space; algebraically, this will correspond
to the datum of a modified trace on the category C.

n− 1-handle This operation will correspond to the ability to “cut” a skein along a n − 2-dimensional
sphere and will be obtained by associating to the modified trace the datum of a suitable
map P → ΩP ∈ HomC(P, 1)⊗HomC(1, P ) for each projective object P ∈ C; the fact that
the modified trace is “non-degenerate” will ensure both the existence and naturality of this
map.

n− 2-handle This operation will be the crucial one and will be obtained by coloring the cocore of the
attached handle by a special skein called “red”. Actually the red color is going to be
just a placeholder for a skein to be defined using the other skeins in the manifold via an
operation called “‘red-to-blue”. This operation will be based on the hypothesis that C has
a projective generator (which boils down to a kind of finiteness condition on C) and that
the projective generator has a special kind of morphism, called the “chromatic morphism”.
We can prove that such a morphism exists, if k is algebraically closed, for unimodular
spherical and modular categories (Theorem 1.6 in [13]).
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n− 3-handle In dimension (3, 2) the list is over for the non-compact theories and for the compact ones,
it is sufficient to associate to the 0-handle the embedding via the empty skein in S2. In
dimension (4, 3) we will need another object associated to 1-handles; it is called the “glueing
morphism” and we can prove that it exists if C is “chromatic non-degenerate”.

n− 4-handles In dimension (4, 3) the attachment of 0-handles will be possible only for “compact theories”
and this will impose the condition of “chromatic compactness” on C.

After associating to each handle-glueing operation a linear map between skein modules, we will
have to prove that these operations satisfy Juhasz’s relations. The crucial ones will involve the
chromatic morphism, but its property are in a sense made so that the handle cancellation work.

In the final section we will also describe how the above strategy can also be used to describe the
WRT theories and their non semi-simple generalisation [21] at least if one thinks of it as projective
TQFTs, namely TQFTs with values in the category PVect of vector spaces and their linear maps
up to non zero scalar. This construction is original and appears here for the first time, although
not too difficult to deduce from the previous results.

5. Spherical and modular categories, their modified traces and beyond...

The first goal of this section is to provide the necessary algebraic setup to define spherical and
modular categories, which are widely studied objects. In particular its main goal is to provide all
the elements to understand the following key definitions:

Definition 5.1 (Spherical tensor category). A spherical tensor category (over k) is a pivotal
unimodular finite tensor category C (over an algebraically closed k) such that the right m-trace on
ProjC is also a left m-trace.

Definition 5.2 (Modular tensor category). A modular tensor category (over k) is a ribbon finite
tensor category C (over an algebraically closed k) which is factorisable (i.e. its transparent objects
are direct sums of 1).

In particular it can be seen that a modular tensor category is also a spherical tensor category
(because it is automatically pivotal and it always has a right m-trace which is also a left one and
it is unimodular according to [21] Proposition 2.6).

In the last subsection we will provide explicit examples of such categories which are quite
common (despite the long definition...).

The above data are the “standard” input to build respectively (3, 2) and (4, 3) TQFTs at least
when C is semisimple. But when C is spherical non-semisimple the associated (3, 2) is non-compact.
On contrast if C is modular, the associated (4, 3)-theory is invertible and compact (both in the
semi-simple and non semi-simple case) and, as such, it cannot be very interesting (in particular
cannot distinguish exotic pairs of 4-manifolds).

But we want to stress that the constructions in [13] and [12] we will be based on, go beyond
these algebraic data. Indeed the input data for the (3, 2)-theories of [13] are so-called “chromatic
categories” which are strictly more general than spherical tensor categories:

Definition 5.3. A chromatic category (over a non necessarily algebraically closed field k) is a
pivotal k-category C endowed with a non-degenerate m-trace on ProjC such that:

• any non zero morphism to the unit object 1 is an epimorphism,
• there exists a “chromatic map” for a nonzero projective generator.

Remark 5.4. With respect to a spherical tensor category, a chromatic category is not necessarily
abelian and the field is not necessarily algebraically closed.
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Similarly the input data for the non-compact (4, 3)-theories of [12] are ribbon chromatic cat-
egories which satisfy the requirement of being “chromatic non-degenerate” (i.e. a suitable endo-
morphism of the projective cover of 1 is non zero); these theories can be extended to compact
ones if furthermore the input data are “chromatic compact” (i.e. this endomorphism is a non zero
multiple of the cutting morphism).

5.1. Projective objects, covers, and generators. An object P of a category C is projective if
the functor HomC(P,−) : C → Set preserves epimorphisms. A category has enough projectives if
every object has an epimorphism from a projective object onto it.

A projective cover of an object X of a category C is a projective object P (X) of C together with
an epimorphism p : P (X)→ X such that if g : P → X is an epimorphism from a projective object
P to X, then there exists an epimorphism h : P → P (X) such that ph = g. In an abelian category,
a projective cover (if it exists) is unique up to a non-unique isomorphism, and a projective cover
of a simple object is indecomposable.

By a generator of a preadditive category (that is, a category that is enriched over the category
of abelian groups), we mean an object G of the category such that any other object X is retract
of G⊕n for some non-negative integer n. A projective generator of a preadditive category C is a
generator of the full subcategory of projective objects of C.

5.2. Linear monoidal categories. A monoidal category is k-linear if each hom-set carries a
structure of a k-vector space so that the composition and monoidal product of morphisms are
k-bilinear.

By a k-category, we mean a k-linear monoidal category C such that the hom-sets in C are finite
dimensional and the k-algebra map k → EndC(1), k 7→ k id1 is an isomorphism, used then to
identify EndC(1) = k.

We say a k-category that C is semisimple if every object of C is projective. Note that if C is
abelian, then C is semisimple (in the above sense) if and only if it is abelian semisimple (in the
sense every object is a direct sum of simple objects).

5.3. Modified traces. Let C be a pivotal k-category. We first recall from the definition of a
modified trace on an ideal of C (see [28, 30] for details).

An object Y of C is a retract of an object X of C if there are morphisms r : X → Y and i : Y → X
such that ri = idY . An ideal of C is a full subcategory I of C which is

• closed under monoidal products: for all X ∈ I and Y ∈ C, we have: X ⊗ Y ∈ I and
Y ⊗X ∈ I,

• closed under retracts: any retract of an object of I belongs to I.

Recall from [28] that the pivotality of C implies that any ideal of C is stable under duality.
Let I be an ideal of C. A family t = {tX : EndC(X)→ K}X∈I of k-linear forms satisfies the

• cyclicity property if tX(gf) = tY (fg) for all morphisms f : X → Y and g : Y → X with
X,Y ∈ I;

• right partial trace property if tX⊗Y (f) = tX
(
ptrYr (f)

)
for all f ∈ EndC(X⊗Y ) with X ∈ I;

• left partial trace property if tY⊗X(f) = tX
(
ptrYl (f)

)
for all f ∈ EndC(Y ⊗X) with X ∈ I.

A right m-trace (respectively left m-trace, respectively m-trace) on I is a family t = {tX : EndC(X)→
K}X∈I of k-linear forms satisfying the cyclicity and right (respectively left, respectively right and
left) partial trace properties.

For example, identifying EndC(1) = k, the family trr = {f ∈ EndC(X) 7→ trr(f) ∈ k}X∈C is a
right m-trace on C and the family trl = {f ∈ EndC(X) 7→ trl(f) ∈ k}X∈C is a left m-trace on C
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called the categorical left and right traces of C. If these traces coincide, then tr = trr = trl is a
m-trace on C called the categorical trace of C.

A m-trace t on an ideal I of C is non-degenerate if for any X ∈ I, the pairing

HomC(1, X)⊗K HomC(X,1)→ K, u⊗ v 7→ tX(uv)

is non-degenerate. Given such a non-degenerate trace t, we set for any X ∈ I,

ΩX =
∑
i

xi ⊗ xi ∈ HomC(X,1)⊗K HomC(1, X) and Λt
X =

∑
i

xi ◦ xi ∈ EndC(X), (1)

where {xi}i and {xi}i are basis of HomC(X,1) and HomC(1, X) which are dual with respect to the
m-trace t, that is, such that tX(xi ◦ xj) = δi,j . Clearly, ΩX and Λt

X are independent of the choice
of such dual basis. The properties of the m-trace t translate to the copairings ΩX as follows:

Lemma 5.5. Let X,Y ∈ I and Z ∈ C, and let f : X → Y be a morphism in C.

(a) Duality: If ΩX =
∑
i x

i⊗xi, then ΩX∗ =
∑
i(xi)

∗⊗(xi)∗ ∈ HomC(X
∗,1)⊗KHomC(1, X

∗).
(b) Naturality: If ΩX =

∑
i x

i ⊗ xi and ΩY =
∑
j y

j ⊗ yj, then∑
i

xi ⊗ (f ◦ xi) =
∑
j

(yj ◦ f)⊗ yj ∈ HomC(X,1)⊗K HomC(1, Y ).

(c) Rotation: If ΩX⊗Z =
∑
i z
i ⊗ zi then ΩZ⊗X =

∑
i z̃
i ⊗ z̃i where

z̃i =
−→
evZ(idZ ⊗ zi ⊗ idZ∗)(idZ⊗X⊗

←−
coevZ) and z̃i = (idZ⊗X⊗

−→
evZ)(idZ ⊗ zi ⊗ idZ∗)

←−
coevZ .

Exercise 5.6. Prove the lemma. The solution is Lemma 1.1 in [13].

5.4. Chromatic maps. Let C be a pivotal k-category. The full subcategory ProjC of projective
objects of C is an ideal of C (see [28]). Assume that C is endowed with a non-degenerate m-trace t
on ProjC .

A chromatic map for a projective generator G of C is a map c ∈ EndC(G⊗G) satisfying

(idG⊗
←−
evG ⊗ idG)(Λt

V⊗G∗ ⊗ c)(idG⊗
−→

coevG ⊗idG) = idG⊗G, (2)

that is,

Λt
G⊗G∗ c

G G

G

G

=

G G

.

More generally, a chromatic map based on a projective object P for a projective generator G is
a map cP ∈ EndC(G⊗ P ) such that for all X ∈ C,

(idX⊗
←−
evG ⊗ idP )(Λt

X⊗G∗ ⊗ c)(idX⊗
−→

coevG ⊗idP ) = idX⊗P , (3)

that is,

Λt
X⊗G∗ cP

X P

G

G

=

X P

, or more explicitly
∑
i

xi

xi

cP

X

X

G

G

P

=

X P

where {xi}i and {xi}i are basis of HomC(X ⊗ G∗,1) and HomC(1, X ⊗ G∗) which are dual with
respect to the m-trace t.

Clearly, a chromatic map based on G for a projective generator G is a chromatic map for G.
Conversely, any chromatic map gives rise to chromatic maps based on projective objects:
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Lemma 5.7. Let c ∈ EndC(G⊗G) be a chromatic map for a projective generator G of C and let
P ∈ ProjC. Pick any non zero morphism ε : G → 1 and a morphism eP,G : P → G ⊗ P such that
idP = (ε⊗ idP )eP,G (such morphisms always exist). Then the map

cP = (idG ⊗ ε⊗ idP )(c⊗ idP )(idG ⊗ eP,G) ∈ EndC(G⊗ P )

is a chromatic map based on P for G.

Proof. See Lemma 1.2 in [13]. The existence of chromatic maps does not depend of the choice of
the projective generator:

Lemma 5.8. Let G,G′ be projective generator and cP be a chromatic map based on a projective
object P for G. Then there is a finite family {γi : G → G′, δi : G

′ → G}i of morphisms such that∑
i δiγi = idG and c′P =

∑
i(γi ⊗ idP )cP (δi ⊗ idP ) is a chromatic map based on P for G′.

Proof. The existence of {γi, δi}i comes from the facts that G is a retract of (G′)⊕n. To prove that

c′P is a chromatic map, one can precompose
←−
evG with idG∗⊗G =

∑
i idG∗ ⊗ δiγi in Equation (3),

and then slide δi using the naturality of Λt
•. 5.8

5.5. Chromatic categories.

Definition 5.9 (Chromatic category). A chromatic category (over k) is a pivotal K-category C
endowed with a non-degenerate m-trace on ProjC such that:

• any non zero morphism to the unit object 1 is an epimorphism,
• there exists a chromatic map for a nonzero projective generator.

Note that Lemmas 5.7 and 5.8 imply that in a chromatic category, there are chromatic maps
based at any projective object for any projective generator.

First examples of chromatic categories are given by spherical fusion categories and categories
of representations of unimodular and unibalanced finite dimensional Hopf algebras, see the Exam-
ples 5.10 and 5.11 below. A large family of chromatic categories is given by the spherical tensor
categories over an algebraically closed field, see Theorem 5.18.

A chromatic category is semisimple if it is semsimple as a K-category (see Section 5.2) or,
equivalently, if the unit object 1 is projective. Note that the m-trace t of a semisimple chromatic
category is a nonzero multiple of the categorical trace tr. Indeed the partial trace property implies
that t = t1(id1) tr, and t1(id1) 6= 0 because t is nonzero.

The dimension of a semisimple chromatic category C is dim(C) = tr(c1) = tG(c1)
t1(id1) ∈ k for any

chromatic map c1 based on 1 for some projective generator G of C. (This terminology is justified
by the last assertion of Example 5.10.) Note that dim(C) does not depend on the choice of c1 (see
Remark 6.7) but does depend on the m-trace.

Example 5.10. [Semisimple spherical categories] In this example k need not be algebraically
closed. Let C be a spherical fusion k-category. Here, fusion means that there is a finite family I
of objects of C such that 1 ∈ I, HomC(i, j) = δi,jk idi for all i, j ∈ I, and each object of C is a
direct sum of objects in I. (Such fusion categories are in particular semisimple k-categories in the
sense of Section 5.2). Also, spherical means that the categorical left and right traces of C coincide
(see Section 5.3). Then any object of C is projective, the categorical trace tr is non-degenerate,
G =

⊕
i∈I i is a (projective) generator of C, and for any object P ∈ C,

cP =
⊕
i∈I

dim(i) idi ⊗ idP
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is a chromatic map based on P for G, where dim(i) = tr(idi) ∈ K. Formally, cP = idΩ ⊗ idP ,
where Ω =

⊕
i∈I dim(i) i is the so-called “Kirby color” of C. Consequently, C (endowed with its

categorical trace) is a semisimple chromatic category. Note that the dimension of C (as a semisimple
chromatic category) coincides with its usual definition dim(C) =

∑
i∈I dim(i)2 as a spherical fusion

category. (This follows from the computation of tr(c1) for the above chromatic map based on 1.)

Example 5.11. [Spherical categories from Hopf-algebras] In this example k need not be alge-
braically closed. Let H be a finite dimensional Hopf algebra over k. The category H-mod of
finite dimensional (left) H-modules and H-linear homomorphisms is a k-category. Assume that
H is unimodular and unibalanced in the sense of [2], meaning that the square of the antipode S
of H is the conjugation by a square root g of the distinguished grouplike element of H. Pick a
nonzero right integral λ : H → k for H. Then H is a projective generator of H-mod, the integral
λ determines a non-degenerate m-trace t on ProjH-mod characterized by tH(f) = λ(gf(1)) for all
f ∈ EndH(H), and a chromatic map for H is

cH :

{
H ⊗H → H ⊗H
x⊗ y 7→ λ(S(y(1))gx) y(2) ⊗ y(3)

where y(1)⊗y(2)⊗y(3) is the double coproduct of y. (This follows from [15, Lemma 6.3] or the more
general computations performed in Section 4.3 of [13]) More generally, for any finite dimensional
projective H-module P ,

cP =
∑
i

(idH ⊗ gi)cH(idH ⊗ fi) : H ⊗ P → H ⊗ P

is a chromatic map based on P for H, where {fi : P → H, gi : H → P}i is any finite family of H-
linear homomorphisms such that idP =

∑
i gifi. Consequently, H-mod is a chromatic category. In

particular, finite dimensional modules over many small versions of (super) quantum groups fit into
this setting. Note that H-mod is semisimple (as a chromatic category) if and only if H is semisimple
(as an algebra), and if such is the case, then the dimension of H-mod (as a semisimple chromatic
category) is equal to λ(1) and so is nonzero if and only if H is cosemisimple (by Maschke’s theorem
for Hopf algebras). Consequently, the chromatic category H-mod is semisimple with nonzero
dimension if and only if H is semisimple and cosemsisimple, or equivalently (by [26, Corollary 3.2])
if and only if H is involutory with dimk(H)1k 6= 0.

5.5.1. Gluing morphisms. Let P1 ∈ C be the projective cover of 1 and ε : P1 → 1 be the associated
non zero morphism. The following lemma was proved in [12]:

Lemma 5.12. There exists scalars ∆+,∆− ∈ K and a family of {∆P
0 ∈ HomC(P, P )}P∈Proj, such

that for any chromatic morphisms cP1 , cP based on P1 and P respectively, one has

F

 G

P1

cP1

ε
 = ∆+ε, F

 G

P1

cP1

ε
 = ∆−ε, and F


P

G
cP

P

 = ∆P
0 .

Definition 5.13. A gluing morphism is an endomorphism

g ∈ EndC(P1) such that g ◦∆P1
0 = ΛP1 , i.e.

P1

P1

G

g

cP1

= ΛP1

P1

.
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C is chromatic
non-degenerate

∃


SC non-compact (3+1)-TQFT

ṠC(W 4) closed 4-manifold invariant
SC(W 4, T ) invariant of pair T ⊂ −∂W 4

C is chromatic compact SC extends to a TQFT

SC(W 4) = ζṠC(W 4)

C is twist
non-degenerate

−−−−→ ∃
{

BC(M
3) 3-manifold invariant

B′C(M
3, T ) invariant of pair T ⊂M3

generalize Lyubashenkho (modified) invariants

C is factorizable SC is invertible

C is semi-simple modular
SC is the Crane-Yetter TQFT
BC is the WRT 3-manifold invariant

Figure 1. This figure represents different properties on a ribbon chromatic
category C and their relationships and corresponding 3-manifold invariants and
TQFTs. A category at the tail of a double arrow implies the property at the head
of an arrow. For example, chromatic compact implies chromatic non-degenerate.
A category at the tail of a single arrow implies the existence of the invariant at
the head of the arrow. For example, a chromatic non-degenerate category gives
rise the non-compact (3 + 1)-TQFT SC .

Proposition 5.14 ([12]). The category C admits a gluing morphism g ∈ EndC(P1) if and only if

∆P1
0 6= 0.

The above proposition prompts the following :

Definition 5.15. We say that

(1) C is chromatic non-degenerate if ∆P1
0 6= 0, i.e. if C admits a gluing morphism,

(2) C is chromatic compact if there exists a scalar ζ ∈ K∗ such that ∆P1
0 = ζΛP1 ,

(3) C is factorizable if there exists a scalar ζ ∈ K∗ such that for any projective P , ∆P
0 = ζΛP ,

(4) C is twist non-degenerate if ∆+∆− 6= 0.

The follwing lemma, proved in [12] will be used later on:

Lemma 5.16. The category C has a gluing morphism which is an isomorphism of P1 if and only
if

∆P1
0 = ζΛP1 for some scalar ζ ∈ K∗ (i.e. iff C is chromatic compact).

In this case, ζ−1idP1 + n is a gluing morphism for any nilpotent n ∈ End(P1).
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5.6. Finite tensor categories. Following [26], a finite tensor category (over k) is a rigid abelian
k-category C such that:

• every object of C has finite length,
• the category C has enough projectives,
• there are finitely many isomorphism classes of simple objects.

Let C be a finite tensor category. Then the unit object 1 of C is simple (see [26, Theorem
4.3.8]). Also, every simple object of C has a projective cover, and any indecomposable projective
object P of C has a unique simple subobject, called the socle of P (see [26, Remark 6.1.5]). In
particular, the socle of the projective cover of the unit object 1 is an invertible object called the
distinguished invertible object of C. Finally C has a projective generator (for example the direct
sum of the projective covers of the elements of a representative set of the isomorphism classes of
simple objects).

5.7. Spherical and modular tensor categories. A finite tensor category is unimodular if its
distinguished invertible object (see Section 5.6) is the unit object.

Definition 5.17 (Spherical tensor category). A spherical tensor category (over k) is a pivotal
unimodular finite tensor category C (over k) such that the right m-trace on ProjC (which exists
and is unique up to scalar multiple by [29, Corollary 5.6]) is also a left m-trace.

Note that by [SS, Theorem 1.3], this definition agrees with [22, Definition 3.5.2] where the above
condition on the right m-trace is replaced by the equality of the square of the pivotal structure
with the Radford equivalence. Theorem 1.6 of [13] states the following:

Theorem 5.18. Any spherical tensor category over an algebraically closed field is a chromatic
category.

Note that the categories of Examples 5.10 and 5.11 are examples of spherical tensor categories
when the ground field k is algebraic closed. Moreover, a spherical tensor category over an alge-
braically closed field which is semisimple (as a chromatic category or, equivalently, as an abelian
category) is a spherical fusion category (in the sense of Example 5.10).

Finally if C is ribbon category then it is pivotal and if it is also a unimodular finite tensor
category (over k) then it has a unique (up to scalar) right m-trace on Proj (see [29, Corollary 5.6]);
since C is ribbon this right m-trace is also a left m-trace. Therefore C is a spherical tensor category.

Definition 5.19 (Modular tensor category). A modular tensor category (over k) is a ribbon finite
tensor category C (over an algebraically closed k) which is factorisable (i.e. its transparent objects
are direct sums of 1).

Remark 5.20. The actual definition of factorizability is the equivalence of the Drinfeld center of
C with C � Cop but, by a result of Shimizu [46], this is equivalent to the triviality of the Müger
center i.e. of the set of transparent objects as stated above.

5.8. Concrete examples. The following constructions are examples of semi-simple modular ten-
sor categories over C.

Example 5.21 (The Ising anyons). The only simple objects are 1, X, Y with fusion rules :

X2 = 1⊕ Y,X ⊗ Y = Y ⊗X = X,Y 2 = 1.

The S-matrix and T matrices are

S =

 1
√

2 1√
2 0 −

√
2

1 −
√

2 1

 T =

 1 0 0
0 exp πi

8 0
0 0 −1

 .
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The quantum dimensions are 1,
√

2, 1 (for 1, X, Y respectively). See [45] (section 5.3.4) for full
details.

Example 5.22 (The Fibonacci category). The following MTC is obtained from considering Uq(sl2)
at q = exp(iπ/5) by taking the subcategory of its modules with integer highest weights (sometimes
called the “even part”) and semi-simplifying it (see [45] for a general overview of this kind of
construction, or the next example). There are two simple objects 1 and X satisfying fusion rules:
X ⊗X = 1⊕X and 1 being the tensor unit. The S-matrix and T matrices are

S =

(
1 1+

√
5

2
1+
√

5
2 −1

)
T =

(
1 0
0 exp 4πi

5

)
.

The quantum dimensions are 1 and 1+
√

5
2 respectively. The F matrix expresses the change of basis

between two different basis of the hom spaces (it is basically the 6j-symbols of the theory). In
particular here

FX,X,XX =

(
( 1+
√

5
2 )−1 ( 1+

√
5

2 )−1/2

( 1+
√

5
2 )−1/2 −( 1+

√
5

2 )−1

)
This example is taken from [45].

Example 5.23 (Uξ(sl2)-mod). Recall the definition of Uq(sl2) from the appendix. Remark that
Uq(sl2) is infinite dimensional and that its simple modules are infinitely many. So let now ξ be a

primitive lth-root of unity and set l′ = l if l is odd and l′ = l/2 else. Let Uξ(sl2) be the quotient of

Uξ(sl2) by the ideal generated by El
′
, F l

′
,Kl − 1. This ideal is also a coideal annihilated by unit

and counit so that Uξ(sl2) is a finite dimensional Hopf algebra over C. If l is odd, the R matrix is
given by :

R = l−1

(
l−1∑
n=0

ξ−
n(n−1)

2 En ⊗ Fn
) l−1∑

β,γ=0

ξ2βγKβ ⊗Kγ


Let µ = K−1. The notice that ∀x ∈ Uξ(sl2) we have S2(x) = µxµ−1. Letting R =

∑
ai ⊗ bi, let

u =
∑
S(bi)ai; it turns out that uxu−1 = S2(x) ∀x ∈ Uξ(sl2). Therefore v = u−1µ is in the center

of Uξ(sl2). Furthermore it is invertible and it satisfies S(v) = v and ∆(v) = R21R · v ⊗ v) (where

R21 =
∑
bi ⊗ ai), so that v is the twist of Uξ(sl2).

The simple modules of Uξ(sl2) turn out to be all of “highest weight type” i.e. they contain
a vector v0 such that Kv0 = ξnv0, Ev0 = 0 and they are n + 1-dimensional for n ≤ l − 1; we
denote them Sn. If we pick l = 2r their fusion rules are known and given by the Clebsch-Gordan
coefficients:

Sa ⊗ Sb = P ⊕

min(r−2,a+b)⊕
c=|a−b| by 2

Sc


where P is some projective module which we do not describe. The S matrix is non-degenerate and
is given by (see [47] Lemma 5.2 Chapter XII):

Si,j = (−1)i+j [i+ 1][j + 1] ∀0 ≤ i, j ≤ r − 2.

where [n] = ξn−ξ−n

ξ−ξ−1 . The twist matrix T is the diagonal one with entries : Tii = (−1)iξi(i+2)/2

where we fixed a square root of ξ denoted a in [47] Chapter XII. The category obtained by forgetting
the projective parts (i.e. applying “the purification process”) in the above decomposition is modular
(see [47] Theorem 7.1 Chapter XII).
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Notice that if r is odd, then the above decomposition rules show that the S2i, i <
r−1

2 generate
a full subcategory. Example 5.22 was this case with r = 5.

Example 5.24. Let k = C and m,n, r be positive integers such that n|m and r ≥ 2. Let q be a

primitive 2r-th root of unity and choose q
2

mn a primitive mnr-th root of unity. Note that (q
2

mn )
m
n

is a primitive n2r-th root of unity. Let

H = um,nq (sl2) = C〈E,F, k |Er = F r = 0, kmnr = 1, kE = q
2
mEk, kF = q−

2
mF k, EF−FE =

K −K−1

q − q−1
〉

where K = km. The algebra H can be given the structure of a Hopf algebra with coproduct ∆,
counit ε and antipode S defined by

∆(E) = 1⊗ E + E ⊗K, ε(E) = 0, S(E) = −EK−1,

∆(F ) = K−1 ⊗ F + F ⊗ 1, ε(F ) = 0, S(F ) = −KF,

∆(k) =k⊗ k, ε(k) = 1, S(k) = k−1.

Note that H contains a version of the small quantum group at even root of unity as the sub-
Hopf-algebra generated be E,F and K. Let C = H −mod be the category of finite dimensional

left H-modules. For i ∈ Z/mnrZ, denote ki =
1

mnr

mnr−1∑
j=0

q
−2ij
mn kj . Then

kki = q
2i
mn ki, kikj = δi,jki,

mnr−1∑
i=0

ki = 1, Eki = ki+nE, and F ki = ki−nF.

Namely, ki acts as the projection on the q
2i
mn eigenspace of k. As proved in [12], the Hopf algebra

H = um,nq (sl2) is ribbon where the R-matrix and twist are given by:

R =

mnr−1∑
i,j=0

q
2ij

n2 ki ⊗ kj

 .

(
r−1∑
k=0

{1}2k

{k}!
q

k(k−1)
2 Ek ⊗ F k

)
,

θ = Kr−1
r−1∑
k=0

{1}2k

{k}!
q

k(k−1)
2 S(F k)

(
mnr−1∑
i=0

q
−2i2

n2 ki

)
Ek.

The cointegral is Λ = ck0E
r−1F r−1 for some scalar c ∈ K× and the right integral is λ(kiEnF k) =

mnr
c δi,m(1−r)δn,r−1δk,r−1. In particular λ(kiF

r−1Er−1) = 1
c q

2i(r−1)
n . It was proved in [12] that the

category C = H −mod is chromatic compact. It is factorizable if and only if m = n and both n
and r are odd. It is twist degenerate if and only if n is odd and r is a multiple of 4.

6. Turaev-Viro like theories associated to chromatic categories

We are now ready to detail the construction of a (3, 2)-TQFT associated to each chromatic
k-category C. Given an oriented surface Σ , let SC(Σ) be defined as the vector space of C-colored
ribbon graphs (see Subsection 6.1) in Σ containing at least one projective color up to admissible
skein relations (see Subsection 6.4). There is a natural action of the mapping class group of Σ on
SC(Σ) so in order to define the TQFT we only need to define the linear maps associated to each
type of handle attachment and then to check the relations provided by Juhasz’s presentation. This
is the plan for this section.
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6.1. Ribbon graphs. Loosely speaking, a ribbon graph is an oriented compact surface embedded
in manifold which is decomposed into elementary pieces: bands, annuli, and coupons, see [47]. A
C-coloring of such a graph is a labeling of the core of each band and annuli with an object of C and
a compatible morphism to each coupon. A C-coloring of a ribbon graph Γ is a function assigning to
every strand of Γ an object of C, called its color, and assigning to every coupon Q of Γ a morphism
Q• → Q• in C. Here Q• and Q• are objects of C defined as follows. Let us call the endpoints of the
arcs of Γ lying on the bottom (respectively, top) base of Q the inputs (respectively, outputs) of Q.
The orientation of the bottom base of Q induced by the orientation of Q determines an order in
the set of the inputs. Let Xi ∈ C be the color of the arc of Γ adjacent to the i-th input. Set εi = +
if this arc is directed toward Q at the i-th input and εi = − otherwise. The orientation of the top
base of Q induced by the orientation of Q determines an order in the set of the outputs, and we
take the opposite order. Let Yj ∈ C be the color of the arc of Γ adjacent to the j-th output. Set
νj = − if this arc is directed toward Q at the j-th output and νj = + otherwise. Then

Q• = Xε1
1 ⊗ · · · ⊗Xεm

m and Q• = Y ν1
1 ⊗ · · · ⊗ Y νnn ,

where m and n are respectively the numbers of inputs and outputs of Q and, as usual, X+ = X
and X− = X∗ for X ∈ C. For example, the following coupon whose bottom base is the horizontal
bottom one

Y1 Y2 Y3

X1 X2

must be colored with a morphism X∗1 ⊗X2 → Y1 ⊗ Y ∗2 ⊗ Y3

6.2. Invariants of colored ribbon graphs. To each free end of a C-colored ribbon graph Γ in
R× [0, 1] is associated a signed object consisting of the color of the arc incident to the free end and
of a sign ±1 depending if that arc is directed up or down. Then one can view Γ as a morphism from
the sequence of signed objects associated with its bottom free ends (i.e., its free ends in R× {0})
to the sequence of signed objects associated with its top free ends (i.e., its free ends in R × {1}).
This defines a monoidal category RibC whose objects are finite sequences of signed objects, whose
morphisms are isotopy classes of C-colored ribbon graph in R× [0, 1], whose composition is given
by putting one C-colored ribbon graph on top of the other, and whose monoidal product is given
by concatenation. The graphical calculus of Section 9.6 gives rise to a monoidal functor

F : RibC → C. (4)

If the left and right traces trl and trl on C coincide, then F induces an isotopy invariant F :
L → EndC(1) = k, where L is the class of C-colored ribbon graphs in S2 = (R×]0, 1[)∪{∞}. This
invariant can be renormalized using a modified trace as follows.

Denote by LI the class of C-colored ribbon graphs in S2 having at least one strand colored with
an object in I. In particular, each Γ ∈ LI is the braid closure of some C-colored ribbon graph TX
in R× [0, 1] with exactly one bottom free end and one top free end both supported by arcs oriented
upward and colored by some object X ∈ I, so that F (TX) ∈ EndC(X). Then, by [28, Theorem 5],
each m-trace t on I induces an isotopy invariant

F ′ : LI → k, Γ 7→ F ′(Γ) = tX
(
F (TX)

)
. (5)
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6.3. Admissible graphs. Let Σ be an oriented surface and I ⊂ C an ideal. An I-admissible graph
in Σ is a C-colored ribbon graph Γ in Σ with no free ends such that each connected component of
Σ contains at least one strand of Γ colored with an object in I.

Given I-admissible graphs Γ1, . . . ,Γk in Σ and a1, . . . , ak ∈ K, the linear combination a1Γ1 +
· · · + anΓn is a I-skein relation (in Σ) if there is a coupon Q embedded in Σ and I-admissible
graphs Γ′1, . . . ,Γ

′
k in M such that:

• Γ′i is isotopic to Γi (as a C-colored graph in Σ) for all 1 ≤ i ≤ k;
• the Γ′is coincide outside Q: Γ′i ∩ (Σ \Q) = Γ′j ∩ (Σ \Q) for all 1 ≤ i, j ≤ k;
• Γ′i intersects ∂Q only in its bottom and tops bases and transversally along the stands of

Γ′i (so that Γ′i ∩Q can be seen as a C-colored ribbon graph in R× [0, 1]) for all 1 ≤ i ≤ k;
• a1F (Γ′1 ∩Q) + · · ·+ akF (Γ′k ∩Q) = 0 (as a morphism in C);
• each Γ′i has an edge colored by a projective object which is not entirely contained in the

coupon Q.

Two linear combinations of I-admissible graphs are I-skein equivalent if their difference is an
I-skein relation.

6.4. Admissible skein modules. The I-admissible skein module SI(Σ) of an oriented surface
Σ is the quotient of the K-vector space generated by the I-admissible graphs in Σ by its vector
subspace generated by the I-skein relations. The empty graph in Σ is not admissible unless Σ is
empty. Then SI(∅) is the 1-dimensional vector space generated by the empty graph.

Lemma 6.1. SI(Σ) is generated by I-admissible graphs where each strand is colored by an object
of I.

Exercise 6.2. Prove the lemma. A solution is given in Lemma 2.2 of [13].

If f : Σ → Σ′ is an orientation preserving embedding and Γ is a ribbon graph in Σ, then f(Γ)
is a ribbon graph in Σ′ in an obvious way. Further, if Γ is C-colored, then so if f(Γ) (with colors
inherited from Γ). An embedding f : Σ → Σ′ is admissible if f(Σ) meets every component of
Σ′ or, equivalently, if H0(f) is surjective. The image under an admissible orientation preserving
embedding f of an I-admissible graph is an I-admissible graph. Clearly, the image under f of a
skein relation in Σ is a skein relation in Σ′. Consequently the map Γ 7→ f(Γ) induces a k-linear
homomorphism

SI(f) : SI(Σ)→ SI(Σ′).

Let Emba2 be the category whose objects are oriented surfaces and morphisms are isotopy classes
of admissible orientation preserving embeddings. This is a monoidal category with disjoint union
as monoidal product. Denote by VectK the monoidal category of K-vector spaces and k-linear
homomorphisms.

Theorem 6.3. Recall, C is a pivotal K-category. The assignments Σ 7→ SI(Σ) and f 7→ SI(f)
define a monoidal functor

SI : Emba2 → VectK.

In particular, this functor provides representations of the mapping class group of surfaces. More-
over, if the ideal I has a generator (in the sense of Section 5.1), then for any closed oriented
surface Σ, the K-vector space SI(Σ) is finite dimensional.

Proof. The functoriality and monoidality of SI are direct consequences of the definitions. Assume
that I has a generator G and let Σ be a closed oriented surface. It is sufficient to prove the
last statement of the theorem for Σ a compact connected surface. Consider a cellularization of Σ
consisting in a single vertex v, 2g closed curves c1, . . . , c2g and one disk D. Let Γ be an I-admissible
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graph in Σ. We can assume that Γ intersects each ci transversally and that all its strands are I-
colored (by Lemma 6.1). By fusing all the strands intersecting each ci, we obtain that Γ is skein
equivalent to an I-colored ribbon graph intersecting each ci once. Moreover, since G is a generator
of I up to applying some skein relation for each ci, we can replace Γ with a linear combination of
I-colored ribbon graphs intersecting ci via a single edge colored by the generator Gi = G (here we
denote the generator with a subscript i so we can discern which one is associated to ci). Thus, Γ is
skein equivalent to a linear combination of graphs of the form of a bouquet of circles where each arc
intersects a single ci once and is colored by Gi, and these arcs end up in a single coupon contained in
the disk D and colored by some f ∈ HomC(1, G1⊗G2⊗G∗1⊗G∗2⊗· · ·⊗G2g−1⊗G2g⊗G∗2g−1⊗G∗2g).
Since this space of homomorphisms is finite dimensional (because C is a k-category), we conclude

that so is SI(Σ). 6.3

In the next theorem, we interpret skein modules of the 2-disk D2 and the sphere 2-sphere in
terms of m-traces. Note that Walker and Reutter announced in [49] a related result.

Theorem 6.4. Recall, C is a pivotal K-category. There are canonical k-linear isomorphisms:

SI(D2)∗ ∼= {right m-traces on I} ∼= {left m-traces on I} and SI(S2)∗ ∼= {m-traces on I}.

Proof. We limit ourselves to show that each element of SI(D2)∗ gives a modified trace on I. For
the full proof we invite to check [13].

We prove the right version of the first statement of Theorem 6.4 (the left version being analo-
gous). We associate to any T ∈ SI(D2)∗ a family tT = {tTX : EndC(X) → K}X∈I of linear forms
as follows: for any f ∈ EndC(X) with X ∈ I, set

tTX(f) = T (Of )

where Of is the admissible graph in D2 given by the right closure of the coupon colored with f .
Let us prove that tT is a right m-trace on I. First, since a coupon colored with f ◦ g is I-skein
equivalent to a coupon colored with f composed with a coupon colored with g, we get that Of◦g
is skein equivalent to Og◦f via an isotopy which exchanges f and g:

g ◦ f =
g

f

=
f

g

= f ◦ g .

Therefore tT satisfies the cyclicity property of an m-trace. Next, for any f ∈ EndC(X ⊗ Y ) with
X ∈ I and Y ∈ C, the admissible graph Of is skein equivalent to the closure of a coupon colored
with f with two incoming and outgoing arcs colored with X and Y :

f

X ⊗ Y

= f

X Y

.

This shows that tT satisfies the right partial trace property of an m-trace. Then the assignment

T 7→ tT is a k-linear homomorphism SI(D2)∗ → {right m-traces on I}. 6.4

Remark 6.5. Theorems 6.3 and 6.4 have analogue in dimension 3 by assuming that C is moreover
ribbon, by considering the Reshetikhin-Turaev functor F from the category of C-colored ribbon
graphs in R2× [0, 1] to C (see [47]), and by using this functor to define (as above) the skein module
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SI(M) associated to an oriented compact 3-manifold M . In particular, for the 3-ball B3 and
3-sphere S3, there are canonical k-linear isomorphisms

SI(B3)∗ ∼= SI(S3)∗ ∼= {m-traces on I}.

These skein modules of 3-manifolds will be used later (as in in [12]) to construct (3+1)-TQFTs.

6.5. Skein modules elements from bichrome graphs. In this subsection, we assume that C
is a chromatic category. Following [15], a bichrome graph in a closed oriented surface Σ is the
disjoint union of an admissible graph in Σ (called the blue part) and finitely many pairwise disjoint
unoriented embedded circles in Σ (called the red part). A red to blue modification of a bichrome
graph is the modification in an annulus given by

P

−→ cP

G

P

, (6)

where cP is any chromatic map based on a projective object P at a projective generator G of C.
Here we allow the P -colored strand to be replaced by several parallel strands with at least one
colored by a projective object. Note that if the category C is spherical fusion, then the red to blue
modification amounts to arbitrarily orient the red curve and color it with the Kirby color of C (see
Example 5.10).

Red to blue modifications transform any bichrome graph into a ProjC-admissible graph in Σ
whose class in the skein module SProjC (Σ) is well-defined:

Lemma 6.6. Using the red to blue modification, bichrome graphs in Σ represent well defined
elements of the skein module SProjC (Σ).

Proof. To prove the lemma, we show that two red to blue modifications of a red curve at different
places with different chromatic maps give skein equivalent diagrams. Let P,Q be projective objects
and G,G′ be projective generators of C. Pick a chromatic map cP based on P at G and a chromatic
map cQ based on Q at G′. There are two cases to consider. First, if the two modifications are
made on the same side of the red curve, then

cP

Q

=
∑
i

cP

cQ

xi

xi

=
∑
i cP

cQ

x∗i

x∗i

=

cQ

P

where x∗i and x∗i are the dual basis obtained by x∗i = (xi)
∗◦(φG′⊗ idG∗) and x∗i = (φ−1

G′ ⊗ idG∗)◦
(xi)∗. Here the first and third equalities follow from (3) and the second equality from isotopying
the coupon and applying duality of Lemma 5.5. Second, if the modifications are made on opposite
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sides of the red curve, then (with implicit summation):

cPQ =
cP

cQ

xi

xi

=

cQ

cP

xi

xi

=

cQ

cP

x̃i

x̃i

=

cQ
P

where x̃i and x̃i are the dual basis obtained from xi and xi by the rotation property of Lemma 5.5.

6.6

Remark 6.7. If C is semisimple, then applying Lemma 6.6 to a red unknot with P = 1 implies
that tr(c1) does not depend of the chromatic map c1 based on 1.

The next lemma shows the usefulness of bichrome graphs.

Lemma 6.8. A blue strand can be slid over a red curve of an admissible bichrome graph in
SProjC (Σ).

Proof. We first consider the case where we want to slide a strand colored by P ∈ ProjC over a red
curve. Then we have the following skein relations:

P

=

cP

=

cP

cP∗

xi

xi

=

cP

cP∗

x∗i

x∗i

=

cP

cP∗

x∗i

x∗i
=

cP∗

=

P

where x∗i and x∗i are the dual basis defined by x∗i = (xi)
∗ ◦ (φG ⊗ idP∗⊗G∗) and x∗i = (φ−1

G ⊗
idP∗⊗G∗) ◦ (xi)∗. Next, consider the general case where we want to slide a strand colored by
Y ∈ C over a red curve. Applying the procedure explained in the proof of Lemma 6.1, we can
push a strand colored by P ∈ ProjC next to the Y -colored strand. Inserting coupons colored by
identities, we replace the Y -colored arc we want to slide by an arc colored by Y ⊗P ∈ ProjC which
we then slide over the red curve. By removing then the inserted coupons, we obtain the desired

result. 6.8

6.6. Construction of the non-compact TQFT. The admissible skein module functor associ-
ated with the ideal ProjC of projective objects of C (see Theorem 6.3) induces (by restriction) a
monoidal functor

SProjC : Man→ VectK, (7)

where Man ⊂ Cobnc is the category of closed oriented surfaces and orientation preserving dif-
feomorphisms. Our goal is to extend it to a functor S : Cobnc → VectK. In particular, for any
closed oriented surface Σ and any orientation preserving diffeomorphism d : Σ→ Σ′ between closed
oriented surfaces, we set

S (Σ) = SProjC (Σ) and S (Σ)(ed) = SProjC (d) : S (Σ)→ S (Σ′).
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We need to assign values to the other generators of Cobnc. More precisely, given a nonempty
closed oriented surface Σ and a framed sphere S in Σ, we need to assign a K-linear homomorphism
S (eΣ,S) : S (Σ)→ S (Σ(S)) in the case S = ∅ or S = Sk is a framed k-sphere with k ∈ {0, 1, 2}:

• Case S = S2: A framed 2-sphere S2 in Σ determines a spherical component of Σ denoted S2.
Recall from Theorem 6.4 that the m-trace t induces a linear form

F ′ : S (S2)→ K. (8)

Any admissible graph Γ in Σ decomposes as Γ = Γ1 t Γ2 with Γ1 ⊂ Σ(S2) and Γ2 = Γ ∩ S2. Then
the element

S (eΣ,S2)(Γ) = F ′(Γ2)Γ1 ∈ S (Σ(S2))

only depends on the framed sphere S2 and the class of Γ in S (Σ).
• Case S = S1: Given a framed 1-sphere S1 in Σ, let γ be a simple closed curve embedded in Σ so
that S1 ' γ × [−1, 1] in Σ. We fix an orientation and a base point ∗ on γ. Let Γ be an admissible
graph in Σ. Isotopying Γ, we can assume that Γ is transverse to S1 in the sense that S1∩Γ consists
in a finite number of portions of edges of Γ in position γ(ti)× [−1, 1] for ti 6= ∗ and with at least
one intersecting edge colored by a projective object. We define S (eΣ,S0)(Γ) to be the admissible
graph in Σ(S1) obtained from (Σ,Γ)\S1 by filling the two attached discs with two coupons colored
with dual basis (see Section 5.3):

Γ = 7→ S (eΣ,S1)(Γ) =
∑
i

xi

xi
. (9)

Lemma 6.9. The element S (eΣ,S1)(Γ) only depends on the framed sphere S1 and the class of Γ
in S (Σ).

Proof. If Γ1 and Γ2 are isotopic in Σ, with an isotopy where no strand passes through the base
point and no coupon passes through γ, then S (eΣ,S1)(Γ1) and S (eΣ,S1)(Γ2) are isotopic in Σ(S1).
Assume first that a coupon crosses γ. Assertion (b) of Lemma 5.5 implies that there are two
coupons Q1 and Q2 such that F (Q1)⊗K F (Q2) = 0, where F is the functor given in (4). Thus one
can prove that (see [13]) the difference S (eΣ,S1)(Γ1)−S (eΣ,S1)(Γ2) is a sum of skein relations in
Σ(S1). Next, Assertions (a) and (c) of Lemma 5.5 imply respectively that S (eΣ,S1)(Γ) is invariant
under the change of the orientation of γ and under the change of the base point on γ. Hence
S (eΣ,S1)(Γ) only depends of the isotopy class of Γ in Σ. Since any skein relation in Σ can be
isotoped to a skein relation involving a coupon disjoint from S1, it induces an equivalent skein

relation inside Σ(S1). 6.9

• Case S = S0: Consider the disjoint embedded disks D and D′ in Σ given by the a framed 0-
sphere S0. Set Σ′ = Σ\ (DtD′) and let C ' S1× [0, 1] be the cylinder such that Σ(S0) = Σ′∪∂ C.
Set γ = S1 × { 1

2} be a red curve inside C. Let Γ be an admissible graph in Σ. Slightly isotopying
Γ away from D and D′, we obtain an admissible graph Γ′ in Σ′. Then Γ′ ∪ γ is a bichrome graph
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in Σ(S0):

Γ =  Γ′ =

Γ′ ∪ γ =

γ

By Lemma 6.6, the bichrome graph Γ′ ∪ γ defines an element in S (Σ(S0)).

Lemma 6.10. The element S (eΣ,S0)(Γ) = Γ′ ∪ γ ∈ S (Σ(S0)) only depends on the framed sphere
S0 and the class of Γ in S (Σ).

Proof. If Γ′1 and Γ′2 are two preimages of Γ isotopic in Σ by an isotopy during which an edge passes
over the disk D or D′, then by the sliding property of Lemma 6.8, we have (Σ′,Γ′1) ∪∂ (C, γ) =
(Σ′,Γ′2) ∪∂ (C, γ) ∈ S (Σ(S0)). Any isotopy in Σ can be modified so that no coupons of Γ pass
through S0. Finally, any skein relation in Σ is isotopic to a skein relation in a box that does not
intersect S0 which induce a corresponding skein relation between (Σ′,Γ′1)∪∂ (C, γ) and (Σ′,Γ′2)∪∂
(C, γ) in S (Σ). Remark that interchanging D and D′ does not change S (eΣ,S0)(Γ). 6.10

• Case S = ∅: We set

S (eΣ,∅) = idS (Σ).

Theorem 6.11. Recall, C is a chromatic category. The above assignments define a finite dimen-
sional non-compact (2+1)-TQFT

S : Cobnc → Vectk.

Furthermore S (uniquely) extends to a genuine (2+1)-TQFT Cob → Vectk if and only if C is
semisimple with nonzero dimension (see Section 5.5).

We prove Theorem 7.4 in Section 6.7 using the presentation of Cobnc given in Section 2.2.
By construction, the non-compact TQFT of Theorem 7.4 extends the skein module functor

(7). Also, it follows from the work of Bartlett [3] that if C is a spherical fusion category with
nonzero dimension (see Example 5.10), then the (2+1)-TQFT associated with C by Theorem 7.4
is isomorphic to the Turaev-Viro TQFT associated with C.

The next corollary is a direct consequence of Theorems 5.18 and 7.4:

Corollary 6.12. Any spherical tensor category over an algebraically closed field defines a finite
dimensional non-compact (2+1)-TQFT.

The next theorem relates the TQFT S of with the spherical chromatic invariant KC of closed
oriented 3-manifolds defined in [15].

Theorem 6.13. [[13]] Recall, C is a chromatic category. Let M be a closed connected oriented

3-manifold. Consider Ṁ = M \ Int(B3) : S2 → ∅ and M̈ = M \ Int(S0 ×B3) : S2 → S2. Then

S (Ṁ) = KC(M)F ′,
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where F ′ is given by (8). In particular, if the m-trace of C is unique (up to scalar multiple, see

[29]), then dimK(S (S2)) = 1 and so S (M̈) = KC(M)idS (S2).

An easy consequence of the previous theorem is the following:

Corollary 6.14. If the m-trace of C is unique (up to scalar multiple), then the 3-manifold invariant
KC is multiplicative with respect to connected sums.

Proof. Let M1,M2 be closed connected oriented 3-manifolds and denote by M = M1]M2 their
connected sum. We have: M̈ = M̈1 ◦ M̈2 ∈ Cobnc. Then it follows from Theorem 6.13 and the
functoriality of S that KC(M̈)idS (S2) = S (M̈) = S (M̈1) ◦ S (M̈2) = KC(M1)KC(M2)idS (S2).

6.14

6.7. Proof of Theorem 7.4. To prove the first statement of the theorem, we need to show that
the relations (R1)-(R5) of Subsection 2.2 are satisfied by S .

(R1) Since S : Man → VectK is functorial we have S (ed◦d′) = S (ed) ◦ S (ed′). Also, since
elements of S (Σ) are defined by graphs up to isotopy we clearly have S (ed) = id if d is
isotopic to idΣ.

(R2) Since the construction of the maps S (eΣ,S) are local, they are covariant under diffeomor-
phisms of the pair (Σ,S).

(R3) Again, since the construction of the maps S (eΣ,S) are local, they commute for disjoint
framed spheres.

(R4) The 1-2 handle cancellation reduces to the chromatic identity (3) as shown in the following
picture:

S (eΣ,S0)((Σ,Γ)) =
P

=
P

cP

(Σ,Γ) =
P

(3)
=

xi

xi

cP

P

↙ S (eΣ,S1)

Here, Γ is a skein element in the surface Σ with an edge colored by P ∈ ProjC . On the
top left we depict the result of a S (eΣ,S0) move which is cancelled then by a S (eΣ,S1)
(diagonal arrow) where the S1 is the green curve on the top right hand side. The bottom
equality reduces to Equation (3) for Q = 1 after rotating the coupons colored with the
dual basis and applying the duality property of Lemma 5.5.

The 2-3 handle cancellation reduces to a skein relation which replaces a skein in a disk
whose image by F is f ∈ Hom(1, P ) by a unique coupon colored by

∑
i tP (fxi)xi = f .

(R5) As stated in the proof of Lemma 6.10 interchanging the disks D and D′ does not change
the map S (eΣ,S0). This implies that (R5) is satisfied for any framed 0-sphere. Similarly,
in the proof of Lemma 6.9 it is shown that the map S (eΣ,S1) does not depend on the
orientation of γ, implying that (R5) is satisfied for any framed 1-sphere.

We now prove the second statement of the theorem. Assume that C is semisimple with nonzero
dimension (as a chromatic category, see Section 5.5). To extend S to a (2+1)-TQFT, we first need
to assign the value under S for the generator eΣ,0 : Σ → Σ(0) = Σ ∪ S2 where Σ is an oriented
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closed surface. Let Γ be an admissible graph in Σ. Consider the graph γ in S2 defined by

γ =
1

dim(C)

id1

id1

1 ,

where dim(C) is the dimension of C. Then

S (eΣ,0)(Γ) = Γ ∪ γ ∈ S (Σ(0))

only depends on the class of Γ in S (Σ). Next we need to verify that the relation (R4) is satisfied
for 0-1-handle cancellation: the result of a 0-handle followed by a cancelling 1-handle sends a skein
Γ ∈ S (Σ) to the same graph union the graph γ encircled by a red unknot. Now an admissible
skein relation replaces the encircled γ with 1

dim(C) trC(c1) = 1.

Conversely, assume that C is not semisimple or is semisimple with dimension zero. We will
prove that the 3d-pants cobordism M : S2 t S2 → S2 given by a 3-ball minus two smaller 3-balls
is sent to 0 by S . As a consequence, since the cobordism M has a right inverse in Cob given by
eidS2 t B3 : S2 → S2 t S2 and since idS (S2) 6= 0, this implies that S can not be extended to a
functor with domain the category Cob. To compute S (M), we remark that M is given by gluing a
unique 1-handle to the cylinder over S2tS2, that is, M = W (S0) = ((S2tS2)×[0, 1])∪S0 (D2×D1).
The the K-linear homomorphism S (M) : S (S2tS2)→ S (S2) defines a map given by Γ1tΓ2 7→ Γ
where Γ is the admissible graph in S2 represented by a red curve at the equator and the graphs Γ1

and Γ2 in the upper and lower hemispheres, respectively. We now consider the two cases. First,
if C is not semisimple, then after making the red circle of Γ blue, we obtain the disjoint union of
two admissible graphs in S2 which is skein equivalent to 0. Indeed, any admissible closed graph is
sent to 0 by the functor F (given in (4)) associated to a non-semisimple category. Second, if C is
semisimple with dimension zero, then the unit object 1 is projective and it can be used to make
the red circle of Γ blue. In this case, Γ becomes skein equivalent to F (Γ1) tr(c1)Γ2 = 0 because
tr(c1) = 0 (see Section 5.5).

6.8. Explicit examples. If C is a semi-simple modular tensor category then there is a (3, 2) RTW
TQFT associated to C which has an anomaly and which associates to a surface S the skein module
of any 3-manifold bounding it. In particular the vector space SC(Σ) is by definition isomorphic
to the so-called “skein algebra” of Σ, i.e. to the vector space associated by the RTW -like TQFT
associated to C to Σ t Σ. Hence it is isomorphic to End(RTWC(Σ)) which is a simple algebra.
(By this observation one can reconstruct the projective action of the mapping class group on
RTWC(Σ).) The action of the mapping class group on the torus is given by the conjugation via
the matrices of the action on the RTW TQFT, so in particular the S matrix and the T matrix
act by conjugation on any matrix. More in general the Dehn twist along a curve γ ⊂ Σ induces
a matrix Tγ acting on RTW by left multiplication and on TV (Σ) via conjugation; the matrix is
obtained via skein calculus by superposing a +1-framed Kirby colored skein on γ on each element
of a basis of RTW (Σ).

In particular in the examples of the Ising anyons, for the torus the TV vector space is End(C3),
for the Fibonacci it is End(C2) and for the level l = 2r Uq(sl2) it is End(C(r−1)), where in each
case a basis of the module is given by the simple modules coloring the core of D2×S1 with framing
given by a fixed longitude of the torus.
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7. Building (4, 3)-TQFTs

Following the same strategy as the previous section, we will now build a family of (4, 3)-TQFT.
This construction is taken from [12].

We start with the algebraic datum of a ribbon category C. To each closed 3-manifold we will
associate its skein vector space SC(M) which is naturally acted upon by the mapping class group
of the manifold. And to each handle glueing we will associate a linear map between the skein
spaces of the corresponding manifolds. Clearly, in order for the skein vector space to make sense C
must be ribbon. Then, as before, we start from the top index handles and they will impose exactly
the same conditions on C as in the previous section: to be able to glue handles of index 4, 3, 2 it
will have to be a chromatic category. Then glueing of 1-handles will impose a new condition: the
existence of a “glueing morphism”, which by Proposition 5.14 is equivalent to C being “chromatic
non-degenerate”. Chromatic non-degenerate categories will then allow non compact TQFTs in
dimension 4. In order to further get compact TQFTs they will have to satisfy a further condition,
we called “chromatic compact” (see Definition 5.15). Examples of chromatic compact categories
are all the “factorizable” ones (e.g. modular tensor categories). But for factorizable ones we will
prove that the associated TQFT is a bit trivial in the sense that it is invertible (i.e. all vector
spaces for 3-manifolds are 1-dimensional and all the maps are isomorphisms).

7.1. Construction of TQFT and 4-dimensional invariants. As before, we consider the func-
tor SC : Man → Vect which associates to each oriented 3-manifold its admissible stated skein
space and to each embedding the natural linear map associated to it. We extend it to a functor
SC : F(Gnc) → Vect (respectively SC : F(G) → Vect if C is chromatic compact) by assigning to
each S-surgery a linear map between skein modules.

Let M be a closed 3-manifold. For k = 0, ..., 4, recall from Subsection 2.1, the cobordism
W (Sk−1) which is given by gluing a k-handle on M × [−1, 1]. Its domain and target are related
by a index k-surgery (along a framed sphere Sk−1) which can be described using green circles as
follows (in what follows the links L and L′ are all green and describe two distinct components of
M by surgery):

(1) index 0-surgery: M →M t S3.
(2) index 1-surgery: if the gluing S0 is not contained in a single component ofM : LtL′ → L∪L′

; else : L→ L ∪O.
(3) index 2-surgery: L → L ∪ “green knot” arbitrarily linked with L. Alternatively, since the

result of a S1-surgery on a 3-manifold is invertible by another S1 surgery, then for a well
chosen representation of the domain of W (S1), its target can be represented as its domain
with a green knot removed.

(4) index 3-surgery: if the glueing S2 disconnects a component of M : L ∪ L′ → L t L′ where
L and L′ live in two different hemispheres of S3; else: L 7→ L \O where the green unknot
bounds a disc disjoint from the other components.

(5) index 4-surgery: M t S3 →M .

For k ∈ {0, ..., 4}, given a framed sphere Sk−1 in M we define a morphism

χM,Sk−1 : SC(M)→ SC(M(Sk−1))

which will be assigned to the morphism SC(eM,Sk−1) as follows.

4-handle: Given a framed sphere S3 in M , the map χM,S3 corresponding to filling of a 3-sphere
of M = M ′ t S3 is given by

(M,Γ) 7→ F ′(Γ ∩ S3)(M ′,Γ ∩M ′) ∈ SC(M
′).
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3-handle: Given a framed sphere S2 in M there exists a cutting map:

χM,S2 : SC(M)→ SC(M(S2))

sending parallel strands passing through the cutting sphere S2 to the copairing Ω, see Figure 2. We

· · ·

A

B

7−→
∑
i

xi

· · ·

B

t

xi

· · ·

A
or

· · ·

7−→
∑
i

xi

· · ·

xi

· · ·

Figure 2. The cutting map χM,S2 : two representations depending if S2 is a
separating (left) or a non-separating sphere in M (right).

say that the skein is in standard position with respect to S2 if its intersection consists in n parallel
edges in a rectangle (i.e. a disc of the form α × [0, 1] ⊂ S2 × [0, 1] for some simple arc α ⊂ S2)
with at least one edge colored by a projective module (see Figure 2). We now consider a skein
in standard position. Then the image by the RT-functor of this rectangle is the identity of P for
some P ∈ Proj. The cutting map χM,S2 replaces the framed sphere by the sums of graphs in two
balls each containing a unique coupon colored with the dual basis of HomC(P,1) and HomC(1, P ).

Proposition 7.1. The linear map χM,S2 is well defined.

Proof. We refer here to the proof of Lemma 6.9 which is completely similar. The main idea is that

the naturality of Ω implies that the images of isotopic skeins are skein equivalent. 7.1

2-handle: Given a framed sphere S1 in M there exists a knot-surgery map:

χM,S1 : SC(M)→ SC(M(S1))

adding a red circle along the meridian of the surgery knot, see the r.h.s. of Figure 3. Let C =

7−→ and 7−→

Figure 3. The knot-surgery map χM,S1 , two alternative representations: on the
left we choose a representation of M where S1 is a meridian of a green knot;
a presentation for M(S1) is then obtained by forgetting the green knot in the
presentation of M , but the map on skeins consists of adding a red component
along that S1. On the right, the surgery presentation of M(S1) is obtained by
adding the green circle (which is S1) and the map on skeins consists in adding also
its red meridian.

−B2 × S1 where the sign of B2 means reversing orientation and Or ⊂ C be a red ribbon knot of
the form [−0.1, 0.1] × {0} × S1. Let S1 ' S1 × B2 be a framed knot in M , M ′ = M \ (S1 × B2)
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and M ′′ = M ′ ∪∂ C. Let SC(M ′)
i−→ SC(M) and SC(M ′)

i′′−→ SC(M ′′) be the maps induced by
the inclusions. We define χM,S1 to be the map that sends a skein i(T ) to i′′(T )∪Or. Observe that
this map is defined on all SC(M) because each skein in M can be isotoped off C .

Proposition 7.2. The linear map χM,S1 is well defined.

Proof. If T1, T2 ∈ SC(M ′) are such that i(T1) = i(T2) then T1 and T2 differ by isotopies in M ′,
slidings through meridian discs of C and skein relations which, up to isotopy, can be supposed to
be supported in a box disjoint from C. Then i′′(T1) t Or and i′′(T2) t Or differ by isotopies in
i′′(M ′), skein relations in i′′(M ′) and sliding of edges on the created red component Or, which by

Lemma 6.10 preserves the class in SC(M ′′). 7.2

1-handle: Given a framed sphere S0 in M there exists a gluing map:

χM,S0 : SC(M)→ SC(M(S0))

which glues two edges terminating on coupons colored by η and ε by a gluing morphism as repre-
sented in Figure 4. Let us describe this morphism in more detail. Let x, y be two distinct points

η

ε

P1

P1

7−→ g

P1

or
A

ε

P1

t
B

η

P1

7−→

B

g

A

P1

P1

Figure 4. The gluing map χM,S0 is depicted by two different representations
depending if S0 is embedded in a unique connected component of M (left) or not
(right).

of a 3-manifold M . Let Bx, By be neighborhood of x and y both oriented and parameterized by

B3 and let S0 be the framed 0-sphere Bx t By. Let M ′ = M \ (Bx t By)
i
↪→ M be the inclusion

and C ' S2 × [0, 1] be the cylinder such that M(S0) = M ′ ∪∂ C. We put in this cylinder a skein
Γg with a single coupon colored by any gluing morphism g and an incoming and an outgoing edge
parallel to (1, 0, 0)× [0, 1], framed in the direction (0, 0, 1). We will say that a skein T in M is in
good position with respect to S0 if Bx ∩ T consists of a planar ribbon graph in R+ ×R×{0} ∩Bx
consisting of a unique edge oriented from (1, 0, 0) ∈ ∂Bx towards a coupon colored by ε and if
By ∩T consists of a planar ribbon graph in R+×R×{0}∩By consisting of a unique edge oriented
from a coupon colored by η towards (1, 0, 0) ∈ ∂By. The map χM,S0 assigns to a skein T in good
position with respect to S0 the skein (M ′, T ∩M ′) ∪∂ (C,Γg).

Proposition 7.3. The linear map χM,S0 is well defined and does not depend on the ordering of
{x, y} nor on the gluing morphism g.

Proof. First we note that the admissible skein module is generated by skeins in M where every
component of M contains a coupon colored by ε and a coupon colored by η. Indeed, consider a

box containing a part of an edge colored by P ∈ Proj whose image by the RT-functor is
←−
evP ; up

to applying a skein relation one can make appear a coupon colored by ε : P1 → 1. Let us choose
an isomorphism ψ : P1 → P ∗1 normalized so that η∗ ◦ ψ = ε then a coupon colored by ε is skein
equivalent to a graph with two coupons colored by ψ and η. So applying this procedure twice
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we can ensure the presence of a ε-colored coupon and of a η-colored coupon in each connected
component of M .

Now, up to isotopy of the skein, the definition of χM,S0 only depends a priori on the choice
of the two coupons colored by ε and η, and on the choice of a gluing morphism g: we will now
prove independence on these data. Let g′ be an other gluing morphism and consider the element
obtained by using g′ instead of g and two different coupons colored with ε and η. Then we have if
S0 is embedded in a unique connected component,

η

ε

P1

P1

η

ε

P1

P1

7−→
η

ε

g
=

g′ g

=
g′ g

= g′
η

ε

where the first and last equalities are skein equivalences given by definition of gluing morphisms
and the middle one is an isotopy of the red circle in the belt 2-sphere created by gluing the 1-handle.
Similarly, if the surgery is connecting two different components of M , the representation of the
equivalence is similar without the green circles but with the separating belt 2-sphere represented
by the horizontal plane.

The map χM,S0 preserves skein relations as we can always choose coupons ε and η outside a
fixed box.

Finally reversing the orientation of the sphere S0 that is interchanging x and y does not change

the map since η = ψ−1ε∗, ε = ψη∗ and ψ−1g∗ψ is also a gluing morphism. 7.3

0-handle: We only consider 0-handles when C is chromatic compact and so g = ζ−1idP1 is a gluing
morphism. Let S−1 : ∅ ↪→ M be a framed −1-sphere. Let Γ0 be the ribbon graph with a unique
edge from a coupon colored with η to a coupon colored by ε. Then there exists a birth map:

χM,S−1 : SC(M)→ SC(M t S3)

sending a skein in M to its disjoint union with (S3, ζΓ0), see Figure 5.

(M,T ) 7→ (M,T ) t (S3, ζ
η

ε

>P1 )

Figure 5. The birth map χM,S−1 augments a skein by adding a disjoint union of
S3 containing ζΓ0.

Theorem 7.4. There exists a unique symmetric monoidal functor

SC : ncCob→ Vect

extending SC : Man→ Vect such that SC(eΣ,S) = χΣ,S.
If C is chromatic compact, then the functor extends to a symmetric monoidal functor on Cob:

SC : Cob→ Vect.

Proof. We only need to prove that the relation (R1)–(R5) are satisfied by SC .
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(R1) Since SC : Man → Vect is functorial we have SC(ed◦d′) = SC(ed) ◦SC(ed′). Also, since
elements of SC(M) are defined by ribbon graphs up to isotopy we clearly have SC(ed) = id
if d is isotopic to idΣ.

(R2) Since the construction of the maps χM,S are local, they are covariant under diffeomorphisms
of the pair (M,S).

(R3) Again, since the construction of the maps χM,S are local, they commute for disjoint framed
spheres.

(R4) The 2-3-handle cancellations reduces to the chromatic identity (3) as shown in Figure 6.
Indeed since the attaching framed 2-sphere of the 3-handle intersects the belt circle of
the 2-handle once, the attaching circle for the 2-handle bounds a disc in the intermediate
3-manifold. This is why we can represent the green circle in Figure 6 as an unknot.
The 1-2-handle cancellations reduces to the defining property of the gluing map. Indeed
the sphere S2 created by the 1-handle can’t be separating since it is intersected once by
the attaching S1 of the 2-handle. This means that we can represent the map χM,S1 as in
the left hand-side of Figure 4 and the map χM,S2 is then the left hand-side of Figure 3
turning the green unknot into red.
The 3-4-handle cancellation relies on the fact that evaluating F ′ on a cut 3-ball is a skein
relation.
Finally, in the compact case, the 0-1-handle cancellation is obvious since we can choose
g = ζ−1idP1 as gluing morphism.

(R5) The maps χM,S do not depend on the orientation of S.

· · · ε

P1

7−→

· · ·

ε

P1

=̇

· · ·
cP1

ε

P1

7−→

· · ·
xi

xi

cP1

ε

P1

=̇ · · · ε

P1

Figure 6. The cancellation of a 2-handle by a 3-handle.

7.4

7.2. The four manifold invariant. We now extract (even in the non-compact case) two scalar
invariants of 4-manifolds: SC(W,T ) for manifolds with an admissible graph in the boundary and

ṠC(W ) for connected closed 4-manifolds.

Definition 7.5. Let W be an oriented compact 4-manifolds with no closed components. A C-
ribbon graph T ⊂ (−∂W ) is admissible if for each component M of −∂W , T ∩M is admissible i.e.
if T represents an admissible skein of SC(−∂W ) (where the minus sign is for opposite orientation).
If T ⊂ (−∂W ) is admissible then define the invariant

SC(W,T ) = SC(W̃ )(T )

where W̃ is W seen as a cobordism from −∂W to ∅.

Definition 7.6. Let W be a connected closed 4-manifold. Define

ṠC(W ) = SC(Ẇ ,Γ0) ∈ K

where Ẇ = W \B4 is a once punctured W .
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If C is chromatic compact, by definition of the maps χM,S0 , we have for any closed connected
4-manifold W :

SC(W ) = ζṠC(W )idK. (10)

For example, ṠC(S4) = 1 and SC(S4) = ζidK.

7.3. Properties. Assume that C is chromatic non-degenerate so that in particular it has an m-
trace t, chromatic morphism c and gluing morphism g.

Proposition 7.7. Let κ ∈ K∗, then

(1) t′ := κt is a non-degenerate m-trace on Proj,
(2) its associated copairing is given by Ω′P = 1

κΩP , and Γ′0 = 1
κΓ0,

(3) c′ = κc is a chromatic morphism associated to t′,
(4) g′ = 1

κ2 g is a gluing morphism, and in the compact case ζ ′ = κ2ζ.

Finally the TQFT S ′C associated to t′ satisfies S ′C(W ) = κχ(W )SC(W ) where χ is the Euler
characteristic.

Proof. The first four points are immediate from the definitions. In the compact case, the 0-handle
map becomes χ′M,S−1 = κχM,S−1 , as ζ ′Γ′0 = κζΓ0. The 1-handle map becomes χ′M,S0 = 1

κχM,S0 as

it maps a Ω′P1 to a g′. The 2-handle map becomes χ′M,S0 = κχM,S0 as c′ = κc. The 3-handle map

becomes χ′M,S0 = 1
κχM,S0 as Ω′P = 1

κΩP . The 4-handle map becomes χ′M,S0 = κχM,S0 as t′ = κt.
Therefore for a 4-bordism W decomposed using ni i-handles, 0 ≤ i ≤ 4, one has:

S ′C(W ) = κn4−n3+n2−n1+n0SC(W ) = κχ(W )SC(W ). 7.7

Theorem 7.8. The TQFT SC is invertible if and only if C is factorizable (i.e. the only transparent
objects are direct sums of 1).

Proof. First we prove the necessity of the theorem: recall that SC(S3) ' K is generated by

the skein (S3,Γ0). Let G be a projective generator with a unique indecomposable factor P1
i−→

G
p−→ P1. Then by naturality of Λ and since G contains a single copy of P1, we have ΛG =

iΛP1p. Consider the subspace of SC(S2 × S1) generated by graphs {Of}f∈EndC(G) with a unique

coupon colored by f ∈ EndC(G) and a unique edge of the form {pt} × S1. Consider the two
cobordisms W2,W3 : S2×S1 → S3 given by gluing a 2-handle (resp. a 3-handle) to S2×S1× [0, 1]
respectively along {pt} × S1 × {1} and S2 × {pt} × {1}. Then SC(W2)(Of ) = tG(∆G

0 f) ∈ K '
SC(S3) and SC(W3)(Of ) = tG(ΛGf) ∈ K ' SC(S3). In particular, for the gluing morphism
g, SC(W2)(Oigp) = 1 = SC(W3)(Oid) = 1 so the two maps are non-zero. If SC is invertible,
dimK(S2 × S1) = 1 and there exists ζ ∈ K∗ such that SC(W3) = ζSC(W2). Then for any
f ∈ EndC(G), tG(∆G

0 f) = SC(W3)(Of ) = ζSC(W2) = ζtG(ΛGf). Finally, by non-degeneracy of
the m-trace, ∆G

0 = ζΛG.
Now we prove the sufficiency of the theorem: we suppose C is factorizable and we show that for

any connected 3-manifold M , dimK(SC(M)) = 1. This is true because the image of any 1-surgery
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given by a 2-handle can be inverted:

χM,S17−→
χM′,S17−→

= = =̇ ζ .

Here the first map is the image of any S1-surgery on M and the second is the image of an
appropriate second S1-surgery; the first equality is an isotopy in the manifold obtained by sliding
the second red curve along the first green curve, the second equality comes from the fact that
topologically on the level of the 3-manifolds, a surgery along a meridian of a S1-surgery component
cancels both components and the last equivalence is a skein equivalence due to the factorizability
of C.

Then we check that every cobordism induces an isomorphism. It is immediate from the definition
that 0-handles and 4-handles are isomorphisms. The proof for 2-handles is given above. Note that
a 1-handle followed by a 3-handle glued on the belt sphere created by the 1-handle is a scalar
times the identity. Indeed, the 1-handle will introduce a gluing morphism (which is a scalar times
the identity of P1 by assumption) from a pair of coupons ε and η. Then the 3-handle will cut it,
turning it back to a pair of coupons ε and η. This shows that 1-handles are injective and 3-handles

surjective. Because every skein module is 1-dimensional, they are also bijective. 7.8

Proposition 7.9. Behavior under connected sums:

• The invariant of closed connected 4-manifolds ṠC(W ) is multiplicative under connected
sum.
• If W is a closed connected 4-manifold and W ′ : M ′ → N ′ ∈ Cobnc (resp. W ′ ∈ Cob if C

is chromatic compact), both non-empty, then

SC(W#W ′) = ṠC(W )SC(W
′) ∈ HomK(SC(M

′),SC(N
′)).

• For non-empty 4-manifolds W,W ′ containing admissible graphs T, T ′ in their boundaries,

SC(W#W ′, T ∪ T ′) =

∣∣∣∣ ζ−1SC(W,T )SC(W,T ) if C is chromatic compact,
0 else;

• If C is chromatic compact, for two non-empty 4-cobordisms W : M → N and W ′ : M ′ →
N ′,

SC(W#W ′) = ζ−1SC(W )⊗SC(W
′) : SC(M)⊗SC(M

′)→ SC(N)⊗SC(N
′).

Proof. The admissible skein module SC(S3) is one dimensional and generated by Γ0 =
η

ε

>P1 . For

a closed connected 4-manifold W the twice punctured cobordism SC(Ẅ ) : SC(S3) → SC(S3)

acts as multiplication by the scalar ṠC(W ). Composition corresponds to connected sum for the
twice-punctured cobordisms, and to multiplication for the scalars. The second point is obtained
by adding a cancelling pair of 3 and 4-handles to W ′. Then connected sum with W precomposes
by SC(Ẅ ) before the 4-handle, hence simply multiplies by ṠC(W ).
Let P : S3 t S3 → S3 be the three dimensional pair of pants, namely a 3-punctured S4 which
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can be seen as a unique 1-handle. The cobordism ˙(W#W ′) : (−∂W ) t (−∂W ′) → S3 factors as
˙W#W ′ = P ◦ (Ẇ t Ẇ ′).

The map SC(P ) : K ⊗ K = K → K is a scalar morphism which sends Γ0 ⊗ Γ0 to the unique
graph with 3 coupons colored by η, g and ε. Since ε ◦ g = 0 unless g is invertible (i.e. C is
chromatic compact by Lemma 5.16), the second case follows. Let’s now assume that C is chromatic
compact and let us use g = ζ−1idP1 for the gluing morphism. Then SC(W#W ′, T ∪ T ′) =
SC(W,T )SC(W ′, T ′)F ′(SC(P )(Γ0 ⊗ Γ0)) = ζ−1SC(W,T )SC(W ′, T ′).

For the last statement, since every object of Cob is dualizable we can suppose that N = N ′ = ∅.
Then the statement follows from the previous identity since for any T ⊗ T ′ ∈ SC(M)⊗SC(M ′) ∼=
SC(−∂(W tW ′)), we have SC(W#W ′)(T ⊗ T ′) = SC(W#W ′, T ∪ T ′). 7.9

Proposition 7.10. The category C is chromatic compact if and only if ṠC(S1 × S3) 6= 0.

Proof. A handle decomposition of the punctured bordism ˙S1 × S3 : S3 → ∅ is given by a 1-handle
followed by a 3-handle glued on its belt sphere and a closing 4-handle. The skein Γ0 is sent to a
circle with a coupon g in SC(S2×S1) which is then cut into the closure of g◦ΛP1 in SC(S3). This
is non-zero if and only if g is invertible. The statement follows then by Lemma 2.8 in [12] which

shows that there exists an invertible glueing morphism for C iff C is chromatic compact. 7.10

Proposition 7.11. If C is twist non-degenerate or if ṠC(S2×S2) 6= 0 then S does not distinguish
exotic pairs of cobordisms.

Proof. Since ṠC(±CP2) = ∆±, the category is twist non-degenerate if and only if ṠC(CP2)ṠC(−CP2) 6=
0. Gompf ([31]) showed that two homeomorphic compact orientable 4-manifolds (possibly with
boundary) become diffeomorphic after some finite sequence of connected sums with S2 × S2;
the same is true for connected sums with complex projective planes (or their opposites) since
(S2 × S2)#CP2 is diffeomorphic to CP2#CP2#(−CP2). The statement then follows from Propo-

sition 7.9. 7.11

7.4. Examples. Let H = um,nq (sl2) be the Hopf algebra of Example 5.24.

Proposition 7.12 ([12], Prop. 6.4). The category C = H − mod is chromatic compact. It is
factorizable if and only if m = n and both n and r are odd. It is twist degenerate if and only if n
is odd and r is a multiple of 4.

Proposition 7.13 ([12], Prop. 6.5). For n odd and 4|r, the (3+1)-TQFT SC distinguishes the

closed 4-manifolds S2 × S2 and CP 2#CP 2, which have same signature, Euler characteristic and
fundamental groups but different spin status. One has:

SC(S
2 × S2) =

m3n gcd(nr, 2){1}8(r−1)

c4r2
and SC(CP 2#CP 2) = 0

We give an example of a category which is chromatic non-degenerate but not chromatic compact,
and therefore gives a non-compact TQFT. The example we give is very simple and unlikely to give
interesting 4-manifold invariant, but the TQFT already shows some very interesting features. Its
associated algebra on S2 × S1 is non-semisimple, so it does not fall under Reutter’s theorem [40]
showing that semi-simple TQFTs cannot detect exotic structures.

In characteristic p, one may find a cocommutative Hopf algebra H which is non-semisimple but
such that H∗ is semi-simple. This gives a symmetric monoidal, non-semisimple and chromatic
non-degenerate category, therefore with non-semisimple Müger center.
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Definition 7.14. Let K be an algebraically closed field of characteristic p, and H = K[Z/pZ].
Denote α the generator of Z/pZ. Let C = H-modfd be the symmetric monoidal category of finite
dimensional left H-modules.

Proposition 7.15. The category C is chromatic non-degenerate, but not chromatic compact. It
gives a non-compact TQFT SC.

Proof. The cointegral is Λ =
∑p−1
i=0 α

i, and the right integral is λ = 1∗ in the basis (1, α, . . . , αp−1).
We observe indeed that ε(Λ) = p = 0 whereas λ(1) = 1 6= 0, so H∗ is semi-simple whereas
H is not. One computes the central element ∆0 = λ(1)1 = 1 ∈ H, thus ∆P

0 = idP for any
projective. Therefore, the gluing morphism g is given by ΛP1 which is not invertible as C is

non-semisimple. 7.15

Note that g = ΛP1 means that the 1-handle map does not affect the skein. Similarly, C being
symmetric and λ(1) = 1 implies that a homotopically-trivial red links can be ignored.
As explained in [40], the vector space SC(S2×S1) has a natural algebra structure induced by the

cobordism
...

S3 × S1 where
...

S3 is the thrice-punctured sphere. Note that this algebra is non-unital
as the TQFT is non-compact.

Proposition 7.16. The non-unital algebra SC(S2×S1) is non-semisimple (i.e. it is non-semisimple
if one freely adjoins a unit).

Proof. For f : P → P an endomorphism of a projective object, denote Of the skein {pt} × S1 ⊆
S2×S1 colored by P with a single coupon f . The skein module of S2×S1 is generated by the Of ’s.
As the braiding and twist are trivial, the only relation is cyclicity: Of◦g = Og◦f for f : P → Q and

g : Q→ P . A handle decomposition of
...

B3×S1 is given by a single 1-handle and a single 2-handle,
both of which doesn’t affect the skeins. The algebra structure is given by Of .Og = Of⊗g.
As H is a projective generator of the category, one can restrict to P = H for the generators of
SC(S2×S1). Furthermore endomorphisms of H are right multiplications by elements of H, so since
H is commutative, the cyclic relations are trivial. So SC(S2×S1) is isomorphic to EndC(H) ' H
as a vector space, with basis the Oi := O−.αi ’s. To compute their product, we need to decompose

H ⊗H = ⊕p−1
k=0H.(1⊗ αk). Then Oi.Oj is multiplication by αi ⊗ αj on H ⊗H. It maps 1⊗ αk to

αi ⊗ αk+j which is in the k + j − i summand. We get Oi.Oj =
∑p−1
k=0 δi,jOi = pδi,jOi = 0.

If one freely adjoins a unit to SC(S2×S1) one gets the non-semisimple (p+1)-dimensional algebra

K[O0, O1, . . . , Op−1]/(Oi.Oj = 0). 7.16

8. Projective RTW and RDGGP theories

Let us fix a factorizable chromatic category C: by the previous construction associated to it is
an invertible (4, 3)-TQFT ZC . We now build a different kind of (3, 2) TQFT which we call of RTW
type. In particular it will not take values in Vect but in PVect : the category whose objects are
finite dimensional vector spaces and morphisms are linear maps up to a non zero scalar. To each
surface Σ let’s associate the vector space RT (Σ) = SC(MΣ) where MΣ is any connected 3-manifold
bounding Σ. We have the following :

Lemma 8.1. If M,M ′ are connected oriented 3-manifolds bounding Σ, then there exists an iso-
morphism φ : SC(M)→ SC(M ′).

Proof. It is a standard fact that M ′ is obtained by surgery on a link L in M . Then the map is
obtained by moving each skein in SC(M) so that it avoids L and then coloring the meridians of L
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in red. Its inverse is given by coloring L in red (the proof of the fact that this is indeed the inverse

is in Theorem 7.8). 8.1

Fix a surface Σ and a connected oriented 3-manifold MΣ bounding it. We need to assign values
to the generators of Cobnc. In particular, given a framed sphere S in Σ, we need to assign a
K-linear homomorphism S (eΣ,S) : S (MΣ) → S (MΣ(S)). This is quite simple : notice that eΣ,S
consists in glueing a 3d-handle on Σ so that we can let eΣ,S(MΣ) be the 3-manifold obtained by
glueing the handle on the boundary of M ; furthermore observe that since MΣ is connected, then
also eΣ,S(MΣ) is. So the induced map on the level of skeins is simply induced by the inclusion
i : MΣ ↪→ eΣ,S(MΣ). If M ′Σ is another connected 3-manifold bounding Σ and L ⊂MΣ be a framed
link such that M ′ = M(L). Then L induces both a linear map φ : S (M)→ S (M ′) and a linear
map eΣ,S(φ) : eΣ,S(MΣ) ↪→ eΣ,S(M ′Σ) induced as in Lemma 8.1. So overall we have the following:

Lemma 8.2. The following diagram of linear maps commutes:

S (MΣ)

S (eΣ,S′ )

��

S (eΣ,S) // S (eΣ,S(MΣ))

S (eΣ(S),S′)

��
S (eΣ,S′(S (MΣ))

S (eΣ(S′),S)// S (eΣ,S,S′(MΣ))

So the linear map S (eΣ,S) is well defined on RT (Σ). Furthermore it is clear that the handle
cancellations hold, simply because they hold at the level of the 3-manifold.

The second set of generators of Cobnc is given by the elements ed associated to diffeomorphisms
d : Σ → Σ. There are two ways to realise the map S (ed) : RT (Σ) → RT (Σ). Recall that
MΣ by definition comes with an identification φ : ∂MΣ → Σ (the “boundary parametrization”).
The easiest way to describe S (ed) is to let M ′Σ be d ◦ MΣ, i.e. be the 3-manifold MΣ with
the identification of the boundary φ′ : ∂MΣ → Σ given by d ◦ φ. Then one gets a linear map
S (ed) : S (MΣ) → S (M ′Σ) given by the identity on skeins (i.e. a skein in MΣ is by definition of
M ′Σ also a skein in M ′ : it is only the boundary parametrization which has changed). If one wishes,
though, to relate S (MΣ) and S (M ′Σ) via surgery and then consider S (ed) and an endomorphism
of S (MΣ) he needs to first set up the following notation.

By Dehn’s theorem d is isotopic to a composition of left Dehn twists (or their inverses) along
simple closed curves γ1, . . . γn in Σ. Then let Ti = Tγi be the Dehn twist along γi and let c±i ⊂
Σ × [−1, 1] be the framed link consisting in the curve γi × {0} with framing ±1. Then if d =
T εnin T

εn−1

in−1
· · ·T ε1i1 let c = cεnin t · · · t c

ε1
i1

where the heights of cin is the highest and it progressively

decreases until ci1 . Let finally S (ed) be the map consisting in glueing the cylinder Σ × [0, 1] on
MΣ containing the red link c.

Lemma 8.3. The linear map S (ed) : S (MΣ)→ S (MΣ) is well defined up to a scalar.

Proof. It is sufficient to prove that if c corresponds to a product of Dehn twists which is trivial
then the map S (ed) is multiplication by a non-zero scalar. Since the 3-manifold M ′ obtained by
surgering along c is diffeomorphic to M by Kirby’s theorem one can apply a finite sequence of Kirby
moves of type 1 and 2 to reduce c to the empty link. Let c = c0 → c1 · · · → ck be the sequence of
framed links in MΣ obtained along the way. Let fi : S (MΣ)→ S (MΣ) be the maps consisting in
glueing Σ × [−1, 1] along the boundary containing a red curve ci. We claim that fi = λifi+1 for
each i for some non-zero λi. If the move between ci and ci+1 is a Kirby 2 move this is just the fact
one can slide on red curves obtaining equivalent skeins. If the move is a positive (resp. negative)

Kirby 1 move creating an unknot with framing ε then fi+1 = ∆εfi (resp. fi+1 = ∆−1
ε fi). 8.3
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Now that we have defined S (ed) we have to check the relations in Juhasz’s presentation of Cob
(recall Subsection 2.2). As already remarked the handle cancellations (R4) are automatic and it is
also clear that (R1) , (R3) and (R5) hold. We need to verify the relations (R2):

Σ

ed

��

eΣ,S // Σ(S)

e
dS

��
Σ′

eΣ′,S′// Σ′(S′)

(11)

This is checked by letting M ′Σ = d ◦MΣ and S′ = e(S) so that we clearly have :

S (MΣ)

S (ed)

��

S (eΣ,S) // S (eΣ,S(MΣ))

S (e
dS )

��
S (M ′Σ)

S (eΣ′,S′ )// S (eΣ,S′(M
′
Σ) = edS(eΣ,S(MΣ)))

where the equality in the bottom right entry is the key one and corresponds to the fact that dS is
the diffeomorphism which makes the diagram (11) commute.

Overall we get the following:

Theorem 8.4 (“Lazy version” of RTW DGGPR TQFTs). The functor Σ → S (MΣ) can be
extended to a TQFT valued in PVect.

Remark 8.5. The above theorem is a lazy version of the stronger results of Reshetikhin-Turaev
(in the case of C semi-simple) and of DGGPR which give TQFTs valued in Vect but from the
category of “decorated cobordisms” where surfaces are decorated with Lagrangian subspaces of
their H1 and cobordisms are extended by integers.

9. Appendix : recalls on category theory

9.1. Basic generalities on categories.

Definition 9.1. A category C is a class of objects and for each pair of objects a class of morphisms
(from the source object to the target) such that :

(1) Given morphisms f : A→ B and g : B → C there is a morphism g ◦ f : A→ C.
(2) The above operation is associative in the obvious sense.
(3) Each object A has an identity morphism IdA which is the left and right identity for the

previous compositions.

If for each pair of objects the class of morphisms HomC(A,B) is a set, then the category is locally
small. In what follows by ”category” we will mean a locally small one. Sometimes a non locally
small category is also called a ”metacategory”. If the class of objects is a set and the category is
locally small, then it is small.

Definition 9.2. A functor F : C → D where C and D are categories is a function assigning to
every object c of C an object F (c) ∈ D and to every morphism f : c → c′ in C a morphism
F (f) : F (c)→ F (c′) in a way that sends composition of morphisms to composition of morphisms
and identity morphisms to identity morphisms.

If F,G : C → D are functors, a natural transformation from F to G is a class of morphisms
nc : F (c)→ G(c) for c ∈ Ob(C) such that the obvious square diagrams given by all the morphisms
f : c → c′ in C commute. In particular a natural isomorphism is a natural transformation whose
maps are all isomorphisms in D.
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Given a category C its opposite Cop has the same objects and morphisms but with reversed
source and target and reversed composition. A functor F : C → D is called covariant. One from
Cop → D is contravariant. The identity functor from Cop → C is contravariant.

Example 9.3. The following will be the most interesting categories for us:

(1) Cob. Its objects are n-dimensional closed oriented manifolds. A morphism W : M− →M+

is a n+ 1-dimensional manifold (compact oriented smooth) W such that ∂W = M− tM+.
Attention: here we mean that ∂W is decomposed into 2 connected components (possibly
empty) denoted ∂±W and by the equality sign we mean that there are fixed diffeomor-
phisms (parametrizations) φ± : ∂±W → M± which preserve for the sign + (resp. reverse
for the sign −) the orientation. The cobordisms are considered up to orientation preserv-
ing diffeomorphism which commutes with the parametrizations (see Exercice below). The
composition of two cobordism is given by the cobordism obtained by glueing (see exercice
below).

(2) V ect. Its objects are vector spaces over a fixed field k and morphisms are linear maps.
(3) Bim. Its objects are algebras; a morphism B : A1 → A2 is an (A2, A1)-bimodule (i.e. a

A2 ⊗ Aop1 -module), up to isomorphism. The composition of a (A3, A2)-bimodule B′ with
an (A2, A1)-bimodule B is B′ ◦B = B′ ⊗A2

B.
(4) If H is an algebra then H −mod is the category whose objects are H-modules and mor-

phisms are k-linear maps which commute with the action of H.
(5) BimH its objects are algebra objects in Hmod and bimodules are bimodule objects in

H − mod. The composition is given by the tensor product over the algebra action (as
above). Bimodules are considered up to isomorphism. Exercice: why does one need to
consider bimodules up to isomorphism?

9.2. Monoidal categories and functors.

Definition 9.4 (Monoidal category). A monoidal category is a category C equipped with a tensor
product bifunctor ⊗ : C × C → C and an object denoted 1 such that :

(1) For each Σ there exists natural isomorphisms φLΣ : Σ→ Σ⊗ 1 and φRΣ : Σ→ 1⊗ Σ;

(2) For each objects Σ,Σ′,Σ” there exists natural isomorphisms ψΣ,Σ′,Σ” : Σ ⊗ (Σ′ ⊗ Σ”) →
(Σ⊗ Σ′)⊗ Σ”.

(Here naturality means that for all morphisms f ∈Mor(Σ0,Σ), g ∈Mor(Σ′0,Σ
′), h ∈Mor(Σ′′0 ,Σ”)

it holds φR ◦ f = (Id⊗ f) ◦φR, φL ◦ f = (f ⊗ Id) ◦φL, and ψΣ,Σ′,Σ” ◦ (f ⊗ (g⊗h)) = ((f ⊗ g)⊗h) ◦
ψΣ0,Σ

′
0,Σ
′′
0 . ) Such that φR1 = φL1 and for all objects the following pentagon diagrams commute :

Σ1 ⊗ (Σ2 ⊗ (Σ3 ⊗ Σ4))

ψΣ1,Σ2,(Σ3⊗Σ4)tt

Id⊗ψΣ2,Σ3,Σ4
// Σ1 ⊗ ((Σ2 ⊗ Σ3)⊗ Σ4)

ψΣ1,Σ2⊗Σ3,Σ4

��

(Σ1 ⊗ Σ2)⊗ (Σ3 ⊗ Σ4)

ψΣ1⊗Σ2,Σ3,Σ4

**

Pentagon equation

((Σ1 ⊗ Σ2)⊗ Σ3)⊗ Σ4 (Σ1 ⊗ (Σ2 ⊗ Σ3))⊗ Σ4
ψΣ1,Σ2,Σ3⊗Id
oo
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(Σ⊗ 1)⊗ Σ′

Σ⊗ Σ′

φL
Σ⊗Id

88

Id⊗φR
Σ′

&&
Σ⊗ (1⊗ Σ′)

ψΣ,1,Σ′

OO

The category is strict if 1⊗Σ = Σ = Σ⊗ 1 and φLΣ = φRΣ = IdΣ for all Σ ∈ Ob(C), and finally for

each three objects Σ,Σ′,Σ′′ it holds Σ⊗ (Σ′ ⊗ Σ”) = (Σ⊗ Σ′)⊗ Σ” and ψΣ,Σ′,Σ” = IdΣ⊗Σ′⊗Σ”.

Definition 9.5 (Monoidal functors). A monoidal functor F : C → D between monoidal categories
is a functor such that there exist a natural isomorphism d : F (1) → 1 and for all objects Σ,Σ′

there exist natural isomorphisms iΣ,Σ′ : F (Σ) ⊗ F (Σ′) → F (Σ ⊗ Σ′) which commute with all the
associators and identity morphisms, i.e. ∀Σ,Σ′, ∀f ∈ Mor(Σ,Σ), f ′ ∈ Mor(Σ′,Σ′) the following
holds:

F (Σ) F (Σ)⊗ 1
(φL)−1

oo

F (Σ⊗ 1)

F ((φL)−1)

OO

F (Σ)⊗ F (1)
i

oo

IdF (Σ)⊗d

OO
F (Σ) 1⊗ F (Σ)

(φR)−1

oo

F (1⊗ Σ)

F ((φL)−1)

OO

F (1)⊗ F (Σ)
i

oo

d⊗IdF (Σ)

OO

F (Σ)⊗ (F (Σ′)⊗ F (Σ”))
ψ′ //

Id⊗i
��

(F (Σ)⊗ F (Σ′))⊗ F (Σ”)
i⊗Id // F (Σ⊗ Σ′)⊗ F (Σ”)

i

��
F (Σ)⊗ F (Σ′ ⊗ Σ”)

i // F (Σ⊗ (Σ′ ⊗ Σ”))
F (ψ) // F ((Σ⊗ Σ′)⊗ Σ”)

where we denoted ψ (resp. ψ′) the associator in C (resp. in D). A monoidal functor F is a strict if
F (1) = 1 and for each object Σ,Σ′ of C it holds F (Σ⊗Σ′) = F ′(Σ)⊗F (Σ′) and the corresponding
maps d, i are Id.

Definition 9.6 (Natural transformations of monoidal functors). Let C,D be two monoidal cate-
gories and F, F ′ : C → D be two monoidal functors. A natural tensor transformation n : F → F ′ is
a natural transformation n : F → F ′ such that the following diagrams commute for every couple
of objects U, V ∈ C:

F ′(1)

d

!!
F (1)

n

OO

d′ // 1

F (U)⊗ F (V )
i //

n⊗n
��

F (U ⊗ V )

n

��
F ′(U)⊗ F ′(V )

i // F ′(U ⊗ V )

A natural tensor transformation n : F → F ′ is a natural tensor isomorphism if it is a natural
isomorphism (see the end of Definition 9.2). A tensor equivalence F between monoidal categories
C and D is a monoidal functor F : C → D such that there exists a monoidal functor G : D → C
and natural tensor isomorphisms n : G ◦ F → IdC and n′ : F ◦G→ IdD.

From now on, when speaking of functors between monoidal categories we will always mean
monoidal ones.
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A fundamental theorem allowing to replace monoidal categories with strict monoidal ones is the
following:

Theorem 9.7 (Maclane, see [26] 2.8.5). Let C be a monoidal category. Then there exists a a
monoidal equivalence F : C → Cst where Cst is a strict monoidal category.

Because of the above theorem, we will often replace a category C with a strict category equivalent
to it, without even changing the notation when this will cause no confusion.

9.3. Braidings.

Definition 9.8 (Braided category). A brading on a monoidal category C is the datum of natural
isomorphisms for every pair of objects Σ,Σ′ ∈ Ob(C) bΣ,Σ′ : Σ⊗Σ′ → Σ′⊗Σ such that the following
diagrams (known as “Hexagon equations”) commute :

Σ⊗ (Σ′ ⊗ Σ′′)
bΣ,(Σ′⊗Σ′′)//

ψ

��

(Σ′ ⊗ Σ′′)⊗ Σ
ψ−1

// Σ′ ⊗ (Σ′′ ⊗ Σ)

Id⊗bΣ′′,Σ
��

(Σ⊗ Σ′)⊗ Σ′′
bΣ,Σ′⊗Id// (Σ′ ⊗ Σ)⊗ Σ′′

ψ−1

// Σ′ ⊗ (Σ⊗ Σ′′)

(Σ⊗ Σ′)⊗ Σ′′
b(Σ⊗Σ′′),Σ”//

ψ−1

��

Σ”⊗ (Σ⊗ Σ′)
ψ // (Σ”⊗ Σ)⊗ Σ′

bΣ′′,Σ⊗IdΣ′

��
Σ⊗ (Σ′ ⊗ Σ′′)

IdΣ⊗bΣ′,Σ′′// Σ⊗ (Σ′′ ⊗ Σ′)
ψ // (Σ⊗ Σ′′)⊗ Σ′.

A braided category is a monoidal category equipped with a braiding. If for each pair of objects
Σ,Σ′ ∈ C it holds bΣ′,Σ ◦ bΣ,Σ′ then the braiding is also called a symmetry and C is a symmetric
monoidal category.

Remark 9.9. As proved in [18], Proposition XIII 1.2, the following diagrams always commute in
a braided category :

Σ⊗ 1
bΣ,1 // 1⊗ Σ

Σ

φL

OO

Id // Σ

φR

OO 1⊗ Σ
b1,Σ // Σ⊗ 1

Σ

φR

OO

Id // Σ

φL

OO

.
Furthermore when C is strict the commutativity of the hexagon diagrams is equivalent to the

following equalities :

bΣ,Σ′⊗Σ′′ = (IdΣ′ ⊗ bΣ,Σ”) ◦ (bΣ,Σ′ ⊗ IdΣ′′) bΣ′⊗Σ′′,Σ = (bΣ′,Σ ⊗ IdΣ′′) ◦ (IdΣ′ ⊗ bΣ”,Σ).

Definition 9.10 (Braided functors). A braided functor F : C → D between braided monoidal
categories is a lax monoidal functor F such that for all the objects of C the following diagram
commutes :

F (Σ)⊗ F (Σ′)

i

��

bF (Σ),F (Σ′)// F (Σ′)⊗ F (Σ)

i

��
F (Σ⊗ Σ′)

F (bΣ,Σ′ ) // F (Σ′ ⊗ Σ)
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The following is an enhanced version of Maclane’s coherence theorem. See [18] Proposition
XI.5.1 and Exercice XIII.6.5 or [47] Chapter XI, Remark 1.4:

Theorem 9.11. Let C be a braided category. Then there exists a strict braided category Cstr and
a monoidal equivalence F : C → Cstr which is also a braided functor.

Example 9.12. The prototypical braided category is Br whose objects are integers N and mor-
phisms are MorBr(m,n) = ∅ if m 6= n and MorBr(n, n) = Bn where Bn is the group of braids with
n-strands. The composition is given by vertical stacking. It was proved by Joyal and Street that
“Br is the free strict braided monoidal category generated by a single object”.

9.4. Rigid categories. Because of Theorem 9.11 we will from now on assume that all the monoidal
categories are strict.

Definition 9.13 (Left and right duality). A left dual of an object Σ of a strict monoidal category
C is the datum of a left dual object Σ∗ and morphisms ←−evΣ : Σ∗ ⊗ Σ→ 1, ←−−coev : 1→ Σ⊗ Σ∗ such
that the following “triangular equalities” hold :

(IdΣ ⊗←−evΣ) ◦ (←−−coevΣ ⊗ IdΣ) = IdΣ (←−evΣ ⊗ IdΣ∗) ◦ (IdΣ∗ ⊗←−−coevΣ) = IdΣ∗ .

If Σ1,Σ2 are left dualisable objects and f ∈ Mor(Σ1,Σ2) the left adjoint of f , denoted f∗ ∈
Mor(Σ∗2,Σ

∗
1) is the morphism defined as:

f∗ := (←−evΣ2
⊗ IdΣ∗1

) ◦ (IdΣ∗2
⊗ f ⊗ IdΣ∗1

) ◦ (IdΣ∗2
⊗←−−coevΣ1

).

Similarly a right dual of Σ is the datum of a right dual object ∗Σ and morphisms −→evΣ : Σ⊗(∗Σ)→ 1,
−−→coev : 1→ (∗Σ)⊗ Σ such that the following “triangular equalities” hold:

(−→evΣ ⊗ IdΣ) ◦ (IdΣ ⊗−−→coevΣ) = IdΣ (Id(∗Σ) ⊗−→evΣ) ◦ (−−→coevΣ ⊗ Id(∗Σ)) = Id(∗Σ).

The right adjoint of f ∈ Mor(Σ1,Σ2) is the morphism (∗f) ∈ Mor(∗Σ2,
∗ Σ1) defined as:

(∗f) := (Id(∗Σ1) ⊗−→evΣ2) ◦ (Id(∗Σ1) ⊗ f ⊗ Id(∗Σ2)) ◦ (−−→coevΣ1 ⊗ Id(∗Σ2)).

If all the objects of C have both left and right duals, then C is called autonomous or rigid.

Remark 9.14. It can be proven (exercise!) that the left (resp. right) dual object, if it exists, is
unique up to unique isomorphism. Therefore, in what follows for each object V admitting a left
(or right) dual we shall implicitly choose one and call it V ∗ (resp. ∗V ); if these coincide we’ll
denote them both V ∗.

Furthermore it is important to observe that the existence of a dual object for Σ ∈ C is a
property of V and not an additional structure one defines on C. Finally it can be proven that if C
is autonomous then, each V ∈ C is isomorphic to both ∗(V ∗) and (∗V )∗. But in general it is not
true that (V ∗)∗ is isomorphic to V .

Let Cop be the category whose objects are those of C and morphisms are Morop(Σ1,Σ2) =
Mor(Σ2,Σ1). Equip it with a strict monoidal structure given by V ⊗op W := W ⊗ V . Then if C
all the objects of C have a left dual (“C has a left duality”), the “left dual functor” : L : C → Cop
associating to each object its left dual and to each morphism its left adjoint is a monoidal functor
indeed the map iΣ1,Σ2

: L(Σ1)⊗op L(Σ2) = Σ∗2 ⊗ Σ∗1 → L(Σ1 ⊗ Σ2) = (Σ1 ⊗ Σ2)∗ is given by:

iΣ1,Σ2 := (←−evΣ2 ⊗ Id(Σ1⊗Σ2)∗) ◦ (IdΣ∗2
⊗←−evΣ1 ⊗ IdΣ2⊗(Σ1⊗Σ2)∗) ◦ (IdΣ∗2⊗Σ∗1

⊗ coevΣ1⊗Σ2).

Similarly for the right dual functor R : C → Cop.
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Definition 9.15 (Pivotal categories). An autonomous category is pivotal if the left and right
duality functors are isomorphic. In this case we will denote i : Id → ∗∗ the natural monoidal
isomorphism induced by the identity of left and right functors. Explicitly, iX = (−→evX ⊗ IdX∗∗) ◦
(IdX ⊗←−−coevX∗)

The categorical left trace and right trace of any endomorphism f : X → X of a pivotal category
C are defined by

trl(f) =
←−
evX(idX∗ ⊗ f)

−→
coevX and trr(f) =

−→
evX(f ⊗ idX∗)

←−
coevX .

Both take values in the commutative monoid EndC(1) of endomorphisms of the monoidal unit 1
and share a number of properties of the standard trace of matrices such as cyclicity (i.e., symmetry).
More generally, the left partial trace of a morphism g : X ⊗ Y → X ⊗ Z is the morphism

ptrXl (g) = (
←−
evX ⊗ idZ)(idX∗ ⊗ g)(

−→
coevX ⊗idY ) : Y → Z,

and the right partial trace of a morphism h : X ⊗ Y → Z ⊗ Y is the morphism

ptrYr (h) = (idZ⊗
−→
evY )(h⊗ idY ∗)(idX⊗

←−
coevY ) : X → Z.

If C and D are pivotal categories and F : C → D is a strong monoidal functor then for each
X ∈ C (F (X∗), F (evX), F (coevX)) is a dual of F (X) therefore it comes with a unique isomorphism
uX : F (X∗)→ F (X)∗, natural in X.

Definition 9.16. We say that F is a pivotal functor if the following diagram commutes for every
X ∈ C:

FX

FiX

��

iFX // (FX)∗∗

u∗X
��

F (X∗∗)
uF (X∗)// F (X∗)∗

9.5. A key example. Let H be a Hopf algebra (i.e. an associative unital algebra H over a field
k endowed with a morphism of algebras ∆ : H → H ⊗ H which is coassociative and with a
counit ε : H → k and with an antimorphism of algebras S : A→ A called the antipode satisfying
S⊗ Id ◦∆ = Id⊗S ◦∆ = ε). Then the category of finite dimensional H modules is automatically
endowed with a monoidal structure given by V ⊗W = V ⊗k W endowed with the action given
by first mapping H → H ⊗ H via ∆ and then acting. It is also rigid where the left dual of
V = Hom(V, k) is endowed with the action given by h · f(·) = f(S(h)·). The right dual of V is
Hom(V, k) with the action given by h · f(·) = f(S−1(h)·) (when S is invertible which is always the
case for us).

Exercise 9.17. Convince yourself that the category of H-modules is indeed a rigid monoidal
category. A priori it is not automatically pivotal, although I don’t know an example of a non
pivotal case.

It is fair to say that a Hopf algebra is exactly the kind of structure needed to make sure that
its category of finite dimensional modules is not just a category but a rigid monoidal one.

9.5.1. The Hopf algebra Uq(sl2). The following example is a special case of the general construction
of modular categories from quantum groups due to Drinfeld and Jimbo and resumed for instance
in [47] (Chapter 6). Let q be a non-zero complex number (different from 1) and Uq(sl2) be the
Hopf algebra generated by K±1, E, F with relations:

KK−1 = K−1K = 1,KE = q2EK,KF = q−2FK EF − FE =
K −K−1

q − q−1
.
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Its bialgebra structure is given by :

∆(K) = K ⊗K,∆(E) = E ⊗ 1 +K ⊗ E,∆(F ) = F ⊗K−1 + 1⊗ F.
Its antipode and counit are :

ε(K) = 1, ε(E) = ε(F ) = 0, S(K) = K−1, S(E) = −K−1E,S(F ) = −FK.

Exercise 9.18. Check that Uq(sl2) is a Hopf algebra.

Exercise 9.19. Let q ∈ C \{0} be not a root of unity. Prove that a simple module S on Uq(sl2) is
generated by a “highest weight vector namely a vector v0 such that Kv0 = ξnv0, Ev0 = 0. Prove
that the the eigenvalues of K on such an s are of the form ±qi, i ∈ {−n,−n + 2, · · · , n − 2, n}
where dim(S) = 2n+ 1 (for some n ∈ Z/2). From now on such an S will be called S±2n.

It is usual to restrict to the category of S+
2n. The tensor product of two such modules decomposes

as a direct sum of such by the Clebsch-Gordan formula:

Sa ⊗ Sb = P ⊕

 (a+b)⊕
c=|a−b| by 2

Sc


. (one says that the category of Uq(sl2)-modules is “semi-simple” when q is not a root of unity).
It turns out that the following operator, although it is not an element of Uq(sl2)⊗Uq(sl2) acts on
each Sa ⊗ Sb (because the sum becomes finite on it and because one can make sense of the term
qH⊗H(v ⊗ w) as qnmv ⊗ w if Kv = qnv,Kw = qmw):

R = q
H⊗H

2

∑
n

1

[n]!
En ⊗ Fn

where [n] = qn−q−n

q−q−1 and [n]! =
∏n
i=0[i]. More importantly the action of R followed by the flip

v ⊗ w → w ⊗ v implements a braiding on the category of Uq(sl2)-modules.

Exercise 9.20. Compute the action of the braiding on S1⊗S1. Relate it to the Kauffman relations.

Exercise 9.21. Prove that for each x ∈ Uq(sl2) it holds S2(x) = KxK−1. Then prove that for
each Uq(sl2)-modules V the map ψ : V → V ∗∗ given by v → K−1v is an isomorphism of modules
over Uq(sl2). Prove that ψ : Uq(sl2)−mod→ Uq(sl2)−mod is a natural transformation from the
identity functor to the functor ∗∗.

By the previous exercise Uq(sl2)-modules is a pivotal category.

9.6. Penrose graphical calculus. We represent morphisms in a pivotal category C by plane
diagrams to be read from the bottom to the top. Diagrams are made of oriented arcs colored by
objects of C and of boxes colored by morphisms of C. The arcs connect the boxes and have no
mutual intersections or self-intersections. The identity idX of an object X, a morphism f : X → Y ,
the composition of two morphisms f : X → Y and g : Y → Z, and the monoidal product of two
morphisms α : X → Y and β : U → V are represented as follows:

idX = X , f = f

X

Y

, g ◦ f =
g

f

Z

Y

X

, α⊗ β =

Y

α

X

V

β

U

.

A box whose lower/upper side has no attached strands represents a morphism with source/target
1. If an arc colored by X is oriented downward, then the corresponding object in the source/target
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of morphisms is X∗. For example, idX∗ and a morphism f : X∗⊗Y → U⊗V ∗⊗W may be depicted
as:

idX∗ = X and f =

U V W

X Y

f .

The duality morphisms are depicted as
←−
evV = V ,

←−
coevV = V ,

−→
evV = V ,

−→
coevV = V .

The partial traces of morphisms g : X ⊗ Y → X ⊗ Z and h : X ⊗ Y → Z ⊗ Y are depicted as

ptrXl (g) = g

Z

Y

X , ptrYr (h) = h

Z

X

Y

Note that the morphisms represented by the diagrams are invariant under isotopies of the diagrams
in the plane keeping fixed the bottom and top endpoints (see [JS, TVi]).

9.7. Ribbon categories.

Definition 9.22. A strict, braided category C is ribbon if it is endowed with a natural family of
isomorphisms θΣ : Σ→ Σ, ∀Σ ∈ Ob(C) such that for all Σ1,Σ2 ∈ C it holds :

θΣ1⊗Σ2 = (θΣ1 ⊗ θΣ2) ◦ bΣ2,Σ1 ◦ bΣ1,Σ2

and, if Σ is left-dualisable, θΣ∗ = (θΣ)∗. (The naturality of the isomorphisms means that for each
f ∈ Mor(Σ1,Σ2) it holds θΣ2

◦ f = f ◦ θΣ1
.)

Remark 9.23. Often one requires a ribbon category to be rigid by definition. We will not here
for reasons which will be clear later on. But the reader should notice that in most of the results
we will cite, we will make this additional hypothesis explicitly.

In a ribbon category C, if Σ has a left dual Σ∗ then it also has a right dual which is still Σ∗ and
←−evΣ := −→evΣ ◦ bΣ,Σ∗ ◦ (θΣ ⊗ IdΣ∗) and ←−−coevΣ := (IdΣ∗ ⊗ θΣ) ◦ bΣ,Σ∗ ◦ −−→coevΣ (for a proof that these
morphisms do indeed define a right duality on C see [18] Proposition XIV.3.5). Hence each ribbon
category in which all objects are left-dualisable is autonomous; it can actually be proven that it is
also pivotal.

Example 9.24. Let Rib be the category whose objects are finite sequences of ± and morphisms
between two such sequences s and s′ are isotopy classes of oriented ribbon tangles in R2×[0, 1] with
negative boundary s ⊂ R×{0}×{−1} (where s is realised as a finite sequence of signed points in R)
and positive boundary s′ ⊂ R×{0}×{1}. The composition is given by vertical stacking (exercice:
the result is independent on the choice of the position of the points realising the sequences of signs
in R). The monoidal product is given by “horizontal stacking” i.e. concatenation in R (exercice :
it is well defined).

Example 9.25. If C is a rigid ribbon category, then one can consider the category RibC , whose
objects are finite sequences of objects of C with signs. The morphisms are isotopy classes of C-
colored ribbon tangles, i.e. ribbon tangles (as before) whose edges are oriented and “colored” by
an object of C and possibly containing some “coupons” which are rectangles with a distinguished
“lower base” and opposite “upper base” decorated with a morphism

f : V ε11 ⊗ · · · ⊗ V
εk
k →W η1

1 ⊗ · · · ⊗W
ηh
h
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where V1, . . . Vk are the objects decorating the edges attached to the lower base read from left to
right and Wi those to the upper one (read from left to right), εi = 1 iff i is outgoing the coupon
while ηi = 1 iff the corresponding edge i is incoming the coupon, and finally we use the notation
V 1 = V , V −1 = V ∗. As before, the composition is given by vertical stacking and the monoidal
product is given by horizontal stacking. Exercice: show that RibC is a strict rigid ribbon category
(who is the twist?).

The following is fundamental:

Theorem 9.26 (Reshetikhin-Turaev). There exists a monoidal functor RT : RibC → C uniquely
defined by imposing RT ((V,±)) = V ±, ∀V ∈ C and the value on the “basic morphisms” consisting
of maxima, minima, crossings and their tensor products (horizontal stacking) as depicted in Figure
??. put figure

Exercise 9.27. Given V ∈ C, compute F ((V, ε))∗ and F ((V, ε)∗) for ε ∈ {±} and deduce the nat-
ural transformation u : F (X)∗ → F (X∗) for each X ∈ RibC . Compute the natural transformation
i for the pivotal structure of RibC and that for C. Is the Reshetikhin-Turaev functor pivotal ?

The following is a follow-up of Example 9.3.

Example 9.28. The following will be the most interesting categories for us:

(1) Cob. The monoidal structure is given by the disjoint union. The dual of an object M is
M (it is both a right and left dual). The evaluation and coevaluations are both given by
the cobordism M × [−1, 1] but whose boundary is either all ∂− or ∂+.

(2) V ect. The tensor product is the standard k-linear one. The dualisable objects are exactly
the finite dimensional vector spaces. Exercice: V ect is ribbon and the full subcategory
V ectfin of finite dimensional vector spaces is rigid ribbon.

(3) Bim. Its monoidal structure is given by the standard tensor product. (Exercice : formalise
this structure !)

(4) If H is an algebra then H −mod is a monoidal category if H is a bialgebra and it is rigid
if H is a Hopf algebra (exercice: prove it!). It is braided if H is quasi-triangular; ribbon if
H is ribbon. All these facts are going to be recalled later on.

(5) BimH . As an exercice, the reader can try to understand under which condition it is
monoidal (spoiler: H −mod should be braided). Understanding when it is even braided is
a whole other story we just clarified together with M. Faitg [9].

Exercise 9.29. Formalize the definition of Cob, for instance the requirement on the diffeomor-
phisms for the category Cob. Then define properly the composition of two morphisms. Verify that
this composition is indeed associative and that the identity on an object M is M × [−1, 1] with
the identity parametrizations. Show that the group of orientation preserving self-diffeomorphisms
of an object M is mapped to a subgroup of HomCob(M,M) via f → (M × [−1, 1], Id, f). Se later
for the answer. Show that each object is dualisable.

Exercise 9.30. Let V ectfin be the category of finite dimensional vector spaces and End :
V ectfin → Bim be the functor which associates to V its endomorphism algebra End(V ) and
to each linear map f : V →W the bimodule Homk(V,W ). Show that End is a functor.
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