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THURSTON’S DEFORMATION RETRACTION OF TEICHMÜLLER
SPACE

INGRID IRMER

Abstract. In [24], a short, simple and elegant construction of a mapping class group-
equivariant deformation retraction of Teichmüller space of a closed compact surface was
given. The preprint [24], which unfortunately is not online, has not been broadly accepted.
The purpose of this paper is to go through the construction in detail and resolve any ques-
tions that have arisen in the literature and in personal communications.
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1. Introduction

One reason for studying the Teichmüller space of a surface is because it is a contractible
space on which the mapping class group acts properly discontinuously. On the other hand,
it is clear that Teichmüller space is not the lowest dimensional space on which the mapping
class group acts properly discontinuously; it is known that there exist nontrivial mapping
class group-equivariant deformation retractions, for example Theorem 2.7 of [5].

When the surface has one or more punctures, an explicit mapping class group-equivariant
deformation retraction of Teichmüller space was given in [7] and [22]. The dimension of the
image of this deformation retraction was shown to be equal to the virtual cohomological
dimension of the mapping class group; this is a homological invariant that provides a lower
bound on the dimension of the image of such a deformation retraction. The existence of a
puncture was a crucial ingredient in all these constructions; informally speaking, a puncture
or some form of marked point is needed, relative to which coordinates defining a cell decom-
position are defined.

Thurston’s construction in [24] resolved the problem of a missing basepoint by using curve
lengths to parametrise Teichmüller space, constructing a mapping class group-equivariant
deformation retraction of the Teichmüller space of a closed, compact surface. The image
of this deformation retraction is the so-called Thurston spine Pg. This is a CW complex
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contained in Tg consisting of the set of points representing hyperbolic surfaces that are cut
into polygons by the set of shortest geodesics (also known as the systoles).

Section 3 discusses the construction from [24] in detail. A number of questions about this
construction have been raised, for example [11]. Section 4 resolves all these questions. This
paper aims to preserve the elegant simplicity of the construction from [24], while providing
the technical details. Also for its historical significance, the author is of the opinion that
this material, based on a talk given by Thurston in the 1980s, should be readily available.
Surveys of other ground-breaking contributions to the study of Teichmüller space made by
or strongly influenced by Thurston can be found in [18], [19] and [20].

Acknowledgements. The author would like to thank Stavros Garoufalidis, Scott Wolpert
and Don Zagier for helpful discussions and comments.

2. Definitions and conventions

The purpose of this section is to supply detailed definitions and background for the rest
of the paper. A good reference for much of this background is the textbook [15].

Let Sg be a closed, compact, connected, orientable surface of genus g.

A marking of Sg is a diffeomorphism f : Sg → M , where M is a closed, orientable,
hyperbolic surface with genus g ≥ 2, and Sg is a closed, orientable, topological surface of
genus g. The Teichmüller space Tg is the set of pairs (M, f) modulo the equivalence relation
(M, f) ∼ (N, h) if f ◦ h−1 is isotopic to an isometry. A topology on Tg is usually assumed
that makes it homeomorphic to R6g−6. More information can be found in Section 10.6 of [6].

The group of isotopy classes of orientation preserving diffeomorphisms from Sg → Sg is
known as the mapping class group Γg of Sg. The mapping class group acts on Tg by changing
the marking, namely Γg × Tg → Tg is given by γ × (M, f) 7→ (M, f ◦ γ−1). The quotient of
Tg by this action is called the moduli space of Sg and will be denoted by Mg.

It will be assumed that the genus g ≥ 2 in order to ensure that all surfaces admit a
hyperbolic structure. Once a point in Teichmüller space is chosen, by an abuse of notation,
Sg will be used to denote the surface Sg endowed with the corresponding marked hyperbolic
structure.

A curve on Sg is assumed to be a closed, embedded, nonoriented, nontrivial isotopy class
of maps of S1 to Sg. The length of the curve will be defined to be the length of its geodesic
representative. When there is no possibility of confusion, the image of a particular repre-
sentative of the isotopy class, such as a geodesic, will also be referred to as a curve. An
individual curve will be denoted by a lowercase c, sometimes with a subscript, whereas a
finite set of curves will be denoted by an uppercase C.



THURSTON’S DEFORMATION RETRACTION OF TEICHMÜLLER SPACE 3

A set of curves on a surface is said to fill the surface if the complement of the geodesic
representatives is a union of polygons. The Thurston spine, Pg, is the set of points at which
the set of shortest curves (these are called systoles) fill the surface. The systole function
fsys : Tg → R is the function whose value at the point x ∈ Tg is given by the length of the
systoles at x.

Whenever a metric is required, the Weil-Petersson metric will be assumed.

Definition 1 (Systole stratum Sys(C)). For a fixed set of curves C, the systole stratum
Sys(C) is the set of points of Tg on which the set of systoles is exactly C.

Following Thurston, the term “stratum” is used to mean a decomposition into locally
closed subsets, with each point contained in a neighbourhood that intersects only finitely
many strata. This stratification can also be extended to the metric completion of Tg with
respect to the Weil-Petersson metric, where a stratum of noded surfaces is labelled by the
multicurve that has been pinched to obtain the noded surface.

A systole stratum is a semi-analytic subset of Tg. It is the solution to a system of analytic
equations, stating that certain geodesics (the systoles) have the same length in addition to
a locally finite set of inequalities ensuring that these geodesics are shorter than all others.
The local finiteness is well-known, and follows for example from the collar lemma. As a con-
sequence of Lojasiewicz’s theorem, [14], a neighbourhood of Pg in Tg admits a triangulation
compatible with the stratification. Pg is therefore a simplicial complex.

Tangent cones and cone of increase. The piecewise-smooth structure behind many
of the arguments in this paper make it convenient to define tangent cones, analogously to
definitions given for polyhedra in [4] or [2].

The tangent cone to a simplex T at point p of Tg is the set of v ∈ TpTg such that v = γ̇(0)
for a smooth oriented path γ(t) with γ(0) = p and γ(ϵ) in T for sufficiently small ϵ > 0. In
other words, it is the set of 1-sided limits of tangent vectors to the simplex. When p ∈ Pg is
on the boundary of more than one simplex of Pg, the tangent cone to Pg at p is the union
of the tangent cones of the simplices with p on the boundary. Tangent cones of strata are
defined similarly. For a triangulation compatible with the stratification, the tangent cone
to Sys(C) at p is the union of the tangent cones of the simplices with interior contained
in Sys(C) with p on the boundary. Lojasiewicz’s theorem also applies to level sets within
strata, which can therefore also be triangulated, and for which tangent cones can be defined.

As fsys is only piecewise-smooth, the notion of gradient is replaced by the cone of in-
crease. By local finiteness, at a point p ∈ Sys(C), fsys can only be increasing or station-
ary in a direction in which the lengths of all the curves in C are increasing or stationary.
The cone of increase of fsys at p is given by the tangent cone at p of the intersection
I(C, x) := {x ∈ Tg | L(c)(x) ≥ fsys(p) ∀c ∈ C}.
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A length function is an analytic map Tg → R+, the simplest example of which is the map
whose value at the point x ∈ Tg is given by the length of c at x. More general length func-
tions are positive linear combinations of lengths of curves. Length functions were shown to be
convex along earthquake paths in [12] and strictly convex on Weil-Petersson geodesics in [25].

As fsys is not smooth, it cannot be a Morse function. There is however a sense in which
it behaves just like a Morse function.

Definition 2 (Topological Morse function). Let M be an n-dimensional topological manifold.
A continuous function f : M → R+ is a topological Morse function if the points of M
consist of regular points and critical points. When p ∈ M is a regular point, there is an
open neighbourhood U containing p, where U admits a homeomorphic parametrisation by n
parameters, one of which is f . When p is a critical point, there exists a k ∈ Z, 0 ≤ k ≤ n,
called the index of p, and a homeomorphic parametrisation of U by parameters {x1, . . . , xn},
such that everywhere on U , f satisfies

f(x) − f(p) =
n−k∑
i=1

x2
i −

i=n∑
n−k+1

x2
i

It was shown in [1] that fsys is a topological Morse function.

Topological Morse functions were first defined in [17], where it was shown that, when they
exist, they can be used in most of the same ways as their smooth analogues for constructing
cell decompositions of manifolds and computing homology. While Morse theory was not
mentioned explicitly in [24], the deformation retraction is reminiscent of the way in which a
Morse function can be used to construct a cell complex homotopy equivalent to a manifold
with boundary.

3. Thurston’s deformation retraction

This section describes Thurston’s deformation retraction onto the Thurston spine in de-
tail. References are [24] and Chapter 3 of [8].

Thurston constructed a Γg-equivariant isotopy ϕt from Tg into a regular neighbourhood of
Pg. Referring to ϕt as an isotopy has led to some confusion, as ϕt is defined for all t > 0.
Although ϕt can be defined for all t > 0, it is only the restriction of ϕt to a compact interval
[0, T ] that will be needed. The construction relies on the next proposition.

Proposition 3 (Proposition 0.1 of [24]). Let C be any collection of curves on a surface that
do not fill. Then at any point of Tg, there are tangent vectors that simultaneously increase
the lengths of all the geodesics representing curves in C.

Remark 4. It is important to note that Proposition 3 implies that all critical points of fsys
are contained in Pg.

The proof of Proposition 3 given in [24] uses Lipschitz maps, and is explained in detail in
[21]. A different proof will be given here, illustrating how the convexity of length functions
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constrains the differential topology of Mg. There is no claim to originality. Results similar
to Proposition 3 have been proven using a variety of techniques; the first instance of which
the author is aware can be found in Lemma 4 of [3]. Wolpert has also pointed out that it
follows from Riera’s formula, [23].

Proof. Let C = {c1, . . . , cn}. The length of a curve c will be denoted by L(c). Let L(c)x be
the level set of L(c) passing through a point x of Tg.

Since the curves in C do not fill, the intersection N(x) := ∩j=1,...,nL(cj)x is not compact.
This is because the intersection must be invariant under the action of a subgroup of Γg

generated by Dehn twists around curves disjoint from the curves in C.

A length function
∑n

i=1 aiL(ci) with each ai ∈ R+ ∪ {0} and not uniformly zero cannot
have a minimum in Tg. This is because such a minimum must be a unique point by strict
convexity, but N(x) is not compact for any x ∈ Tg.

It is always possible to find a point w ∈ Tg at which the lemma holds. This can be done by
finding a point q in the metric completion of Tg with respect to the Weil-Petersson metric,
with the property that a curve c is pinched at q, where c has nonzero geometric intersection
number with each of the curves in C. Choosing w sufficiently close to q will ensure that the
lemma holds at w.

Suppose the proposition breaks down at y ∈ Tg. Along a path γ from w to y, there must
be a point z ∈ Tg at which the lemma first breaks down. At z, there exists therefore a
nontrivial subset Gz of

{
∇L(ci) | ci ∈ C

}
that spans a proper subspace of TzTg, and whose

elements are not contained in a halfspace of this subspace.

The existence of Gz implies that it is possible to find a1, . . . , an ∈ R+ ∪ {0} not all zero
such that the sum

n∑
i=i

ai∇L(ci)(z)

is zero. By strict convexity of length functions along Weil-Petersson geodesics, this implies
that the length function

L =
n∑
i=i

aiL(ci)

has a local—and hence global—minimum at z. The proposition follows by contradiction. □

For any ϵ > 0, an open subset Pg,ϵ of Tg is defined to be the subset of Tg consisting of
hyperbolic structures such that the set of geodesics whose length is within ϵ of the short-
est length fill the surface. It is not hard to see that each Pg,ϵ is open, its projection to
Mg has compact closure, and the intersection of Pg,ϵ over all positive ϵ is the subcomplex
Pg. It follows that for any regular neighbourhood Ng of Pg, there is an ϵ such that Pg,ϵ ⊂ Ng.
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Thurston’s choice of vector field. Recall that the Weil-Petersson metric used here is
invariant under the action of the mapping class group. At a point x of Tg∖Pg, let C(x) be a
set of shortest geodesics. The notion “shortest” will be made precise later; C(x) can contain
more curves than just the systoles at x. If the geodesics in C(x) do not fill the surface,
by Proposition 3, it is possible to define a Γg-equivariant vector field XC with the property
that the length of every curve in C is increasing in the direction of XC . For nonfilling C,
Thurston suggested a vector field with unit length that maximises the sum

(1)
∑
c∈C

logXC(L(c))

As the logarithms are assumed to be real, this is a shorthand way of saying that XC(x)
determines a smooth choice of direction in which the length of each curve in C is increasing.
For a point x very close to Pg the curves in C(x) might also fill, depending on how the
notion of “set of shortest curves” is defined. For simplicity, XC is defined to be zero when
the curves in C fill. The construction will only require a vector field that is nonzero outside
of some regular neighbourhood of Pg that can be made arbitrarily small.

Denote the cardinality of a set S by |S|. For an ϵ > 0 define UC(ϵ) to be the set containing
every point x of Tg representing a hyperbolic structure for which C is the set of curves of
length less than fsys(x)+ |C|ϵ. Then U :=

{
UCi

|Ci is a finite set of curves on Sg} is a cover
of Tg when ϵ is sufficiently small.

Paradoxically, local finiteness of U is a consequence of the fact that the number n(L, x) of
simple curves of length less than or equal to L at a point x ∈ Tg grows faster than linearly,
[16]. For x ∈ Tg, the cardinality of a set C(x) of curves of length less than fsys(x) + |C|ϵ is
either uniformly bounded depending on ϵ, or infinite, in which case UC is not in U .

This unusual construction of a cover was presumably made because it has the property
that if two sets UC1 and UC2 intersect, either C1 ⊂ C2 or C2 ⊂ C1. This choice is not in any
way canonical, and different choices are clearly also allowable here.

Note that for every point x not on Pg, there is an ϵ such that for some set UCi
containing

x, the curves in Ci do not fill.

Let
{
λCi

}
be a partition of unity subordinate to the covering

{
UCi

}
. The partition of

unity is chosen in such a way as to be invariant under the action of Γg on the sets of geodesics{
C
}
. For example, it could be defined as a function of geodesic lengths. The vector field Xϵ

is constructed by using the partition of unity
{
λCi

}
to average over the vector fields

{
XCi

}
.

Note that this averaging process does not create zeros. For a point x in the intersection of
the open sets UCi

, i = 1, . . . , k, there is at least one shortest or equal shortest curve c in the
intersection of the sets Ci. Any vector field XCi

, i = 1, . . . , k evaluated at x has the property
that if it is nonzero, it increases the length of c at x. It follows that Xϵ can only be zero at
x if every vector field being averaged over at x is zero.
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Denote by K a subset of Tg that is compact modulo the action of the mapping class group.
The goal is now to construct an isotopy ϕt of Tg with the property that for any ϵ there is a
T (ϵ) such that taking t > T (ϵ) ensures that for any K, ϕt(K) is contained within Pg,ϵ. This
is done by using the flow generated by Xϵ′(t) where ϵ′(t) > 0 is small. The parameter ϵ′(t)
can be decreased as time goes on.

The proof that Xϵ′(t) generates a flow defined for all t ∈ [0,∞) is the same as the proof
of the standard result that a smooth, compactly supported vector field is complete; see for
example Theorem 9.16 of [13]. In particular, first recall that the α-thick part of Tg, call it
T α
g , defined as T α

g = {x ∈ Tg | fsys(x) ≥ α} is invariant under the flow and compact modulo
the action of Γg. This means that by the existence and uniqueness theorem of ODEs, around
each point p in T α

g there is a neighbourhood Up and an ϵ > 0 such that the flow is defined

on Up ×
[
0, ϵ(p)

)
. By compactness, there is a nonzero uniform lower bound ϵ of ϵ(p) on T α

g .
Consequently, it is always possible to flow for a time ϵ longer. This concludes the proof that
Xϵ′(t) generates a flow defined for all t ∈ [0,∞).

The next lemma gives control over the rate at which fsys increases along the flowlines of
Xϵ outside of the thick part of Tg. Recall that Ci(x) is the set of curves with length at x less
than fsys(x) + |Ci|ϵ defined above, and ϵM denotes the Margulis constant.

Lemma 5. When Xϵ′ is Thurston’s vector field, i.e. it is constructed using Equation (1),
for sufficiently small ϵ′ there is an upper bound on the time needed for any flowline γ of Xϵ′

to enter T ϵM
g .

Proof. At a point x at which fsys(x) < ϵM , the systoles at x are pairwise disjoint, and there-
fore have cardinality at most 3g−3. Suppose ϵ′ < ϵM

3g−3
. For a point x ∈ Tg at which the width

of a collar of a geodesic of length at most fsys(x)+(3g−3)ϵ′ is greater than fsys(x)+(3g−3)ϵ′,
any choice of Ci(x) has cardinality at most 3g − 3. Since the curves in Ci(x) are pairwise
disjoint, it follows from Riera’s formula, [23], that the gradients of the lengths of any two
curves in Ci(x) make an angle less than π

2
. In the worst case, the Weil-Petersson gradients

{∇L(c1), . . . ,∇L(ck)} make angles pairwise close to π
2
. When fsys(x) is arbitrarily small rel-

ative to ϵ′, for a systole c at x, this does not give a uniform bound away from π
2
on the angle

between ∇L(c)(x) and XCi(x). After flowing for a time at most (3g − 3)(3g − 4)ϵ′, either a
bound can be obtained, because in the worst case scenario, Ci(x) will then have cardinality
1, or fsys is large enough that the curves in Ci intersect. Consequently, after a time t at most
(3g − 3)2ϵ′, either fsys ◦ γ(t) > ϵ′ or fsys ◦ γ(t) is larger than a constant k(ϵ′) at which the
curves in Ci(γ(t)) can intersect.

Both the ϵ′-thick part of Tg, T ϵ′
g , and the k(ϵ′)-thick part T k(ϵ′)

g are compact modulo the

action of Γg. In the closure of T ϵ′
g ∖T ϵM

g , there is therefore a uniform lower bound on the

rate at which fsys is increasing along a flowline. Similarly for the closure of T k(ϵ′)
g ∖T ϵM

g . □

In [24], the following claim was made.

Claim 6. For any ϵ > 0 there is a T (ϵ) such that flowing for t > T (ϵ) ensures that any K
is carried inside - and remains within - Pg,ϵ.
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In [24], the reference to “flowing” refers to the flow generated by the specific vector field
Xϵ. In Section 5, it will be discussed what flows satisfy this claim and what flows do not.
For the moment Claim 6 will be assumed.

Back to the construction of ϕt. For any t ∈ [0,∞), the isotopy ϕt takes a point to its
image at time t under the flow. Denote by It the image of T ϵM

g under ϕt.

Suppose ϵ′(t) has been chosen small enough to ensure that the zeros of Xϵ′(t) are contained
in the interior of ϕt(T ϵM

g ). The boundary of ϕt(T ϵM
g ) is similar to the boundary of a level

set of fsys such as T ϵM
g in the sense that Xϵ′(t) points inward at every point of ϕt(T ϵM

g ). One
way of proving this is to use that ϕt gives a flowline-preserving diffeomorphism of a regular
neighbourhood of ∂T ϵM

g onto a regular neighbourhood of ∂ϕt(T ϵM
g ). A point on a flowline

outside T ϵM
g is mapped to a point on a flowline outside of ∂ϕt(T ϵM

g ), and vice versa. Since
the flowlines determine a foliation of the regular neighbourhood of ∂T ϵM

g , this is also the case
for ∂ϕt(T ϵM

g ). This implies that there are no places where a flowline is tangent to ∂ϕt(T ϵM
g ),

which would need to exist for some value of t if Xϵ′(t) were to transition from pointing inwards
to pointing outwards.

Suppose ϵ is small enough to ensure that Pg,ϵ is contained in a regular neighbourhood Ng

of Pg. Choose t
∗ such that the isotopy ϕt∗ maps every choice ofK into Pg,ϵ. Existence of such

a t∗ is guaranteed by Claim 6. A deformation retraction mapping K onto Pg is obtained by
taking a composition of ϕt∗ with a deformation retraction that arises from the deformation
retraction of Ng onto Pg.

The existence of this second deformation retraction will now be shown. For ease of no-
tation, it will be shown that It∗ = ϕt∗(T ϵM

g ) deformation retracts onto Pg. An identical
argument works with the α-thick part of Tg in place of T ϵM

g , for any α small enough such
that the α-thick part of Tg contains Pg. As the α-thick subsets are an exhaustion of Tg by sets
compact modulo the action of Γg, this will then give the required deformation retraction of Tg.

First note that the boundary of It∗ is connected. This is because, as shown in Proposition
12.10 of [6], ∂T ϵM

g is connected and by Proposition 3 there are no critical points of fsys be-
tween ∂It∗ and ∂T ϵM

g . By construction, the set It∗ has Pg in the interior, because a flowline
is prevented from actually reaching Pg by the fact that for any ϵ, Xϵ is zero at points suffi-
ciently close to Pg. Consequently, It∗ is a connected subset of N with a connected boundary
that separates ∂N from Pg. The deformation retraction of the regular neighbourhood N
onto Pg then gives the required deformation retraction of It∗ onto Pg.

This concludes the proof of the existence of a Γg-equivariant deformation retraction of Tg

onto Pg, modulo the proof of the Claim 6.

Remark 7. In subsequent work, pre-images of points on Pg under the deformation retraction
will be used to study possible further deformation retractions. For a point x in the interior
of a locally top-dimensional cell of Pg, this deformation retraction can be performed in such
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a way that it is not difficult to see that the pre-image of x is a ball of codimension equal to
the dimension of the cell, and intersecting Pg in the single point x. This will now be explained.

For small enough ϵ, Pg,ϵ can be treated as a tubular neighbourhood of Pg. As a semi-analytic
subset of Tg, Pg has properties in common with embedded submanifolds, that guarantee ex-
istence of an analogue of tubular neighbourhoods. The technicalities are discussed in detail
in [9]. It follows that there exists a deformation retraction of Pg,ϵ onto Pg for which the
pre-image of x is a ball B(x) of codimension equal to the dimension of the cell. This ball
intersects Pg only in the point x. The pre-image of x in Tg under the deformation retraction
of Tg to Pg is then the ball obtained as the union of B(x) with the portion of the flowlines
of Xϵ obtained by starting on a point of ∂B(x) and flowing backwards in time. Note that by
construction, flowing ∂B(x) backwards in time does not introduce intersections with Pg.

4. Questions raised in the literature

In the last two pages of [11], a list of questions about the construction in [24] was made.
All but one of these questions were answered in the exposition above. The final (and main)
objection, given on page 14 is as follows. Point 4 on page 13 of [11] states “Use the flow
defined by the vector field Xϵ to deform points of Tg into a neighbourhood PBϵ of P [the
Thurston spine].” Below is stated “Certainly, there is no problem to deform any compact
subset K of Tg −PBϵ into PBϵ in a fixed time, but we need to deform the whole space....If it
can be shown that points in PBϵ cannot be flowed out of PBϵ, then it is fine, and Step (4)
is valid. In summary, for this method in [24] to succeed, we need vector fields whose flows
increase the number of geodesics whose lengths are close to the systole of the surface, rather
than only increasing their lengths simultaneously.” The objection here is towards Claim 6.

The number of curves at x of length close to fsys(x) is not the right measure of complexity
to use in this context. Consider for example a stratum on which the systoles intersect but do
not fill. At any point on the boundary of this stratum the number of systoles is larger than
in the interior. A vector field whose flow increases the number of curves with length close
to fsys would have a zero inside the stratum. The statement “In summary, for this method
in [24] to succeed, we need vector fields whose flows increase the number of geodesics whose
lengths are close to the systole of the surface, rather than only increasing their lengths si-
multaneously” is false.

Instead of working with the number of geodesics whose lengths are close to that of the
systoles, a topologically more reasonably function to work with is defined as follows.

Definition 8 (Gap function gsys). The gap function gsys : Tg → R+ is the function whose
value at the point x is given by the smallest real number r such that the set of curves with
lengths within r of fsys fill Sg.

The gap function is zero only on Pg, and near Pg behaves like a measure of distance from
Pg.
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While it is possible to construct vector fields (for example, the choice made by Thurston,
see Proposition 6.3 of [10]) satisfying the three conditions listed at the beginning of Section
5, and for which gsys is strictly decreasing near Pg, even this more reasonable sufficient con-
dition is not essential for Thurston’s construction.

Introducing gsys has led to the question, why not just construct a vector field that de-
creases gsys? One reason is that gsys is only well-behaved on a neighbourhood of Pg; globally
it is quite degenerate. For example, there are points at which there is a choice of the longest
curve in a shortest filling set. At points like these, the cone of increase of gsys consists of
the unions of cones of increase for the different choices. The cone of increase can become
disconnected when the zero vector is removed. Unlike fsys, gsys is not a topological Morse
function.

5. The claim

Assuming the flow generated by Thurston’s vector field, Claim 6 states that for any ϵ′ > 0
there is a T (ϵ′) such that flowing for t > T (ϵ′) ensures that any K is carried inside — and
remains within — Pg,ϵ′ . It was shown in Proposition 6.3 of [10] that on a neighbourhood of
Pg, the vector field not only increases fsys but also decreases gsys. As already discussed in
Section 4, this implies Claim 6.

The purpose of this section is to discuss what vector fields (other than Thurston’s specific
choice) generate flows to which the same statement also applies. Perhaps one reason this
claim has been controversial is that it was not understood which vector fields it applies to
and which ones it does not apply to. Thurston merely gave an example of a vector field that
works, mentioned that his choice was not unique, and left it up to the audience or reader
to do the calculus needed to verify the details. In order to resolve this confusion, a smooth
vector field X ′

ϵ will now be constructed that does not satisfy an analogue of the claim. Please
note that X ′

ϵ is different from Thurston’s vector field Xϵ.

(1) The function fsys is increasing in the direction of X ′
ϵ.

(2) The zeros of X ′
ϵ are contained in a neighbourhood of Pg that shrinks onto Pg as ϵ

approaches zero.
(3) X ′

ϵ is mapping class group-equivariant.

for which the flow of X ′
ϵ does not satisfy Claim 6.

Example 9. In the final section of [10] an example of a 3-dimensional stratum Sys({c1, c2, c3, c4})
in P2 was given, where the set of curves C = {c1, c2, c3, c4} is shown in Figure 1.

The set C is minimal in the sense that removing any curve gives a set that does not fill.
Consequently, Sys(C) is not on the boundary of any larger dimensional stratum of Pg. It was
shown in Section 3 of [10] that, away from isolated critical points, for any point of Sys(C)
the gradients of the lengths of curves in C are linearly independent and there is an open cone
of directions in which fsys is increasing. It follows that each proper subset of C realises a
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Figure 1. The set of systoles in the stratum in Example 9 is given by {c1, c2, c3, c4}.

stratum adjacent to Sys(C).

Let c∗1 be a curve that intersects c1 but is disjoint from every curve in the set C∖{c1}.

For c1 ∈ C, denote by V the vector field of unit length in the direction in which the twist
parameter around c∗1 is increasing, and suppose Xϵ is any vector field constructed as in the
previous section. Also recalling the partition of unity in the previous section, define λ to be∑

λC′ where the sum is taken over all subsets C ′ of C∖{c1}. As U{c2,c3,c4} is open in Tg,
there are points in U{c2,c3,c4} at which ∇L(c1) has nonzero projection onto V . If there is a
point x at which L(c1) is increasing in the direction of V , define X ′

ϵ = Xϵ + rλV , where
r ∈ R+ is chosen large enough to ensure that in a neighbourhood of x, L(c1) is increasing in
the direction of X ′

ϵ faster than the lengths of any of the other curves in C. If there is no point
x in U{c2,c3,c4} at which L(c1) is increasing in the direction of V , define X ′

ϵ = Xϵ−rλV , where
r ∈ R+ is chosen large enough to ensure that in a neighbourhood of x, L(c1) is increasing in
the direction of X ′

ϵ faster than the lengths of any of the other curves in C.

Since the lengths of the curves C∖{c1} are stationary along V , the vector field X ′
ϵ increases

both fsys and the difference in length between the curves {c2, c3, c4} and c1, increasing ϵ in
the definition of Pg,ϵ. Moreover, the zeros of X ′

ϵ coincide with the zeros of Xϵ. The vector
field X ′

ϵ is mapping class group-equivariant whenever r ∈ R+ is chosen consistently.
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