
KHOVANOV HOMOLOGY AND 4-MANIFOLDS

CIPRIAN MANOLESCU

Abstract. We start by defining Khovanov homology and the Rasmussen knot invariant.
We will then explore a few topological applications of the Rasmussen invariant: bounds
on the slice genus of knots (including the Milnor conjecture), and the construction of an
exotic R4. We will then move on to potential constructions of exotic 4-spheres, and to
generalizations of the Rasmussen invariant to knots in other 3-manifolds. Finally, we will
discuss the skein lasagna module, which is an invariant of knots in the boundary of an
arbitrary 4-manifold. By recent work of Ren and Willis, this can detect exotic smooth
structures on some compact 4-manifolds with boundary.
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1. Khovanov homology

Smooth four-manifolds are usually studied using invariants from gauge theory, i.e. some
partial differential equations coming from physics (e.g. ASD Yang-Mills, Seiberg-Witten).
In contrast, Khovanov homology [Kho00] is an intrinsically “combinatorial” invariant of
knots. Nevertheless, it has several four-dimensional applications, among which we mention
the following:

• A new proof of the Milnor conjecture (Rasmussen)
• Existence of exotic R4s (Rasmussen-Gompf)
• A possible approach to disprove the smooth 4-dimensional Poincaré conjecture.

1.1. Definition of Khovanov homology. We work with an oriented link L ⊂ S3, with
planar diagram D ⊂ R2. Recall that Reidemeister moves of link diagrams characterise
isotopy of links.

Proposition 1.1. The outline of Khovanov homology is as follows:

(1) For each link diagram D, there is a corresponding cochain complex

D ⇝ C(D) =
⊕
i,j∈Z

Ci,j(D).

This is equipped with boundary maps

d : Ci,j(D)→ Ci+1,j(D), d2 = 0.

(2) We see that the index i gives the homological grading. On the other hand, the index
j defines the “quantum” or “Jones” grading.

(3) The Khovanov homology is defined by

Kh•,•(L) = H•,•(C(D)) =
⊕
i,j

Khi,j(L).

We show that this is invariant under Reidemeister moves, and hence an invariant of
L.

Remark 1.2. In Russian, Khovanov is pronounced a little more like Hovanov. (Technically
the kh is a voiceless velar fricative.) On the other hand, we see above that our theory should
really be called a cohomology theory rather than a homology theory. Therefore it would be
more correct for our theory to be

Hovanov Khomology.

Why do we call the j index the “Jones” index? Given a chain complex, its Euler charac-
teristic is defined to be

χ(H•(C)) =
∑
i

(−1)i rkH i(C).

For a bigraded complex, we modify this definition to obtain a Laurent polynomial. In
particular, for the Khovanov homology,

χ(Kh•,•(L)) =
∑
i,j

(−1)iqj rkKhi,j(L) = J̃L(q) ∈ Z[q, q−1].

Remarkably, this Euler characteristic is an “unnormalised Jones polynomial”:

J̃L(q) = (q + q−1)JL(q
2), for JL(t) the Jones polynomial.
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Definition 1.3. The Jones polynomial is the polynomial invariant that transformed knot
theory, characterised by the following skein relations:

• J0(t) = 1.

• t−1JL+(t)− tJL−(t) = (t1/2 − t−1/2)JL0(t).

Here L+, L−, and L0 correspond to the same link with a single crossing modified: L+ has
the positive oriented crossing, L− the negative crossing, and L0 the un-crossing.

Exercise 1.4. Prove that the the trefoil knot has Jones polynomial

J31(t) = t+ t3 − t4.

Therefore J̃31(q) = (q + q−1)(q2 + q6 − q8) = q + q3 + q5 − q9.

It turns out the Khovanov homology of the trefoil can be described as in the following
table:

j
i

0 1 2 3 χ

9 Z -1
7 Z/2Z 0
5 Z 1
3 Z 1
1 Z 1

reading the Euler characteristic off the table, it is clear that we recover

χ(Kh•,•(31)) = q + q3 + q5 − q9

as required.
Before proceeding further, we establish some notation. Hereafter M will denote a graded

abelian group. (Think: Jones grading.) To shift the grading up by ℓ, we write M{ℓ}.
Now consider a cochain complex C0 → C1 → C2 → · · · . (Think: homological grading.)

Then C[s] corresponds to shifting this grading up by s. That is,

C[s]k = Ck−s.

Note that this convention is the opposite of some sources. We follow [BN02].

Definition 1.5. We now define the modules in the Khovanov complex. (The boundary
maps will come later.)

(1) Let D be an oriented link diagram, with n crossings. Then each crossing is either
positive or negative - we write n = n+ + n− where n+ is the number of positive
crossings, and n− the negative crossings.

(2) Regardless of orientation, any crossing can be resolved in exactly two ways:

0−−−→ 1−−−→ .

The resolutions are labelled 0 or 1 depending on the choice. Our diagramD can have
all crossings resolved in 2n ways, each resolution corresponding to some α ∈ {0, 1}n.
This is called the cube of resolutions. The resolution of D corresponding to α is
denoted by Dα.

(3) Any two resolutions that differ by one choice (e.g. (0, 0, 1, 0, 1) and (0, 0, 0, 0, 1))
have an edge between them. These are formally ξ ∈ {0, 1, ∗}n, with

ξ = (ξ1, . . . , ξn), ξj = ∗ for a unique j.
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In the above example, the edge would be

ξ = (0, 0, ∗, 0, 1).

(4) Define V = Z⊕ Z, spanned by v+ and v−. Any α ∈ {0, 1}n determines a module,

Vα(D) = V ⊗k{|α|}, |α| =
∑
αi

, k = # circles in Dα.

Moreover, each v± has Jones grading ±1. (Thus v+ ⊗ v+ has Jones grading 2, and
so on.)

(5) A pre-shifted complex is defined by [|D|]r =
⊕

α,|α|=r Vα(D). The Khovanov com-

plex is defined by shifting this complex:

C•,•(D) = ([|D|]•[−n−]{n+ − 2n−}, d).

(Of course we have yet to define the boundary map d.)

Definition 1.6. Now with the “objects” of the Khovanov complex defined, we define the
maps.

(1) Every edge in the cube of resolutions (oriented from |α| to |α| + 1) joins two res-
olutions whose number of components differs by 1. If the number of components
decreases, the map is of type m:

m :


v+ ⊗ v+ 7→ v+

v+ ⊗ v− 7→ v−

v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ 0.

If the number of components increases, the map is of type ∆:

m :

{
v+ 7→ v− ⊗ v+ + v+ ⊗ v−

v− 7→ v− ⊗ v−.

This defines the boundary map on two components, and on the rest the map is
defined to be the identity. This gives dξ for each edge ξ.

(2) Define (−1)ξ = (−1)
∑

i<j ξi , where j is the location of ∗ in ξ. For example, ∗00⇝ 1,
1 ∗ 1⇝ −1.

(3) The differential dr of the complex is defined by

dr =
∑

ξ starts at α,|α|=r

(−1)ξdξ.

1.2. Khovanov example: the right-handed trefoil.

Example 1. As an example, we work through the trefoil knot. We first determine the cube
of resolutions in terms of diagrams (figure 1) and then the actual maps (figure 2). Based
on this information, the bigraded complex forms the following table.
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Figure 1. Cube of resolutions of the trefoil in terms of diagrams.

Figure 2. Khovanov complex of the trefoil.

j
i

0 1 2 3

9 v+ ⊗ v+ ⊗ v+
v+ ⊗ v+ v+ ⊗ v+ ⊗ v−

7 v′+ ⊗ v′+ v+ ⊗ v− ⊗ v+
v′′+ ⊗ v′′+ v− ⊗ v+ ⊗ v+

v+ v+ ⊗ v−, v− ⊗ v+ v+ ⊗ v− ⊗ v−
5 v+ ⊗ v+ v′+ v′+ ⊗ v′−, v

′
− ⊗ v′+ v− ⊗ v+ ⊗ v−

v′′+ v′′+ ⊗ v′′−, v
′′
− ⊗ v′′+ v− ⊗ v− ⊗ v+

v− v− ⊗ v−
3 v+ ⊗ v−, v− ⊗ v+ v′− v′− ⊗ v′− v− ⊗ v− ⊗ v−

v′′− v′′− ⊗ v′′−
1 v− ⊗ v−
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Based on the above table and maps, we can compute homology groups. For example,

Kh3,9(31) = Kh0,1(31) = Z, Khs,9(31) = Kht,1(31) = 0, s ̸= 3, t ̸= 0.

These are immediate, since all boundary maps in the j = 1 and j = 9 gradings are trivial.
We do not provide all calculations here, but we now determine the homology for the j = 7
grading. The potentially non-trivial homology occurs in the (2, 7) and (3, 7) cells, where we
have a sequence isomorphic to

· · · → 0→ Z3 d−→ Z3 → 0→ · · · .
To determine the map d, we refer back to figure 2. Since each map is ∆, by also referring
to the signs, we find the following:

v+ ⊗ v+ 7→ v+ ⊗ v+ ⊗ v− + v+ ⊗ v− ⊗ v+

v′+ ⊗ v′+ 7→ v+ ⊗ v+ ⊗ v− + v− ⊗ v+ ⊗ v+

v′′+ ⊗ v′′+ 7→ −v+ ⊗ v− ⊗ v+ − v− ⊗ v+ ⊗ v+.

Expressing this as a matrix, we have

d =

1 1 0
1 0 −1
0 1 −1

 ∼
1 0 0
0 1 0
0 0 2

 .

The second matrix is the Smith normal form of the matrix representing d. Using this change
of basis, we have a sequence

· · · → 0→ Z2 ⊕ Z
idZ2⊕2
−−−−→ Z2 ⊕ Z→ 0→ · · · .

Therefore the homology can be read off as

Kh2,7(31) = 0, Kh3,7(31) = Z/2Z.
Computing the rest of the table, we find that the Khovanov homology of the trefoil is as
follows.

Khovanov homology of 31

j
i

0 1 2 3

9 Z
7 Z/2Z
5 Z
3 Z
1 Z

Proposition 1.7. The Khovanov complex is genuinely a complex, that is, d2 = 0.

Exercise 1.8. Prove the above proposition by a case-by-case analysis.

Exercise 1.9. Compute the Khovanov homology of the Hopf link.

Exercise 1.10. Show that the Euler characteristic of Khovanov homology is the Jones
polynomial.

Exercise 1.11. Show that links with an odd number of components can only have non-
trivial Khovanov homology in the odd Jones degrees, while links with even components can
only have non-trivial homology in the even degrees.
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1.3. Isotopy invariance of Khovanov homology. We have established that the Kho-
vanov homology is truly a homology theory, but it has not yet been shown to be independent
of the choice of diagram (of a given link). We must show that it is invariant under Reide-
meister moves. We make use of the following lemma extensively (but first we need some
definitions).

Definition 1.12. Let (C, d) be a complex, and C ′ ⊂ C a subcomplex. This means that
d(C ′) ⊂ C ′. This also gives rise to a quotient complex, C/C ′. We then obtain a short exact
sequence

0→ C ′ → C → C/C ′ → 0

of complexes, which induces the usual long exact sequence on (co)homology

· · · → H i(C ′)→ H i(C)→ H i(C/C ′)→ H i+1(C ′)→ · · · .

Lemma 1.13. If C ′ is acyclic, i.e. if H∗(C ′) = 0, then H∗(C) ∼= H∗(C/C ′). Similarly if
H∗(C/C ′) = 0, then H∗(C ′) ∼= H∗(C).

This this notation established, we are ready to prove invariance under Reidemeister
moves. Invariance under those of types 2 and 3 are left as an exercise, but we prove
invariance of Khovanov homology under type 1 Reidemeister moves.

Proposition 1.14. Khovanov homology is invariant under type 1 Reidemeister moves.

Proof. Let D be a diagram with a crossing x that can be removed by a type 1 Reidemeister
move. Write [|D|] to denote the pre-shifted Khovanov complex of D. This factors as

C = [|D0|]
m−→ [|D1|]{1}

where [|D0|] is a subcomplex which consists of all diagrams where x has a 0 resolution, and
[|D1|] the subcomplex corresponding to x having the 1 resolution. Note that each diagram
(vertex) in [|D0|] has an additional component L coming from the 0 resolution of x. On the
other hand, the 1 resolution at x corresponds exactly to the type 1 Reidemeister move at x,
so that [|D1|] is exactly the pre-shifted complex of D after applying a type 1 Reidemeister
move.

The component L contributes two free elements v+ and v−. Consider the subcomplex C ′

of C, where the space associated to L is restricted to the span of v+. Since the map m is
defined by

m : v+ ⊗ w 7→ w,

we have an isomorphism

C ′ = [|D0|]v+ at L
m,∼=−−→ [|D1|]{1}.

The quotient complex C/C ′ is then given by

C/C ′ = [|D0|]v− at L
m−→ 0.

But [|D0|]v− at L is isomorphic to [|D′|]{−1}, where D′ is D after the type 1 Reidemeister
move has been applied. The shift {−1} is to cancel the change in grading due to D′ having
one fewer crossing. But now by the previous lemma,

Kh(D) = [|D|]{n+ − 2n−} = [|D0|]v− at L{n+ − 2n−} = [|D′|]{n+ − 2n− − 1} = Kh(D′).

□
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Proposition 1.15. The Khovanov homology is invariant under type 2 and type 3 Reide-
meister moves.

Proof. These follow a similar argument. Details can be found in [BN02]. □

2. Lee homology and the Rasmussen invariant

2.1. Generalising Khovanov homology: TQFTs. Recall that any crossing in a link
diagram can be resolved in two ways, giving either the 0 resolution or 1 resolution. If a link
diagram is oriented, there is a unique way to resolve each crossing so that it agrees with
the orientation.

Given a link diagram D with c components, there are 2c possible orientations O, each
with a unique resolution DO.

Following [Kho06], let us explore the core of the invariance proofs to better understand
Khovanov homology. A seemingly arbitrary choice was that each component of a resolution
was associated to Z⊕ Z, and the maps m and ∆ were not motivated either.

We now attempt to better understand the underlying ingredients of Khovanov homology,
independent of the choices.

(1) The spaces were direct sums and tensor products of V = Z ⊕ Z. These had maps
m : V ⊗ V → V , and ∆ : V → V ⊗ V .

(2) 1 ∈ V is a unit for m, and ε : V → Z defined by ε(v+) = 0 and ε(v−) = 1 is a counit
for ∆.

(3) The map m itself is a commutative associative multiplication. ∆ is a cocommutative
coassociative comultiplication.

(4) The maps satisfy the Frobenius law, ∆ ◦m = (m⊗ 1) ◦ (1⊗∆).

These are exactly the ingredients of a commutative Frobenius algebra.

Proposition 2.1. ([Kho06]) To obtain a homological invariant of knots like Khovanov
homology, we need V a commutative Frobenius algebra, free of rank 2.

Exercise 2.2. Explain why the rank 2 condition is necessary.

The easiest way to think about commutative Frobenius algebras is to consider (1+1)-
dimensional topological quantum field theories (TQFTs).

Theorem 2.3. There is an equivalence of groupoids

{TQFTs 2Cob→ Vectk} ←→ comFrobk.

We do not give a formal proof, but describe (1+1) dimensional TQFTs (i.e. functors
2Cob → Vectk), and give examples of how they correspond to commutative frobenius
algebras.

Remark 2.4. Here we describe TQFTs as functors into vector spaces, but in our context
they are abelian groups.

Definition 2.5. The category 2Cob consists of (1+1) dimensional cobordisms. That is,
the objects are closed one-manifolds (disjoint unions of circles), and the morphisms are
cobordisms between them.

Definition 2.6. Vectk is the category of vector spaces over a field k. A (1+1) dimensional
TQFT is a functor that sends a 1-manifold to a vector space, and a cobordism to a homo-
morphism between them. Moreover, these respect the monoidal (tensor product) structure:
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for X,Y 1-manifolds,

Z(X ⊔ Y ) = Z(X)⊗ Z(Y ).

The following table describes the four generators of 2Cob, and how they correspond to
maps in a Frobenius algebra.

M Z(M) Interpretation

1 : k → A unit

m : A⊗A→ A multiplication

ε : A→ k counit

∆ : A→ A⊗A comultiplication

Properties such as associativity, commutativity, and the Frobenius law can all be verified
by using the classification of surfaces. We give one example here:

idA = Z
( )

= Z




= Z


 ◦ Z




= m ◦ (1⊗ idA).

Example 2. Khovanov homology can be expressed in a perhaps more intuitive form by
using the perspective of Frobenius algebras. Write

V = Z[x]/(x2).

Define m : V ⊗ V → V to be the usual product on Z[x]/(x2). 1 is of course a unit. The
map ∆ : V → V ⊗ V defined by

∆(1) = 1⊗ x+ x⊗ 1, ∆(x) = x⊗ x

is a comultiplication, and ε : V → Z defined by

ε(1) = 0, ε(x) = 1

is a counit. This defines the Khovanov homology with the symbols v+ = 1 and v− = x.

Example 3. We can consider a deformation

V = Z[x]/(x2 − t),
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over the ring Z[t]. Let 1 and ε be as above, and m the usual multiplication on V . We define
a modified comultiplication maps as follows:

∆(1) = 1⊗ x+ x⊗ 1, ∆(x) = x⊗ x+ t(1⊗ 1).

This also defines a Frobenius algebra. With the notation v+, v−, the multiplication and
comultiplication maps can be written as

m :


v+ ⊗ v+ 7→ v+

v+ ⊗ v−, v− ⊗ v+ 7→ v−

v− ⊗ v− 7→ tv+

∆ :

{
v+ 7→ v+ ⊗ v− + v− ⊗ v+

v− 7→ v− ⊗ v− + tv+ ⊗ v+.

This gives rise to a complex C ′(D) of Z[t]-modules. When t = 0 this is the Khovanov
complex. When t = 1, this is the Lee complex, which we denote by CLee(D). See [Lee05].

The corresponding integral homology theories are denoted by Kh(K) and Lee(K), called
the Khovanov and Lee homologies respectively. We writeKh ′(K) to represent the Khovanov-
Lee homology over Z[t].

2.2. Lee homology and spectral sequences. At the end of the previous section we
introduced the Khovanov-Lee homology Kh ′(K), which is valued in Z[t]. Evaluation at 0
gives the Khovanov homology, and evaluation at 1 the Lee homology.

If C ′(D) is the Khovanov-Lee complex, the boundary maps can be written as

d+ tΦ : Ci(D)→ Ci+1(D)

where the tΦ term can be read off the modified definitions of m and ∆. Here d is the usual
Khovanov differential, which changes (i, j) by (1, 0). On the other hand, Φ changes (i, j)
by (1, 4). We have not only that d2 = 0, but also (d+Φ)2 = 0.

Observe that for any j, Cq≥j is closed under the action of (d+Φ). Therefore the Khovanov
complex has a filtration

· · ·Cq≥j ⊃ Cq≥j+1 ⊃ · · · .
A filtered complex is exactly what gives rise to a Spectral sequence.

Definition 2.7. A spectral sequence is a collection of pages. I.e. a collection of complexes
(Er, dr), where dr ◦ dr = 0, and Er+1 = H•(Er, dr).

Example 4. In our context, the filtration of the Lee complex gives a spectral sequence
with

E1 = (C•, d),

E2 = (H•(E1),Φ∗) = (Kh(K),Φ∗),

⇒ E∞ = H•(C, d+Φ) = Lee(K).

The important result being used is that every filtered complex gives a spectral sequence
which converges to the homology of the original complex.

Example 5. Write Kh(K;Q) to denote Kh(K) ⊗Z Q. We write out some of the pages of
the rational spectral sequence corresponding to the trefoil knot.
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E1 page for 31

j

i
0 1 2 3

9 Q
7 Q3 Q3

5 Q Q3 Q6 Q3

3 Q2 Q3 Q3 Q
1 Q

E2 page for 31

j

i
0 1 2 3

9 Q
7

5 Q
3 Q
1 Q

E3 page for 31

j

i
0 1 2 3

9

7

5

3 Q
1 Q

E∞ page for 31

j

i
0 1 2 3

9

7

5

3 Q
1 Q

Observe that Lee(31) ∼= Q2 = Q2c where c is the number of components of the trefoil knot.
This is a general result.

Theorem 2.8. Lee(L;Q) ∼= Q2c, where c is the number of components of L.

Proof. To prove this, we define a new basis for V . Specifically, define a and b by

a = v+ + v−, b = v− − v+.

The Lee complex boundary maps are then induced by

m :


a⊗ a 7→ 2a

a⊗ b, b⊗ a 7→ 0

b⊗ b 7→ −2b
, ∆ :

{
a 7→ a⊗ a

b 7→ b⊗ b.

Claim: Lee(L) is generated by the “canonical generators” which we now construct.

(1) Let O be an orientation of a diagram D of L. (There are 2c choices of orientation).
(2) There is a unique resolution DO of D which is compatible with the orientation. This

is a disjoint union of circles.
(3) Let C ∈ DO. Define τ(C) ∈ Z/2Z to be the number of circles separating C from

infinity, plus 1 if C is oriented clockwise.
(4) Define gC = a if τ(C) = 0, and gC = b if τ(C) = 1. Define

SO =
⊗

C∈DO

gC .

The claim is that the SO (of which there are exactly 2c) are generators of Lee(L). We break
this proof into two pieces.

Lemma 2.9. The collection of SO forms an orthonormal set in Lee(D), so that dimLee(D) ≥
2c.
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We first note that if any two circles have the same label (either a or b) then they cannot
meet at a resolved vertex. It follows that each SO is a cycle, i.e. (d+Φ)SO = 0. Therefore
[SO] ∈ Lee(D).

Now that it has been established that these are all elements of Lee(D), we equip CLee(D)
with an inner product by declaring that the {a⊗ a⊗ b⊗ · · · } is an orthonormal basis. The
map d+Φ has an adjoint with respect to the inner product, namely

(d+Φ)∗ :



a⊗ a 7→ a

b⊗ b 7→ b

a 7→ 2a⊗ a

b 7→ −2b⊗ b

rest 7→ 0.

Then one can show that (d + Φ)∗SO = 0. But this implies that each SO descends to an
element of Lee(D) while preserving pairwise orthogonality, since

Lee(D) = H∗(SLee(D)) = ker(d+Φ)/ im(d+Φ) ∼= ker(d+Φ) ∩ ker(d+Φ)∗.

In summary this proves that dimLee(D) ≥ 2c.

Exercise 2.10. Verify that (d+Φ)∗SO = 0.

Lemma 2.11. In fact, dimLee(D) = 2c.

To see this, it remains to prove that dimLee(D) ≤ 2c. This follows from an induction on
the number of crossings of D. Let D0 and D1 be 0 and 1 resolutions of a single crossing x
in D. Then CLee(D1) ⊂ CLee(D) is a subcomplex. This gives rise to a long exact sequence

· · · → Lee(D1)→ Lee(D)→ Lee(D0)→ Lee(D1)→ · · · .

There are two cases to consider. First suppose the two strands crossing at x belong to
distinct components of D. Then D0 and D1 each have c − 1 components each. By the
inductive hypothesis,

dimLee(D0) = dimLee(D1) = 2c−1.

By the long exact sequence,

dimLee(D) ≤ dimLee(D0) + dimLee(D1) = 2c−1 + 2c−1 = 2c.

This proves the first case. For the second case, suppose the strands meeting at x belong to
the same component. Then one ofD0, D1 has c components, and the other c+1 components.
(Assume without loss of generality thatD0 has c components, andD1 has c+1 components.)
The induced map

Lee(D0)
i−→ Lee(D1)

is then injective. Therefore dimLee(D) = dim coker i = 2c. (The size of the cokernel can
be verified by showing that the canonical generators of Lee(D0) map to half of those of
Lee(D1).) The other case is formally dual, with a surjective map and so on.

This completes the proof that dimLee(D) = 2c. Therefore Lee(D) = Q2c . □
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2.3. Rasmussen’s s-invariant. Let K ⊂ S3 be a knot. The slice genus is the minimal
genus of a surface bound by K in a 4-ball:

gs(K) := min{g(Σ) : Σ ⊂ B4 properly smoothly embedded, ∂Σ = K.}

Theorem 2.12 (Milnor conjecture). Let K denote the p, q-torus knot, for p, q coprime.
Then gs(K) = (p− 1)(q − 1)/2.

• The original proof, due to Kronheimer and Mrowka in 1993, used Yang-Mills gauge
theory.
• Several years later, Kronheimer and Mrowka proved the result using Seiberg-Witten
gauge theory.
• In 2004, Rasmussen [Ras10] gave a “combinatorial” proof. This is what we’ll discuss
here.

Exercise 2.13. Show that the slice genus is a lower bound for the unknotting number (the
minimal number of crossing changes needed to turn a knot into the unknot).

Exercise 2.14. Show that the (p, q)-torus knot K can be unknotted in (p − 1)(q − 1)/2
moves.

Open question 1. Is there an algorithm that computes the slice genus of a knot starting
from a knot diagram?

For K = T (p, q), we have

gs(K) ≤ u(K) ≤ (p− 1)(q − 1)

2
.

On the other hand, today we introduce Rasmussen’s s-invariant s ∈ 2Z. We show that

(1) |s(K)| ≤ 2gs(K).
(2) s(K) = (p− 1)(q − 1).

Therefore by combining 1 and 2,

(p− 1)(q − 1)

2
=

s(K)

2
≤ gs(K).

This will prove the Milnor conjecture.
To give a definition of the s-invariant, we consider Khovanov and Lee homology with

rational coefficients. Recall that a diagram D for an arbitrary knot K determines a complex
(C(D), d) called the Khovanov complex. This in turn determines a homology theory which
is invariant under Reidemeister moves, which we call the Khovanov homology Kh(K). By
perturbing the boundary maps, we obtain a different complex (CLee(D), d + Φ) called the
Lee complex, and this also gives an invariant homology theory Lee(K). Moreover,

Kh(K)⇒ Lee(K) = Q⊕Q.

Although Lee(K) is almost trivial, the two surviving copies of Q have Jones (q) gradings.
Let smax ≥ smin be the Jones gradings of the two copies. Since K is a knot, smax, smin are
both odd. Moreover, the isomorphism type of the spectral sequence is an invariant of K,
so smax and smin are also invariants. It turns out that smax = smin + 2, so we define the
Rasmussen invariant to be

s(K) = smax(K)− 1 = smin(K) + 1 ∈ 2Z.
While this is the idea, we now give a formal definition of smax(K) and smin(K).



14 CIPRIAN MANOLESCU

Definition 2.15. Let D be a diagram of a knot K. Then CLee(D) has a filtration

CLee(D) ⊃ · · · ⊃ Cq≥j
Lee (D) ⊃ Cq≥j+1

Lee (D) ⊃ · · · ⊃ 0,

since the map d + Φ changes the bidegree (i, j) by (1, 0) (by d) and by (1, 4) (by Φ). For
each j, we define

Ij = im(H∗(Cq≥j
Lee (D)) ↪→ H∗(CLee(D))) ⊂ Lee(D).

Note that there exists some N so that we need only consider −N ≤ j ≤ N for j as above.
Then

Lee(D) = I−N ⊃ I−N+1 ⊃ · · · ⊃ IN = 0.

This induces a grading on Lee(D), by

Lee(D) =
⊕
j

Ij/Ij+1.

Now any class [x] in Lee(D) has a grading, namely

q([x]) = max{j : q(x) = j, x ∈ [x]}, q(x) = max{j : x ∈ Cq≥j
Lee (D)}.

In particular, we define

smax(K) = max{q([x]) : [x] ∈ Lee(K), [x] ̸= 0}, smin(K) = min{q([x]) : [x] ∈ Lee(K), [x] ̸= 0}.

Given these formal definitions of the invariants smin and smax, the definition of the Ras-
mussen invariant rests on the following result:

Proposition 2.16. Let K be a knot. Then smax(K) = smin(K) + 2.

Note that this justifies the definition of the Rasmussen invariant to be s(K) = smax−1 =
smin + 1.

Proof. The main idea of the proof is to study the two canonical generators SO and SO of
Lee(K) = Q⊕Q from the previous section. We use combinations of these to first show that
smax− smin ≡ 2 mod 4. (In particular, they differ by at least 2.) Whe they show that they
differ by at most 2, to obtain the desired equality.

First note that for a knotK, we already know that CLee is supported only in odd quantum
gradings. Define

CLee,even(D) = generated by elements with q = 1 mod 4

CLee,odd(D) = generated by elements with q = 3 mod 4

Note that d preserves the q grading while Φ changes it by 4, so d + Φ preserves q modulo
4. In particular, CLee(D) = CLee,even(D) ⊕ CLee,odd(D), where the direct summands are
preserved by d+Φ. It follows that

Lee(K) = Leeeven(K)⊕ Leeodd(K).

We now make use of this direct summand structure. Define ι : CLee(D) → CLee(D) to act
by 1 on CLee,even, and -1 on CLee,odd. Then any x ∈ CLee(D) decomposes as

x =
x+ ι(x)

2
+

x− ι(x)

2
,
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where the first term lives in CLee,even, and the second in CLee,odd. We further define i : V →
V by i(v−) = v− and i(v+) = −v+. Then ι = ±i⊗n. Moreover, setting a = v− + v+ and
b = v− − v+ as an alternative basis, we have i(a) = b and i(b) = a.

We now analyse SO and SO more closely. These actually arise from the same diagram!
Switching all orientations in a diagram and then resolving gives rise to the same resolution,
but with all orientations switched. Therefore

i([SO]) = ±[SO].

It follows that the canonical even/odd decomposition is given by

[SO] =
[SO] + [SO]

2
+

[SO]− [SO]

2
.

This proves that the two copies of Q in Lee(K) = Q ⊕ Q live in different gradings mod 4,
as required. That is,

smax − smin ≡ 2 mod 4.

In particular, smax is at least smin + 2.
Finally we show that smax is at most smin + 2. This follows from a similar calculation

as showing that the Khovanov homology is invariant under Reidemeister moves. Let D′

denote the diagram of K obtained by adding a crossing via a type 1 move. Then

CLee(D
′) =

(
CLee(D ⊔ 0)→ CLee(D)

)
.

This can expressed as the short exact sequence

0→ CLee(D)→ CLee(D
′)→ CLee(D ⊔ 01)→ 0

which induces a long exact sequence in homology

· · · → Lee(K)→ Lee(K)→ Lee(K ⊔ 01)
∂−→ Lee(K)→ · · ·

where Lee(K ⊔ 01) ∼= Lee(K)⊗ V . Depending on labels near the crossing x of D′ obtained
from the type 1 move, we denote the two canonical generators of CLee(D) by sa and sb.
Without loss of generality, q(sa − sb) = smax, and q(sa + sb) = smin. One can verify that

∂([sa − sb]⊗ [a]) = [sa],

from which it follows that

smax − 1 = q([sa − sb]⊗ [a]) ≤ q([sa]) + 1 = smin + 1.

Therefore smax ≤ smin + 2 as required. Earlier we established that smax ≥ smin + 2, so this
completes the proof that smax = smin + 2. □

In summary the Rasumussen s-invariant is well defined.

Exercise 2.17. If m(K) is the mirror of a knot K, show that s(m(K)) = −s(K).

3. Applications

3.1. The s-invariant bounds the slice genus. Recall that the proof strategy for proving
Milnor’s conjecture is two establish the following two facts:

(1) |s(K)| ≤ 2gs(K).
(2) s(K) = (p− 1)(q − 1).

We now prove the first of these.

Proposition 3.1. For a knot K, |s(K)| ≤ 2gs(K).
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Proof. The idea is to use the functoriality of Khovanov-homology under link cobordisms.
Let L0 and L1 be links, with Σ ⊂ R3 × [0, 1] a cobordism between them. We induce maps
FΣ : Kh(L0)→ Kh(L1), and FΣ,Lee : Lee(L0)→ Lee(L1) and use their properties.

By Morse theory, Σ splits into building blocks with one critical point each, of indices 0,1,
or 2. (These are with respect to the height function π : Σ→ [0, 1].) If D0 is a diagram for
L0, and D1 a diagram for L1, then D0 and D1 must be related by a sequence of Reidemeister
moves and Morse moves. By a Morse move, we mean the change in level set as we pass a
critical point. Explicitly,

• Passing an index 0 critical point corresponds to taking a disjoint union with an
unknot.
• Passing an index 1 critical point corresponds to locally swapping two horizontal arcs
with two vertical arcs or vice versa.
• Passing an index 2 critical point corresponds to destroying a disjoint unknot.

Therefore to define a map FΣ : Kh(L0) → Kh(L1) we must define maps corresponding
to each Reidemeister or Morse move, and glue them together. We must then verify that
the map FΣ is an invariant of Σ, that is, it must not depend on the choice of Morse
function/decomposition.

Explicitly, to each move, we associate the following maps:

• For each Reidemeister move Di to Di+1, there is a canonical isomorphism Fi :
Kh(Di) → Kh(Di+1) as used in the proof of the well-definedness of Khovanov ho-
mology.
• For an index 0 Morse move Di to Di+1 = Di ⊔ 01, define Fi : Kh(Di)→ Kh(Di+1)
to send 1 7→ v+ on the 01 component, and the identity elsewhere.
• For an index 1 Morse move Di to Di+1, define Fi to be m or ∆ at the location of
the move depending on the change in the number of components, and the identity
elsewhere.
• For an index 2 Morse move Di to Di+1, define Fi to send v− to 1 and v+ to 0 at the
location of the move, and the identity elsewhere.

If D1, . . . , Dn are a sequence of diagrams from L0 to L1, the composition of the Fi defines
the map FΣ : Kh(L0)→ Kh(L1). We claim without proof that the map FΣ is well defined
up to sign as an invariant of Σ. That is, the map does not depend on the decomposition
of Σ. (This is a theorem of Khovanov and Jacobsson.) Note that this fact is not actually
needed for the proof!

A similar construction works for the Lee homology! We obtain maps FΣ,Lee : Lee(L0)→
Lee(L1) as well.

Suppose Σ is an oriented cobordism from L0 to L1, such that every component of Σ has
a boundary component on L0. Then by verifying each Reidemeister and Morse move, one
can show that FΣ,Lee([SO|L0

]) is a non-zero multiple of [SO|L1
], where O is an orientation

of Σ. This means that if Σ is a connected cobordism between knots K0 and K1, then
FΣ,Lee : Q⊕Q→ Q⊕Q is an isomorphism.

Suppose Σ has genus g = gs(K) for a knot K. Then removing a disk D, Σ′ = Σ−D is a
genus g cobordism from K to the unknot. Now FΣ and FΣ,Lee are maps from Khovanov and
Lee homologies of K to that of the unknot. How do they change the quantum gradings?
Observe that Reidemeister moves leaves q invariant, while Morse moves of index 0 and 2
change q by +1, and Morse moves of index 1 change q by −1. Therefore FΣ changes q by
χ(Σ′), and FΣ,Lee by at least χ(Σ′).
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Let x ∈ Lee(K)− {0} be a class attaining q(x) = smax = s+ 1. Then

1 ≥ q(FΣ′(x)) ≥ q(x) + χ(Σ′) = s+ 1− 2gs(K).

The first inequality is because FΣ′(x) lives in Lee(01). Therefore

s ≤ 2gs(K)

as required.
Finally for the general result, consider the mirror K of K. This bounds a surface Σ with

the same genus as Σ. But now s(K) = −s(K), so

−s(K) ≤ 2g = 2gs(K).

Combining this with the previous result, we can bound gs(K) below by |s(K)|/2 as required.
□

Exercise 3.2. Suppose Σ is an oriented cobordism from L0 to L1, such that every component
of Σ has a boundary component on L0. Show that FΣ,Lee([SO|L0

]) is a non-zero multiple of

[SO|L1
], where O is an orientation of Σ.

3.2. Combinatorial proof of Milnor’s conjecture. In the previous section we defined
the Rasmussen s-invariant for knots, and showed that it satisfies

|s(K)| ≤ 2gs(K).

Today we show that s(Tp,q) = (p− 1)(q − 1). This will be a special case of the calculation
of s for positive knots.

Definition 3.3. A knot K is positive if it has an oriented diagram with only positive
crossings.

For example, a torus knot is a positive knot.
If D is a positive diagram of a positive knot, then its oriented resolution D0 is in fact the

zero resolution! Our final result needed to prove the Milnor conjecture is the following:

Proposition 3.4. If K has a positive diagram D with n crossings, and D0 consists of k
circles (components), then s(K) = n+ 1− k.

Proof. Recall that the s-invariant has the explicit formula

s(K) = s =
q([SO] + [SO]) + q([SO]− [SO])

2
.

Here one of [SO]± [SO] has degree s+ 1, and the other has degree s− 1. Moreover,

q([SO]) = q([SO]) = s− 1.

Explicitly, the left side is defined to be

q([SO]) = max{q(x) : x is homologous to SO} = max{q(x) : x = SO + dα}.
But SO lives in the lowest homological grading (since our resolution D0 is the zero resolu-
tion). Therefore there is no non-trivial α that can map to dα, i.e. there is a unique class
homologous to SO. Hence

q([SO]) = q(SO), SO = (v+ ± v−)⊗ (v+ ± v−)⊗ · · · .
The expression on the right has k factors. But this necessarily lies in the same quantum
grading as ⊗kv−. Therefore by the definition of the Khovanov homology,

q(SO) = −k + (n+ − 2n−) = n− k = s− 1.
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The claimed result follows. □

Example 6. The standard diagram of the torus knot Tp,q consists of p(q − 1) positive
crossings, and its 0 resolution consists of q circles. Therefore s(Tp,q) = p(q − 1) − q + 1 =
(p− 1)(q − 1).

We can now pull together a proof of Milnor’s conjecture using just Rasmussen’s s-
invariant.

Proposition 3.5. The slice genus of the torus knot Tp,q is

gs(Tp,q) =
(p− 1)(q − 1)

2
.

Proof. The standard diagram can me unknotted in (p− 1)(q − 1)/2 moves, giving

gs(Tp,q) ≤ u(Tp,q) ≤
(p− 1)(q − 1)

2
.

Conversely, the Rasmussen s-invariant gives

(p− 1)(q − 1)

2
=

s(Tp,q)

2
≤ 2gs(Tp,q)

2
= gs(Tp,q).

Therefore we have equality as required. □

3.3. Combinatorial proof of the existence of exotic R4s. Another application of Kho-
vanov homology is that it gives a novel proof of the existence of exotic smooth structures
on R4, without requiring any gauge theory. More concretely, our proof outline is as follows:

(1) Use Rasmussen’s s invariant together with a result of Freedman to find knots that
are topologically slice but not slice.

(2) Introduce the trace embedding lemma.
(3) Use the trace embedding lemma with manifolds obtained from a knot as in 1 to con-

struct an open manifold which is homeomorphic to R4 but cannot be diffeomorphic
to it. A result of Freedman states that all open 4-manifolds admit admit smooth
structures, so it must then be an exotic R4.

We now carry out the details. First we introduce relevant definitions and results to establish
point 1.

Definition 3.6. A knot K is slice (or smoothly slice) if gs(K) = 0. That is, if there exists
a smooth properly embedded disk D ⊂ B4 such that ∂D = K ⊂ S3.

By replacing the notion of a smooth embedding with a topological embedding, we obtain
a weaker condition.

Definition 3.7. A knot K is topologically slice if there exists a locally flat topologically
embedded disk D ⊂ B4 such that ∂D = K ∈ S3. This means that there is a topological
embedding φ : (D2 ×D2, ∂D2 ×D2) → (B4, ∂B4 = S3) such that φ(∂D2 × 0) = K. Then
φ(D2 × 0) is a topologically embedded disk which is locally flat.

Remark 3.8. The local flatness condition is necessary to obtain an “interesting” definition:
without this assumption, all knots would be topologically slice by taking the embedded disk
to be a cone over the knot.

We now use the following theorem of Freedman to establish the existence of topologically
slice knots which aren’t slice:
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Theorem 3.9. If ∆K(t) = 1, then K is topologically slice.

Here ∆ is the Alexander polynomial. One method of proliferating knots with trivial
Alexander polynomials is to take the Whitehead double Wh(K) of a knot K.

Exercise 3.10. Show that ∆Wh(K)(t) = 1 for any K.

In particular,
∆Wh(T2,3) = 1.

However, we can also compute the s-invariant for any given knot - this particular knot
satisfies s(Wh(T2,3)) = 2. Since s/2 is a lower bound for the slice genus, we know that
gs(Wh(T2,3)) ≥ 1. Therefore Wh(T2,3) is not slice, despite being topologically slice!

Remark 3.11. In fact, s(Wh(m(T2,3))) = 0. This is because the “clasp” in the Whitehead
double is not mirrored, i.e. the Mirror of a Whitehead double is not the Whitehead double
of a mirror. In general, it is known that all Whitehead doubles of torus knots are not slice,
but such a result is not known for mirrors of torus knots!

Open question 2. Is Wh(m(T2,3)) slice?

The next ingredient in our proof of the existence of exotic smooth structures on R4 is the
trace embedding lemma. This relates the properties of being slice (or topologically slice) to
embeddings of “traces of 0 surgeries of knots”.

We establish some notation. Let K be a knot, and S3n(K) the manifold obtained by
n-surgery along K ⊂ S3. Let Xn(K) be the manifold obtained from B4 by attaching an
n-framed 2-handle along K. Then Xn(K) is called the trace of the n-surgery along K, and
satisfies ∂Xn(K) = S3n(K). Alternatively Xn(K) can be thought of a cobordism from S3 to
S30(K) (with the S3 end capped).

D2

K

B4

2-handle

Exercise 3.12. If K is the unknot, show that S30(K) = S1×S2, and X0(K) = (D2×S2)−B4.

The trace embedding lemma takes two forms for each notion of sliceness:

Proposition 3.13. K ⊂ S3 is (topologically) slice if and only if X0(K) embeds smoothly
(locally flat topologically) in S4.

We only prove the smooth case, as the locally flat case is similar.

Proof. ⇒. If K is slice, it bounds a disk D smoothly embedded in B4. One can verify that

S4 = X0(K) ⊔S30(K) (B
4 − int(nbhd(D))).

In particular, X0(K) embeds smoothly in S4.
⇐. We start by constructing an embedding F : S2 → X0(K), so that F (S2) is of the

form D ⊔K C where D is a smooth disk (and the core of the 2-handle of X0(K)) and C
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has a single cone point. By assumption, there is a smooth embedding i : X0(K) → S4.
Therefore we have an embedding i◦F : S2 → S4 which is smooth away from the cone point.
Removing a small ball around the cone point, the image of i ◦ F restricts to a smoothly
embedded disk in B4, whose boundary is K. □

The final step is to combine this result with the previous example of a non-slice topolog-
ically slice knot to construct an exotic R4.

Theorem 3.14. There exist exotic R4s.

Proof. Let K be a topologically slice knot which is not slice. Write

S4 = X0(K) ∪ (B4 − nbhd(D))

where D is a topologically flat disk, with boundary K. Define

Z = S4 − {x} − int(X0(K)) = R4 − int(X0(K)).

This is an open topological 4-manifold with boundary. A theorem of Freedman states that
all open 4-manifolds admit smooth structures, so we equip Z with a smooth structure. In
particular ∂Z is a smooth manifold.

On the other hand, we already know that ∂Z is homeomorphic to ∂X0(K), which is
homeomorphic to S30(K). In dimension 3, all topological manifolds admit a unique smooth
structure, so ∂Z is diffeomorphic to S30(K). Now define

R = Z ⊔φ X0(K)

where φ : ∂Z → S30(K) is a diffeomorphism. This is a smooth manifold, and by Mayer-
Vietoris and Seifert-van Kampen, can be shown to be homeomorphic to R4.

In particular, X0(K) embeds smoothly in R. Since K is not slice, X0(K) cannot embed
smoothly in R4. Therefore the smooth structure on R must be distinct from that on R4.
This completes the proof. □

3.4. The Conway knot is not slice. Up until 2018, it was known which knots with up
to 12 crossings are slice, with one exception: Conway’s knot C.

This is topologically slice, has s(C) = 0, and many other obstructions to sliceness vanish.
Piccirillo [Pic20] showed that Conway’s knot C is not slice by constructing a (much

larger) partner knot C ′ such that X0(C) = X0(C
′). Then, by the Trace Embedding Lemma,

C=slice ⇐⇒ C ′ = slice, but a computer calculation show that s(C ′) = 2 ̸= 0⇒ C ′ is not
slice. It follows that C is not slice.

No proof of her result is known using gauge theory.

Exercise 3.15. Look up the knot C ′ in [Pic20]. Learn how to use the program SnapPy to
draw the knot and get its PD or DT code. Then plug in this code into one of the programs
KnotTheory’ (from the Knot Atlas) or Dirk Schuetz’s KnotJob and compute Rasmussen’s
invariant for C ′.
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3.5. FGMW strategy to find exotic 4-spheres. In the proof of existence of exotic R4,
it was crucial that Z was open. This is because Freedman’s proof of the existence of smooth
structures (on an arbitrary manifold) works everywhere except for a single point. Can we
modify the approach to find exotic smooth structures of non-open manifolds? What about
shedding light on the following famous open problem:

Open question 3. (Smooth Poincaré conjecture in dimension 4) If a closed 4-manifold X
is homotopy equivalent to S4, then is it diffeomorphic to S4?

It is known that homotopy equivalent to S4 implies homeomorphic to S4 (by a result of
Freedman).

We now describe an equivalent formulation of the smooth Poincaré conjecture in 4 di-
mensions, and show how we can attempt to understand it using Khovanov homology as we
did above.

Proposition 3.16. The smooth Poincaré conjecture in dimension 4 (SPC4) is equivalent
to the statement that if W 4 is smooth with ∂W = S3 and W contractible, then W is
diffeomorphic to B4.

The equivalence is immediate. To get from S4 to W , simply remove a 4-ball, and to
get from W to S4, glue along a 3-sphere (since we know that the 3-dimensional Poincaré
conjecture holds).

The Freedman-Gompf-Morrison-Walker (FGMW) strategy [FGMW10] for disproving the
smooth Poincaré conjecture is as follows: find a knot K such that K bounds a smooth disk
in some W contractible with ∂W = S3, s(K) ̸= 0. Then K is not slice, so W ̸= B4. Thus
W is an exotic B4, which gives us an exotic S4.

Example 7. Suppose W has a handle decomposition with no 3-handles. The attaching
spheres of 2-handles are in fact knots in S3, and moreover bound smooth disks in W (specif-
ically the cores of the handles). Therefore if any of these K have non-trivial s-invariant, we
are done. So far all such K have had trivial s-invariant.

Remark 3.17. There are invariants similar to the s-invariant that arise from Seiberg-Witten
and Yang-Mills gauge theory, along with Floer homology theories. However, none of these
can distinguish between sliceness in B4 vs sliceness in homotopy B4s, so these cannot work
in a similar strategy.

Whether or not this strategy has a chance of working is an open question. More precisely,
the following problem is open:

Open question 4. Let K ⊂ S3 = ∂W 4. Suppose W is smooth and contractible. Suppose
Σ ↪→W is a smooth proper embedding, with ∂Σ = K. Do we necessarily have

|s(K)| ≤ 2g(Σ)?

This is of course true if W = B4. If it is true for all W as above, then the FGMW
strategy fails.

Is there any hope for the FGMW strategy? We could use the following result:

Proposition 3.18. Suppose K,K ′ are knots with S30(K) ∼= S30(K ′), but with K slice and
K ′ not slice. Then SPC4 is false.

Proof. Recall that S30(K) denotes the result of 0-surgery onK. The above result follows from
the trace embedding lemma, which we saw in the previous section. Let X0(K) and X0(K

′)



22 CIPRIAN MANOLESCU

denote the traces of 0-surgery along K and K ′ respectively. Then ∂X0(K) = ∂X0(K
′) as

smooth manifolds. On one hand, we know that

S4 = X0(K) ∪ (B4 − nbhd(D)),

where the union glues along the boundary. Therefore we can replace X0(K) with X0(K
′),

and consider
S′ = X0(K

′) ∪ (B4 − nbhd(D)).

From Mayer-Vietoris, Seifert-van Kampen, and the topological Poincaré conjecture, one can
show that S′ is homeomorphic to S4. However, since K ′ is not slice, it cannot be diffeo-
morphic to S4 (by the trace embedding lemma). Therefore S′ is an exotic S4, disproving
SPC4. □

So far such K and K ′ have not been found. However, it is worth noting that an analogue
of the FGMW strategy works in other 4-manifolds:

Theorem 3.19 (M.-Marengon-Piccirillo [MMP24], 2020). There exist smooth, closed, home-
omorphic four-manifolds X and X ′ and a knot K ⊂ S3 that bounds a null-homologous disk
in X \B4 but not in X ′ \B4.

For example, one can take

X = #3CP2#20CP2, X ′ = K3#CP2,

and K be the trefoil:
The proof of Theorem 3.19 uses gauge theory (the Seiberg-Witten equations).

Going back to the FGMW strategy in S4, here are some ways to construct pairs of knots
K,K ′ with the same 0-surgery:

• dualizable patterns (Akbulut, Lickorish, Brakes; 1977-80);
• annulus twisting (Osoinach, 2006);
• some satellites (Yasui, 2015).

The author and Piccirillo [MP23] give a general construction of all zero-surgery homeo-
morphisms ϕ : S3

0(K)→ S3
0(K

′) based on certain 3-component links called RBG links.
We will describe a special case.

Definition 3.20. A special RBG link is a 3-component link L = R∪B ∪G such that there
are isotopies

R ∪B ∼= R ∪ µR
∼= R ∪G

and R is r-framed such that the linking number l = lk(B,G) satisfies l = 0 or rl = 2. (Here,
µR is a meridian for R.)

Example:
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From a special RBG link L we obtain a knot KG by sliding G over R until no geometric
linking of B and G remains. Similarly, we obtain a knot KB by sliding B over R until no
geometric linking of B and G remains.

slide

r full
twists

Theorem 3.21 ([MP23]). If L is a (special) RBG link, there is an associated homeomor-
phism

ϕL : S3
0(KB)→ S3

0(KG).

An example:

slides and cancel

isotopy

slides and cancel

Goal: Find an example where KB is slice and s(KG) ̸= 0 (or vice versa). If V is the
complement of a slice disk for KB, then the homotopy 4-sphere

W = V ∪S3
0(K) (−X(KG))

would be exotic, and we would disprove SPC4.
Using a computer program, in [MP23] we studied a 6-parameter family consisting of 3375

special RBG links. We found no examples as above. In most cases, the knots in the same
pair have the same s-invariant.

However, in about 1% of cases, the s-invariants differ. In 5 of those examples, one knot
has s ̸= 0, and we could not immediately determine if the other knot was slice.
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Here is our family, where the boxes denote the number of full twists.

a

b
c

d e

f

a+ b

The resulting knots KB and KG are:

a

b
c

d e

f

a

b
c

d e

f

Here are 5 topologically slice knots, whose companions (with the same 0-surgery) have
s ̸= 0. If any of them had been slice, then SPC4 would have been false:
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However, Nakamura [Nak23] later showed they are not slice, and in fact that the s-
invariant cannot help disprove SPC4 using special RBG links where R is the unknot.

One can still hope to either:

• Consider other RBG links (e.g. special RBG links where R is a nontrivial knot) and
search for slice/non-slice pairs using the s invariant; or
• Consider special RBG links where R is the unknot, but distinguish them using
other invariants (e.g refined versions of the s-invariant from the Steenrod squares
on Khovanov homology, or from other knot homologies).

3.6. The FGMW strategy fails for Gluck twists. A popular way of constructing (po-
tentially exotic) homotopy 4-spheres is by a Gluck twist.

Definition 3.22. Let Σ ∼= S2 → B4 be an embedding. Then there is a neighbourhood N
of Σ diffeomorphic to S2 ×D2. The Gluck twist of B4 by Σ is

W = B4
Σ = (B4 −N) ⊔φ N

where φ : ∂N = S2 × S1 → S2 × S1 is the map

φ : (z, eiθ) 7→ (rotθ(z), e
iθ).

It is known that a Gluck twist of B4 is homeomorphic to B4, but not if it is diffeomorphic.

Definition 3.23. GΣ denotes the Gluck twist of S4 by an embedding Σ ↪→ S4, with S2 ∼= Σ.
By the following remark, there is no ambiguity in writing GΣ.

Remark 3.24. The diffeomorphism φ ∈ Aut(∂N) is a generator of π1(RP3) = π1(SO(3)) =
{S1 → rot(S2)} = Z/2Z. If two maps in Aut(∂N) are homotopic, they give the same Gluck
twists.

In the previous section we introduced the Freedman-Gompf-Morrison-Walker strategy to
disprove the smooth Poincaré conjecture. It is an open question whether or not the strategy
can be carried out. However, we now give a proof outline to show that the strategy fails for
Gluck twists.

Theorem 3.25 (Manolescu, Marengon, Sarkar, Willis [MMSW23]). The inequality |s(K)| ≤
2g(Σ) holds as above if W is a Gluck twist of B4.
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This means that if W is a smooth manifold homeomorphic to B4 obtained via a Gluck
twist, and K is a knot bounding a disk in W , we cannot show that K is not slice (and
hence W is not diffeomorphic to B4) by using the s-invariant. In other words, the FGMW
strategy fails for such W .

It is interesting that such a result can be proven, since we expect to only know information
about cylinders S3 × [0, 1] based on the definition of the Khovanov homology.

The proof outline for the MMSW theorem is as follows:

(1) Prove a special case with W = CP2 −B4.
(2) Prove a special case with W = CP2 −B4.
(3) Use Kirby diagrams to prove a result analogous to the “stable diffeomorphism”

classification of 4-manifolds. Concretely, we show that GΣ#CP2 is diffeomorphic to

CP2, and GΣ#CP2 is diffeomorphic to CP2.
(4) We combine the three results to prove the general result.

We now state and prove the first special case:

Proposition 3.26. Let W = CP2 − B4, and K ⊂ ∂W = S3. Let Σ ⊂ W be smoothly

properly embedded, with ∂Σ = K. Suppose [Σ] = 0 ∈ H2(W,∂W ) = H2(CP2) = Z. Then
s(K) ≤ 2g(Σ).

Proof. The goal is to reduce the problem further to a surface in a cylinder. In that case we
obtain a map corresponding to the surface.

Consider the data of W = CP2 − B4, K ⊂ ∂W = S3, and Σ ⊂ W smoothly properly
embedded, with ∂Σ = K and [Σ] = 0 ∈ H2(W,∂W ). Note that H2(W,∂W ) is generated by

[CP1].

Let N be a regular neighbourhood of CP1. Then ∂N = S3. Moreover, the “radial”

projection ∂N → CP1 ∼= S2 is the (negative) Hopf fibration. Decomposing along the
boundary of N , we then have

CP2 = N ⊔∂N (S3 × [0, 1]) ⊔∂W B4.

We also assume that [Σ] = 0 ∈ H2(W,∂W ). Therefore [Σ] · [CP1] = 0. That is, assuming

transversality, Σ and CP1 intersect at 2p points, p positively signed and p negatively signed.
Therefore Σ intersects N along 2p disks, and intersects ∂N along 2p circles. Each of these
circles is a fibre of the negative Hopf fibration mentioned above.

The collection of fibres forms a link Lp,p ⊂ S3 in the total space of the Hopf fibration. In
fact, this is a torus link T2p,2p with p strands oriented in one direction and p the other way.

One can define Rasmussen’s s-invariant for links rather than just knots. Recall that
dimLee(L) = 2ℓ where L has ℓ components, and Kh(L) ⇒ Lee(L). This time there are
many generators, but our link has a given orientation, so there exist canonical generators
SO and SO. We can define the s-invariant to be

s(L) =
q([SO] + [SO]) + q([SO]− [SO])

2
.

By the definition of Σ, its restriction to S3 × [0, 1] is a cobordism inside S3 × [0, 1] from K
to Lp,p, of genus g(Σ). By functoriality of the Khovanov homology under cobordisms (as in
Rasmussen’s proof of the Milnor conjecture), we find that

s(K)− 2g(Σ) + 1− 2p ≤ s(Lp,p).
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We can compute s(Lp,p). (This takes some work and is the main content of the paper by
MMSW; see Section 4.4 for more details), but these turn out to be 1 − 2p. Therefore the
inequality above gives the desired result. □

It is now straight forward to prove the result for CP2 instead of CP2. Explicitly, we have
the following proposition:

Proposition 3.27. Let W = CP2 − B4, and K ⊂ ∂W = S3. Let Σ ⊂ W be smoothly
properly embedded, with ∂Σ = K. Suppose [Σ] = 0 ∈ H2(W,∂W ) = H2(CP2) = Z. Then
−s(K) ≤ 2g(Σ).

Proof. This follows from Proposition 3.25 by working with the mirror of K. □

The final ingredient for proving the general theorem 3.25 is a result reminiscent of stable
diffeomorphisms.

Proposition 3.28. For any Σ ↪→ S4, GΣ#CP2 ∼= CP2, and GΣ#CP2 ∼= CP2, where GΣ is
the Gluck twist of S4 by Σ.

Proof. The proof makes use of Kirby diagrams. (If you are not familiar with Kirby calculus,
you can safely ignore it, as it is independent of the rest of the notes.) Given Σ ↪→ S4, we
can write Kirby diagrams for S4 and GΣ are as in figure 3 (where the component labelled
with a 0 is a 2-handle determined by Σ). We now briefly explain the origins of these Kirby

Figure 3. Kirby diagrams for S4 and GΣ.

diagrams. We can write

S4 = (S4 −N) ∪N, GΣ = (S4 −N) ⊔φ N,

where φ is the twisting map, and N is a regular neighbourhood of Σ. We now choose a
Morse function f : S4 → R such that N = f−1(−∞, 0], and let h : S2 → R be the standard
height function. Next let π : S2 ×D2 ∼= N → S2 be the usual projection map.

Finally we update f so that f |N is defined by

f |N (x, z) = (h ◦ π)(x, z) + |z|2.

The Kirby diagram for S4 shown in figure 3 is with respect to this Morse function f , and
applying a Gluck twist gives the diagram on the right.
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Next we prove using Kirby calculus that

GΣ#CP2 ∼= CP2#S4 ∼= CP2.

We use the above diagrams, making only local changes at the 0-framed 2 handle shown in
green. The proof is contained in figure 4. The proof of

GΣ#CP2 ∼= CP2#S4 ∼= CP2

is similar, and not included. □

Figure 4. Proof that GΣ#CP2 ∼= CP2#S4.

We now have all of the necessary ingredients to prove theorem 3.25 of MMSW (which we
repeat here for clarity).

Theorem 3.29 ([MMSW23]). Let K ⊂ S3 = ∂W , where W is obtained as a Gluck twist of
B4. Suppose Σ ↪→W is a smooth embedding, with ∂Σ = K. Then |s(K)| ≤ 2g(Σ).

Proof. Let W be a Gluck twist of B4, and Σ ⊂W such that ∂Σ = K. For some surface S,
we have W = GS −B4. By the above result, GS#CP2 = CP2, so in particular

W#CP2 = CP2 −B4.

By Proposition 3.27, it follows that

−s(K) ≤ 2g(Σ).

Moreover, we also know that GS#CP2 = CP2, from which it follows that W#CP2 =

CP2 −B4, so by Proposition 3.26,

s(K) ≤ 2g(Σ).
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Combining these two results, we find that

|s(K)| ≤ 2g(Σ)

as required. □

4. Extensions to other three-manifolds

4.1. Extensions of Khovanov homology. The original Khovanov homology is for links
in S3. It can be generalized to other 3-manifolds:

(1) Asaeda-Przytycki-Sikora (2004): for links in I-bundles over surfaces; in particular,
in S1×D2 (annular Khovanov homology) and in RP2×̃I = RP3 \{∗} (but only with
Z/2 coefficients);

(2) Manturov (2005): for virtual links;
(3) Rozansky (2010): for links in S1 × S2;
(4) Willis (2018): for links in #n(S1 × S2);
(5) Manturov (2006) and Gabrovšek (2018): for links in RP3, with Z coefficients;
(6) Morrison-Walker-Wedrich (2019): for links in any Y 3 = ∂X4, we have the skein

lasagna module S0(X;L). When X = B4, we recover Kh. This will be described in
more detail in Section 5.

4.2. Extensions of Rasmussen’s invariant. Here are some still for knots in S3:

(1) Mackaay-Turner-Vaz (2005): from the Bar-Natan deformation of Kh (over a field
characteristic p, for any prime p);

(2) Lobb (2010): from sl(N) link homology;
(3) Lipshitz-Sarkar (2012), Sarkar-Scaduto-Stoffregen (2019): using the Steenrod squares

from (even and odd) Khovanov stable homotopy;
(4) Sano-Sato (2022), Schütz (2022), Dunfield-Lipshitz-Schütz (2024), Lewark (2024):

from the deformations of (even and odd) Kh over Z;
There is also an extension of s to virtual knots, due to Dye-Kaestner-Kauffman (2014).
However, in the next few subsections we will not discuss any of the above. Rather, we

will focus on some generalizations of s to links in 3-manifolds other than S3.

4.3. In S1 × D2. Let A = S1 × I be the annulus. Khovanov homology for annular links
(K ⊂ A × I ∼= S1 ×D2) can be defined similarly to that for links in S3, except that now
we use projections onto the annulus (cf. Asaeda-Przytycki-Sikora). We now have two types
of circles in the resolutions: those that bound disks and those that go around the annulus.
By keeping track of the latter, we get a third grading on annular Khovanov homology.

In 2016, Grigsby-Licata-Wehrli [GLW17] computed the homology of its Lee deformation,
and defined a family of Rasmussen-type invariants

dt(K) ∈ R, t ∈ [0, 2],

such that dt = d2−t, d0 = d2 = s, and dt is piecewise linear. We denote by mt its right-hand
slope.

The invariants dt give bounds on the genus of knot cobordisms in I × S1 ×D2.
Furthermore, for closures σ̂ of braids σ ∈ Bn, they showed:

• If σ is quasi-positive, then mt(σ̂) = n for all t ∈ [0, 1).
• If mt(σ̂) = n for some t ∈ [0, 1), then σ is right-veering.
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4.4. In #rS1×S2. Rozansky [Roz10] defined Kh for links in S1×S2. This was generalized
to #r(S1 × S2) by Willis [Wil21]. We assume that [K] = 0 ∈ H1(M ;Z).

We represent a link K ⊂ #r(S1 × S2) by a diagram D as on the left. From here we get

a link D(k⃗) ⊂ S3 by inserting k⃗ = (k1, . . . , kr) full twists:

Then take the limit of Kh(D(k⃗)) as ki →∞, after suitable grading shifts.
Marengon-M.-Sarkar-Willis [MMSW23] computed the Lee deformation of this theory,

and defined an invariant s(K) for null-homologous K ⊂ #rS1 × S2. This gives bounds on
the genus of link cobordisms in I ×#rS1 × S2.

Moreover, denote by gS1×B3(K) the minimum genus of a surface Σ ⊂ ♮r(S1 × B3) with
∂Σ = K. We define gB2×S2(K) similarly, but using surfaces Σ ⊂ ♮r(B2 × S2). If K is a
knot, we have:

s(K)/2 ≤ gB2×S2(K), −s(−K)/2 ≤ gS1×B3(K).

In a roundabout way, s(K) for K ⊂ #rS1 × S2 can also be used to say something new
about the s-invariant of knots in S3. This is based on the following fact: if D is a diagram
of K with n+ positive crossings, then

s(K) = s(D(k⃗))

where k⃗ = (k, · · · , k) with k ≥
⌈
n++2

2

⌉
.

In particular, consider the null-homologous link Fp,p ⊂ S1 × S2, which is the union of 2p
fibers S1 × {xi}. It has a diagram with 0 crossings, so its s invariant is the same as that of
the (2p, 2p) balanced torus link Fp,p(1) ⊂ S3:

Using Hochschild homology, we computed s(Fp,p(1)) = s(Fp,p) = 1− 2p.

One application is a genus bound in #rCP2.
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S3

CP2 \B4

S2

K

Theorem 4.1 (MMSW, 2019). If a knot K ⊂ S3 bounds a null-homologous surface Σ ⊂
#rCP2 \B4, then s(K)/2 ≤ g(Σ).

Sketch of proof: A surface Σ ⊂ CP2 \ B4 intersects S2 = CP1 ⊂ CP2 in p positive and
p negative points. This gives a cobordism C ⊂ S3 × [0, 1] between K and the torus link

Fp,p(1): We then apply the genus bounds for surfaces in S3× [0, 1]. The case of #rCP2 \B4

is similar.

A more general genus bound in #rCP2: Ren [Ren24a] gave a more elementary proof
of the formula s(Fp,p(1)) = 1 − 2p, and in fact computed s for all torus links T (n,m),
equipped with any orientation (where p strands are oriented one way and q the other way):

s(T (n,m)p,q) = ( n
gcd(n,m) |p− q| − 1)( m

gcd(n,m) |p− q| − 1)− 2min(p, q).

A corollary is the general adjunction inequality:

Theorem 4.2 ([Ren24a]). If a knot K ⊂ S3 bounds a surface Σ ⊂ #rCP2 \B4, then

s(K) ≤ 1− χ(Σ)− [Σ]2 − |[Σ]|.

This is similar to the adjunction inequality for the τ invariant in Heegaard Floer homol-
ogy, previously proved by Ozsváth and Szabó (2003).

Open question 5. Does the adjunction inequality for the s-invariant hold for surfaces in

any negative-definite 4-manifold, instead of just #rCP2?

Theorem 4.2 has an application to k-sliceness, as follows.
Recall that the trace embedding lemma says that: a knot K ⊂ S3 is slice ⇐⇒ the trace

of 0-surgery X0(K) embeds in S4. Here, ∂X0(K) = S3
0(K). This was used by Piccirillo to

show that the Conway knot C is not slice, even though s(C) = 0, by finding a knot C ′ with
s(C ′) ̸= 0 and X0(C) = X0(C

′).
More generally, a knot K ⊂ S3 is called k-slice in a 4-manifold X if K bounds a disk

D ⊂ X \B4 such that [D]2 = −k.

Exercise 4.3. Prove a variant of the trace embedding lemma: K is k-slice iff −Xk(K)
smoothly embeds in X.

If a simply connected, closed 4-manifold has negative definite intersection form, it is

homeomorphic to #rCP2 for some r. Currently, there are no known examples of exotic

#rCP2.
Here is a variant of the FGMW strategy: In principle, one could attempt to find exotic

S4 (resp. exotic #rCP2) by exhibiting knots K,K ′ ⊂ S3 with S3
0(K) = S3

0(K
′) (resp.

S3
k(K) = S3

k(K
′)) such that K is slice (resp. k-slice in #rCP2) and K ′ is not.

As previously mentioned, M.-Piccirillo [MP23] studied a family of pairs of knots, where
the knots in each pair have the same 0-surgery. We found some examples of pairs (K,K ′)
where K ′ is not slice, and K was of unknown sliceness. Nakamura [Nak23] showed that
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those examples of K are not slice (and, in fact, not 0-slice in #rCP2), by using the null-

homologous adjunction inequality in #rCP2 and generalizing Piccirillo’s method.
Using Ren’s general adjunction inequality, Qin [Qin23] found new obstructions to knots

being k-slice in #rCP2.

4.5. In RP3. For links in RP3, we distinguish between class-0 links and class-1 links,
according to their homology class in H1(RP3;Z) = Z/2. In particular, we have the class-0
unknot U0 ⊂ R3 ⊂ RP3 and the class-1 unknot U1 = RP1 ⊂ RP3.

Note that RP3 \ ∗ is an I-bundle over RP2. We represent links through their projections
to RP2. The antipodal points on the boundary of the disk are identified to form RP2. For
example, this is a class-1 knot K1:

Using this kind of projections, Khovanov homology for links in RP3 was defined by
Asaeda-Przytycki-Sikora (2004) over Z/2, and by Manturov (2006) and Gabrovšek (2018)
over Z.

M.-Willis [MW23] construct a Lee deformation, and use it to define a Rasmussen-type
invariant s(K) forK ⊂ RP3. This bounds the genus of (oriented) link cobordisms in I×RP3.

In particular, if K ⊂ RP3 is a class-α knot, α ∈ {0, 1}, we define the slice genus gs(K) to
be the minimal genus of a compact, oriented cobordism Σ ⊂ I ×RP3 from K to the class-α
unknot Uα.

Theorem 4.4 ([MW23]). If K ⊂ RP3 is a knot, then |s(K)|/2 ≤ gs(K).

Theorem 4.5 ([MW23]). There exist knots K0,K1 in RP3 = S3/τ that are not concordant
(they do not co-bound an annulus in I×RP3), but such that their lifts to S3 are concordant
(co-bound an annulus in I × S3).

Idea of proof: Consider the lifts K̃ of K and K̃ ′ of K ′ = (−K)#K̃, where K ⊂ RP3 is

any class-1 knot such that s(K̃) ̸= 2s(K). Then s(K ′) = s(−K)+ s(K̃) = −s(K)+ s(K̃) ̸=
s(K), but K̃ and K̃ ′ = (−K̃)#K̃#K̃ are concordant.

An example is the knot K1 with lift K̃1 = 12n403, which has s(K1) = 0 and s(K̃1) = 2.
Note: The lifts of class 1-knots in RP3 are freely periodic knots in S3. A concordance in

I × RP3 is the same as a standardly equivariant concordance of the lifts in I × S3.

Open question 6. Is there a (class-1) non-slice knot in RP3 whose lift to S3 is slice?

Let DTS2 be the disk bundle associated to the tangent bundle to S2. Its boundary is
RP3.
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Theorem 4.6 (Ren [Ren24b]). If K ⊂ RP3 bounds an oriented surface Σ ⊂ DTS2 with
[Σ] = d ∈ H2(DTS2,RP3) ∼= Z, then

g(Σ)/2 ≥ −s(K)− d2

2

provided d ∈ {0,±1,±2,±3}. (Conjecturally, for all d.)

Idea: The surface Σ gives a cobordism in I ×RP3 relating K to a link T (d; p, q) ⊂ RP3.
The proof is based on calculating s(T (d; p, q)) for some values of d, p, q.

Chen (2023) studied a Bar-Natan deformation of the Khovanov complex in RP3 with Z/2
coefficients. He defines an invariant sBN (K) for class-0 knots K ⊂ RP3.

Theorem 4.7 ([Che25]). Let K ⊂ RP3 be a class-0 knot, and Σ ⊂ RP3 × I be a surface
with ∂Σ = K ⊂ RP3 × {1}, such that Σ is twisted orientable, i.e. its lift to S3 × I has
an orientation that is reversed under the deck transformation. Then, |sBN (K)| ≤ −χ(Σ).

Application: The knot has sBN = 2 ̸= s. It bounds an orientable slice surface
of genus 1, but no such orientable surface that is also twisted orientable.

5. Skein lasagna modules

5.1. The skein lasagna module. Morrison-Walker-Wedrich [MWW22] defined an invari-
ant of (framed, oriented) links L in any 3-manifold Y presented as the boundary of a
4-manifold X.

A lasagna filling F = (Σ, {(Bi, Li, vi)}) of X with boundary L consists of

• A finite collection of disjoint 4-balls Bi (called input balls) embedded in the interior
or X;
• A framed oriented surface Σ properly embedded in X \ ∪iBi, meeting ∂X in L and
meeting each ∂Bi in a link Li; and
• for each i, a homogeneous label vi ∈ Kh(Li).

We define

S0(X;L) := Z{lasagna fillings F of X with boundary L}/ ∼

where ∼ is the transitive and linear closure of the following relations:

• Linear combinations of lasagna fillings are set to be multilinear in the labels vi;
• F1 and F2 are set to be equivalent if F1 has an input ball Bi with label vi, and F2

is obtained from F1 by replacing Bi with another lasagna filling F3 of a 4-ball such
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that vi = Kh(F3)(vk ⊗ vl ⊗ · · · ), followed by an isotopy rel ∂X (where the isotopy
is allowed to move the input balls):

vk

∼

Bi
Bj

F3
Bi

Bj F2F1

vi

vj vjvl

In other words: roughly, S0(X;L) is the group generated by the Khovanov homology of
links in the boundaries of all balls in X, modulo all cobordism relations between these.

Let us investigate its properties.
First, note that S0(X;L) is bigraded (just like Kh) and decomposes as a direct sum of

S0(X;L;α) according to the relative homology classes α of the fillings:

S0(X : L) =
⊕
i,j∈Z

⊕
α∈∂−1([L])⊂H2(X,L)

S0,i,j(X,L : α).

Second, note that it is functorial under cobordisms, by construction. If Z is a four-
dimensional cobordism from Y to Y ” and Σ ⊂ Z is an embedded surface with boundaries
L ⊂ Y and L′ ⊂ Y ′¡ we get a map

ΨZ,Σ : S0(X,L)→ S0(X ∪ Z;L′)

given by attaching Σ to the lasagna fillings in X.
The following exercise shows that S0 is indeed a generalization of Khovanov homology.

Exercise 5.1. When X = B4, we have S0(X;L) = Kh(L) (up to a grading shift). Hint:
Embed all input balls into a larger ball.

S0 is, however, a different kind of extension than the ones considered in Section 4. It
cannot be computed directly from a knot projection of some sort. Indeed, the definition
makes it at first look uncomputable. Nevertheless, in some cases computations are possible.
These are based on formulas for S0(X;L) in terms of a handle decomposition of X.

In general, by Morse theory, a smooth manifold can be decomposed into k-handles for
various k: attachments of Dk ×Dn−k along ∂Dk ×Dn−k−1. For a 4-manifold, a 0-handle
is just introducing a ball, and a 4-handle is attaching a B4 to an S3 boundary.

Exercise 5.2. Show that attaching a 4-handle to (X, ∅) does not change S0(X, ∅).

Exercise 5.3. Show that the map on S0 given by attaching a 3-handle is surjective.

Formulas for attaching 1- and 3-handles were developed by M.-Walker-Wedrich [MWW23].
Let us focus on 2-handles, which are the main source of complexity in 4-manifolds. When

X is made of 2-handles attached to B4 along a link K, M.-Neithalath [MN22] showed that
S0(X;L) is a direct limit of the Khovanov homologies of the union of L and certain cables
of K. Specifically, let us assume that K is a knot for simplicity, and let K(r1, r2) be the
link obtained by following K with r1 strands oriented in one direction and r2 in the other
direction. We have a cobordism Z from K(r1, r2)⊔L⊔unknot to K(r1+1, r2+1)⊔L, given
by an annulus between two strands, from which we removed a small disk with boundary
the unknot.
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Theorem 5.4 (M.-Neithalath [MN22]). We have

S0(W ′, L) ∼=
⊕

n1,n2∈N
S0(W,K(r1, r2) ∪ L)/ ∼

where the equivalence relation ∼ is generated by the following:

• permuting the strands of K(r1, r2), preserving orientations;
• ΨZ(v ⊗ v−) ∼ 0, ∀v;
• ΨZ(v ⊗ v+) ∼ v, ∀v.

Exercise 5.5. Use this theorem to compute the skein lasagna module S0(S2×D2; ∅), noting
that S2 ×D2 is obtained by attaching a 2-handle along the unknot.

The handle decomposition formulas allowed for computations of S0(X) := S0(X; ∅) for

manifolds such as S1×S3, CP2, CP2, disk bundles over S2. For example, we have S0(CP2) =

0 but S0(CP2) ̸= 0. Also, S0(S2 × S2) = 0. See [MWW23], [MN22] as well as the works of
Sullivan-Zhang (2024) and Ren-Willis (2024).

5.2. Extensions of the Rasmussen invariant: in any Y 3 = ∂X4. Morrison-Walker-
Wedrich [MWW24] and Ren-Willis [RW24] computed the Lee deformation of S0(X;L). Ren
and Willis also identified the generators of Lee homology, and used these to define invariants

s(X;L;α) ∈ Z ∪ {−∞}.

When X = B4, we recover the Rasmussen invariant up to a sign and shift: s(B4;L) =
−s(−L)− w(L) + 1.

Theorem 5.6 (Ren-Willis [RW24]). If Σ ⊂ X is smoothly embedded with ∂Σ = L, then
2g(Σ) ≥ s(X;L; [Σ]) + [Σ]2 −#L.

In general, there is no algorithm for computing s(X;L;α). Furthermore, s(X;L;α) can
be −∞ (e.g. for X = S2 × S2 or CP2 and L = ∅), in which case we get no genus bounds.

5.3. Detection of exotic smooth structures. Nevertheless, using the formula for S0 of
2-handlebodies X, Ren and Willis compute s(X;α) = s(X, ∅;α) in many cases. In partic-
ular, consider the traces of −1 surgeries on the knots K1 = −52 and K2 = P (3,−3,−8):

we have s(X1; 1) = 3 and s(X2; 1) = 1. Hence X1 and X2 are not diffeomorphic, even
though they are homeomorphic.
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5.4. Detection of exotic smooth structures. Akbulut (1991) was the first to show that
X1 and X2 is an exotic pair, using gauge theory.

Ren and Willis give the first analysis-free proof. Here are the main ideas in their compu-
tation:

• For X1 = X−1(K1), they use that K1 = −52 is a positive knot with s = 2. For such
knots, they prove that s(Xn(K); 1) = s(K)− n by calculating Kh of cables of K in
the highest homological degree, generalizing an argument of Stošić (2006).

• For X2 = X−1(K2), they use that K2 = P (3,−3,−8) is slice, i.e. concordant to the
unknot. Hence, the cables of K2 are concordant to the cables of the unknot, which

implies that s(X−1(K2); 1) = s(CP2; 1) = 1.

Ren and Willis also have some new exotic examples: detectable using s, but not (imme-
diately) using gauge theory or Heegaard Floer homology.

Open question 7. Construct Khovanov homology and the Rasmussen invariant for links
in other 3-manifolds (e.g. lens spaces beyond S3 and RP3) in a more elementary way; i.e.,
without skein lasagna modules.

Open question 8. Can skein lasagna modules detect exotic smooth structures on some
closed 4-manifolds?

Acknowledgement. The first part of these notes consists of lecture notes for a class at
Stanford taken by Shintaro Fushida-Hardy.
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