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Abstract. In this paper, we establish the following version at infinity of Whitney’s theo-

rem [7, 8]: Geometric and algebraic tangent cones at infinity of complex algebraic varieties

coincide. The proof of this fact is based on a geometric characterization of geometric tan-

gent cones at infinity and using the global  Lojasiewicz inequality with explicit exponents

for complex algebraic varieties. We also show that tangent cones at infinity of complex

algebraic varieties can be computed using Gröbner bases.

1. Introduction

Let V ⊂ (Cn, 0) be an analytic variety in some neighborhood of the origin 0 in Cn. In his

seminal papers [7, 8], Whitney showed (among other results) that geometric and algebraic

tangent cones of V at 0 coincide. The aim of this paper is to give a version at infinity of this

result for complex algebraic varieties.

In order to state our main result, we need some notation. Let V ⊂ Cn be an algebraic

variety. The geometric tangent cone Cg,∞(V ) of V at infinity is defined by the set of “tangent”

vectors, in the sense that v ∈ Cg,∞(V ) if, and only if, there exist a sequence {xk}k∈N ⊂
V, ‖xk‖ → ∞, and a sequence of numbers {tk}k∈N ⊂ C such that tkxk → v. By the algebraic

tangent cone Ca,∞(V ) of V at infinity we mean the set

Ca,∞(V ) := {v ∈ Cn | f ∗(v) = 0 for all f ∈ I(V )} ,

where I(V ) denotes the ideal defining V , and for each polynomial f ∈ I(V ), f ∗ denotes its

homogeneous component of highest degree.

The main result of this paper can be formulated as follows.

Theorem 1.1. Let V ⊂ Cn be an algebraic variety. Then Ca,∞(V ) = Cg,∞(V ).

Example 1.1. Let V := {(x, y) ∈ C2 |x2 − y3 = 0}. We have

Ca,∞(V ) = Cg,∞(V ) = {y = 0}.

Remark 1.1. The proof for Theorem 1.1 is different from the one given in [8, Theorem 10.6].

In fact, the proof of the inclusion Cg,∞(V ) ⊆ Ca,∞(V ) is rather straightforward (Lemma 2.3),

while the proof of the converse one will follow from a geometric characterization of geometric
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tangent cones at infinity (Lemma 2.4) and the global  Lojasiewicz inequality with explicit

exponents for algebraic varieties (Lemma 2.5).

The paper is organized as follows. The proof of Theorem 1.1 will be given in Section 2.

Then in Section 3, using Gröbner bases, we compute tangent cones at infinity of algebraic

varieties.

2. Proof of Theorem 1.1

Let V ⊂ Cn be an algebraic variety. By definition, we can verify that the sets Cg,∞(V )

and Ca,∞(V ) are closed cones in Cn with the vertex at the origin 0 ∈ Cn, i.e. for every

element v ∈ C∞(V ) and for every λ ∈ C, we have λv ∈ C∞(V ), where C∞(V ) denotes for

both Cg,∞(V ) and Ca,∞(V ). Moreover, the following properties of these cones are obtained

easily from their definitions.

Lemma 2.1. For any two algebraic varieties V and W in Cn, the following properties hold:

(i) C∞(W ) ⊆ C∞(V ) if W ⊆ V ;

(ii) C∞(V ∪W ) = C∞(V ) ∪ C∞(W );

(iii) C∞(V ∩W ) ⊆ C∞(V ) ∩ C∞(W ).

Remark 2.1. In general we cannot replace “⊆” by “=” in (iii). Indeed, let us consider

the algebraic varieties V and W in C2 defined respectively by x = 0 and y − x2 = 0. Then

C∞(V ) = C∞(W ) = {x = 0}, while C∞(V ∩W ) = {0}. Hence in this case, C∞(V ∩W )  
C∞(V ) ∩ C∞(W ).

The following statement shows that tangent vectors to V at infinity may be defined by

analytic curves (compare [6, Proposition 2] and [8, Theorem 11.8]).

Lemma 2.2. Let V ⊂ Cn be an algebraic variety. Then, for each nonzero vector v ∈
Cg,∞(V ), there exists an analytic curve ϕ : (0, ε) → Cn (ε > 0) with ϕ(s) ∈ V for all

s ∈ (0, ε), such that

lim
s→0+

‖ϕ(s)‖ = +∞ and lim
s→0+

ϕ(s)

‖ϕ(s)‖
= − lim

s→0+

ϕ′(s)

‖ϕ′(s)‖
=

v

‖v‖
.

Proof. Indeed, let v be a nonzero vector in Cg,∞(V ). By definition, there exist a sequence

{xk}k∈N ⊂ V, ‖xk‖ → ∞, and a sequence of numbers {tk}k∈N ⊂ C such that tkxk → v.

In view of the Curve Selection Lemma at infinity (see [2, 5]), there exist analytic curves

ψ := (ψ1, . . . , ψn) : (0, ε)→ Cn and t : (0, ε)→ C, for some ε > 0, such that

(a) ψ(s) ∈ V for all s ∈ (0, ε);

(b) lims→0+ ‖ψ(s)‖ = +∞;

(c) lims→0+ t(s)ψ(s) = v.
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Since v 6= 0, we have that t(s) 6≡ 0, and so we can write

t(s) = asp + higher terms in s,

for some a ∈ C, with a 6= 0, and p ∈ Z. Let J := {j |ψj(t) 6≡ 0} 6= ∅. For each j ∈ J we can

write

ψj(s) = bjs
qj + higher terms in s,

for some bj ∈ C, with bj 6= 0, and qj ∈ Z. It follows from conditions (b) and (c) that

p = −min
j∈J

qj > 0

and

v =

abj if j ∈ J and qj = −p,

0 otherwise.

Let λ ∈ C be such that λ−p = a and we may regard ψ as an analytic curve from the disc

{s ∈ C | |s| < ε} to Cn. Define the curve ϕ : (0, ε/|λ|) → Cn by ϕ(s) := ψ(λs). Then, by

condition (a), ϕ(s) ∈ V for all s ∈ (0, ε/|λ|). Furthermore, we have

‖ϕ(s)‖ = cs−p + higher terms in s

for some real number c > 0. Finally, a direct computation shows that

lim
s→0+

ϕj(s)

‖ϕ(s)‖
= − lim

s→0+

ϕ′j(s)

‖ϕ′(s)‖
=


abj
c

if j ∈ J and qj = −p,

0 otherwise.

This completes the proof. �

Remark 2.2. By Lemma 2.2, it will not alter the definition of the cone Cg,∞(V ) if we require

that the tk be real and positive. In particular, v ∈ Cg,∞(V ) \ {0} if, and only if, there exists

a sequence {xk}k∈N ⊂ V such that

lim
k→∞
‖xk‖ = +∞ and lim

k→∞

xk
‖xk‖

=
v

‖v‖
.

Lemma 2.3. Let V ⊂ Cn be an algebraic variety. Then Cg,∞(V ) ⊆ Ca,∞(V ).

Proof. We first consider the case where V is a hypersurface defined by a polynomial f ∈
C[x1, . . . , xn]. We can write

f = fd + fd−1 + · · ·+ f0,

where d := deg f and each fi is homogeneous polynomial of degree i.

Take any non-zero vector v ∈ Cg,∞(V ). By Lemma 2.2, there exists a sequence {xk}k∈N ⊂
V such that

lim
k→∞
‖xk‖ = +∞ and lim

k→∞

xk
‖xk‖

=
v

‖v‖
.
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For k sufficiently large we have ‖xk‖ > 0 and hence

0 = f(xk) = f

(
‖xk‖

xk
‖xk‖

)
= ‖xk‖d

[
fd

(
xk
‖xk‖

)
+

1

‖xk‖
fd−1

(
xk
‖xk‖

)
+ · · ·+ 1

‖xk‖d
f0

(
xk
‖xk‖

)]
,

which implies that

0 = fd

(
xk
‖xk‖

)
+

1

‖xk‖
fd−1

(
xk
‖xk‖

)
+ · · ·+ 1

‖xk‖d
f0

(
xk
‖xk‖

)
.

Letting k →∞ yields fd(v) = 0, i.e. v ∈ Ca,∞(V ).

Now let V be any algebraic variety in Cn and v ∈ Cg,∞(V ). Take any f ∈ I(V ). We

have V ⊆ V(f) := {x ∈ Cn | f(x) = 0}, and so, by Lemma 2.1(i), Cg,∞(V ) ⊆ Cg,∞(V(f)).

It follows from the hypersurface case considered above that v ∈ Ca,∞(V(f)). Note that

Ca,∞(V(f)) = {w ∈ Cn | fd(w) = 0}. Therefore, fd(v) = 0. Since f is arbitrary, v ∈ Ca,∞(V ).

The proof is complete. �

In order to show the reverse inclusion Cg,∞(V ) ⊇ Ca,∞(V ), we need the following geometric

characterization of the cone Cg,∞(V ).

Lemma 2.4. Let V ⊂ Cn be an algebraic variety and let v be a non-zero vector in Cn. Then

v ∈ Cg,∞(V ) if and only if there exists a sequence {tk}k∈N of positive real numbers such that

lim
k→∞

tk = +∞ and lim
k→∞

dist(tkv, V )

tk
= 0,

where dist(x, V ) denotes the usual Euclidean distance from a point x ∈ Cn to the variety V.

Proof. ⇒ Assume that v ∈ Cg,∞(V ). By Lemma 2.2, there exists a sequence {xk}k∈N ⊂ V

such that

lim
k→∞
‖xk‖ = +∞ and lim

k→∞

xk
‖xk‖

=
v

‖v‖
.

Then we may assume that tk := ‖xk‖
‖v‖ > 0 for all k ∈ N. We have limk→∞ tk = +∞ and

dist(tkv, V )

tk
≤ ‖tkv − xk‖

tk
=

∥∥∥∥v − ‖v‖‖xk‖xk
∥∥∥∥ = ‖v‖

∥∥∥∥ v

‖v‖
− xk
‖xk‖

∥∥∥∥ .
Therefore,

lim
k→∞

dist(tkv, V )

tk
= 0.

⇐ Conversely, assume there exists a sequence {tk}k∈N of positive real numbers such that

lim
k→∞

tk = +∞ and lim
k→∞

dist(tkv, V )

tk
= 0.
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For each k ∈ N, let xk be a point in V such that dist(tkv, V ) = ‖tkv − xk‖ (such a point

does always exist because V is a closed set in the usual topology on Cn). Then

lim
k→∞

∥∥∥∥v − xk
tk

∥∥∥∥ = lim
k→∞

‖tkv − xk‖
tk

= lim
k→∞

dist(tkv, V )

tk
= 0.

Hence limk→∞
xk

tk
= v and so limk→∞ ‖xk‖ = +∞ because limk→∞ tk = +∞. Furthermore

we have

lim
k→∞

‖xk‖
tk

= ‖v‖.

Therefore

lim
k→∞

xk
‖xk‖

= lim
k→∞

(
xk
tk
× tk
‖xk‖

)
= lim

k→∞

xk
tk
× lim

k→∞

tk
‖xk‖

=
v

‖v‖
.

The proof is complete. �

Let V ⊂ Cn be an algebraic variety of dimension k. It is well-known that, for any generic

(n−k)-dimensional linear subspace P in Cn, the set V ∩P is finite, and its cardinality is called

the degree of V and denoted by deg(V ). In particular, if V = V(f) := {x ∈ Cn | f(x) = 0}
is a hypersurface defined by a complex polynomial f of degree d, then deg(V ) = d. The

following lemma will be useful in the sequel.

Lemma 2.5 ([4, Lemma 8]). Let V ⊂ Cn be an irreducible algebraic variety of degree d.

Then there are finitely many polynomials gi, i = 1, . . . , s, of degree at most d vanishing on V

and a constant c > 0 such that

dist(x, V )d ≤ c max
i=1,...,s

{|gi(x)|} for all x ∈ Cn.

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.3, we have Cg,∞(V ) ⊆ Ca,∞(V ). Hence, it remains to

show the reverse inclusion.

We first remark that it suffices to prove the inclusion Ca,∞(V ) ⊆ Cg,∞(V ) for the case

where the variety V is irreducible. Indeed, if V1, . . . , Vr are irreducible components of V , and

assume that we have proved that Cg,∞(Vi) = Ca,∞(Vi) for every i, then by Lemma 2.1(ii) we

have

Cg,∞(V ) =
r⋃

i=1

Cg,∞(Vi) =
r⋃

i=1

Ca,∞(Vi) = Ca,∞(V ).

Therefore, we may now assume that V is irreducible of degree d. By Lemma 2.5, there

exist finitely many polynomials gi, i = 1, . . . , s, of degree at most d vanishing on V and a

constant c > 0 such that for all x ∈ Cn we have

dist(x, V )d ≤ c max
i=1,...,s

{|gi(x)|}.
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Let v be a non-zero vector in Ca,∞(V ). Since V ⊆ V(gi) for every i = 1, . . . , s, by

Lemma 2.1(i) we have Ca,∞(V ) ⊆ Ca,∞(V(gi)), and so v ∈ Ca,∞(V(gi)). Hence

(gi)di(v) = 0, for all i = 1, . . . , s, (1)

where (gi)di denotes the homogeneous component of gi of degree di := deg gi.

Now let {tk}k∈N be a sequence of positive real numbers such that limk→∞ tk = +∞. It

follows from (1) that for every i = 1, . . . , s, there exists a positive constant ci such that for

all k sufficiently large,

|gi(tkv)| ≤ cit
di−1
k .

Since di := deg gi ≤ d for i = 1, . . . , s, we obtain for all k sufficiently large,

max
i=1,...,s

{|gi(tkv)|} ≤ c′td−1k ,

where c′ := maxi=1,...,s ci > 0. Therefore

dist(tkv, V )

tk
≤ (cmaxi=1,...,s{|gi(tkv)|})

1
d

tk
≤ (c′c)

1
d t

d−1
d
−1

k = (c′c)
1
d t

−1
d
k .

By letting k →∞, we get

lim
k→∞

dist(tkv, V )

tk
= 0.

Hence v ∈ Cg,∞(V ) by Lemma 2.4. The proof of the theorem is complete. �

3. Computations

In this section, given an algebraic variety V ⊂ Cn, we shall compute the tangent cone at

infinity C∞(V ) := Ca,∞(V ) = Cg,∞(V ) of V by using Gröbner bases.

If I(V ) = 〈f〉 ⊂ C[x1, . . . , xn], then it is easy to see that

C∞(V ) = V(f ∗) := {v ∈ Cn | f ∗(v) = 0}.

(Recall that f ∗ stands for the homogeneous component of highest degree of f.) However, if

I(V ) = 〈f1, . . . , fr〉 has more generators, then it need not follow that

C∞(V ) = V(f ∗1 , . . . , f
∗
r ) := {v ∈ Cn | f ∗1 (v) = · · · = f ∗r (v) = 0}.

For example, let V ⊂ C3 be defined by the ideal generated by polynomials

f1 := xy and f2 := z(x3 − y2 + z2).

We have f ∗1 = xy, f ∗2 = x3z, and

V(f ∗1 , f
∗
2 ) = {x = 0} ∪ {y = z = 0}.
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Consider the polynomial f ∈ C[x, y, z] defined by

f(x, y, z) := yz(y2 − z2) = zx2f1 − yf2.

We see that f ∗ = f vanishes on C∞(V ), however f ∗ does not vanish on V(f ∗1 , f
∗
2 ). It follows

that C∞(V ) 6= V(f ∗1 , f
∗
2 ).

We can overcome this difficulty by using an appropriate Gröbner basis for the ideal defining

V . In order to compute the ideal defining the cone C∞(V ) we need the following notation.

For a polynomial f ∈ C[x1, . . . , xn] of degree d, its homogenization fh is a polynomial in

C[x0, x1, . . . , xn] defined by

fh(x0, x1, . . . , xn) := xd0f

(
x1
x0
, . . . ,

xn
x0

)
,

where x0 is a new variable. For an ideal I in the ring C[x1, . . . , xn], its homogenization is the

ideal

Ih :=
〈
fh | f ∈ I

〉
⊂ C[x0, x1, . . . , xn].

For any g ∈ C[x0, x1, . . . , xn], let

g|x0=0 := g(0, x1, . . . , xn) ∈ C[x1, . . . , xn].

Following [3] we define

I∞ :=
〈
g|x0=0 | g ∈ Ih

〉
⊂ C[x1, . . . , xn].

Lemma 3.1. Let V ⊂ Cn be an algebraic variety and let I := I(V ). Then

C∞(V ) = V(I∞).

Proof. Let us take any x = (x1, . . . , xn) ∈ C∞(V ) and f ∈ I∞. Then there exists g ∈ I such

that f = gh|x0=0. Decomposing g into homogeneous components as

g = g0 + g1 + · · ·+ gd,

where d is the degree of g, we have

gh = g0x
d
0 + g1x

d−1
0 + · · ·+ gd−1x0 + gd ∈ C[x0, x1, . . . , xn].

It follows that

f = gh|x0=0 = gd = g∗.

By definition of C∞(V ) = Ca,∞(V ), we have f(x) = g∗(x) = 0, and so x ∈ V(I∞). Therefore,

C∞(V ) ⊆ V(I∞).

Conversely, let us take any x ∈ V(I∞) and f ∈ I. Assume we decompose f into homoge-

neous components as

f = f0 + f1 + · · ·+ fe,
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where e is the degree of f. Then

fh = f0x
e
0 + f1x

e−1
0 + · · ·+ fe−1x0 + fe ∈ Ih.

It follows that

fe = fh|x0=0 ∈ I∞.

By definition of V(I∞), therefore f ∗(x) = fe(x) = 0. It follows that x ∈ Ca,∞(V ) = C∞(V ).

The proof is complete. �

By [3, Lemma A.4.15], the variety V(I∞) ⊂ Cn equals to the so-called part at infinity of

V. Hence, it follows from Lemma 3.1 and the remark after [3, Lemma A.4.15] the following

computation for C∞(V ) = V(I∞).

Corollary 3.1. Let V ⊂ Cn be an algebraic variety and let {g1, . . . , gk} be a Gröbner basis

for I(V ) with respect to a degree ordering. Then

C∞(V ) = V(gh1 |x0=0, . . . , g
h
k |x0=0).

Example 3.1. Let us compute the tangent cone at infinity of the algebraic variety V ⊂ C3

defined by the ideal I ⊂ C[x, y, z] generated by polynomials f1 := xy and f2 := z(x3−y2+z2)

as considered at the beginning of this section.

It is easy to compute a Gröbner basis for I with respect to a degree ordering is

{g1 = xy, g2 = x3z − y2z + z3, g3 = yz(y2 − z2)}.

The homogenization of these polynomials by a new variable t in the polynomial ring C[t, x, y, z]:

gh1 = xy, gh2 = x3z − y2zt+ z3t, gh3 = yz(y2 − z2).

Substituting t = 0, using Corollary 3.1, we have

C∞(V ) = V(xy, x3z, yz(y2 − z2)),

which is a union of 5 lines through the origin in C3.
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