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Abstract

This paper deals with finite-time control problem for noelan fractional-order systems sub-
ject to disturbance. We first derive sufficient conditionsffoite-time stabilization based on

the Lyapunov function method and linear matrix inequlatéghnique. Then, we propose a
new concept of cost control function for guaranteed costrobproblem. In terms of linear

matrix inequalities (LMIs), an explicit expression for t&tdeedback controllers is presented
to make the closed-loop systems finite-time stable and toagtee an adequate cost level of
performance. With the approaches proposed in this papecawenalyze and design finite-
time control for fractional-order systems with similar waythe integer-order systems. Finally,
numerical examples are given to illustrate the validity afidctiveness of the proposed results.

Keywords: Fractional derivative, Finite-time stability, Guarardemmst control, Disturbances,
Lyapunov function, Linear matrix inequalities

1. Introduction

In the last decades, the problem of analysis and synthesignaimical systems described
by fractional-order differential (or difference) equattohas received much attention and found
many applications in the fields such as physics, engineeelegtrochemistry, dynamics and
economics (see [1, 2] and the references therein). The sisaly stability and control for
fractional-order systems (FOSs) have been widely invatddy and there have been many in-
teresting results [3—7]. By using the Mittag-Leffler furmetj Laplace transform and a gener-
alized Gronwall inequality lemma, the authors of [5] dedv@me sufficient conditions for
local asymptotical stability of nonlinear FOSs. Asymptattability and stabilization of non-
autonomous FOSs were considered in [6]. In [7], the autrsiedéished Mittag—Leffler stability
criteria of nonlinear FOSs with impulses based on fractioakulus theory and S-procedure.
As an efficient and commonly-used approach for stability@mrol problem for integer-order
systems, linear matrix inequality tecniques have beenesstally extended to the FOSs [8—
10]. It should be noted that these mentioned results coresidgtability and control problem for
FOSs in the sense of Lyapunov stability, which deals withatbyamptotic behavior of a system
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over an infinite interval time. Nevertheless, in some pcatituations we may be more inter-
ested in the finite-time stability, which sustains the wpeies do not exceed a certain threshold
during a fixed short time under a given bound on the initialdibons, since most actual sys-
tems only act over finite interval time. The original concepfinite-time stability is given in
[11-15] for various class of integer-order systems. Likinaninteger-order case, the problem of
finite-time stability of FOSs was studied in the first time 11%]. The authors in [17] considered
finite-time stability of time-delay FOSs by using a genamdi Gronwall inequality approach.
In [18, 19] some conditions were derived to guarantee théefinine stability for a class of
linear FOSs by using the Mittag—Leffler function, a geneeadi Gronwall inequality approach
with Laplace transform technique. The problem of finitedistability for FOSs described by
neural networks was considered in [20].

On the other hand, from the view of engineering, it is des&rab design control systems
which are not only finite-time stable but can also guarantegd@quate level of system perfor-
mance. This is the problem of guaranteed cost control, whashthe advantage of providing
an upper bound on a given system performance index and taisystem performance degra-
dation incurred by the uncertainties is guaranteed to betlesn this bound. Based on the
singular value decomposition approach combining with Lk&shnique, the authors in [21]
solved the problem of guaranteed cost control for singitaal time-delay systems. The prob-
lem of finite-time guaranteed cost control for linear Itddtastic systems was studied in [22].
A sufficient condition for the problem of finite-time stalzéition and guaranteed cost control of
delayed neural networks was derived in [23] by employingtMirer-based integral inequality
and Lyapunov—Krasovskii functional method. It should b&aeal that all the metioned above
results were considered for integer-order systems. To ésedf our knowledge, the problem
of finite-time stabilization and guaranteed cost controH®Ss with disturbances has not been
fully investigated. The main purpose of the present papierfidl this gap.

In this paper, we study problem of finite-time control for asd of nonlinear FOSs with
disturbances. The main contribution of this paper is ag¥al (i) By using Lyapunov function
method combined with LMIs technique (see Remark 2), we gifiicgent conditions for finite-
time stabilization of nonlinear FOSs with disturbance. @iaeved conditions can be considered
as further extensions of the existing results obtained8h [(ii) We propose a concept of finite-
time guaranteed cost control of nonlinear FOSs, which caretparded as an extension of the
integer-order case. Accordingly, new sufficient condisi@re established to guarantee that
the closed-loop systems not only finite-time stable but ¢am guarantee an adequate level of
system performance.

The organization of this paper is as follows. In Section 2 swemarize some definitions,
notations and give auxiliary lemmas which will be used inpheof of the main results of next
section. We present our main results on finite-time staddilin and guaranteed cost control of
nonlinear FOSs with disturbances in Section 3 and Sectiogspgectively. Numerical examples
provided to illustrate the effectiveness of the proposethotkare given in Section 5.

2. Preliminaries

The following notations will be used in this papé&:™ denotes the set of on-negative inte-
gers,R" denotes the@—dimensional linear vector space over the reals with theiie@h norm
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.|| given by||X|| = /X2 +... +X8,X= (X1,...,%) € R"; R™™ denotes the space bix mma-
trices. For a real matrii, Amax(A) andAmin(A) denote the maximal and the minimal eigenvalue
of A, respectively. The norm of a real matexis defined byl|A|| = /Amax(ATA). A matrix P

is positive definitgP > 0) if X" Px > 0,Vx # 0;P > Q meansP — Q > 0. The symmetric term

in a matrix is denoted by.

We first introduce some definitions of fractional calculus.
Definition 1. ([1]) The Riemann-Liouville integral of order > 0 is defined by
1 t
—— [ (t—-9%1f(s)ds

Definition 2. ([1]) The Caputo fractional derivative is defined by

1 t f(s)
Dgf(wzr(n—a)/o(t—s)a+1—”ds’ t>0,n—1<a<n,

D, “f(t) =

wheren € N, T (.) is the gamma functior; (s) = [ e~'tS-1dt,s> 0. In particular, for O< a < 1,
0

we have C i
1 S
o — >
DY f(t) F(l—a)/o ogads 120

Lemma 1. ([24]) If x(t) e C"([0,+»),R)and n—1< a <n,(n>1,neZ"), then

nfltk K

ol (DIX(t)) = x(t) — 3 gx( (0).
=R

In particular, when0 < a < 1, we have
ol FDEX(t) = x(t) — x(0).

Lemma 2. ([25]) Let x(t) € R" be a diffrentiable function, B R"™" be a symmetric positive
definite matrix. Then, for any time instanttty, the following condition holds
1c
21

We now consider the following nonlinear fractional-ordgstem with disturbance:

DY (X" (t)Px(t)) <X (t)PCDIX(t), Va € (0,1),¥t >to > O.

{ DIX(t) = AX(t) + Bu(t) +Wa(t) + f(t,x(t), u(t), w(t)),t >0, "

X(0) = Xo,

wherea € (0,1),x(t) € R"is the state vector(t) € R™is the controlw(t) € RP is the distur-
bance satisfying
3d>0: o (Ho()<dVtel0,T]; 2)

A B,W are given real constant matrices of appropriate dimensitims nonlinear functiori (.)
satisfying the following condition

fT(t,x,u,w) f(t,x u,w) <X Ef Exx+Uu"EJ Eou+ w' EJ Eaw, (3)

forall (t,x,u,w) e RT x R"x RMx RP, Ej,i = 1,2,...,3 are given constant matrices.
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Lemma 3. ([26]) Under the assumptio(B) the systen(l) has a unique solution o}, +).

Definition 3. For given positive numbeis, ¢z, T and a symmetric positive definite matiik
the systems (1) is robustly finite-time stabilizable weit ¢, Tt, R, d) if there exists a feedback
controlu(t) = Kx(t) such that the solution of the closed-loop system

{ DEx(t) = [A+BK]x(t) + Weo(t) + f(t,x(t),Kx(t), w(t)), t>0, @

X(0) = xo
satisfies the following relation
xR < ¢ = X (1)RXt) < cp, te[0,Ty],

for all disturbanceso(t) € RP satisfying (2).

Given a positive numbér; > 0, we consider the following quadratic cost function for sys-
tem (1): .
1 f
)= gy o (T 97 20T (91ux(S) +uT(51Quu(s) s ©)
whereQ; € R™" Q, € R™™ are given symmetric positive definite matrices.

Remark 1. It should be noted that whan = 1 the quadratic cost function (5) is turned into the
cost function in integer-order case, which was considarede literature [21-23].

Definition 4. If there exists a feedback control law(t) = Kx(t) and a positive number such
that the closed-loop system

(6)

DEX(t) = (A+BK)x(t) +Wa(t) + f(t,x(t),Kx(t), w(t)), t>0,
X(0) =x0 € R",

is robustly finite-time stable and the cost function satsi@r*) < J*, then the valuel* is a
guaranteed cost value and the contrdl) is a guaranteed cost controller.

Now, we present the following auxiliary lemma, which will bsed in the proof of the main
results.

Lemma 4. (Schur complement lemma [27]). Given constant matriceg X with appropriate
dimensions satisfying ¥ YT > 0,X = XT, then X+ZTY~1Z < 0if and only if

V il

< 7o

3. Finite-time stabilization

In this section we give sufficient conditions for finite-tira@bilization of system (1). Let
us denote

Mi1 = AP+PAT +BY+Y BT +1 +WW',
— 1 1 — —
P= R_§P_1R_§7 )\1 = )\min(P)7 )\2 = )\max(P), B = )\max(Eg ES)-
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Theorem 5. Given positive numbers @o, Ty and a symmetric positive definite matrix tRe
systemn(1) is robustly finite-time stabilizable w.ty, ¢, Ts, R, d) by the state feedback control
u(t) =Y P Ix(t),t € [0, T¢], if there exist a symmetric positive definite matrix P, a imafrwith
appropriate dimensions satisfying the following condito

M1 PE] YTE]
* —I 0 <0, (7a)
* * —1
d(1+
AoCy + ﬁﬂ" < MGy (7b)

Proof. With the feedback control matriX = Y P~1, we consider the following non-negative
guadratic function for the closed-loop system (6):

V(x(t)) = X" ()P~ 2x(t).

From Lemma 2 the Caputo derivativeVtx(t)) along the solution of the system (6) is defined
as

DAV (x(t)) < 2xT (t)P~1DIx(t)
=x"(t) [PTA+ATP 1+ PIBK+KTBTP 1] x(t)
+2xX"(OPL () + 2XT ()P Wa(t). (8)
By using the Cauchy matrix inequality, we have the followasgimates
2T ()P () <X ()PP Ix(t) + T () f(.)
<xT ()PP~ Ix(t) 4+ [xT (1) EJ Exx(t) + xT (1) KTEJ EoKx(t)

+w' (t)E3 Ezw(t)],
2T ()P Wa(t) <x (1)PWWT P~ Ix(t) + ' (1) w(t). (9)
From (8)—(9), we obtain
DIV (x(1)) < X' ()Qx(t) + (1+ B) e (t)w(t), (10)

where
Q=P 'A+ATP 1+ PIBK+KTBTP 1+ P 1Pt
+KTEJExK + P 'WWT P14+ ETE;.
Now, pre- and post-multiply both sid€sby P and lettingk =Y P~1, we have
® =PQP =AP+PAT +BY+YTBT +1 +WW' + PE[E;P+YTEJEyY.

Note thatQ < 0 is equivalent tap < 0. Using the Schur complement lemma (Lemma 4), we
have® < 0 is equivalent to (7a). Therefore, from the conditions ({H)), we have

DIV (x(t)) < (1+B)w' (t)w(t), Vte[0,Tf]. (11)
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Integrating with ordenr both sides of (11) from 0 tt0 < t < Tf) and using Lemma 1, we have

X" ()P~ Ix(t) < x"(0)P~*X(0) + ol “((1+ B)w' (H)o(t))
1+

=x"(0)P~1x(0) + a0 Jo (t —9)% ' (s)w(s)ds
<x" (0P~ 1x(0) + d<|_1<z)B) /Ot (t—s)% 1ds (12)
x" (0)P~1x(0) + rél-:-ﬁ;

On the other hand, we have

xT ()P~ Ix(t) =x" (t)RZPREX(t)

ZAmin(ﬁ)XT(t)Rx(t) (13)
= A1X (H)RX(1),
and
X" (0)P~1x(0) = (0)REPREX(0)
<Amax(P)X" (0)RX0 ) (14)
—Aox" (O)RX0) < Az

From (12) -(14), we have

AT (ORXE) <VO0) =X (O 1) < Ao+ £ LT

Condition (7b) implies thax" (t)RXt) < c,. Thus, the system (1) is robustly finite-time stabi-
lizable w.r.t(c, ¢, Ts, R), which completes the proof of the theorem. O

Remark 2. Since the condition (7a) is a linear matrix inequality cdiwh, we can solve the
condition by using Matlab’s LMI Control Toolbox in [28]. Thefore, from Theorem 5, we have
the following procedure for solving finite-time stabilizat problem of system (1):

Step 1.Solve the linear matrix inequalities (7a) and obtain symiogtositive definite matrix
PeR™N andYeRmX”.l .

Step 2.ComputeP = R"2PR 2, A1 = Apin(P), A2 = Amax(P).

Step 3.Check condition (7b) in Theorem 5. If they hold, enter Steplde return to Step 1.
Step 4.The closed-loop system (6) is finite-time stable with respecc,, ¢, T, R d).

In the sequel, we apply the obtained result (Theorem 5) tddah@wving uncertain linear
FOSs:

{ DIX(t) = [A+BAM)JX(0) + [B+ABHU(D) + W+ AW(D]w(), 120, o

X(0) = xq,



where

AA(t) = GiF1(t)H1, AB(t) = GaFo(t)Hz, AW(t) = GgFs(t)Hs,
whereG;, Hi(i = 1,2, 3) are given constant matrices, the unknown perturbafgiyi = 1,2, 3)
satisfy the following condition

TR <1, t>0, (i=1,23).

In this case the nonlinear perturbation is
f(.) = GiFL(t)H1xX(t) + GaF2(t)Hau(t) + GaFs(t)Haw(t).

By using some simple computations, we have the nonlinednybationf(.) satisfying condi-
tion (3) with

E: =+vala+b+c)l,Ex=+/bla+b+c)l,E3=+/a(a+b+c)l,

wherea = ||Gy]|||H1]|,b= ||Gz|||[H2||,c = ||G3l]|||Hs||. From Theorem 5, we have the following
result.

Corollary 6. Given positive numbers @, Tr and a symmetric positive definite matrixtRe
systen(15)is robustly finite-time stabilizable w.(t1, ¢, T, R, d) by the state feedback control
u(t) =Y P Ix(t),t € [0, T¢], if there exist a symmetric positive definite matrix P, a imafrwith
appropriate dimensions satisfying the following condito

N1z Niz Ni3
x —I 0| <0, (16a)
* I
d(1+
AoC1 + %Tﬁ < A1Cy, (16b)

where

a=||Ga||[[Hal, b= [|Gz[[[[Hzl|,c = [|Gs]|[[H3]],
N1z = AP+ PAT +BY+Y BT +1 +WW',

Ni> = +v/a(a+b+c)l,Niz=+/b(a+b+c),

P=R 2P R 2, Ay = Anin(P), A2 = Amax(P), B = a(a+b-+c).

4. Finite-time guaranteed cost control

In this section we give sufficient conditions for the finite¥ guaranteed cost control of
system (1). Let us denote

M1 =AP+PA" +BY+Y BT +1+WW,
— 1 1 — —
P= R7§P71R7?7 )\1 = )\min(P), AZ = Amax(P), B = Amax(EérE3)7



Theorem 7. Given positive numbers; @, T and a symmetric positive definite matrix R, if
there exist a symmetric positive definite matrix P, a matrixith appropriate dimensions sat-
isfying the following conditions:

A1 PE] YTE] PQr YTQ

* —1 0 0 0
x % —l 0 0 | <o, (17a)
* * * -1 0
* * * * —Q
P GNP (17b)

MNa+1)
then

ut)=YP (), te[0,Ty]
is a guaranteed cost controller for the systéhand the guaranteed cost value is

«_dA+B)qa
J —m-ﬁ +)\2C1.

Proof. We choose the non-negative quadratic function defined ab@fEm 5. We have ob-
tained that

DIV (x(t)) <x" (H)Qx(t) + (1+ B’ (he(t) —x' (t) [Qu+KT QK] x(1), (18)
where
Q=P A+ATP 14+ PIBK4+KTBTP 1+ P 1Pt
+KTEJEoK + P *WWT P L+ EJ E; + Q1 + KT QoK.
Now, pre- and post-multiply both sid€sby P and lettingk =Y P~1, we have
® =PQP =AP+PA" +BY+YTBT +1+WW' +PEJE;P
+YTEJEY + PQIP+YTQyY.

Therefore, by similar arguments used in the proof of Theotewe have the system (1) is
robustly finite-time stabilizable w.r(tcs, ¢, Tf, R) if conditions (17a) and (17b) are satisfied.
Next, we will find the guaranteed cost value of the cost fuorc{b). Note thaf < 0 is equiv-
alent to® < 0. Using the Schur Complement Lemma (Lemma 4), we lave0 is equivalent
to (17a). From conditions (17a) and (18), we have

SDEV(X(1)) < (14 B)w (Hw(t) X' (1) [Qu+KTQK]x(t), Wte[0T.  (19)
Integrating with ordeor both sides of (19) from O td; and using Lemma 1, we obtain
V(X(Tr)) =V (x(0)) < olf, (1+B)e' (t)w(t)) —I(u). (20)
Hence
J(u) < ol (1+B)w' (Hw(t)) +V(x(0) < mn" + A0y =T (21)
due toV (x(T¢)) = X" (T )P~1x(T¢) > 0, which completes the proof of the theorem. O
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We now consider a special case of system (1), wiiére= 0, then system (1) is reduced to
the linear FOSs which was considered in [18]:

{ DIX(t) = AX(t) + Bu(t) + Weo(t), t >0, (22)
X(0) = Xo.
Based on the proof of Theorem 7, we obtain the following rtedudt us denote
M1=AP+PAT £ BY +YTBT +WW',
P= R*%PflR*%, A1 = Amin(P), A2 = Amax(P).

Corollary 8. Given positive humbers; @, Ty and a symmetric positive definite matrix iR
there exist a symmetric positive definite matrix P, a matrixith appropriate dimensions sat-
isfying the following conditions:

{/1/11 PQ YTQz}
x —Qr 0 | <0, (23a)
* * —-Q
A+ —4 T8 < ey (23b)
Ma+1) ’
then Ut) = YPIx(t),t € [0,T¢] is a guaranteed cost controller for the syst¢2®) and the
guaranteed cost value is' 3= ﬁﬂ“ + AxCy.

5. Numerical examples

In this section, two illustrative examples are implementedlustrate the validity and ef-
fectiveness of the proposed results.
Example 1. (Finite-time stabilization) Consider the Lorenz systei®]|[2
DP98x(t) = AX(t) +Bu(t) + Wa(t) + f(t,x(t)), t>0,
3 (24)
X(0) =X € R”,

where

8 1
B= [3|,w=]3],
1 2

X(t) = (xa(t),%(t),xs(t))T € R3,u(t) € R, w(t) = cost € R. We have the disturbana®(t)
satisfying the condition (2) witd = 1. The closed-loop system with a state feedback controller
u(t) = Kx(t) of system (24) is described by

{ D98 (t) = (A+BK)x(t) + Wa(t) + f(t,x(t)), t>0,

X(0) = X € R3. (23)
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Figure 1:x" (t)RX(t) of the open-loop system far = 0.95
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Figure 2:x" (t)RX(t) of the closed-loop system for = 0.95

We have

I (£, xO)l = \/(—Xl(t)xs(t))2+ (a(t)x(t))?

< ()G (1) +x5(t) +x5(t) < kIx(t)]].

Givenk = 2,c; = 1,¢cp = 3.6, Tf = 1, the functionf (t,x(t)) satisfies condition (3) witlE; =
|,E> = 0,E3 = 0. Moreover, the conditions (7a) and (7b) in Theorem 5 hold with

0.5355 01275 —0.0457
P= 01275 05983 01273]|,Y = [0.2846 —2.9402 —0.513ﬂ.
—0.0457 01273 11499

By Theorem 5, the closed-loop system (27) is finite-time Istabth respect tq1,4.1,1,1,1)
by state feedback controller is

u(t) =[1.8241 —5.3496 02185 x(t), t<[0,1].
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Figure 4:x (t)RX(t) of the closed-loop system for = 0.95

With initial conditions arex;(0) = 0.9,x(0) = 0.8,x3(0) = 0.9, Figure 1 shows the re-
sponses ok’ (t)Rxt) of the open-loop system of system (26), while Figure 2 shdwesré-
sponses ok (t)RX(t) of the closed-loop system (27). It is clear from the Figurénat tthe
closed-loop system is finite-time stable with respedtlta.1,1,1,1).

Example 2. (Guaranteed cost control) Let us consider the Chen’s @raatiorder system [29]

DY95x(t) = Ax(t) +Bu(t) + Wa(t) + f(t,x(t)), t>0, (26)
X(0) =xp € R3,
where
[—36 36 O
A=| 0 20 0, f(tx1t)=|-xtxst)|,
i 0 0 -3 X1(t)Xo(t)
1 3
B— 8| . w= 8],
1 2
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X(t) = (xa(t),%2(t),x3(t))" € R3,u(t) € R, w(t) = 0.1sint € R. We have the disturbanee(t)
satisfying the condition (2) witld = 0.01. The closed-loop system with a state feedback con-
troller u(t) = Kx(t) of system (26) is described by

DY95x(t) = (A+BK)X(t) + Wa(t) + f(t,x(t)), t>0,
X(0) = xp € R3,
It is very easy to verify that
It X)) = \/ (—xa(t)xa(t))?+ (xa(t)x2(1))?
< [xa(t)] /34 (1) +35(t) +35(t) < K|[x(1)]].

Givenk = 1,c1 = 1,¢co = 3.6, Tf = 1, the functionf (t,x(t)) satisfies condition (3) witle; =
|,Eo = 0,E3 = 0. The cost function associated with system (26) is given by\#)

(27)

100
Qi= |0 1 0|,Q=[0.1].
001

We can find that the conditions (17a) and (17b) in Theorem Batisfied with

1.5974 08426 04876
P=10.8426 18627 06119 ,Y = [—9.5078 —11.8795 —3.107&1.
0.4876 06119 18670

By Theorem 7, the closed-loop system (27) is finite-timelstalith respect t@1,3.6,1,1,0.01)
and the guaranteed cost valudis= 0.5021||xo||%. Moreover, the guaranteed cost controller is

u(t) = [-3.5599 —5.0719 09272 x(t), te[0,1].

With initial conditions arex; (0) = 0.6,x2(0) = 0.8,x3(0) = —0.8, Figure 3 shows the re-
sponses ok’ (t)Rxt) of the open-loop system of system (26), while Figure 4 shdwsre-
sponses o' (t)RX() of the closed-loop system (27). It is easily seen from theifeigh that the
closed-loop system is finite-time stable with respedtlt®.6,1,1,0.01).

6. Conclusion

In this paper, the problems of finite-time stabilization &éinde-time guaranteed cost control
for nonlinear fractional-order systems with ordexQx < 1 have been investigated. Some
sufficient conditions have been established for the conliesign by using finite-time stability
theory and LMIs approach. The effectiveness and advantaigie proposed method in this
paper have been demonstrated by two numerical exampleswvitiation results.
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