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Abstract

This paper introduces a new class of Hadamard matrix-based mixed-level foldover

designs (MLFODs) and an algorithm which facilitates the construction of MLFODs.

Our new MLFODs were constructed by converting some 2-level columns of a Hadamard

matrix to 3-level columns. Like the 2-level foldover designs (FODs), the new ML-

FODs requires 2m runs where m is the total number of 3- and 2-level factors. Our

Hadamard-matrix based MLFODs are compared with the conference matrix-based

FODs of Johns & Nachtsheim (2013) in terms of D-efficiency and the maximum of
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the correlation coefficients in terms of the absolute value among the columns of the

model matrix. Like the latter, our designs are also definitive in the sense that the

estimates of all main effects are unbiased with respect to any active second order

effects. In addition, they require less runs and can be used to study the presence of

the second-order effects more efficiently. Examples illustrating the use of our new

MLFODs are given.

Keywords: Augmented designs; Conference matrix; Definitive screening designs; D-

efficiency; Interchange algorithm; Plackett-Burman designs.

1 Introduction

Foldover is an experimental design technique used when a fractional factorial design

(FFD) such as a resolution III FFD, a Hadamard matrix or a Plackett-Burman design pro-

duces ambiguous results. Let us call this fraction H. A foldover design (FOD) constructed

from this half fraction is of the form:

 H

−H

 . (1)

FODs form an important class of screening designs. The 2-level FODs have been discussed

in most textbooks on design of experiments (DOEs) such as Mee (2009) and Montgomery

(2017). This paper also provides some useful references on 2-level FODs.

The 3-level FODs and mixed-level FODs (MLFODs) for screening experiments based
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Figure 1: (a) A conference matrix of size 8 and (b)-(e) The half fraction of ADSDs for 1-4
3-level factors in 18 runs constructed from the conference matrix in (a).

on conference matrices have appeared in the DOEs literature in the past few years. A

(0,±1)-matrix with zero diagonal C is a conference matrix of order m if C′C = (m−1) Im,

where Im is the identity matrix of order m. Conference matrices for even m and m ≤ 50

are given in Xiao et al. (2012) and Nguyen & Stylianou (2013).

The conference matrix-based FODs include the definitive screening designs (DSDs)

introduced by Jones & Nachtsheim (2011) and the mixed-level foldover designs constructed

by the DSD-augment method of Jones & Nachtsheim (2013), hereafter called ADSDs. In

the case of DSDs, the half fraction in (1) is a conference matrix and a row of 0’s is added to

(1). In the case ADSDs, the half fraction in (1) is derived from a conference matrix. The

detailed method of constructing ADSDs by the DSD-augment method is given in Jones &

Nachtsheim (2013).

Figure 1 (a) shows a conference matrix of size 8. Figures 1 (b) to 1 (e) show the half

fraction of ADSDs for 1-4 3-level factors constructed from the conference matrix in Figure

1 (a). The ADSDs have the following properties:
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(i) All main effects (MEs) are orthogonal to the 2-factor interactions (2FIs);

(ii) All MEs are orthogonal to the quadratic effects.

This paper introduces a class of Hadamard matrix-based MLFODs formed by converting

some 2-level columns of a Hadamard matrix or a Plackett-Burman design (Plackett &

Burman, 1946) or a D-optimal 2-level design to 3-level columns. Like the ADSDs, this

general class of MLFODs retains the two above-mentioned properties.

2 Structure of the X′X matrix of an MLFOD

Let X be the expanded design matrix of an MLFOD with m factors in 2n runs for the

design in (1) with m3 3-level factors and m2 2-level factors, (i.e. m = m3 + m2) for the

pure quadratic model with p (= 1 + m3 + m) parameters. Now, let the u-th row of X be

written as (1, h2u1, . . . , h
2
um3

, hu1, . . . , hum3 , hu(m3+1), . . . , hum). Due to the foldover structure

of the design, its information matrix M (= X′X) will be of the form

2

 A 0′

0 B

 , (2)

where A is a matrix of size (1 +m3)× (1 +m3), B a matrix of size m×m and 0 a matrix

of 0’s.

Assuming each of the m3 3-level columns of the half fraction has a fixed number x of
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0’s and b = n− x number of ±1’s, the matrix A will be of the form

 n b1′

b1 A∗

 . (3)

where 1 is a column vector of 1’s and A∗ the core of A in (2), i. e. the matrix A without

its first row and first column.

From (3), |M|, the determinant of M for the pure quadratic model, can be computed

as

|M| = 21+m3+m n |A∗ − b2

n
J| |B| (4)

In this paper, we will maximize |M| in (4) by maximizing |A∗ − b2

n
J| and |B| by the

approximate approach. Let λ1, . . . , λm3 be the eigenvalues of a square matrix of full rank.

Note that the trace of this matrix is
∑
λi and sum of the squares of the elements of this

matrix is
∑
λ2i . Thus if the trace of this matrix is constant, minimizing the sum of the

squares of the off-diagonal elements of this matrix is the same as making the λi as equal

as possible with
∑
λi being constant. This is the same as maximizing the determinant of

this matrix, i. e. Πλi. Since the diagonal elements of A∗ − b2

n
J and B and their traces

m3 (b− b2

n
) and m3b+m2n respectively are constant, we can maximize |A∗− b2

n
J| and |B|

by minimizing the sum of the squares of the off-diagonal elements of these two matrices.

This is also the approach which Nguyen (1996) used to obtain efficient supersaturated

designs.

For the main effect model, the expanded design matrix X does not include the pure
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quadratic effects, and the determinant of M (= X′X) can be computed as

|M| = 21+m n |B|. (5)

In this paper, we use MLFOD* to denote MLFOD having the matrix A∗ of the form

d I+c J, where I is the identity matrix and J the matrix of 1’s. Clearly, ADSD is a special

case of MLFOD*. A−1, the inverse of the matrix A of an MLFOD*, will have the form

 p q1′

q1 tI + sJ

 , (6)

where p = (d + mc)/R, q = b/R, t = 1/d, s = (b2 − nc)/dR and R = n(d + mc) − b2m.

Note that if c = b2/n then s = 0 and the quadratic effects are orthogonal to one another.

3 The FOLDOVER algorithm

Our approach for constructing an MLFOD with m3 3-level factors and m2 2-level factors

is to select m columns (m = m3 + m2) of a Hadamard matrix H in n runs (n ≥ m) and

then convert the first m3 2-level columns of this matrix to 3-level columns for use in (1).

We use the u-th row of H to construct the vector Ju of length 2(m3
2 ) +m3m2. The first

(m3
2 ) entries of Ju are h2u1h

2
u2, . . . , h

2
u(m3−1)h

2
um3

. The next (m3
2 ) entries are hu1hu2, . . . , hu(m3−1)

hum3 . The last m3m2 entries are hu1hu(m3+1), . . . , hum3hum.

Now, let J =
∑

Ju. Subtract b2

n
from each of the first (m3

2 ) elements of J. (Recall that

each of the m3 3-level columns of the half fraction will have a fixed number x of 0’s and
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b = n − x number of ±1’s.) Let A1 be the sum of the squares of these (m3
2 ) elements and

A2 the sum of the squares of the remaining elements of J.

Following are the steps of the FOLDOVER algorithm for constructing the half fraction

in (1) of an MLFOD with m3 3-level factors and m2 2-level factors using vector J:

1. Randomly select m columns from a Hadamard matrix H of order m (m ≤ n).

Randomly multiply some rows of this matrix with −1. Randomly insert x 0’s into each of

the first m3 columns of H. Calculate each Ju, u = 1, . . . , n and J =
∑

Ju. Subtract b2

n

from each of the first (m3
2 ) elements of J. Calculate the pair (A1, A2) values.

2. Search for a pair of entries in column j (j = 1 . . . ,m3) of H such that the sign

swap of these two entries will result in the biggest reduction in A1 (or A2 if A1 cannot be

reduced further). If the search is successful, update A1, A2, J and this column. If A1 (or

A2 if A1 cannot be reduced further) cannot be reduced further, repeat this step with the

next 3-level column. Repeat this step until the (A1, A2) values cannot be reduced further

by any further swaps.

Remarks:

1. Steps 1 and 2 make up a try. Among all tries we select the one with the highest

|X′X| and lowest rmax, the maximum of the correlation coefficients in terms of the absolute

value among the columns of the model matrix.

2. If n is not a multiple of four and a Hadamard matrix or a Plackett-Burman design

is not available, FOLDOVER could use the matrices of maximal determinant in http:

//www.indiana.edu/~maxdet/.

Figure 2 shows the steps for constructing a half fraction of an MLFOD* for three 3-level

factors and four 2-level factors in 16 runs (m3 = 3, m2 = 4, n = 8) with x = 2. Figures 2
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Figure 2: Steps of the FOLDOVER algorithm in constructing an MLFOD* for three 3-level
factors and four 2-level factors in 16 runs.

(a), 2 (b) and 2 (c) correspond to Step 1. Figures 2 (a) shows seven columns of a Hadamard

matrix of order eight, which are randomly selected to form the matrix H. Figure 2 (b)

shows some rows of H multiplied with −1. Figure 2 (c) shows two 0’s randomly inserted

into each of the first three columns of H. At the end of Step 1 (A1, A2) values are (0.75,

21). Figures 2 (d) and 2 (e) correspond to Step 2. Figure 2 (d) shows the swap of the

second and the eighth elements of the first column, after which (A1, A2) values have been

changed to (0.75, 12). Figures 2 (e) shows the swap of the fifth and the eighth elements

of the second column, after which (A1, A2) values have been changed to (0.75, 0). After

these two swaps, the matrix A∗ of the half fraction in Figures 2 (e) will have the form

2I + 4J and the matrix B will have the form diag(6, 6, 6, 8, 8, 8, 8).
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4 Results and Discussion

Table 1 compares the 204 MLFODs and ADSD alternatives. The MLFODs were con-

structed from the Hadamard matrices of sizes n = 8 to 28 and the matrices of maximal

determinant of sizes 10, 14, 18, 22, 26 and 30 (see http://www.indiana.edu/~maxdet/).

For each matrix, two MLFODs with m3 = 1, . . . , n
2
− 1 and m2 = n − m3 were given.

The first MLFOD uses x = round(n
5
) and the second MLFOD x = round(n

3
). To ease our

discussion, we use MLFOD(n
5
) to denote the former and MLFOD(n

3
) the latter. N , the

run size of the designs in Table 1, is 2n∗, where n∗ is the size of the half fraction in (1).

For MLFODs and ADSDs, n∗ = n and n∗ = n + 1 repectively, where n is the size of the

Hadamard matrix or matrix of maximal determinant used to construct the MLFOD or the

conference matrix used to construct the ADSD.

The comparison is in terms of d1, the first-order D-efficiency; d2, second-order D-

efficiency and rmax. The D-efficiencies are calculated as

|X′X|1/p/N, (7)

where X is the model matrix, p the number of parameters in the model and N the run size

of the MLFOD.

It can be seen in Table 1 that while the d1 values of ADSDs are larger than those of

MLFODs in general, their d2 values are substantially smaller than those of MLFODs. With

few exceptions, the rmax values of ADSDs are much larger than those of MLFODs. Out of

204 MLFODs in Table 1, 200 are MLFOD*’s. Recall that for MLFOD*’s, the A∗ matrices

in (3) are of the form dI + cJ.
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Figure 3: Correlation between two quadratic effects in terms of absolute value of (1)
ADSDs, (2) MLFOD(2), (3) MLFOD(n

3
), (4) MLFOD(n

4
) and (5) MLFOD(n

5
) for various

values of n = 8 to 100

The correlation between two quadratic effects of an MLFOD* is computed as:

r =
c− b2

n∗

b− b2

n∗

(8)

Recall that n∗ is the size of the half fraction in (1) which is n for our MDSD*’s and n+1

for ADSDs. Figure 3 shows the correlations between the two quadratic effects in terms of

the absolute value of the (1) ADSDs, (2) MLFOD*(2), (3) MLFOD*(n
3
), (4) MLFOD*(n

4
)

and (5) MLFOD*(n
5
) for various values of n = 8, 10, . . . , 100. It can be seen that the

correlations of ADSDs are increasing until they reach the limit, i. e. 0.5 and those of

MLFODs are decreasing until they reach 0. Like ADSDs, MLFOD*(2)’s have two 0’s in

each of the 3-level columns of the half fraction in (1).

Bullington et al. (1993) described a thermostat experiment with 11 2-level factors in

12 runs conducted to identify the cause of early failures in thermostats manufactured by
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the Eaton Corporation. The 11 factors are: (A) Diaphragm plating rinse (clean/dirty);

(B) Current density (min @ amps (5 @ 60/10 @ 15); (C) Sulfuric acid cleaning in seconds

(3/30); (D) Diaphragm electro clean in minutes (2/12); (E) Beryllium copper grain size

in inches (0.008/0.018); (F) Stress orientation to steam weld (perpendicular/parallel); (G)

Diaphragm condition after brazing (wet/air-dried); (H) Heat treatment in hours @ 600◦F

(0.75/4); (I) Brazing machine water and flux (none/extra); (J) Power element electro clean

time (short/long) and (K) Power element plating rinse (clean/dirty). This experiment was

also reported in Mee (2009) p. 202. There is no good reason why we have to treat factors

B, C, D and H as 2-level factors instead of 3-level (quantitative) factors. Let us assume

that the experimenters are looking for the designs that treat these factors as 3-level.

Figure 4 shows the half fractions of the two candidate designs: (a) our 24-run MLFOD*

and (b) 26-run ADSD for four 3-level factors and eight 2-level factors. The half fraction of

our MLFOD* was constructed by converting the first four 2-level columns of a Hadamard

matrix of order 12 to 3-level columns. We use an extra 2-level factor as the blocking factor.

The (d1, d2, rmax) values of our 24-run MLFOD* are (0.852, 0.617, 0.204) and those of the

26-run ADSD are (0.925, 0.557, 0.409). Having additional 0’s (i. e. mid-levels) in each

3-level column of the MLFOD* improves the second-order efficiency at the cost of reducing

the first-order efficiency. Note that if we set x to be two instead of four as in Figure 6 (a),

the (d1, d2, rmax) values will be (0.926, 0.58, 0.2).

Figure 5 shows the correlation cell plots (CCPs) of our MLFOD* and ADSD whose half

fractions are in Figure 4. These CCPs, advocated by Jones & Nachtsheim (2011) show the

pairwise (absolute) correlation between the two terms under study as a coloured square.

Each plot in Figure 5 has 82 rows, 82 columns and 822 coloured cells (82=4+12+(122)).
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Figure 4: Half fractions of (a) our 24-run MLFOD* and (b) 26-run ADSD for four 3-level
factors and eight 2-level factors.

(a) (b)

Figure 5: Correlation Cell Plots of our 24-run MLFOD* and 26-run ADSD for four 3-level
factors and eight 2-level factors.
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Figure 6: Half fractions of (a) our 26-run MLFOD* and (b) 30-run ADSD for six 3-level
factors and seven 2-level factors.

The color of each cell goes from white to dark. The white cells imply no correlation while

the dark ones imply a correlation of 1 or close to 1. It can be seen in Figure 5 that while

the correlation between any 2-level MEs of our MLFOD* is zero, the correlation between

any 3-level MEs of the ADSD is zero. This figure also shows that the magnitude of the

correlation among the quadratic effects is more visible in the CCP of the ADSD than that

of the MLFOD*.

Irvine et al. (1996) described a 213−9 pulping experiment investigating the best method

to remove lignin during the pulping stage without negatively impacting the strength and

yield. The 13 factors are: (A) Wood chip presoaked (yes/no); (B) Chips pre-steamed for

10 min at 1100C; (C) Initial effective alkali level in % (6/12); (D) Sulfide level in im-

pregnation in % (3/10); (E) Liquor (black/white); (F) Liquor/wood ratio (3.5:1/6:1); (G)

Impregnation temperature in 0C (110/150); (H) Impregnation pressure in kPa (190/1140);

(J) Impregnation time in min (10/40); (K) Anthraquinone in % (0.00/0.05); (L) Cook
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(a) (b)

Figure 7: Correlation Cell Plots of (a) our 26-run MLFOD* and (b) 30-run ADSD for six
3-level factors and seven 2-level factors.

Figure 8: The X′X matrices of (a) our 26-run MLFOD* and (b) 30-run ADSD for six
3-level factors and seven 2-level factors.
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temperature in 0C (165/170); (M) Water quench (no/yes) and (N) Extended alkali wash

for 1 hour (no/yes). This experiment was also reported in Mee (2009) p. 183. Again, like

the previous experiment, let us assume that the experimenters are looking for the designs

that treat the six factors C, D, G, H, J and K as 3-level quantitative factors instead of

2-level factors.

Figure 6 displays the half fractions of (a) our 26-run MLFOD* and (b) 30-run ADSD

for six 3-level factors and seven 2-level factors. The half fraction of our MLFOD* was

constructed by converting the first six 2-level columns of a 13×13 ±1 matrix with maxi-

mal determinant (http://www.indiana.edu/~maxdet/d13.html) to 3-level columns. The

(d1, d2, rmax) values of our 26-run MLFOD* are (0.827, 0.547, 0.092) while the ones of the

ADSD are (0.918, 0.455, 0.423). The CCPs of these two designs are in Figure 7. It can be

seen in Figure 5 and Figure 7 that all MEs are orthogonal to the 2FIs. Also in these CCPs,

the magnitude of the correlations among the quadratic effects of the candidate ADSDs

are more severe than those of the MLFOD*s. At the same time, the magnitude of the

correlations between the quadratic effects and the 2FIs of the candidate ADSDs is less

visible than those of MLFOD*s. The X′X matrices of the two designs are in Figure 8.

5 Conclusion

While most screening experiments include the 3-level quantitative factors, 2-level de-

signs such as Plackett-Burman designs and FFDs of resolution III or IV have been used.

This paper introduces a new class of MLFODs. This class of design retains the core benefits

of ADSDs, i. e. the orthogonality between the MEs and the 2FIs and the orthogonality
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between the MEs and the quadratic effects. In addition, they have less severe correlation

among the quadratic effects, require less runs, are more flexible in the sense that the 3-

level columns can include more mid-levels and guarantee the orthogonality among 2-level

columns when the input design is a Hadamard matrix or a Plackett-Burman design.

Users using our MLFODs, however, should be aware that, unlike ADSDs, MLFOD*s

do not always guarantee the orthogonality among the 3-level factors.

The supplemental materials contain 510 text files of 510 half fractions: 306 half fractions

MLFODs and ADSDs in Table 1 and 204 half fractions of MLFOD(2) and MLFOD(n
4
) with

m3 = 1, . . . , n
2
− 1 and m2 = n −m3 using the same input matrices. Also included in the

supplemental materials are the java program hmld and the associated class files which

implement the FOLDOVER algorithm in Section 3.
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Table 1: Comparison of D-efficiencies and rmax of MLFOD*’s and ADSDs

MLFOD*(n
5 ) MLFOD*(n

3 ) ADSD

N† m3 m2 d1 d2 rmax d1 d2 rmax d1 d2 rmax

16 1 7 0.938 0.799 0.289 0.901 0.787 0.474 0.944 0.797 0.126

16 2 6 0.901 0.670 0.333 0.832 0.661 0.474 0.912 0.666 0.357

16 3 5 0.880 0.572 0.333 0.808 0.592 0.200 0.885 0.572 0.357

20 1 9 0.915 0.791 0.224 0.898 0.795 0.359 0.925 0.795 0.273

20 2 8 0.899 0.686 0.250 0.869 0.698 0.359 0.917 0.684 0.389

20 3 7 0.898 0.610 0.250 0.852 0.631 0.200 0.905 0.597 0.389

20 4 6 0.885 0.535 0.250 0.813 0.566 0.200 0.895 0.529 0.389

24 1 11 0.972 0.846 0.183 0.940 0.848 0.204 0.965 0.836 0.084

24 2 10 0.951 0.734 0.200 0.899 0.745 0.204 0.949 0.719 0.409

24 3 9 0.935 0.648 0.200 0.881 0.678 0.204 0.937 0.629 0.409

24 4 8 0.926 0.580 0.200 0.852 0.617 0.204 0.925 0.557 0.409

24 5 7 0.910 0.514 0.200 0.816 0.562 0.204 0.913 0.499 0.409

28 1 13 0.939 0.843 0.242 0.923 0.846 0.267 0.943 0.827 0.200

28 2 12 0.919 0.751 0.242 0.893 0.761 0.267 0.938 0.725 0.423

28 3 11 0.902 0.680 0.242 0.859 0.689 0.267 0.932 0.640 0.423

28 4 10 0.884 0.620 0.242 0.826 0.630 0.267 0.928 0.573 0.423

28 5 9 0.856 0.565 0.242 0.791 0.579 0.267 0.923 0.517 0.423

28 6 8 0.828 0.519 0.242 0.745 0.531 0.267 0.918 0.470 0.423

32 1 15 0.976 0.880 0.208 0.957 0.881 0.226 0.975 0.861 0.063

32 2 14 0.954 0.785 0.208 0.923 0.791 0.226 0.966 0.755 0.433

32 3 13 0.936 0.710 0.208 0.896 0.722 0.226 0.959 0.669 0.433

32 4 12 0.919 0.648 0.208 0.870 0.664 0.226 0.951 0.598 0.433

32 5 11 0.901 0.595 0.208 0.842 0.613 0.226 0.943 0.539 0.433

32 6 10 0.876 0.547 0.231 0.799 0.563 0.226 0.937 0.490 0.433

32 7 9 0.851 0.506 0.231 0.764 0.522 0.226 0.93 0.449 0.433

36 1 17 0.948 0.870 0.126 0.935 0.871 0.136 0.952 0.848 0.158

36 2 16 0.933 0.795 0.126 0.915 0.800 0.136 0.948 0.753 0.441

36 3 15 0.921 0.733 0.126 0.894 0.739 0.136 0.946 0.674 0.441

36 4 14 0.904 0.678 0.126 0.866 0.684 0.167 0.944 0.608 0.441

36 5 13 0.884 0.629 0.214 0.832 0.632 0.167 0.941 0.551 0.441

36 6 12 0.857 0.583 0.214 0.801 0.589 0.272 0.938 0.504 0.441

36 7 11 0.847 0.552 0.252 0.765 0.548 0.272 0.935 0.463 0.441

36 8 10 0.819 0.516 0.252 0.751 0.523 0.272 0.932 0.428 0.441

†Run size of MLFODs. For the same set of (m3, m2) ADSD requires two extra runs.
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Table 1: Comparison of D-efficiencies and rmax of MLFOD*’s and ADSDs (Cont.)

MLFOD*(n
5 ) MLFOD*(n

3 ) ADSD

N† m3 m2 d1 d2 rmax d1 d2 rmax d1 d2 rmax

40 1 19 0.979 0.902 0.112 0.960 0.899 0.186 0.971 0.870 0.143

40 2 18 0.961 0.822 0.112 0.933 0.825 0.186 0.966 0.776 0.447

40 3 17 0.947 0.758 0.112 0.920 0.772 0.186 0.969 0.700 0.447

40 4 16 0.934 0.704 0.112 0.895 0.717 0.186 0.964 0.631 0.447

40 5 15 0.915 0.653 0.112 0.864 0.665 0.186 0.959 0.573 0.447

40 6 14 0.894 0.609 0.188 0.816 0.610 0.186 0.955 0.523 0.447

40 7 13 0.883 0.575 0.224 0.775 0.563 0.186 0.951 0.481 0.447

40 8 12 0.866 0.542 0.224 0.736 0.523 0.308 0.946 0.444 0.447

40 9 11 0.840 0.509 0.224 0.730 0.501 0.310 0.942 0.413 0.447

44 1 21 0.961 0.889 0.101 0.947 0.891 0.165 0.955 0.861 0.130

44 2 20 0.950 0.819 0.101 0.929 0.827 0.165 0.951 0.773 0.452

44 3 19 0.939 0.759 0.101 0.912 0.773 0.165 0.951 0.699 0.452

44 4 18 0.929 0.707 0.101 0.890 0.722 0.165 0.949 0.634 0.452

44 5 17 0.916 0.660 0.201 0.866 0.676 0.165 0.947 0.579 0.452

44 6 16 0.903 0.620 0.201 0.835 0.631 0.165 0.944 0.531 0.452

44 7 15 0.883 0.581 0.201 0.777 0.576 0.267 0.941 0.490 0.452

44 8 14 0.866 0.547 0.201 0.741 0.538 0.267 0.94 0.454 0.452

44 9 13 0.852 0.519 0.201 0.755 0.530 0.275 0.938 0.422 0.452

44 10 12 0.829 0.489 0.201 0.727 0.502 0.275 0.936 0.395 0.452

48 1 23 0.981 0.916 0.140 0.968 0.915 0.204 0.984 0.891 0.042

48 2 22 0.966 0.848 0.140 0.944 0.848 0.204 0.974 0.797 0.457

48 3 21 0.955 0.791 0.140 0.928 0.796 0.204 0.976 0.725 0.457

48 4 20 0.946 0.743 0.140 0.906 0.746 0.204 0.967 0.655 0.457

48 5 19 0.931 0.698 0.140 0.881 0.700 0.204 0.964 0.599 0.457

48 6 18 0.913 0.655 0.140 0.850 0.655 0.204 0.961 0.550 0.457

48 7 17 0.896 0.619 0.140 0.819 0.615 0.204 0.962 0.510 0.457

48 8 16 0.884 0.588 0.158 0.775 0.571 0.204 0.959 0.472 0.457

48 9 15 0.869 0.560 0.234 0.764 0.549 0.306 0.956 0.440 0.457

48 10 14 0.844 0.529 0.234 0.722 0.513 0.306 0.953 0.411 0.457

48 11 13 0.822 0.503 0.234 0.549 0.414 0.408 0.951 0.385 0.457

52 1 25 0.966 0.905 0.128 0.954 0.906 0.143 0.962 0.875 0.111

52 2 24 0.956 0.844 0.128 0.936 0.849 0.143 0.961 0.794 0.460

52 3 23 0.947 0.791 0.128 0.918 0.798 0.143 0.96 0.723 0.460

52 4 22 0.937 0.743 0.128 0.898 0.752 0.143 0.959 0.661 0.460

52 5 21 0.924 0.700 0.128 0.873 0.707 0.176 0.958 0.607 0.460

52 6 20 0.915 0.663 0.143 0.844 0.664 0.238 0.957 0.560 0.460

†Run size of MLFODs. For the same set of (m3, m2) ADSD requires two extra runs.
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Table 1: Comparison of D-efficiencies and rmax of MLFOD*’s and ADSDs (Cont.)

MLFOD*(n
5 ) MLFOD*(n

3 ) ADSD

N† m3 m2 d1 d2 rmax d1 d2 rmax d1 d2 rmax

52 7 19 0.899 0.626 0.143 0.812 0.624 0.238 0.956 0.518 0.460

52 8 18 0.886 0.595 0.214 0.795 0.596 0.238 0.954 0.481 0.460

52 9 17 0.872 0.567 0.214 0.765 0.564 0.238 0.953 0.449 0.460

52 10 16 0.853 0.538 0.214 0.733 0.533 0.238 0.952 0.421 0.460

52 11 15 0.835 0.513 0.214 0.699 0.504 0.294 0.951 0.395 0.460

52 12 14 0.805 0.485 0.214 0.684 0.487 0.294 0.949 0.372 0.460

56 1 27 0.984 0.927 0.161 0.974 0.926 0.130 0.972 0.888 0.103

56 2 26 0.971 0.867 0.161 0.954 0.867 0.130 0.973 0.810 0.463

56 3 25 0.961 0.816 0.161 0.941 0.820 0.130 0.974 0.741 0.463

56 4 24 0.952 0.771 0.161 0.921 0.774 0.158 0.971 0.678 0.463

56 5 23 0.939 0.729 0.161 0.906 0.735 0.217 0.969 0.623 0.463

56 6 22 0.928 0.691 0.161 0.874 0.689 0.217 0.967 0.575 0.463

56 7 21 0.912 0.655 0.161 0.849 0.652 0.217 0.967 0.534 0.463

56 8 20 0.897 0.623 0.161 0.822 0.617 0.217 0.965 0.496 0.463

56 9 19 0.868 0.585 0.161 0.792 0.583 0.217 0.965 0.464 0.463

56 10 18 0.854 0.560 0.227 0.769 0.557 0.263 0.963 0.435 0.463

56 11 17 0.844 0.537 0.227 0.746 0.532 0.263 0.958 0.407 0.463

56 12 16 0.830 0.515 0.242 0.726 0.510 0.303 0.959 0.384 0.463

56 13 15 0.799 0.486 0.242 0.698 0.486 0.303 0.957 0.363 0.463

60 1 29 0.969 0.916 0.149 0.959 0.916 0.163 0.966 0.886 0.097

60 2 28 0.960 0.862 0.149 0.945 0.866 0.163 0.965 0.810 0.466

60 3 27 0.952 0.814 0.149 0.933 0.822 0.163 0.965 0.742 0.466

60 4 26 0.943 0.770 0.149 0.914 0.777 0.163 0.964 0.682 0.466

60 5 25 0.933 0.730 0.149 0.893 0.736 0.163 0.963 0.629 0.466

60 6 24 0.922 0.694 0.149 0.865 0.693 0.163 0.962 0.583 0.466

60 7 23 0.913 0.662 0.149 0.843 0.659 0.245 0.962 0.542 0.466

60 8 22 0.900 0.631 0.149 0.824 0.629 0.245 0.961 0.505 0.466

60 9 21 0.881 0.599 0.149 0.787 0.590 0.245 0.96 0.472 0.466

60 10 20 0.871 0.575 0.224 0.772 0.568 0.250 0.959 0.443 0.466

60 11 19 0.855 0.550 0.224 0.741 0.538 0.250 0.958 0.417 0.466

60 12 18 0.840 0.527 0.224 0.717 0.514 0.327 0.957 0.393 0.466

60 13 17 0.812 0.500 0.224 0.713 0.502 0.327 0.956 0.372 0.466

60 14 16 0.799 0.482 0.224 0.675 0.447 0.327 0.955 0.352 0.466

†Run size of MLFODs. For the same set of (m3, m2) ADSD requires two extra runs.
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