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In this paper, we study the existence of infinitely many nontrivial solutions of to 
the semilinear Δγ differential equations in RN

{
−Δγu + b(x)u = f(x, u) in R

N ,

u ∈ S2
γ(RN ),

where Δγ is a subelliptic operator, the potential b(x) and nonlinearity f(x, u) are 
not assumed to be continuous. Multiplicity of nontrivial solutions for semilinear 
Laplace equations in RN with continuous potential and nonlinearity was considered 
in many works, such as [4,15,18,24].

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In the last years, the semilinear elliptic partial differential equation

−Δu + b(x)u = f(x, u), x ∈ R
N , u ∈ H1(RN ), (1.1)

has been studied by many authors. With the aid of variational methods, the existence and multiplicity 
of nontrivial solutions for problem (1.1) have been extensively investigated in the literature over the past 
several decades. Many papers deal with the autonomous case where the potential b(x) and the nonlinearity 
f are independent of x, or with the radially symmetric case where b(x) and f depend on |x|. We quote 
here [5,6,16,17], where the autonomous case is studied, and [2,3,12], where the radial nonautonomous case 
is considered. If the radial symmetry is lost, the problem becomes very different because of the lack of 

* Corresponding author.
E-mail addresses: dtluyen.dnb@moet.edu.vn (D.T. Luyen), triminh@math.ac.vn (N.M. Tri).
https://doi.org/10.1016/j.jmaa.2018.01.016
0022-247X/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2018.01.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:dtluyen.dnb@moet.edu.vn
mailto:triminh@math.ac.vn
https://doi.org/10.1016/j.jmaa.2018.01.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2018.01.016&domain=pdf


1272 D.T. Luyen, N.M. Tri / J. Math. Anal. Appl. 461 (2018) 1271–1286
compactness. Ever since the work of W.Y. Ding and W.M. Ni [7], Y. Li [11] and P.H. Rabinowitz [15], this 
situation has been treated in a great number of papers under various growth conditions on b(x) and f .

In this paper, we study the existence and multiplicity of nontrivial weak solutions to the following problem

{
−Δγu + b(x)u = f(x, u) in R

N ,

u ∈ S2
γ(RN ),

(1.2)

where Δγ is a subelliptic operator of the form

Δγ :=
N∑
j=1

∂xj

(
γ2
j ∂xj

)
, γ = (γ1, γ2, . . . , γN ) : RN → R

N .

The Δγ-operator was considered by A.E. Kogoj and E. Lanconelli in [10]. This operator has the same 
form as in [8], however the functions γ(x) in [10] are more generalized than those considered in [8]. The 
Δγ-operator contains many degenerate elliptic operators such as the Grushin-type operator

Gα := Δx + |x|2αΔy, α ≥ 0,

where x denotes the point of RN1 × R
N2 (see [9,20,21]), and the operator of the form

Pα,β := Δx + Δy + |x|2α|y|2βΔz, (x, y, z) ∈ R
N1 × R

N2 × R
N3 ,

where α, β are nonnegative real numbers (see [19,22]).
To study the problem (1.2), we make the following assumptions:
(A1) f : RN × R → R is a Carathéodory function satisfying

|f(x, ξ)| ≤ f1(x) |ξ| + f2(x) |ξ|p−1 for almost every (x, ξ) ∈ R
N × R,

where f1, f2 : R
N → R are nonnegative and f1(x) ∈ Lp1(RN ) ∩ Lp3(RN ) ∩ L

2∗γp3
p3(p−1)+2∗γ (RN ), f2(x) ∈

Lp2(RN ) ∩Lp3(RN ), 2p1/(p1 − 1) < 2∗γ := 2Ñ
Ñ−2

(where Ñ is defined by formula (2.1)) pp2/(p2 − 1) < 2∗γ , p ∈

(2, 2∗γ), p1, p2 > 1, p3 ≥ 2∗
γ

2∗
γ−p , p3(2∗γ − 2p + 2) ≤ 2.2∗γ ;

(A2) lim
|ξ|→∞

|F (x,ξ)|
ξ2 = ∞, for almost every x ∈ R

N , and there exists r0 ≥ 0 such that

F (x, ξ) ≡
ξ∫

0

f(x, τ)dτ ≥ 0 for all (x, ξ) ∈ R
N × R, |ξ| ≥ r0;

(A3) There are constants μ > 2 and r1 > 0 such that

μF (x, ξ) ≤ ξf(x, ξ) for all (x, ξ) ∈ R
N × R, |ξ| ≥ r1;

(A4) f(x, −ξ) = −f(x, ξ) for all (x, ξ) ∈ R
N × R;

(B1) b : RN → R such that b ∈ L1
loc(RN ) and

μ0 = ess inf b(x) := sup{μ ∈ R : V ol({x ∈ R
N , b(x) < μ}) = 0} > 0;
x∈RN
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(B2) For any M > 0

V ol
({

x ∈ R
N , b(x) ≤ M

})
< ∞,

where V ol(·) denotes the Lebesgue measure of a set in RN .
We would like to mention the results obtained in the past for the case Δγ ≡ Δ.
In [15], P.H. Rabinowitz assumed that b(x), f(x, ξ) satisfy the following conditions:
(Rab1) b ∈ C1(RN , R) and there is a b0 > 0 such that b(x) ≥ b0 for all x ∈ R

N ;
(Rab2) b(x) → ∞ as |x| → ∞;
(Raf1) f ∈ C2(RN × R, R), f(x, 0) = fξ(x, 0) = 0;
(Raf2) There are constants C1, C2 > 0 and p ∈ (1, (N + 2)/(N − 2)) such that for all x ∈ R

N and ξ ∈ R

|fξ(x, ξ)| ≤ C1 + C2 |ξ|p−1 ;

(Raf3) There is a constant μ > 2 such that

0 < μF (x, ξ) ≡ μ

ξ∫
0

f(x, τ)dτ ≤ ξf(x, ξ),

for all x ∈ R
N and ξ ∈ R\{0}.

Then he proved that the problem (1.2) (for Δγ = Δ) has a nontrivial solution.
In [4], T. Bartsh and Z.Q. Wang assumed that b(x), f(x, ξ) satisfy the following conditions:
(Bab1) b ∈ C(RN , R) satisfies

μ0 = inf
x∈RN

b(x) > 0;

(Bab2) For any M > 0

V ol
({

x ∈ R
N , b(x) ≤ M

})
< ∞;

(Baf1) f ∈ C(RN × R, R); f(x, ξ) = o(|ξ|) as |ξ| → 0 uniformly in x;
(Baf2) There are constants C1, C2 > 0 and p ∈ (1, (N + 2)/(N − 2)) such that for all x ∈ R

N and ξ ∈ R

|f(x, ξ)| ≤ C1 + C2 |ξ|p ;

(Baf3) There is a constant μ > 2 such that

0 < μF (x, ξ) ≡ μ

ξ∫
0

f(x, τ)dτ ≤ ξf(x, ξ),

for all x ∈ R
N and ξ ∈ R\{0};

(Baf4) f is odd in ξ, that is,

f(x,−ξ) = −f(x, ξ) for x ∈ R
N , ξ ∈ R.

Then they proved that the problem (1.2) (for Δγ = Δ) possesses infinitely many nontrivial solutions.
Next, we can state the main theorem of the paper.
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Theorem 1.1. Assume that b and f satisfy (A1), (A2), (A3), (A4), (B1) and (B2). Then the problem (1.2)
possesses infinitely many nontrivial solutions.

Remark 1.2. Even in the case Δγ ≡ Δ, that is γ1 = γ2 = · · · = γN ≡ 1, our result is not covered 
by those in [4]. For example, when b(x) = n + 1 for n ≤ |x| < n + 1, for every n ∈ N and f(x, ξ) =
f1(x)ξ3 − f2(x)ξ where f1, f2 : R3 → R are positive f1 ∈ (L2(R3) ∩ L3(R3) ∩ L

9
5 (R3))\(C(R3) ∪ L∞(R3)), 

f2 ∈ L3(R3) ∩ L4(R3) ∩ L∞(R3), f1(x) > 2f2(x) for all x ∈ R
3, it is easy to check that f(x, ξ), b(x) satisfy 

(A1), (A2), (A3), (A4), (B1), (B2) but do not satisfy the conditions (Bab1), (Baf1), (Baf2), and function 
b(x), f(x, ξ) do not satisfy the conditions (V1), (S1) in [18,24] ((V1) : b ∈ C(RN , R) is bounded from below; 
(S1) : f ∈ C(RN × R, R) and there exists constants c1, c2 > 0 and p ∈ (2, 2N

N−2 ) such that |f(x, ξ)| ≤
c1 |ξ| + c2 |ξ|p−1 for all (x, ξ) ∈ R

N × R).
Obviously, condition (B1) is weaker than condition (Bab1) in [4].

The paper is organized as follows. In Section 2 for convenience of the readers, we recall some func-
tion spaces, embedding theorems and associated functional settings. Section 3 is devoted to the proof of 
Theorem 1.1.

2. Preliminary results

2.1. Function spaces and embedding theorems

We recall the functional setting in [10,13]. We consider the operator of the form

Δγ :=
N∑
j=1

∂xj

(
γ2
j ∂xj

)
, ∂xj

= ∂

∂xj
, j = 1, 2, . . . , N.

Here, the functions γj : RN → R are assumed to be continuous, different from zero and of class C1 in RN\Π, 
where

Π :=

⎧⎨⎩x = (x1, x2, . . . , xN ) ∈ R
N :

N∏
j=1

xj = 0

⎫⎬⎭ .

Moreover, we assume the following properties:
i) There exists a semigroup of dilations {δt}t>0 such that

δt : RN → R, δt (x1, . . . , xN ) = (tε1x1, . . . , t
εNxN ) , 1 = ε1 ≤ ε2 ≤ · · · ≤ εN ,

such that γj is δt-homogeneous of degree εj − 1, i.e.,

γj (δt (x)) = tεj−1γj (x) , ∀x ∈ R
N , ∀t > 0, j = 1, . . . , N.

The number

Ñ :=
N∑
j=1

εj (2.1)

is called the homogeneous dimension of RN with respect to {δt}t>0.
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ii)

γ1 = 1, γj (x) = γj (x1, x2, . . . , xj−1) , j = 2, . . . , N.

iii) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk
γj (x) ≤ ργj (x) , ∀k ∈ {1, 2, . . . , j − 1} , ∀j = 2, . . . , N,

and for every x ∈ R
N

+ :=
{
(x1, . . . , xN ) ∈ R

N : xj ≥ 0, ∀j = 1, 2, . . . , N
}
.

iv) Equalities γj (x) = γj (x∗) (j = 1, 2, . . . , N) are satisfied for every x ∈ R
N , where

x∗ = (|x1| , . . . , |xN |) if x = (x1, x2, . . . , xN ).

Definition 2.1. By Sp
γ(RN ) (1 ≤ p < +∞) we will denote the set of all functions u ∈ Lp(RN ) such that 

γj∂xj
u ∈ Lp(RN ) for all j = 1, . . . , N . We define the norm in this space as follows

‖u‖Sp
γ(RN ) =

⎛⎝ ∫
RN

(|u|p + |∇γu|p) dx

⎞⎠
1
p

,

where ∇γu = (γ1∂x1u, γ2∂x2u, . . . , γN∂xN
u).

If p = 2 we can also define the scalar product in S2
γ(RN ) as follows

(u, v)S2
γ(RN ) = (u, v)L2(RN ) + (∇γu,∇γv)L2(RN ).

Define

S2
γ,b(x)(RN ) =

⎧⎨⎩u ∈ S2
γ(RN ) :

∫
RN

(
|∇γu|2 + b(x)u2

)
dx < +∞

⎫⎬⎭
with b(x) satisfying conditions (B1), (B2), then S2

γ,b(x)(RN ) is a Hilbert space with the norm

‖u‖S2
γ,b(x)(RN ) =

⎛⎝ ∫
RN

(
|∇γu|2 + b(x)u2

)
dx

⎞⎠
1
2

.

By (B1) the embedding S2
γ,b(x)(RN ) ↪→ S2

γ(RN ) is continuous. From an embedding inequality in [1] and 

Hölder’s inequality, we have S2
γ,b(x)(RN ) ↪→ Lq(RN ) for 2 ≤ q ≤ 2∗γ . Moreover, we have

Lemma 2.2. Let (B1), (B2) be satisfied. Then the embedding map from S2
γ,b(x)(RN ) into Lq(RN ) is compact 

for 2 ≤ q < 2∗γ .

Proof. Let {un}∞n=1 ⊂ S2
γ,b(x)(RN ) be a bounded sequence of S2

γ,b(x)(RN ) such that un ⇀ u weakly in 
S2
γ,b(x)(RN ). Then, by the Sobolev embedding theorem, un → u strongly in Lp

loc(RN ) for 2 ≤ q < 2∗γ . We 
claim that

un → u strongly in L2(RN ). (2.2)
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To prove (2.2), we only need to prove that αn := ‖un‖2
L2(RN ) → ‖u‖2

L2(RN ) since the space L2(RN ) is 
uniformly convex. Assume, up to a subsequence, that αn → α.

Set

BR = {x ∈ R
N : |x| < R},

R
N
M,b(x),R = {x ∈ R

N\BR : b(x) ≥ M},
CRN

M,b(x),R = {x ∈ R
N\BR : b(x) < M},

then ∫
R

N
M,b(x),R

|un|2 dx ≤
∫

R
N
M,b(x),R

b(x)
M

|un|2 dx

≤ 1
M

∫
RN

(
|∇γun|2 + b(x)u2

n

)
dx ≤

‖un‖2
S2
γ,b(x)(RN )

M
.

Choose s ∈
(
1, Ñ

Ñ−2

)
and s′ such that 1

s + 1
s′ = 1, then applying Hölder’s inequality we have

∫
CRN

M,b(x),R

|un|2 dx ≤

⎛⎜⎜⎝ ∫
CRN

M,b(x),R

|un|2s

⎞⎟⎟⎠
1
s (

V ol(CRN
M,b(x),R)

) 1
s′

≤ C ‖un‖2
S2
γ,b(x)(RN )

(
V ol(CRN

M,b(x),R)
) 1

s′
.

Since 
{
‖un‖S2

γ,b(x)(RN )

}∞

n=1
is bounded and conditions (B1), (B2) hold, we may choose R, M large enough 

such that the quantities 
‖un‖2

S2
γ,b(x)(R

N )

M and 
(
V ol(CRN

M,b(x),R)
) 1

s′ are small enough. Hence, for all ε > 0, we 
have ∫

RN\BR

|un|2 dx =
∫

R
N
M,b(x),R

|un|2 dx +
∫

CRN
M,b(x),R

|un|2 dx < ε.

Thus,

‖u‖2
L2(RN ) = ‖u‖2

L2(BR) + ‖u‖2
L2(RN\BR)

≥ lim
n→∞

‖un‖2
L2(BR) = lim

n→∞

(
‖un‖2

L2(RN ) − ‖u‖2
L2(RN\BR)

)
≥ α2 − ε.

On the other hand, let Ω be an arbitrary domain in RN , then∫
Ω

|un|2 dx ≤
∫
RN

|un|2 dx → α2,

hence ‖u‖L2(RN ) ≤ α. By the arbitrariness of ε, we have α = ‖u‖L2(RN ). So (2.2) is proved.
Finally, we prove that un → u in Lq(RN ) for 2 ≤ q < 2∗γ . In fact, if q ∈ (2, 2∗γ), there is a number 

θ ∈ (0, 1) such that 1 = θ + 1−θ
∗ . Then by Hölder’s inequality,
q 2 2γ
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‖un − u‖qLq(RN ) =
∫
RN

|un − u|θp |un − u|(1−θ)q dx ≤ ‖un − u‖θqL2(RN ) ‖un − u‖(1−θ)q
L

2∗γ (RN )
.

Since un is bounded in L2∗
γ (RN ) and ‖un − u‖L2(RN ) → 0, we have un → u in Lq(RN ). �

Lemma 2.3. Assume that f : RN × R → R is a Carathéodory function satisfying

|f(x, ξ)| ≤ f1(x) |ξ| + f2(x) |ξ|p−1 almost everywhere (x, ξ) ∈ R
N × R,

where f1, f2 : R
N → R are nonnegative and f1(x) ∈ Lp1(RN ) ∩ Lp3(RN ) ∩ L

2∗γp3
p3(p−1)+2∗γ (RN ), f2(x) ∈

Lp2(RN ) ∩Lp3(RN ), 2p1/(p1−1) ≤ 2∗γ , pp2/(p2−1) ≤ 2∗γ , p ∈ (2, 2∗γ), p1, p2 > 1, p3 ≥ 2∗
γ

2∗
γ−p , p3(2∗γ−2p +2) ≤

2.2∗γ . Then Φ1(u) ∈ C1(S2
γ(RN ), R) and

Φ′
1(u)(v) =

∫
RN

f(x, u)vdx

for all v ∈ S2
γ(RN ), where

Φ1(u) =
∫
RN

F (x, u)dx.

Proof. First, we prove the existence of the Gâteaux derivative of Φ1(u). Let u, v ∈ S2
γ(RN ). Given x ∈ R

N ,

t ∈ R and 0 < |t| < 1 by the Mean Value Theorem

∣∣∣∣F (x, u(x) + tv(x)) − F (x, u(x))
t

∣∣∣∣
≤
[
f1(x)(|u(x)| + |v(x)|) + 2p−1f2(x)

(
|u(x)|p−1 + |v(x)|p−1

) ]
|v(x)| := F(x).

Applying Hölder’s inequality, we conclude that

∫
RN

f1(x) |v(x)|2 dx ≤ ‖f1‖Lp1 (RN ) ‖v‖
2

L
2p1

p1−1 (RN )
,

∫
RN

f2(x) |v(x)|p dx ≤ ‖f2‖Lp2 (RN ) ‖v‖
p

L
pp2

p2−1 (RN )
,

∫
RN

f1(x) |u(x)| |v(x)|dx ≤ ‖f1‖Lp1 (RN ) ‖u‖
L

2p1
p1−1 (RN )

‖v‖
L

2p1
p1−1 (RN )

,

∫
RN

f2(x) |u(x)|p−1 |v(x)|dx ≤ ‖f2‖Lp2 (RN ) ‖u‖
p−1

L
pp2

p2−1 (RN )
‖v‖

L
pp2

p2−1 (RN )
.

Hence ∣∣∣∣F (x, u(x) + tv(x)) − F (x, u(x))
∣∣∣∣ ≤ F(x) ∈ L1(RN ).
t
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Therefore, for any u, v ∈ S2
γ(RN ) by the Mean Value Theorem and Lebesgue’s Theorem, we have

lim
t→0

Φ1(u + tv) − Φ1(u)
t

=
∫
RN

lim
t→0

F (x, u(x) + tv(x)) − F (x, u(x))
t

dx

=
∫
RN

f(x, u(x))v(x)dx := F0(u, v).

Obviously, F0(u, v) is linear in v. Further, applying Hölder’s and Sobolev’s inequalities, we have

|F0(u, v)| ≤
∫
RN

(
f1(x)|u(x)||v(x)| + f2(x)|u(x)|p−1|v(x)|

)
dx

≤ ‖f1‖Lp1 (RN ) ‖u‖
L

2p1
p1−1 (RN )

‖v‖
L

2p1
p1−1 (RN )

+ ‖f2‖Lp2 (RN ) ‖u‖
p−1

L
pp2

p2−1 (RN )
‖v‖

L
pp2

p2−1 (RN )

≤ C

(
‖f1‖Lp1 (RN ) ‖u‖

L
2p1

p1−1 (RN )
+ ‖f2‖Lp2 (RN ) ‖u‖

p−1

L
pp2

p2−1 (RN )

)
‖v‖S2

γ(RN ) .

It follows that F0(u, v) is linear and bounded in v on S2
γ(RN ). Therefore, DΦ1(u) = F0(u, ·) is the Gâteaux 

derivative of Φ1 at u.
Next, we establish that the Gâteaux derivative of Φ1(u) is continuous in u in the uniform (S2

γ(RN ))∗-topol-
ogy. Assume that un → u in S2

γ(RN ) by a Sobolev embedding theorem, hence

un → u in Lq(RN ), 2 ≤ q ≤ 2∗γ as n → ∞,

un → u a.e. in R
N as n → ∞. (2.3)

Since f is a Carathéodory function

f(x, un) → f(x, u) a.e. in R
N as n → ∞. (2.4)

Let

ϕn(x) : = f1(x) + (f1(x) + f2(x)) |un(x)|p−1
, for any n = 1, 2, . . . , (2.5)

ϕ(x) : = f1(x) + (f1(x) + f2(x)) |u(x)|p−1
.

Then by (2.3), (2.5) and (A1), we have

|f(x, un)| ≤ ϕn(x) for almost every x ∈ R
N , ϕn(x) → ϕ(x) a.e. in R

N . (2.6)

For any v ∈ S2
γ(RN ) applying Hölder’s and Sobolev’s inequalities, we have

|〈DΦ1(un) −DΦ1(u), v〉| =

∣∣∣∣∣∣
∫
RN

(f(x, un) − f(x, u))vdx

∣∣∣∣∣∣
≤ ‖f(x, un) − f(x, u)‖

L

2∗γp3
p3(p−1)+2∗γ (RN )

‖v‖
L

2∗γp3
2∗γp3−p3(p−1)−2∗γ (RN )

≤ C ‖f(x, un) − f(x, u)‖ 2∗γp3
p3(p−1)+2∗

‖v‖S2
γ(RN ) .
L γ (RN )
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This implies that

‖DΦ1(un) −DΦ1(u)‖(S2
γ(RN ))∗ ≤ C ‖f(x, un) − f(x, u)‖

L

2∗γp3
p3(p−1)+2∗γ (RN )

. (2.7)

On the other hand, we have

∫
RN

|ϕn(x) − ϕ(x)|
2∗γp3

p3(p−1)+2∗γ dx

=
∫
RN

|f1(x) + f2(x)|
2∗γp3

p3(p−1)+2∗γ

∣∣∣|un(x)|p−1 − |u(x)|p−1
∣∣∣ 2∗γp3
p3(p−1)+2∗γ dx

≤

⎛⎝ ∫
RN

|f1(x) + f2(x)|p3 dx

⎞⎠
2∗γ

p3(p−1)+2∗γ
⎛⎝ ∫

RN

∣∣∣|un|p−1 − |u|p−1
∣∣∣ 2∗γ
p−1 dx

⎞⎠
p3(p−1)

p3(p−1)+2∗γ

.

Since un → u in Lq(RN ) for all 2 ≤ q ≤ 2∗γ , we have 
∫
RN

∣∣∣|un|p−1 − |u|p−1
∣∣∣ 2∗γ
p−1 dx → 0. Therefore

∫
RN

|ϕn(x) − ϕ(x)|
2∗γp3

p3(p−1)+2∗γ dx → 0, as n → ∞. (2.8)

Since there are constants C > 0, C > 0 such that

|f(x, un) − f(x, u)|
2∗γp3

p3(p−1)+2∗γ

≤ C |f(x, un)|
2∗γp3

p3(p−1)+2∗γ + C |f(x, u)|
2∗γp3

p3(p−1)+2∗γ

≤ C |ϕn(x)|
2∗γp3

p3(p−1)+2∗γ + C |ϕ(x)|
2∗γp3

p3(p−1)+2∗γ

≤ C |ϕn(x) − ϕ(x)|
2∗γp3

p3(p−1)+2∗γ + C |ϕ(x)|
2∗γp3

p3(p−1)+2∗γ , for almost every x ∈ R
N ,

by Fatou’s Lemma

∫
RN

lim inf
n→∞

(
C |ϕn(x) − ϕ(x)|

2∗γp3
p3(p−1)+2∗γ + C |ϕ(x)|

2∗γp3
p3(p−1)+2∗γ (2.9)

− |f(x, un) − f(x, u)|
2∗γp3

p3(p−1)+2∗γ
)
dx

≤ lim inf
n→∞

∫
RN

(
C |ϕn(x) − ϕ(x)|

2∗γp3
p3(p−1)+2∗γ + C |ϕ(x)|

2∗γp3
p3(p−1)+2∗γ

− |f(x, un) − f(x, u)|
2∗γp3

p3(p−1)+2∗γ
)
dx
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≤ lim sup
n→∞

∫
RN

(
C |ϕn(x) − ϕ(x)|

2∗γp3
p3(p−1)+2∗γ + C |ϕ(x)|

2∗γp3
p3(p−1)+2∗γ

− |f(x, un) − f(x, u)|
2∗γp3

p3(p−1)+2∗γ
)
dx

≤ lim
n→∞

∫
RN

(
C |ϕn(x) − ϕ(x)|

2∗γp3
p3(p−1)+2∗γ + C |ϕ(x)|

2∗γp3
p3(p−1)+2∗γ

)
dx.

Moreover from (2.4), (2.6) and (2.8), we have

lim
n→∞

∫
RN

(
C |ϕn(x) − ϕ(x)|

2∗γp3
p3(p−1)+2∗γ + C |ϕ(x)|

2∗γp3
p3(p−1)+2∗γ

)
dx = C

∫
RN

|ϕ(x)|
2∗γp3

p3(p−1)+2∗γ dx,

∫
RN

lim inf
n→∞

(
C |ϕn(x) − ϕ(x)|

2∗γp3
p3(p−1)+2∗γ + C |ϕ(x)|

2∗γp3
p3(p−1)+2∗γ (2.10)

− |f(x, un) − f(x, u)|
2∗γp3

p3(p−1)+2∗γ
)
dx = C

∫
RN

|ϕ(x)|
2∗γp3

p3(p−1)+2∗γ dx.

Combining (2.9) and (2.10) we derive that

lim
n→∞

∫
RN

|f(x, un) − f(x, u)|
2∗γp3

p3(p−1)+2∗γ dx = 0.

Therefore, DΦ1(un) → DΦ1(u). This means that DΦ1(u) is continuous in u. Hence, Φ′
1(u) = DΦ1(u), 

i.e., Φ1 ∈ C1(S2
γ(RN ), R). This proves the theorem. �

Remark 2.4. Lemma 2.3 is a generalization of Lemma 3.10 in [23].

Define the Euler–Lagrange functional associated with the problem (1.2) as follows

Φ(u) = 1
2

∫
RN

(
|∇γu|2 + b(x)u2

)
dx−

∫
RN

F (x, u)dx.

From Lemma 2.3 and f satisfies (A1), b(x) satisfies (B1), we have Φ is well defined on S2
γ,b(x)(RN ) and 

Φ ∈ C1(S2
γ,b(x)(RN ), R) with

Φ′(u)(v) =
∫
RN

(∇γu · ∇γv + b(x)uv) dx−
∫
RN

f (x, u) vdx

for all v ∈ S2
γ,b(x)(RN ). One can also check that the critical points of Φ are weak solutions of problem (1.2).

2.2. Mountain Pass Theorem

Definition 2.5. Let X be a real Banach space with its dual space X∗ and J ∈ C1(X, R). For c ∈ R we say 
that J satisfies the (C)c condition if for any sequence {xn}∞n=1 ⊂ X with

J(xn) → c and (1 + ‖xn‖ ) ‖J ′(xn)‖ ∗ → 0,

X X
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then there exists a subsequence {xnk
}∞k=1 that converges strongly in X. If J satisfies the (C)c condition for 

all c > 0 then we say that J satisfies the Cerami condition.

We will use the following version of the Mountain Pass Theorem.

Lemma 2.6 (see [14]). Let X be an infinite dimensional Banach space, X = Y 
⊕

Z, where Y is finite dimen-
sional and let J ∈ C1(X, R) satisfy the (C)c condition for all c > 0, J(0) = 0, J(−u) = J(u) for all u ∈ X, 
and

(i) There are constants ρ, α > 0 such that J(u) ≥ α for all u ∈ Z such that ‖u‖
X

= ρ;
(ii) For any finite dimensional subspace X̂ ⊂ X, there is R = R(X̂) > 0 such that J(u) ≤ 0 on X̂\BR.

Then J possesses an unbounded sequence of critical values.

3. Proof of Theorem 1.1

We prove Theorem 1.1 by verifying that all conditions of Lemma 2.6 are satisfied. First, we check the 
Cerami condition in this lemma:

Lemma 3.1. Let (A1), (A3), (B1) and (B2) be satisfied. Then Φ satisfies the (C)c condition for all c > 0 on 
S2
γ,b(x)(RN ).

Proof. Let {um}∞m=1 be a sequence in S2
γ,b(x)(RN ) such that

(
1 + ‖um‖S2

γ,b(x)(RN )

)
‖Φ′(um)‖(S2

γ,b(x)(RN ))∗ → 0 and Φ(um) → c > 0 as m → ∞, (3.1)

hence

Φ′(um)(um) → 0 and 1
2 ‖um‖S2

γ,b(x)(RN ) −
∫
RN

F (x, um)dx → c as m → ∞. (3.2)

When m is large enough, we have

c + 1 ≥ Φ(um) − 1
μ

Φ′(um)(um) (3.3)

=
(

1
2 − 1

μ

)
‖um‖2

S2
γ,b(x)(RN ) +

∫
RN

(
1
μ
f(x, um)um − F (x, um)

)
dx

=
(

1
2 − 1

μ

)
‖um‖2

S2
γ,b(x)(RN ) +

∫
Ωm(0,r1)

(
1
μ
f(x, um)um − F (x, um)

)
dx

+
∫

Ωm(r1,∞)

(
1
μ
f(x, um)um − F (x, um)

)
dx

≥
(

1
2 − 1

μ

)
‖um‖2

S2
γ,b(x)(RN ) +

∫
Ωm(0,r1)

(
1
μ
f(x, um)um − F (x, um)

)
dx,

where Ωm(a, b) = {x ∈ R
N : a ≤ |um(x)| < b} for 0 ≤ a < b.



1282 D.T. Luyen, N.M. Tri / J. Math. Anal. Appl. 461 (2018) 1271–1286
We first show that {um}∞m=1 is bounded in S2
γ,b(x)(RN ) by a contradiction argument. Indeed, suppose 

that

‖um‖S2
γ,b(x)(RN ) → ∞ as m → ∞. (3.4)

Setting

vm = um

‖um‖S2
γ,b(x)(RN )

,

then ‖vm‖S2
γ,b(x)(RN ) = 1. Passing to a subsequence, we may assume that vm ⇀ v weakly in S2

γ,b(x)(RN ), 
then by Lemma 2.2, vm → v strongly in Lq(RN ), 2 ≤ q < 2∗γ , and vm → v a.e. on RN .

From (3.3) and (3.4), we obtain

lim sup
m→∞

1
‖um‖2

S2
γ,b(x)(RN )

∫
Ωm(0,r1)

(
1
μ
f(x, um)um − F (x, um)

)
dx ≤ 1

μ
− 1

2 < 0. (3.5)

If v ≡ 0, then vm → 0 strongly in Lq(RN ), 2 ≤ q < 2∗γ , and vm → 0 a.e. on RN . Hence, it follows from (A1)
that ∣∣∣∣∣∣∣

∫
Ωm(0,r1)

f(x, um)um − μF (x, um)
μ ‖um‖2

S2
γ,b(x)(RN )

dx

∣∣∣∣∣∣∣ ≤
∫

Ωm(0,r1)

|f(x, um)um − μF (x, um)|
μ |um|2

|vm|2 dx

≤ C

∫
Ωm(0,r1)

(|f1(x)| + |f2(x)|) |vm|2 dx ≤ C

∫
RN

(|f1(x)| + |f2(x)|) |vm|2 dx

≤ C

(
‖f1‖Lp1 (RN ) ‖vm‖2

L
2p1

p1−1 (RN )
+ ‖f2‖Lp2 (RN ) ‖vm‖2

L
2p2

p2−1 (RN )

)
→ 0 as m → ∞,

which contradicts (3.5).
Set Ω∗ = {x ∈ R

N : v(x) �= 0} then V ol(Ω∗) > 0. For almost every x ∈ Ω∗, we have lim
m→∞

|um(x)| = ∞. 
Hence Ω∗ = Ω∗

1
⋃

Ω∗
2 where Ω∗

2 ⊂ Ωm(r0, ∞), V ol(Ω∗
1) = 0 for large m ∈ N. It follows from (A1), (3.2) and 

Fatou’s Lemma that

0 = lim
m→∞

c + 1
‖um‖2

S2
γ,b(x)(RN )

= lim
m→∞

Φ(um)
‖um‖2

S2
γ,b(x)(RN )

= lim
m→∞

⎡⎣1
2 −

∫
RN

F (x, um)
u2
m

v2
mdx

⎤⎦

= lim
m→∞

⎡⎢⎣1
2 −

∫
Ωm(0,r0)

F (x, um)
u2
m

v2
mdx−

∫
Ωm(r0,∞)

F (x, um)
u2
m

v2
mdx

⎤⎥⎦
≤ lim sup

m→∞

[1
2 + ‖f1‖Lp1 (RN ) ‖vm‖2

L
2p1

p1−1 (RN )
+ ‖f2‖Lp2 (RN ) ‖vm‖2

L
2p2

p2−1 (RN )

−
∫

F (x, um)
u2
m

v2
mdx

]
≤ C1 − lim inf

m→∞

∫ |F (x, um)|
u2
m

v2
mdx
Ωm(r0,∞) Ωm(r0,∞)
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≤ C1 − lim inf
m→∞

∫
RN

|F (x, um)|
u2
m

χΩm(r0,∞)(x)v2
mdx

≤ C1 −
∫
RN

lim inf
m→∞

|F (x, um)|
u2
m

χΩm(r0,∞)(x)v2
mdx = −∞ (3.6)

which is a contradiction, where χI denotes the characteristic function associated to the mensurable subset 
I ⊂ R. Thus {um}∞m=1 is bounded in S2

γ,b(x)(RN ).
Because of the above result, without loss of generality, we can suppose that

um ⇀ u in S2
γ,b(x)(RN ) as m → ∞

um → u in Lq(RN ) as m → ∞, 2 ≤ q < 2∗α. (3.7)

By (A1), we obtain

∣∣∣∣∣∣
∫
RN

f(x, um)(um − u)dx

∣∣∣∣∣∣ ≤
∫
RN

|f1(x)| |um| |um − u|dx +
∫
RN

|um − u| |um|p−1 |f2(x)| dx

≤ ‖um − u‖
L

2p1
p1−1 (RN )

‖um‖
L

2p1
p1−1 (RN )

‖f1‖Lp1 (RN )

+ ‖um − u‖
L

pp2
p2−1 (RN )

‖um‖p−1

L
pp2

p2−1 (RN )
‖f2‖Lp2 (RN ) .

Since (3.7), we can conclude that

∫
RN

f(x, um)(um − u)dx → 0 as m → ∞.

Therefore ∫
RN

[f(x, um) − f(x, u)] (um − u)dx → 0 as m → ∞. (3.8)

Observe that

‖um − u‖2
S2
γ,b(x)(RN ) = 〈Φ′(um) − Φ′(u), um − u〉 +

∫
RN

[f(x, um) − f(x, u)] (um − u)dx.

It is clear that

〈Φ′(um) − Φ′(u), um − u〉 → 0 as m → ∞. (3.9)

From (3.8)–(3.9), we deduce that

‖um − u‖2
S2
γ,b(x)(RN ) → 0 as m → ∞.

Therefore, we conclude that um → u strongly in S2
γ,b(x)(RN ). The proof of Lemma 3.1 is complete. �
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Lemma 3.2. Let (A1)–(A3), (B1) and (B2) be satisfied. Then for any finite dimensional subspace X̂ ⊂
S2
γ,b(x)(RN ), there is R = R(X̂) > 0 such that

Φ(u) ≤ 0, ∀u ∈ X̂, ‖u‖S2
γ,b(x)(RN ) ≥ R.

Proof. Arguing by contradiction, suppose that for some sequence {un}∞n=1 ⊂ X̂ with ‖un‖S2
γ,b(x)(RN ) → ∞, 

there is M > 0 such that Φ(un) ≥ −M for all n ∈ N. Set

vn(x) = un

‖un‖S2
γ,b(x)(RN )

,

then ‖vn‖S2
γ,b(x)(RN ) = 1. Therefore we can (by passing to a subsequence if necessary) suppose that

vn ⇀ v weakly in S2
γ,b(x)(RN ) as n → ∞,

vn → v a.e. in R
N as n → ∞,

vn → v strongly in Lq(RN ) as n → ∞, 2 ≤ q < 2∗γ .

Since X̂ is finite dimensional, then

vn → v strongly in X̂ as n → ∞

and v ∈ X̂, ‖v‖S2
γ,b(x)(RN ) = 1. Therefore, it follows from (3.6) that

0 = lim
m→∞

−M

‖um‖2
S2
γ,b(x)(RN )

≤ lim
m→∞

Φ(um)
‖um‖2

S2
γ,b(x)(RN )

≤ C1 −
∫
RN

lim inf
m→∞

|F (x, um)|
u2
m

χΩm(r0,∞)(x)v2
mdx = −∞.

Hence we arrive at a contradiction. So, there is R = R(X̂) > 0 such that Φ(u) ≤ 0 for u ∈ X̂ and 
‖u‖S2

γ,b(x)(RN ) ≥ R. �
Let {ej}∞j=1 be a total orthonormal basis of S2

γ,b(x)(RN ) and define Xj = Rej ,

Yk =
k⊕

j=1
Xj , Zk =

∞⊕
j=k+1

Xj , k ∈ N.

Let

βk = sup
u∈Zk

‖u‖S2
γ,b(x)(R

N )=1

‖u‖Lq(RN ) , 2 ≤ q < 2∗α (3.10)

then βk → 0 as k → ∞. Indeed, suppose that this is not the case. Then there is an ε0 > 0 and {uj}∞j=1 ⊂
S2
γ,b(x)(RN ), ‖uj‖S2

γ,b(x)(RN ) = 1, with uj⊥Ykj
, ‖uj‖Lq(RN ) ≥ ε0 where kj → ∞ as j → ∞. For any v ∈

S2
γ,b(x)(RN ), we may find a wj ∈ Ykj

such that wj → v as j → ∞. Therefore∣∣∣(uj , v)S2
γ,b(x)(RN )

∣∣∣ =
∣∣∣(uj , wj − v)S2

γ,b(x)(RN )

∣∣∣ ≤ ‖wj − v‖S2
γ,b(x)(RN )

as j → ∞, i.e., uj ⇀ 0 weakly in S2 (RN ). Hence, uj → 0 in Lp(RN ), a contradiction.
γ,b(x)
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Lemma 3.3. Let (A1), (B1) and (B2) be satisfied. Then there exists constants ρ, α, k > 0 such that Φ(u) ≥ α

for all u ∈ Zk such that ‖u‖S2
γ,b(x)(RN ) = ρ.

Proof. For any u ∈ Zk, using Hölder’s inequality, we have

Φ(u) ≥ 1
2 ‖u‖2

S2
γ,b(x)(RN ) − ‖f1‖Lp1 (RN ) ‖u‖

2
L

p1
p1−1 (RN )

− ‖f2‖Lp2 (RN ) ‖u‖
p

L
pp1

p1−1 (RN )

= 1
2 ‖u‖2

S2
γ,b(x)(RN ) − ‖f1‖Lp1 (RN )

∥∥∥∥∥ u

‖u‖S2
γ,b(x)(RN )

∥∥∥∥∥
2

L
p1

p1−1 (RN )

‖u‖2
S2
γ,b(x)(RN )

− ‖f2‖Lp2 (RN )

∥∥∥∥∥ u

‖u‖S2
γ,b(x)(RN )

∥∥∥∥∥
p

L
pp1

p1−1 (RN )

‖u‖pS2
γ,b(x)(RN ) .

Because 2 ≤ 2p1/(p1 − 1) < 2∗γ , 2 ≤ pp2/(p2 − 1) < 2∗γ , we have

Φ(u) ≥ 1
2 ‖u‖2

S2
γ,b(x)(RN ) − ‖f1‖Lp1 (RN ) β

2
k ‖u‖

2
S2
γ,b(x)(RN ) − ‖f2‖Lp2 (RN ) β

p
k ‖u‖

p
S2
γ,b(x)(RN ) .

By (3.10), we can choose k large enough, and ‖u‖S2
γ,b(x)(RN ) = 1

2 such that

1
8 − 1

4 ‖f1‖Lp1 (RN ) β
2
k − ‖f2‖Lp2 (RN ) β

p
k

1
2p = α > 0. �

Proof of Theorem 1.1. Let X ≡ S2
γ,b(x)(RN ), Y ≡ Yk, Z ≡ Zk. By Lemmas 3.1, 3.2 and 3.3 all conditions of 

Lemma 2.6 are satisfied. Thus, problem (1.2) possesses infinitely many nontrivial solutions. �
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