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Abstract

This paper provides some new results on the equi-boundedness and the ultimate boundedness
for a general class of non-autonomous nonlinear time-varying delay difference equations subject
to external bounded disturbances. The disturbances are assumed to vary within a known interval
whose lower bound may be different from zero. First, we employ fixed point theory and compute
some difference inequalities to derive some new results on the existence of positive solutions
and the equi-boundedness of solutions. Second, we derive a sufficient condition for the ultimate
boundedness of solutions. This condition is easy to check and allows us to compute directly both
the smallest ultimate upper bound and the largest ultimate lower bound. Third, we apply the
obtained results to some discrete population models. Finally, numerical examples are given to
illustrate the effectiveness of the proposed results.

Keywords: Fixed point theorem, contraction mapping, nonlinear difference equation,
boundedness, time-varying delay.

1. Introduction

The dynamics of species population models has been one of the strong motivations for the
impressive development of the theory of continuous dynamical systems as well as discrete dynam-
ical systems. A lot of articles have been written regarding this subject (see, for example, [1]-[23],
[26]-[40] and the references therein). In particular, in [1]-[23], [27], [31]-[40] many interesting
results on properties of solutions of several discrete models derived from mathematical biology
have been reported. Note that, the effect of disturbances was not investigated in these discrete
population models. While, as well known, in the real world, the effect of disturbances is a com-
mon issue related to the study and analysis of dynamical systems. Disturbances could arise from
modelling errors, ageing, uncertainties, and are present in any realistic problem (see, [24], [25]).
Therefore, it is very essential to investigate qualitative properties of solutions of non-autonomous
discrete population models with time-varying parameters and external disturbances.

Motivated by the above discussion, in this paper, we consider the following general class of
non-autonomous nonlinear difference equations with N time-varying delays and bounded distur-
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bances

xn+1 = λnxn + αnF (n, xn, xn−m1(n), . . . , xn−mN (n)) + dn, n ∈ Nn0 , (1)

xθ = ψθ ∈ [0,∞), θ ∈ Dn0 , (2)

where N denotes the set of natural numbers and Nn0 = {n0 + 1, n0 + 2, ...}, n0 ∈ N, (λn)
and (αn) are sequences of positive real numbers, map F maps N × [0,∞)N+1 to [0,∞), time-
varying delays mi(n), i = 1, . . . , N are given integer-valued functions. If mi(n) are bounded and
0 ≤ m1(n) ≤ . . . ≤ mN(n) ≤ mN for all n ∈ N, then for each integer n0 ≥ 0, we define Dn0

is a set of integers belong to the interval [−mN , n0]. If mi(n) are unbounded then Dn0 is a set
of integers belong to (−∞, n0]. ψ is the bounded initial value function and dn ∈ [0,∞) is the
disturbance varying within a known interval, that is

d∗ ≤ dn ≤ d∗, ∀n ∈ N. (3)

The equation (1) includes several discrete models derived from mathematical biology such as
the Nicholson’s blowflies model and the Bobwhite quail population model. Namely, when dn ≡ 0,
mi(n) = i, i = 1, 2, . . . , N , λn ≡ λ is a positive constant, αn ≡ 1 and F (n, x0, x1, . . . , xN) =
N∑
i=0

δixie
−xi , equation (1) is reduced to the model Nicholson’s blowflies model (see, for example,

[26]); and when dn ≡ 0, mi(n) = i, i = 1, 2, . . . , N , λn ≡ λ is a positive constant, αn ≡ 1 and

F (n, x0, x1, . . . , xN) =
N∑
i=0

ζixi
1+xpi

, equation (1) is reduced to the Bobwhite quail population model

(see, for example, [26]).

Many interesting results on the asymptotic stability of solutions of non-autonomous nonlinear
difference equations of the form (1) without the the effect of the disturbance dn, that is, dn ≡ 0,
have been reported in the literature (see, for example, [1], [6], [9], [11], [18], [21] and the references
therein). However, as far as we know, it is very difficult to achieve asymptotic stability for
dynamical systems perturbed by unknown-but bounded disturbances. Instead, the convergence
of the system’s trajectories within a bounded set after a large enough time can be guaranteed.
To day and to the best of our knowledge, the equi-boundedness and the ultimate boundedness
of solutions of equations of the form (1) have still not been studied elsewhere, which motivate
the present study.

The remainder of this paper is organized as follows. In Section 2, we present the main results.
In Section 3, we apply the obtained results in Section 2 to determine conditions for the equi-
boundedness and the ultimate boundedness of solutions of the Nicholson’s blowflies model and
the Bobwhite quail population model. Some numerical examples are given in Section 4. Finally,
a conclusion is drawn in Section 5.

2. Main results

To obtain the main results, we will use the following definitions and lemma. For the sake of

convenience, we adopt the notation
b∑

k=a

xk = 0,
b∏

k=a

xk = 1 for any a > b.

Definition 1. By a solution of (1), we mean a sequence (xn,ψ,d) such that xn := xn,ψ,d = ψn on
Dn0 and (xn,ψ,d) satisfies (1) for n ∈ Nn0.
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Clearly, equation (1) has a unique non-negative solution (xn,ψ,d) with the given initial condi-
tion ψ.

Definition 2. A solution (xn,ψ,d) of (1) is said to be bounded if there exists a B(n0, ψ, d) > 0
such that xn ≤ B(n0, ψ, d) for n ≥ n0.

Definition 3. The solutions of (1) are said to be equi-bounded if for any n0 and any B1 > 0
there exists B2 = B2(n0, B1, d) > 0 such that ψn ≤ B1 on Dn0 implies xn ≤ B2 for n ≥ n0.

Definition 4. A positive solution (xn,ψ,d) of (1) is called ultimately bounded if for any initial
condition ψ and for any disturbance dn satisfying (3), there exist positive constants q∗ and q∗
(which are called ultimate upper bound and ultimate lower bound of system (1), respectively) such
that

q∗ ≤ lim inf
n→∞

xn,ψ,d ≤ lim sup
n→∞

xn,ψ,d ≤ q∗. (4)

Lemma 1 (xn,ψ,d) is a solution of equation (1) if and only if

xn = xn0

n−1∏
s=n0

λs +
n−1∑
t=n0

[
αtF (t, xt, xt−m1(t), . . . , xt−mN (t)) + dt

] n−1∏
s=t+1

λs. (5)

Proof. Indeed, it is not hard to see that equation (1) is equivalent to the following equation

∆
(
xn

n−1∏
s=n0

λ−1
s

)
= [αnF (n, xn, xn−m1(n), . . . , xn−mN (n)) + dn]

n∏
s=n0

λ−1
s , (6)

where ∆xn = xn+1 − xn. Summing equation (6) from n0 to n− 1 gives

n−1∑
t=n0

∆
(
xt

t−1∏
s=n0

λ−1
s

)
=

n−1∑
t=n0

[αtF (t, xt, xt−m1(t), . . . , xt−mN (t)) + dt]
t∏

s=n0

λ−1
s

xn = xn0

n−1∏
s=n0

λs +
n−1∑
t=n0

[αtF (t, xt, xt−m1(t), . . . , xt−mN (t)) + dt]
n−1∏
s=t+1

λs.

The proof is complete.

2.1. The existence of positive solutions

The following theorem gives a sufficient for the existence of positive solutions of (1).

Theorem 1. Assume that the following conditions are satisfied:

i) For each n ∈ N, F (n, 0, 0, . . . , 0) = 0 and F (n, x0, . . . , xn) is Lin-locally Lipschitz in xi (i =
0, 1, . . . , N). That is, there is a K > 0 such that if 0 ≤ xi ≤ K, 0 ≤ yi ≤ K, i = 0, 1, . . . , N ,
then

|F (n, x0, . . . , xn)− F (n, y0, . . . , yN)| ≤
N∑
i=0

Lin|xi − yi| (7)
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for positive constants Lin (i = 0, 1, . . . , N).

ii) There exist σ ∈ (0, 1) and n1 ∈ Nn0 such that

n−1∑
t=n0

N∑
i=0

Litαt

n−1∏
s=t+1

λs ≤ σ, n ≥ n1. (8)

Then (1) has a unique positive solution for every initial value function ψ satisfying ψn > 0 on
Dn0.

Proof. Let ψ be an initial value function satisfying ψn > 0 on Dn0 . Define

S0 = {ϕ : Dn0 ∪ Nn0 −→ (0,∞)| ϕn = ψn on Dn0}, (9)

where ‖ϕ‖ = max
n∈Dn0∪Nn0

|ϕn|. It is not hard to check that (S0, ||.||) is a complete metric space.

Next, we suppose that (ϕ`) is a Cauchy sequence in S0. We have

∀ε > 0,∃`0 ∈ N : ∀k, ` ≥ `0 :
∥∥ϕ` − ϕk∥∥ < ε

or
∀ε > 0, ∃`0 ∈ N : ∀k, ` ≥ `0 : max

n∈Dn0∪Nn0

∣∣(ϕ` − ϕk)
n

∣∣ < ε

or
∀ε > 0,∃`0 ∈ N : ∀k, ` ≥ `0 :

∣∣(ϕ` − ϕk)
n

∣∣ < ε,∀n ∈ Dn0 ∪ Nn0 .

Fixed n, (ϕ`n) is a Cauchy sequence in [0,∞) ⊂ R. In view of R is a complete metric space,

∃ϕn ∈ [0,∞) : ϕn = lim
`→∞

ϕ`n.

It is not hard to see that ϕ ∈ S0 and hence (S0, ||.||) is a complete metric space.

Let us define a mapping P : S0 −→ S0 by (Pϕ)n = ψn on Dn0 and

(Pϕ)n = ψn0

n−1∏
s=n0

λs +
n−1∑
t=n0

[
αtF (t, ϕt, ϕt−m1(t), . . . , ϕt−mN (t)) + dt

] n−1∏
s=t+1

λs, (10)

for n ∈ Nn0 . Since ψn > 0 on Dn0 , (λn) and (αn) are sequences of positive real numbers and map
F maps N× [0,∞)N+1 to [0,∞), we have (Pϕ)n > 0 for all n ∈ Dn0 ∪Nn0 . Hence P maps from
S0 to itself. Moreover, let ϕ, η ∈ S0, we get for n ≥ n1,

|(Pϕ)n − (Pη)n| ≤
n−1∑
t=n0

N∑
i=0

Litαt

n−1∏
s=t+1

λs ‖ϕ− η‖ ≤ σ ‖ϕ− η‖ .

Therefore, P is a contraction map. By the contraction mapping principle, P has a unique fixed
point ϕ∗ ∈ S0, which satisfies ϕ∗n = ψn for n ∈ Dn0 and

ϕ∗n = ϕ∗n0

n−1∏
s=n0

λs +
n−1∑
t=n0

[
αtF (t, ϕ∗t , ϕ

∗
t−m1(t), . . . , ϕ

∗
t−mN (t)) + dt

] n−1∏
s=t+1

λs, ∀n ∈ Nn0

i.e., (ϕ∗n) is a solution of (1). The proof is complete.
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2.2. The equi-boundedness

The following theorem provides conditions for solutions of (1) to be equi-bounded.

Theorem 2. Assume that condition (3) and condition i) of Theorem 1 are satisfied and there
exist b > 0, β ∈ (0, 1), n1 ∈ Nn0 satisfying the following condition:

n−1∏
s=n0

λs ≤ b,
[n−1∑
t=n0

N∑
i=0

Litαt + d∗
] n−1∏
s=t+1

λs ≤ β, n ≥ n1. (11)

Then the solutions of (1) are equi-bounded.

Proof. Let c1 be a positive constant. Choose c2 > 1 such that c2 ≥ bc1
1−β .

Let ψ be a bounded initial function satisfying ψn ≤ c1 on Dn0 . Define

S1 =
{
ϕ : Dn0 ∪ Nn0 −→ (0,∞)| ϕn = ψn on Dn0 and ||ϕ|| ≤ c2

}
. (12)

Now, based on the similar lines of work in the proof of Theorem 1, we see that (S1, ||.||) is a
complete metric space.

Define mapping P : S1 −→ S1 by (10). We will show that P maps from S1 to S1. Indeed, we
have

(Pϕ)n = ψn0

n−1∏
s=n0

λs +
n−1∑
t=n0

[
αtF (t, ϕt, ϕt−m1(t), . . . , ϕt−mN (t)) + dt

] n−1∏
s=t+1

λs

≤ ψn0

n−1∏
s=n0

λs +
n−1∑
t=n0

[
αt

N∑
i=0

Litϕt−mi(t) + d∗
] n−1∏
s=t+1

λs.

Since ||ϕ|| ≤ c2, ϕt−mi(t) ≤ c2. Hence,

(Pϕ)n ≤ c1b+
[
c2

n−1∑
t=n0

N∑
i=0

Litαt + d∗
] n−1∏
s=t+1

λs ≤ c1b+ βc2 ≤ c2.

Hence P maps from S1 to itself. Then, based on the similar lines of work in the proof of Theorem
1, we can verify that P is a contraction under the supremum norm. Thus, by the contraction
mapping principle, P has a unique fixed point ϕ∗ ∈ S1. We have

(Pϕ∗)n = ϕ∗n = ψn0

n−1∏
s=n0

λs +
n−1∑
t=n0

[
αtF (t, ϕ∗t−m1(t), . . . , ϕ

∗
t−mN (t)) + dt

] n−1∏
s=t+1

λs.

Since n0 ∈ Dn0 and ϕ∗ ∈ S1, ψn0 = ϕ∗n0
. Hence

ϕ∗n = ϕ∗n0

n−1∏
s=n0

λs +
n−1∑
t=n0

[
αtF (t, ϕ∗t , ϕ

∗
t−m1(t), . . . , ϕ

∗
t−mN (t)) + dt

] n−1∏
s=t+1

λs,

i.e, ϕ∗n is a solution of (1). This prove that solutions of (1) are equi-bounded. The proof is
complete.
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2.3. The ultimate-boundedness

In this subsection, we assume that 0 ≤ m1(n) ≤ . . . ≤ mN(n) ≤ mN for all n ∈ N, where mN

is a known integer and D0 is a set of integers belong to the interval [−mN , 0]. We will derive the
smallest ultimate upper bound q∗ and the largest ultimate lower bound q∗ for equation (1).

Theorem 3. Assume that condition (3) and the following conditions are satisfied,

0 < λ∗ ≤ λn ≤ λ∗ <∞, 0 < α∗ ≤ αn ≤ α∗ <∞, ∀n ∈ N, (13)

N∑
i=0

βixi ≤ F (n, x0, x1, . . . , xN) ≤
N∑
i=0

γixi (14)

and

0 < λ+ = λ∗ +
N∑
i=0

α∗γi < 1, 0 < λ− = λ∗ +
N∑
i=0

α∗βi < 1, (15)

where βi, γi (i = 0, 1, . . . , N) are nonnegative numbers. Then every solution of (1) is ultimately
bounded with the smallest ultimate upper bound q∗ = d∗

1−λ+ and the largest ultimate lower bound

q∗ = d∗
1−λ− .

Proof. From (1), (13)-(15) we have the following inequalities

xn+1 ≤ (λ∗ + α∗γ0)xn +
N∑
i=1

α∗γixn−mi(n) + dn (16)

and

xn+1 ≥ (λ∗ + α∗β0)xn +
N∑
i=1

α∗βixn−mi(n) + dn. (17)

Now, we consider the following linear difference equations

x̄n+1 = (λ∗ + α∗γ0)x̄n +
N∑
i=1

α∗γix̄n−mi(n) + dn, (18)

x̄θ = φ̄θ ≥ 0, θ ∈ D0 = {−mN ,−mN + 1, . . . , 0} (19)

and

xn+1 = (λ∗ + α∗β0)xn +
N∑
i=1

α∗βixn−mi(n) + dn, (20)

xθ = φ
θ
≥ 0, θ ∈ D0 = {−mN ,−mN + 1, . . . , 0}. (21)

It is not hard to see that
xn,φ

θ
,d ≤ xn,ψ,d ≤ x̄n,φ̄θ,d, n ∈ N. (22)

Since λ− < 1 and λ+ < 1, there exist η∗ > 0, η∗ > 0 such that

λ−η∗ < η∗, λ+η
∗ < η∗, φ

θ
≥ q∗ − η∗ = ψ

θ
, φ̄θ ≤ q∗ + η∗ = ψ̄θ, θ ∈ D0. (23)
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Denote en = ȳn − x̄n and εn = d∗ − dn, where ȳn is the solution of the following equation

ȳn+1 = (λ∗ + α∗γ0)ȳn +
N∑
i=1

α∗γiȳn−mi(n) + d∗, (24)

ȳθ = ψ̄θ, θ ∈ D0. (25)

Then, we obtain

en+1 = (λ∗ + α∗γ0)ēn +
N∑
i=1

α∗γiēn−mi(n) + εn, (26)

eθ = ψ̄θ − φ̄θ ≥ 0, θ ∈ D0. (27)

Since system (26)-(27) is positive, we have

x̄n,xn,φ
θ
,d
≤ ȳn,ψ̄θ,d, ∀n ∈ N. (28)

Similarly, we can prove that
y
n,ψ

θ
,d
≤ xn,φ

θ
,d, ∀n ∈ N, (29)

where y
n,ψ

θ
,d

is the solution of the following equation

y
n+1

= (λ∗ + α∗β0)y
n

+
N∑
i=1

α∗βiyn−mi(n)
+ d∗, (30)

y
θ

= ψ
θ
, θ ∈ D0. (31)

From (22), (28) and (29) we obtain

y
n,ψ

θ
,d
≤ xn,φ

θ
,d ≤ xn,ψ,d ≤ x̄n,φ̄θ,d ≤ ȳn,ψ̄θ,d, n ∈ N. (32)

In the following, we will prove that

q∗ ≤ lim inf
n→∞

xn,ψ,d ≤ lim sup
n→∞

xn,ψ,d ≤ q∗. (33)

In order to prove inequality lim inf
n→∞

xn,ψ,d ≥ q∗, we define the set

Jk = {k(mN + 1) + j, j = 1, 2, . . . ,mN + 1}, ∀k ∈ N. (34)

We shall show that
y
n,ψ

θ
,d
≥ q∗ − λk−η∗, ∀k ∈ N, ∀n ∈ Jk. (35)

For k = 0, n = 1, from (30) we obtain

y
1,ψ

θ
,d

= (λ∗ + α∗β0)y
0,ψ

θ
,d

+
N∑
i=1

α∗βiy−mi(n),ψ
θ
,d

+ d∗ (36)

≥ (λ∗ + α∗β0)(q∗ − η∗) +
N∑
i=1

α∗βi(q∗ − η∗) + d∗ (37)

= (λ−q∗ + d∗) + λ−η∗ = q∗ − λ−η∗ ≥ q∗ − η∗. (38)
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Similarly, k = 0, n = 2, . . . ,mN + 1, we get

y
n,ψ

θ
,d
≥ q∗ − η∗. (39)

For k = 1, n = mN + 2, from (30) we obtain

y
mN+2,ψ

θ
,d

= (λ∗ + α∗β0)y
mN+1,ψ

θ
,d

+
N∑
i=1

α∗βiymN+1−mi(n),ψ
θ
,d

+ d∗ (40)

≥ (λ∗ + α∗β0)(q∗ − λ−η∗) +
N∑
i=1

α∗βi(q∗ − λ−η∗) + d∗ (41)

= λ−q∗ + d∗ + λ2
−η∗ = q∗ − λ2

−η∗ ≥ q∗ − λ−η∗. (42)

Similarly, k = 1, n = mN + 3, . . . , 2mN + 1, we get

y
n,ψ

θ
,d
≥ q∗ − λ−η∗. (43)

Now, we assume that (35) is true for all k ≤ K and for all n that is less than the end of Jk.
Then, for n+ 1 ∈ JK+1, we have

y
n+1,ψ

θ
,d

= (λ∗ + α∗β0)y
n,ψ

θ
,d

+
N∑
i=1

α∗βiyn−mi(n),ψ
θ
,d

+ d∗

≥ q∗ − λK+1η∗. (44)

Similarly, for n ∈ JK+1, we get

y
n,ψ

θ
,d
≥ q∗ − λK−η∗. (45)

Thus, by induction, (35) is true for all k ∈ N and for all n ∈ Jk. Hence, from (32) and (35)
we have

lim inf
n→∞

xn,ψ,d ≥ lim inf
n→∞

y
n,ψ

θ
,d
≥ q∗. (46)

In order to conclude that q∗ is the largest ultimate lower bound of (1), we need to prove that

lim
n→∞

y
n,q∗,d

= q∗. (47)

For this, let us denote νn = y
n
− q∗. Then, it follows from (30) that

νn+1 = (λ∗ + α∗β0)νn +
N∑
i=1

α∗βiνn−mi(n), (48)

νθ = 0, θ ∈ D0 (49)

and νn,0 = y
n,q∗
− q∗, n ∈ N is a solution of (48) with initial condition νθ = 0. Since λ− < 1,

equation (48) is exponentially stable, that is, there exist a scalar 0 < σ < 1 and a nonnegative
function µ such that

0 ≤ νn,0 ≤ µ
q∗
σn, n ∈ N. (50)
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This implies that

q∗ ≤ y
n,q∗
≤ q∗ + µ

q∗
σn, n ∈ N. (51)

Let n tend to infinity in (51) we obtain (47).

The proof of inequality lim sup
n→∞

xn,ψ,d ≤ q∗ can be obtained similarly as the proof of inequality

lim inf
n→∞

xn,ψ,d ≥ q∗, so we omit it here.

3. Applications

In this section, we apply the results obtained in Section 2 to the Nicholson’s blowflies model

xn+1 = λnxn + αn

N∑
i=0

δixn−mi(n)e
−qi(n)xn−mi(n) + dn (52)

and the bobwhite quail population model

xn+1 = λnxn + αn

N∑
i=0

ζi
xn−mi(n)

1 + xpn−mi(n)

+ dn, (53)

where (λn), (αn), (qi(n)), i = 0, 1, . . . , N are sequences of positive real numbers, p, δi, ζi ∈ (0,∞),
m0(n) ≡ 0, mi(n), i = 1, 2, . . . , N are sequences of positive integer numbers and dn ∈ [0,∞) is
the disturbance satisfying condition (3).

We see that, the model (52) is in the form of equation (1) with

F (n, x0, x1, . . . , xN) =
N∑
i=0

δixie
−qi(n)xi .

We have
∂F (n, x0, x1, . . . , xN)

∂xi
= δi(1− xiqi(n))e−qi(n)xi .

Thus, for each n ∈ N,∣∣∣∂F (n, x0, x1, . . . , xN)

∂xi

∣∣∣≤ δi(1 + qi(n)), ∀xi ≥ 0, i = 1, 2, . . . , N,

which implies that F (n, x0, x1, . . . , xN) is Lin-locally Lipschitz in xi with Lin = δi(1 + qi(n)),
(i = 1, 2, . . . , N). Hence, from Theorem 2, we obtain the following corollary.

Corollary 1. Assume that condition (3) is satisfied and there exist b > 0, β ∈ (0, 1), n1 ∈ Nn0

satisfying the following condition:

n−1∏
s=n0

λs ≤ b,
[n−1∑
t=n0

N∑
i=0

(1 + qi(t))δiαt + d∗
] n−1∏
s=t+1

λs ≤ β, n ≥ n1. (54)

Then the solutions of (52) are equi-bounded.
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On the other hand, for qi(n) > 0, ∀n ∈ N, we have

0 ≤ F (n, x0, x1, . . . , xN) =
N∑
i=0

δixie
−qi(n)xi ≤

N∑
i=0

δixi.

Hence, from Theorem 3, we obtain the following corollary.

Corollary 2. Assume that condition (3) is satisfied, 0 ≤ m1(n) ≤ . . . ≤ mN(n) ≤ mN , ∀n ∈ N,

0 < λ∗ ≤ λn ≤ λ∗ < ∞, 0 < α∗ ≤ αn ≤ α∗ < ∞, qi(n) > 0 ∀n ∈ N and λ∗ +
N∑
i=0

α∗δi < 1.

Then every solution of (52) is ultimately bounded with the smallest ultimate upper bound q∗ =
d∗

1−λ∗−
N∑
i=0

α∗δi

and the largest ultimate lower bound q∗ = d∗
1−λ∗ .

Next, we consider the model (53). Clearly, this model is in the form of equation (1) with

F (n, x0, x1, . . . , xN) =
N∑
i=0

ζixi
1+xpi

. It is not hard to check that for each n ∈ N,

∣∣∣∂F (n, x0, x1, . . . , xN)

∂xi

∣∣∣≤ ζi, ∀xi ≥ 0, i = 1, 2, . . . , N, (in case p = 1)

and ∣∣∣∂F (n, x0, x1, . . . , xN)

∂xi

∣∣∣≤ ζi(p− 1)2

4p
, ∀xi ≥ 0, i = 1, 2, . . . , N, (in case p > 1).

Therefore F (n, x0, x1, . . . , xN) is Lin-locally Lipschitz in xi with Lin = 1 when p = 1 and with

Lin = ζi(p−1)2

4p
when p > 1. Hence, from Theorem 2, we obtain the following corollary.

Corollary 3. Assume that condition (3) is satisfied and there exist b > 0, β ∈ (0, 1), n1 ∈ Nn0

such that either p = 1 and

n−1∏
s=n0

λs ≤ b,
[n−1∑
t=n0

N∑
i=0

ζiαt + d∗
] n−1∏
s=t+1

λs ≤ β, n ≥ n1 (55)

or p > 1 and
n−1∏
s=n0

λs ≤ b,
[n−1∑
t=n0

N∑
i=0

ζi(p− 1)2

4p
αt + d∗

] n−1∏
s=t+1

λs ≤ β, n ≥ n1. (56)

Then the solutions of (53) are equi-bounded.

On the other hand, for p > 0, we have

0 ≤ F (n, x0, x1, . . . , xN) =
N∑
i=0

ζixi
1 + xpi

≤
N∑
i=0

ζixi.

Hence, from Theorem 3, we obtain the following corollary.

Corollary 4. Assume that condition (3) is satisfied, 0 ≤ m1(n) ≤ . . . ≤ mN(n) ≤ mN , ∀n ∈ N,

0 < λ∗ ≤ λn ≤ λ∗ < ∞, 0 < α∗ ≤ αn ≤ α∗ < ∞, ∀n ∈ N and λ∗ +
N∑
i=0

α∗ζi < 1. Then every

solution of (53) is ultimately bounded with the smallest ultimate upper bound q∗ = d∗

1−λ∗−
N∑
i=0

α∗ζi

and the largest ultimate lower bound q∗ = d∗
1−λ∗ .
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4. Numerical examples

Example 1. Consider the model (52) with λn = 2017n+6
20170(n+2)

, αn = n+1
5n+2

, q0(n) = q1(n) = 1
n+1
∀n ∈

N, dn = 0.25| sinn| + 0.15, δ0 = 0.25, δ1 = 0.2, m1(n) =
[
n
2

]
, where

[
·
]

as the integer function.

Clearly, there exists b = 1 such that
n−1∏
s=n0

λs ≤ b. Moreover, we have for n0 = 0,

[n−1∑
t=n0

N∑
i=0

(1 + qi(t))δiαt + d∗
] n−1∏
s=t+1

λs

=
n−1∑
t=0

(
0.45(

t+ 2

5t+ 2
) + 0.25

) n−1∏
s=t+1

( 2017s+ 6

20170(s+ 2)

)
≤ 0.9444

(
1−

( 1

10

)n)
≤ 0.9444, n ∈ N.

Hence, according to the Corollary 1, the solutions of (52) are equi-bounded.

Next, we consider the model (52) with λn = 5n+1
10n+4

, αn = n+1
n+2

, q0(n) = q1(n) = 1
n+1
∀n ∈ N,

m1(n) = 50 − 1
n
, dn = | sinn| + 1, δ0 = 0.25, δ1 = 0.2. We have λ∗ = 0.25, λ∗ = 0.5, α∗ = 0.5,

α∗ = 1, λ∗ + α∗(δ0 + δ1) = 0.95 < 1, d∗ = 2, d∗ = 1. According to the Corollary 2, every positive
solution of the model (52) ultimately bounded with the smallest ultimate upper bound q∗ = 40
and the largest ultimate lower bound q∗ = 1.3333.

Example 2. Consider the model (53) with λn = n+1
9(n+2)

, αn = 5n+9
5n+2

, q0(n) = q1(n) = 1
n+1
∀n ∈ N,

dn = 0.2| sinn| + 0.3, ζ0 = 0.1667, ζ1 = 0.1429, p = 0.2, m1(n) =
[
n
2

]
, where

[
·
]

as the integer
function. It is easy to check that all conditions of Corollary 3 are satisfied. Hence, the solutions
of (53) are equi-bounded.

Next, we consider the model (53) with λn = 5n+1
10n+4

, αn = 5n+9
5n+18

, q0(n) = q1(n) = 1
n+1
∀n ∈ N,

p = 0.2, m1(n) = 50− 1
n

, dn = | sinn|+1, ζ0 = 0.1667, ζ1 = 0.1429. We have λ∗ = 0.25, λ∗ = 0.5,
α∗ = 0.5, α∗ = 1, λ∗ + α∗(ζ0 + ζ1) = 0.8095 < 1, d∗ = 2, d∗ = 1. According to the Corollary
4, every positive solution of the model (53) ultimately bounded with the smallest ultimate upper
bound q∗ = 10.5 and the largest ultimate lower bound q∗ = 1.3333.

5. Conclusion

In this paper, we have provided some new results on the equi-boundedness and the ultimate
boundedness for a general class of non-autonomous nonlinear time-varying delay difference equa-
tions subject to external bounded disturbances. By using the fixed point theory together with
some analytical techniques, we derive some new results on the existence of positive solutions,
the equi-boundedness and the ultimate boundedness of solutions of the above class of difference
equations. We have applied the obtained results to analyze the equi-boundedness and the ulti-
mate boundedness of the Nicholson’s blowflies model and the bobwhite quail population model.
Numerical examples have also been given to illustrate the effectiveness of the proposed theoretical
results.
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