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Abstract

The problem of finite-time boundedness and finite-time stabilization boundedness of fractional-order
switched nonlinear systems with exogenous inputs is considered in this paper. By constructing a simple
Lyapunov-like functional and using some properties of Caputo derivative, we obtain some new sufficient
conditions for the problem via linear matrix inequalities, which can be efficiently solved by using existing
convex algorithms. A constructive geometric is used to design switching laws amongst the subsystems.
Two numerical examples are provided to demonstrate the validity of our method.
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1. Introduction

In recent years, switched systems have attracted significant research attention in the literature (see,
for example, [1, 2]). The common characteristic of switched systems is that they are constructed from a
subsystem family being modeled in differential or difference equations and associated with a switching
law. For the last decade, Lyapunov stability and its variations including H∞ control, passivity analysis
and reachable sets bounding, which are mainly defined in an infinite time interval, have been intensively
investigated for switched systems (see, [3–6] and the references therein). However, in many practical
applications, it is possible that, over a finite-time interval, the states of a dynamical system do not exceed
a certain threshold if a specific bound is given on the initial condition. For that, the concept of finite-time
stability, in which the transient behavior of a system over a finite-time is taken into account rather than
the asymptotic behavior of the system response [7–9]. Roughly speaking, a switched system is said to be
finite-time stable if its state does not exceed a certain threshold during a specified time interval when the
initial conditions are within a specific bound. As noted by many researchers, the concept of finite-time
stability and Lyapunov asymptotic stability (LAS) are independent concepts; indeed a system can be
finite-time stability but not LAS, and vice versa [10, 11]. Therefore, there are some interesting results on
stability of integer-order switched systems in the literature (see, for example, [12–15]).

Fractional-order systems have recently arisen in interdisciplinary areas as a consequence of their
wide applications to physics, engineering, and economics [16]. Many important results on Lyapunov
stability of fractional-order systems have been obtained in the literature, see, books [17, 18], and papers
[19–21]. Furthermore, regarding switched systems, fractional-order state space models appear naturally
and can effectively describe dynamical systems associated with the dynamic parameters being switched
[22]. Hence, some interesting works accounted for Lyapunov stability and stabilization of fractional-
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order switched systems have been presented in the literature [23–27]. For example, by employing a
well known Lyapunov function scheme, the authors of [23, 24] solved the problem of Lyapunov stability
of fractional-order switched linear systems. In the work of [25], based on the convex analysis and
using linear matrix inequalities (LMIs) technique, the authors investigated the stabilization of linear
time invariant fractional-order switched systems. Meanwhile, the authors in [26] utilized the Mittag–
Leffler function and fractional-order multiple Lyapunov functions to derive some sufficient conditions
ensuring the Lyapunov stability of nonlinear fractional-order impulsive switched systems. Very recently,
by introducing a couple of new concepts namely Mittag–Leffler increment and average Mittag–Leffler
increment, the authors in [27] investigated the stability of a class of fractional-order switched systems
with nonlinear perturbations.

With regard to finite-time stability of fractional-order switched systems, there are a few results were
reported in the literature. In particular, by employing Mittag-Leffler function, fractional-order Lyapunov
function and Gronwall-Bellman lemma, the authors in [28] considered the problem of finite-time sta-
bility for fractional-order impulsive switched systems. It should be mentioned here that this result was
derived based on constructing abstract Lyapunov functions. In fact, Lyapunov direct method is a very
effective tool for analyzing the finite-time stability of switched systems. However, for fractional-order
switched systems, it is difficult to construct a Lyapunov function and calculate its fractional derivative
since the well-known Leibniz rule does not hold for fractional derivatives [29]. In [28], some stable
conditions were derived, however, they were not associated with a practical algebraic criterion which
offers a solution to the problem. Recently, the problem of finite-time stability of fractional-order posi-
tive switched systems was addressed in the work of [30] where the linear copositive Lyapunov function
integrated with average dwell time switching technique was employed. However, in this work, the con-
cept of finite-time boundedness, which is applied to fractional-order positive systems, is different from
the concept of finite-time boundedness used in general systems (non-positive systems). Therefore, the
scheme in [30] cannot be extended to fractional-order switched nonlinear systems. The aforementioned
discussion inspires us to the present study.

In this paper, we study the problem of finite-time boundedness and finite-time stabilization bound-
edness of fractional-order switched nonlinear systems. The significance of this work can be summarized
as follows. Firstly, by constructing a simple Lyapunov-like functional and employing some properties of
Caputo derivative, we derive some new sufficient conditions dealing with the problem. The conditions
are with the form of LMIs, which can be effectively solved by utilizing existing convex algorithms that
can be found in [31]. Secondly, the switching rule amongst the subsystems of the systems is designed.
Lastly, two numerical examples are presented to demonstrate the effectiveness and applicability of the
proposed method.

The remainder of this paper is organized as follows. Some necessary definitions and lemmas are
given in the Section 2. Sufficient conditions ensuring the finite-time boundedness of fractional-order
switched nonlinear systems are derived in Section 3. Two numerical examples are given in Section 4 and
a conclusion of the paper is presented in Section 5.

Notation: The following notations will be used throughout this paper: Rn is the n−dimensional real

Euclidean space with the Euclidean norm ‖.‖ given by ‖x‖ =
√

x2
1 + . . .+ x2

n,x = (x1, . . . ,xn)
T ∈ Rn;

Rn×m is the set of all real n×m matrices. For a real matrix A,λmax(A) and λmin(A) denote the maximal
and the minimal eigenvalue of A, respectively. A matrix P is positive definite (P > 0) if xT Px > 0,∀x 6=
0;P > Q means P−Q > 0. S+n is the set of symmetric positive definite matrices in Rn×n.
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2. Problem statement and preliminaries

We shall begin with recalling some basic notations and properties for fractional calculus. For further
details, we refer the reader to [18]. The fractional integral of order α > 0 on [t0, t] of an arbitrary
integrable function x(t) is defined as follows

t0Iα
t x(t) =

1
Γ(α)

∫ t

t0
(t− s)α−1x(s)ds,

where Γ(.) represents the gamma function. The Caputo fractional-order derivative of order α > 0 for a
function x(t) ∈Cn+1([t0,+∞),R) is defined as follows

C
t0Dα

t x(t) =
1

Γ(n−α)

∫ t

t0

x(n)(s)
(t− s)α+1−n ds, t ≥ t0 ≥ 0, n−1 < α < n,

where n is a positive integer. In particular, when 0 < α < 1, we have

C
t0Dα

t x(t) =
1

Γ(1−α)

∫ t

t0

ẋ(s)
(t− s)α

ds, t ≥ t0 ≥ 0.

Especially, as in [18], we have C
t0D0

t x(t) = x(t) and C
t0D1

t x(t) = ẋ(t).

We now consider the following Caputo fractional-order switched nonlinear system:

(Σσ )

{
C
0 Dα

t x(t) = [Aσ +∆Aσ (t)]x(t)+ fσ (x(t))+Wσ d(t)+Bσ u(t), t ≥ 0,
x(0) = x0 ∈ Rn,

(1)

where α ∈ (0,1),x(t) ∈ Rn is the state vector, d(t) ∈ Rm is the exogenous input vector, u(t) ∈ Rq is
the control input vector, σ(.) : Rn −→N = {1,2, . . . ,N} is the switching rule, which is a piece-wise
constant function depending on the state in each time. σ(x(t)) = i, i = 1,2, . . . ,N implies that the system
realization is chosen as Σi. Matrices Ai, Wi, Bi are constant and of appropriate dimensions.

For i = 1,2, . . . ,N, the following assumptions are made:

Assumption 1. The uncertainties ∆Ai(t) satisfy the following conditions:

∆Ai(t) = GiFi(t)Hi,

where Gi,Hi are given real constant matrices; Fi(t) are time-varying, real matrices satisfying

F T
i (t)Fi(t)≤ I.

Assumption 2. The nonlinear perturbations fi(x(t)) satisfy the following condition:

f T
i (x(t)) fi(x(t))≤ aixT (t)x(t),

where ai are given positive numbers.

Assumption 3. The exogenous input d(t) is time-varying and satisfying the following condition:

dT (t)d(t)≤ d, t ∈ [0,Tf ],

where d is a given positive constant.
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The unforced system of (1) is expressed as follows:{
C
0 Dα

t x(t) = [Aσ +∆Aσ (t)]x(t)+ fσ (x(t))+Wσ d(t), t ≥ 0,
x(0) = x0 ∈ Rn.

(2)

We will use the following definitions and well-known auxiliary lemmas to derive the main results of
the paper.

Definition 1. ([9]) Given positive constants c1,c2,d,Tf with c1 < c2 and a symmetric positive definite
matrix R, the fractional-order switched nonlinear system (2) is said to be finite-time boundedness with
respect to (c1,c2,d,Tf ,R) if there exists switching rule σ(.) such that

xT (0)Rx(0)≤ c1⇒ xT (t)Rx(t)< c2, ∀t ∈ [0,Tf ],

for all the disturbances d(t) ∈ Rm satisfy Assumption 3.

Definition 2. The set of matrices {Li} is said to be strictly complete if for every x ∈ Rn\{0} there is
i ∈N = {1,2, . . . ,N} such that xT Lix < 0.

Setting
Λi = {x ∈ Rn : xT Lix < 0}.

It is not hard to verify that the set of matrices {Li} is strictly complete if and only if

N⋃
i=1

Λi = Rn\{0}.

Remark 1. As noted in [32], if there exist numbers βi ≥ 0,
N
∑

i=1
βi > 0 such that

N

∑
i=1

βiLi < 0

then the set of matrices {Li} is strictly complete.

Lemma 1. ([33]) If x(t) ∈Cn([0,+∞),R) and n−1 < α < n,(n≥ 1,n ∈ Z+), then

0Iα
t
(C

0 Dα
t x(t)

)
= x(t)−

n−1

∑
k=0

tk

k!
x(k)(0).

In particular, when 0 < α < 1, we have

0Iα
t
(C

0 Dα
t x(t)

)
= x(t)− x(0).

Lemma 2. ([34]) Let x(t) ∈ Rn be a vector of differentiable function. Then, for any time instant t ≥ t0,
the following relationship holds

1
2

C
t0Dα

t
(
xT (t)Px(t)

)
≤ xT (t)P C

t0Dα
t x(t), ∀α ∈ (0,1),∀t ≥ t0 ≥ 0,

where P ∈ Rn×n is a symmetric positive definite matrix.
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3. Main results

3.1. Finite-time boundedness

Our main objective of this subsection is to derive a simple procedure for constructing the switching
rule to guarantee that the unforced fractional-order switched nonlinear system (2) is finite-time bound-
edness.

We denote for i = 1,2, . . . ,N,

P = R−
1
2 PR−

1
2 , κ1 = λmin(P), κ2 = λmax(P), γ = max

1≤i≤N
γi,

Li(P) = PAi +AT
i P+ ε

−1
i PGiG

T
i P+µ

−1
i PP+ γ

−1
i PWiW T

i P+ εiH
T

i Hi +µiaiI,

Si = {x ∈ Rn : xT Li(P)x < 0},

and

S 1 = S1, S 2 = S2\
(
S2∩S 1

)
, . . . ,S p = Sp\

(
Sp∩

(
∪p−1

j=1 S j

))
, . . . ,S N = SN\

(
SN ∩

(
∪N−1

k=1 S k
))

.

(3)

Theorem 1. Suppose that Assumptions 1, 2, 3 are satisfied. For given positive numbers c1,c2,d,Tf (c1 <
c2) and matrix R ∈ S+n , the system (2) is finite-time boundedness with respect to (c1,c2,d,Tf ,R) if there
exist a matrix P ∈ S+n , positive scalars εi,µi,γi(i = 1,2, . . . ,N) such that the following conditions are
satisfied:

(i) The set of matrices Li(P) is strictly complete,

(ii) κ2c1 +
γd

Γ(α+1)T
α
f < κ1c2.

Moreover, the switching laws amongst the subsystems is chosen σ(x(t)) = i ∈N whenever x(t) ∈S i.

Proof. Let us consider the following non-negative quadratic function

V (x(t)) = xT (t)Px(t).

It follows from Lemma 2 that we obtain the α−order (0 < α < 1) Caputo derivative of V (x(t)) along
the trajectories of any subsystem ith (i = 1, . . . ,N) as follows:

C
0 Dα

t V (x(t))≤ 2xT (t)PC
0 Dα

t x(t)

= xT (t)
[
PAi +AT

i P
]

x(t)+2xT (t)PGiFi(t)Hix(t)

+2xT (t)P fi(x(t))+2xT (t)PWid(t). (4)

By using the Cauchy matrix inequality, we have

2xT (t)PGiFi(t)Hix(t)≤ ε
−1
i xT (t)PGiG

T
i Px(t)+ εixT (t)H T

i Hix(t),

2xT (t)P fi(x(t))≤ µ
−1
i xT (t)PPx(t)+µi f T (x(t)) f (x(t))

≤ µ
−1
i xT (t)PPx(t)+µiaixT (t)x(t),

2xT (t)PWid(t)≤ γ
−1
i xT (t)PWiW T

i Px(t)+ γidT (t)d(t).

(5)

From (4) and (5), we obtain

C
0 Dα

t V (x(t))≤ xT (t)Li(P)x(t)+ γidT (t)d(t), ∀t ∈ [0,Tf ]. (6)
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From the condition (i) and Remark 1, we have

N⋃
i=1

Si = Rn\{0}.

Based on the sets Si,(i = 1, . . . ,N), we construct the sets S i by (3) and we can verify that

S i
⋂

S j = /0,(i 6= j),
N⋃

i=1

S i = Rn\{0}. (7)

From condition (7), we construct the switching rule σ(x(t)) = i ∈N whenever x(t) ∈S i. Thus, from
(6) and the fact that γ = max1≤i≤N γi, we obtain

C
0 Dα

t V (x(t))≤ γdT (t)d(t), ∀t ∈ [0,Tf ]. (8)

Integrating with order α both sides of (8) from 0 to t(0 < t < Tf ) and using Lemma 1, we have

xT (t)Px(t)≤ xT (0)Px(0)+ 0Iα
t
(
γdT (t)d(t)

)
= xT (0)Px(0)+

γ

Γ(α)

∫ t

0
(t− s)α−1dT (s)d(s)ds

≤ xT (0)Px(0)+
γd

Γ(α)

∫ t

0
(t− s)α−1ds

≤ xT (0)Px(0)+
γd

Γ(α +1)
T α

f .

(9)

On the other hand, we have

xT (t)Px(t) = xT (t)R
1
2 PR

1
2 x(t)≥ λmin(P)xT (t)Rx(t) = κ1xT (t)Rx(t) (10)

and

xT (0)Px(0) = xT (0)R
1
2 PR

1
2 x(0)≤ λmax(P)xT (0)Rx(0) = κ2xT (0)Rx(0)≤ κ2c1. (11)

From (9) to (11), we have

κ1xT (t)Rx(t)≤V (x(t)) = xT (t)Px(t)≤ κ2c1 +
γd

Γ(α +1)
T α

f .

From condition (ii), we obtain xT (t)Rx(t)< c2, which completes the proof of the theorem.

Remark 2. From the Remark 1, the condition (i) in Theorem 1 is satisfied if there exist numbers βi ≥

0,
N
∑

i=1
βi > 0 such that

N

∑
i=1

βiLi(P)< 0. (12)

By using Schur Complement Lemma, we have the condition (12) is equivalent to the following condition

Ξ =

[
Ξ11 Ξ12
ΞT

12 −Ξ22

]
< 0, (13)
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where

Ξ11 =
N

∑
i=1

(
βi(PAi +AT

i P)+βiεiH
T

i Hi +aiβiµiI
)
,

Ξ12 =
[
β1PG1 . . . βNPGN β1P . . . βNP β1PW1 . . . βNPWN

]
,

Ξ22 = diag{β1ε1I, . . . ,βNεNI,β1µ1I, . . . ,βN µNI,β1γ1I, . . . ,βNγNI}.

Note that, matrix inequality (13) can be represented into LMI with N scalars β1, . . . ,βN . To solve matrix
inequality (13), we combine a N-dimensional search method with a convex optimisation algorithm in
[31].

Remark 3. From Theorem 1 and Remark 2, we have the following procedure to to solve the problem of
switching design for the finite-time boundedness of fractional-order switched nonlinear system (2):
Step 1. Solve matrix inequality (13) and condition (ii) to find a matrix P ∈ S+n and positive scalars
εi,µi,γi, i = 1, . . . ,N;
Step 2. Construct the sets Si, and then S i;
Step 3. Choose the switching laws amongst the subsystems as σ(x(t)) = i ∈N whenever x(t) ∈S i.

3.2. Finite-time stabilization boundedness

We now consider the problem of finite-time stabilization boundedness of the fractional-order switched
nonlinear system (1). Our main objective is to design a state feedback controller u(t) = Kσ x(t) such that
the following closed-loop system

(Σσ )

{
C
0 Dα

t x(t) = [Aσ +Bσ Kσ +∆Aσ (t)]x(t)+ fσ (x(t))+Wσ d(t), t ≥ 0,
x(0) = x0 ∈ Rn,

(14)

is finite-time boundedness with respect to (c1,c2,d,Tf ,R).

For the simplicity of matrix representation, we denote for i = 1,2, . . . ,N,

P̂ = R−
1
2 P−1R−

1
2 , ν1 = λmin(P̂), ν2 = λmax(P̂), θ = max

1≤i≤N
γ
−1
i ,

Li(P) = AiP+PAT
i −BiBT

i + εiGiG
T
i +µiI + γiWiW T

i + ε
−1
i PH T

i HiP+µ
−1
i aiPP,

Si = {x ∈ Rn : xT Li(P)x < 0},
Λi = {Px : x ∈ Si},

and

Λ1 = Λ1, Λ2 = Λ2\
(
Λ2∩Λ1

)
, . . . ,Λp = Λp\

(
Λp∩

(
∪p−1

j=1 Λ j

))
, . . . ,ΛN = ΛN\

(
ΛN ∩

(
∪N−1

k=1 Λk
))

.

(15)

Theorem 2. Assume that Assumption 1, 2, 3 are satisfied. For given positive numbers c1,c2,d,Tf (c1 <
c2) and a matrix R∈S+n , the system (1) is finite-time stabilization boundedness with respect to (c1,c2,d,Tf ,R)
if there exist a matrix P ∈ S+n , positive scalars εi,µi,γi (i = 1,2, . . . ,N) such that following conditions
hold:
(i) The set of matrices Li(P) is strictly complete,
(ii) ν2c1 +

θd
Γ(α+1)T

α
f < ν1c2.

Moreover, the switching rule is chosen σ(x(t)) = i ∈N whenever x(t) ∈ Λi and the feedback controller
is given by

u(t) =−1
2

BT
σ P−1x(t), t ∈ [0,Tf ].
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Proof. Since {Li(P)} is strictly complete, so we have Si∩S j = /0(i 6= j) and
N⋃

i=1
Si =Rn\{0}. Based on

the set Si, we construct the sets Λi and we will show that

Λi∩Λ j = /0 (i 6= j),
N⋃

i=1

Λi = Rn\{0}. (16)

Clearly, Λi ∩Λ j = /0(i 6= j). For any x ∈ Rn\{0}, there is i ∈N such that y = P−1x ∈ Si. Hence x =

PP−1x = Py ∈ Λi. Therefore,
N⋃

i=1
Λi = Rn\{0}. From (15), we obtain

Λi∩Λ j = /0 (i 6= j),
N⋃

i=1

Λi = Rn\{0}. (17)

The switching rule is chosen σ(x(t)) = i ∈N whenever x(t) ∈ Λi. So when x(t) ∈ Λi, the ith subsystem
is activated and then we have the following subsystem

(Σi)

{
C
0 Dα

t x(t) = [Ai +BiKi +∆Ai(t)]x(t)+ fi(x(t))+Wid(t), t ≥ 0,
x(0) = x0 ∈ Rn.

(18)

Setting Ki =−0.5BiP−1. Consider the following non-negative quadratic function

V (x(t)) = xT (t)P−1x(t)

and based on the similar lines of work as in Theorem 1, we obtain

C
0 Dα

t V (x(t))≤ η
T (t)Li(P)η(t)+ γ

−1
i dT (t)d(t), ∀t ∈ [0,Tf ], (19)

where
η(t) = P−1x(t).

Noting that x(t) ∈ Λi implies η(t) = P−1x(t) ∈ Si and ηT (t)Li(P)η(t)< 0. From (19) and the fact that
θ = max1≤i≤N γ

−1
i , we obtain

C
0 Dα

t V (x(t))≤ θdT (t)d(t), ∀t ∈ [0,Tf ]. (20)

Integrating with order α both sides of (20) from 0 to t(0 < t < Tf ) and using Lemma 1, we have

xT (t)P−1x(t)≤ xT (0)P−1x(0)+ 0Iα
t
(
θdT (t)d(t)

)
= xT (0)P−1x(0)+

θ

Γ(α)

∫ t

0
(t− s)α−1dT (s)d(s)ds

≤ xT (0)P−1x(0)+
θd

Γ(α)

∫ t

0
(t− s)α−1ds

≤ xT (0)P−1x(0)+
θd

Γ(α +1)
T α

f .

(21)

On the other hand, we have

xT (t)P−1x(t) = xT (t)R
1
2 P̂R

1
2 x(t)≥ λmin(P̂)xT (t)Rx(t) = ν1xT (t)Rx(t) (22)
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and

xT (0)P−1x(0) = xT (0)R
1
2 P̂R

1
2 x(0)≤ λmax(P̂)xT (0)Rx(0) = ν2xT (0)Rx(0)≤ ν2c1. (23)

From (21) to (23), we have

ν1xT (t)Rx(t)≤V (x(t)) = xT (t)P−1x(t)≤ ν2c1 +
θd

Γ(α +1)
T α

f .

From condition (ii), we obtain xT (t)Rx(t)< c2, which completes the proof of the theorem.

Remark 4. From the Remark 1, the condition (i) in Theorem 2 is satisfied if there exist numbers τi ≥

0,
N
∑

i=1
τi > 0 such that

M =
N

∑
i=1

τiLi(P)< 0. (24)

By using Schur Complement Lemma, we have the condition (24) is equivalent to the following condition

Ψ =

[
Ψ11 Ψ12
ΨT

12 −Ψ22

]
< 0, (25)

where

Ψ11 =
N

∑
i=1

τi
(
AiP+PAT

i −BiBT
i + εiGiG

T
i +µiI + γiWiW T

i
)
,

Ψ12 =
[
τ1PH T

1 . . . τNPH T
N τ1a1P . . . τNaNP

]
,

Ψ22 = diag{τ1ε1, . . . ,τNεN ,τ1µ1, . . . ,τN µN}.

Note that, matrix inequality (25) can be represented into LMI with N scalars τ1, . . . ,τN . Therefore, it can
be efficiently solved by using existing convex algorithms.

Remark 5. From Theorem 2 and Remark 4, we have the following algorithm to solve the problem
of switching design for the finite-time stabilization boundedness of fractional-order switched nonlinear
system (1).
Step 1. Solve matrix inequality (25) and condition (ii) to find a matrix P ∈ S+n and positive scalars
εi,µi,γi, i = 1, . . . ,N;
Step 2. Constructing the sets Λi, and then Λi;
Step 3. Choose the switching laws amongst the subsystems as σ(x(t)) = i ∈N , whenever x(t) ∈Λi and
the feedback controller is given by

u(t) =−1
2

BT
σ P−1x(t), t ∈ [0,Tf ].

4. Numerical examples

Example 1. Let us consider the fractional-order switched nonlinear system (2) which consists of two
subsystems and the following parameters:

A1 =

[
−2 1
0 −1

]
, G1 =

[
0.1
0.5

]
, H1 =

[
0.1 0.3

]
,W1 =

[
1.0
0.9

]
,
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f1(x(t)) =
[√

0.5x1(t)√
0.5x2(t)

]
, F1(t) = sin0.1t,

A2 =

[
−0.5 0
−0.9 −2

]
, G2 =

[
0.2
0.4

]
, H2 =

[
0.3 0.9

]
,W2 =

[
−1.0
0.5

]
,

f2(x(t)) =
[√

0.3x1(t)√
0.3x2(t)

]
, F2(t) = cos0.1t,

and α = 0.6,d(t) = 0.2sin0.1t. Given Tf = 10,c1 = 1,c2 = 2,d = 0.04, and R =

[
1 0
0 1

]
. The condi-

tions in Theorem 1 and Remark 2 are satisfied with β1 = 0.4,β2 = 0.6,ε1 = 1.4743,ε2 = 1.3495,µ1 =
1.5828,µ2 = 1.5075,γ1 = 1.4827,γ2 = 1.4453, and

P =

[
0.6667 0.0404
0.0404 0.7289

]
.

By using Remark 3, the sets S 1,S 2 is constructed as follows

S 1 = {(x1,x2) ∈ R2 :−1.2402x2
1 +1.9544x1x2 +0.3031x2

2 < 0},
S 2 = {(x1,x2) ∈ R2 :−1.2402x2

1 +1.9544x1x2 +0.3031x2
2 > 0}.

The switching law between two subsystems is chosen as:

σ(x(t)) =

{
1, if x(t) ∈S 1

2, if x(t) ∈S 2
.

By Theorem 1, the system is finite-time boundedness with respect to (1,2,0.04,10,R).

Example 2. We now consider the controlled fractional-order switched nonlinear system (1) which con-
sists of two subsystems and the following parameters:

A1 =

[
−0.5 0.5

0 0.5

]
, G1 =

[
0.3
0.8

]
, H1 =

[
0.2 0.5

]
,W1 =

[
1
0

]
, B1 =

[
−2
6

]
,

f1(x(t)) =
[√

0.2x1(t)√
0.2x2(t)

]
, F1(t) = cos t,

A2 =

[
5 0
−0.9 −1

]
, G2 =

[
0.1
0.5

]
, H2 =

[
0.3 0.6

]
,W2 =

[
−0.1
0.5

]
B2 =

[
4

0.5

]
,

f2(x(t)) =
[√

0.9x1(t)√
0.9x2(t)

]
, F2(t) = cos t,

and α = 0.8,d(t) = 0.1sin t. Given Tf = 10,c1 = 1,c2 = 3,d = 0.01, and R =

[
1 0
0 1

]
. The condi-

tions in Theorem 2 and Remark 4 are satisfied with τ1 = 0.2,τ2 = 0.8,ε1 = 3.9620,ε2 = 3.7714,µ1 =
4.4101,µ2 = 3.8321,γ1 = 3.3896,γ2 = 3.4341, and

P =

[
0.7191 −0.0286
−0.0286 1.3705

]
.

Then the set of matrices {L1(P),L2(P)}, where

L1(P) =
[

3.2272 13.5360
13.5360 −25.3291

]
, L2(P) =

[
−4.7981 −2.7561
−2.7561 4.1242

]
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are strictly complete. Using Remark 5, the switching regions are constructed by

S1 = {(x1,x2) ∈ R2 : 3.2272x2
1 +27.0720x1x2−25.3291x2

2 < 0},
S2 = {(x1,x2) ∈ R2 :−4.7981x2

1−5.5122x1x2 +4.1242x2
2 < 0},

Λ1 = {Px : x ∈ S1},
Λ2 = {Px : x ∈ S2},
Λ1 = Λ1, Λ2 = Λ2\

(
Λ2∩Λ1

)
.

The switching law between two subsystems is chosen as:

σ(x(t)) =

{
1, if x(t) ∈ Λ1

2, if x(t) ∈ Λ2
.

By Theorem 2, the closed-loop system is finite-time boundedness with respect to (1,3,0.01,10,R). More-
over, the feedback controller is given by u(t) = Kix(t),(i = 1,2), t ∈ [0,10], where

K1 =−
1
2

BT
1 P−1 =

[
1.3048 −2.1618

]
, K2 =−

1
2

BT
2 P−1 =

[
−2.7909 −0.2406

]
.

5. Conclusion

This paper has considered the problem of finite-time boundedness and finite-time stabilization bound-
edness of fractional-order switched nonlinear systems. Based on constructing a simple Lyapunov-like
functional and using some properties of Caputo fractional derivative, some sufficient conditions for the
problem are derived in the form of linear matrix inequalities. A constructive geometric design of switch-
ing laws has also been presented. Two numerical examples have been provided to demonstrate effec-
tiveness of the obtained results. Our future works will focus on finite-time stability and boundedness for
fractional-order switched nonlinear systems with time-varying delays since time delay is one of the most
common phenomena in real-life systems.
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