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Abstract

In this note, we study the approximation of singular plurifine plurisubharmonic function u defined on a plurifine
domain Ω. Under some condition we prove that u can be approximated by an increasing sequence of plurisubharmonic
functions defined on Euclidean neighborhoods of Ω.
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1. Notation and main result

The plurifine topology F on a Euclidean open set D is the smallest topology that makes all plurisubharmonic
functions on D continuous. Notions pertaining to the plurifine topology are indicated with the prefix F to distinguish
them from notions pertaining to the Euclidean topology on Cn. For a set A ⊂ Cn we write A for the closure of A in the
one point compactification of Cn, A

F
for the F -closure of A and ∂F A for the F -boundary of A.

Let Ω be a bounded F -domain in Cn. A function u : Ω → [−∞,+∞) is said to be F -plurisubharmonic if u is
F -upper semicontinuous and for every complex line l in Cn, the restriction of u to any F -component of the finely
open subset l ∩ Ω of l is either finely subharmonic or ≡ −∞. El Kadiri, Fuglede and Wiegerinck [16] proved the
most important properties of the F -plurisubharmonic functions. El Kadiri and Wiegerinck [18] defined the complex
Monge-Ampère operator for finite F -plurisubharmonic functions on an F -domain Ω. Recently, Hong and coauthors
have been successfully pushing the theory of F -plurisubharmonic functions (see [12], [13], [14], [19]). The aim
of this note is to study the conditions on u and Ω such that u can be approximated by an increasing sequence of
plurisubharmonic functions defined on Euclidean neighborhoods of Ω.

When Ω is bounded Euclidean domain with C1-boundary, Fornæss and Wiegerinck [9] proved that if u is contin-
uous on Ω then u can be approximated uniformly on Ω by a sequence of smooth plurisubharmonic functions defined
on Euclidean neighborhoods of Ω.

When Ω is bounded hyperconvex domain, according to the results by [4], [5], [8], [10] and other authors, the
approximation is possible if the domain Ω has the F -approximation property and u belongs to one of the Cegrell’s
classes in Ω.

When Ω is bounded F -domain, the authors gave in [19] the kind of Ω and u that are in line with the F -set up to
make the approximation possible.

The purpose of this note is to extend the result of [19]. In analogy with the set up of the hyperconvex domain to
make the approximation possible, we introduce the following:

Definition 1.1. Let Ω be a bounded F -hyperconvex domain, i.e., it is a bounded, connected, and F -open set such that
there exists a negative bounded plurisubharmonic function γΩ defined in a bounded hyperconvex domain Ω′ ⊃ Ω such
that Ω = {γΩ > −1} and −γΩ is F -plurisubharmonic in Ω. We say that Ω has the F -approximation property if there
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exists an increasing sequence of negative plurisubharmonic functions ρ j defined on bounded hyperconvex domains
Ω j such that Ω ⊂ Ω j+1 ⊂ Ω j and ρ j ↗ ρ ∈ E0(Ω) a.e. on Ω as j↗ +∞. Here

E0(Ω) := {u ∈ F -PS H−(Ω) ∩ L∞(Ω) :
∫

Ω

(ddcu)n < +∞

and ∀ε > 0, ∃δ > 0, {u < −ε} ⊂ {γΩ > −1 + δ}}.

Every bounded hyperconvex domain is F -hyperconvex. Example 3.3 in [19] showed that there exists a bounded
F -hyperconvex domain Ω that has the F -approximation property, moreover, it has no Euclidean interior point. For
the precise definition and properties of the class F (Ω) we refer the reader to the next section. Our main result is the
following theorem.

Theorem 1.2. Let Ω be a bounded F -hyperconvex domain and let u ∈ F (Ω). Assume that Ω has the F -approximation
property. Then there exists an increasing sequence of plurisubharmonic functions u j defined on Euclidean neighbor-
hoods of Ω such that u j ↗ u a.e. on Ω as j↗ +∞.

The note is organized as follows. In Section 2, we introduce and investigate the class F (Ω). Section 3 is devoted
to prove Theorem 1.2.

2. The class F (Ω)

Some elements of pluripotential theory (plurifine potential theory) that will be used throughout the paper can be
found in [1]-[22]. We denote by F -PS H−(Ω) the set of negative F -plurisubharmonic functions defined in an F -open
set Ω. First, we recall the definition of the complex Monge-Ampère measure for finite F -plurisubharmonic functions.

Definition 2.1. Let Ω be an F -open set in Cn and let QB(Ω) be the trace of QB(Cn) on Ω, where QB(Cn) denotes
the σ-algebra on Cn generated by the Borel sets and the pluripolar subsets of Cn. Assume that u1, . . . , un are finite
F−plurisubharmonic functions in Ω. Using the quasi-Lindelöf property of the plurifine topology and Theorem 2.17
in [18], there exist a pluripolar set E ⊂ Ω, a sequence of F -open subsets {Ok} and plurisubharmonic functions f j,k, g j,k

defined in Euclidean neighborhoods of Ok such that Ω = E ∪
⋃∞

k=1 Ok and u j = f j,k − g j,k on Ok. We define O0 := ∅
and ∫

A
ddcu1 ∧ . . . ∧ ddcun :=

∞∑
k=1

∫
A∩(Ok\

⋃k−1
h=0 Oh)

ddc( f1,k − g1,k) ∧ . . . ∧ ddc( fn,k − gn,k), A ∈ QB(Ω). (2.1)

Theorem 3.6 in [18] implies that the measure defined by (2.1) is independent on E, {Ok}, { f j,k} and {g j,k}. This measure
is called the complex Monge-Ampère measure.

Note that from Theorem 2.17 in [18] and Lemma 4.1 in [18] we infer that ddcu1 ∧ . . . ∧ ddcun is a non-negative
measure on QB(Ω). We now give the following definition which is an extension of the class F (Ω) introduced and
investigated by Cegrell [6] when Ω is a bounded hyperconvex domain in Cn.

Definition 2.2. Let Ω be a bounded F -hyperconvex domain in Cn. We denote by F (Ω) the family of negative F -
plurisubharmonic functions u defined on Ω such that there exist a decreasing sequence {ϕ j} ⊂ E0(Ω) that converges
pointwise to u on Ω and

sup
j≥1

∫
Ω

(ddcϕ j)n < +∞.

Furthermore, if p > 0 satisfies

sup
j≥1

∫
Ω

(1 + (−ϕ j)p)(ddcϕ j)n < +∞

then we say that u ∈ Fp(Ω).

Note that E0(Ω) ⊂ F (Ω) ∩ L∞(Ω) ⊂ Fp(Ω) ⊂ F (Ω) for all p > 0. When Ω is a bounded Euclidean hyperconvex
domain, the classes E0(Ω), F (Ω) are the same as the classical Cegrell’s classes.
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Proposition 2.3. Let Ω b Cn be a bounded F -hyperconvex domain in Cn and let u ∈ F (Ω) ∩ L∞(Ω). Then the
following statements hold:

(i) If {ϕ j} ⊂ E0(Ω) such that ϕ j ↘ u on Ω and sup j≥1

∫
Ω

(ddcϕ j)n < +∞ then∫
Ω

(−ρ)(ddcu)n = sup
j≥1

∫
Ω

(−ρ)(ddcϕ j)n, ∀ρ ∈ F -PS H−(Ω) ∩ L∞(Ω).

(ii) If v ∈ F -PS H(Ω) with u ≤ v < 0 then v ∈ F (Ω) and
∫

Ω
(ddcv)n ≤

∫
Ω

(ddcu)n.

Proof. The statements follow from Proposition 4.2 in [19] and Proposition 4.3 in [19].

Proposition 2.4. Let Ω be a bounded F -hyperconvex domain in Cn and let u ∈ F (Ω). If {u j} ⊂ F (Ω) ∩ L∞(Ω) such
that u j ↘ u in Ω as j↗ +∞ then

sup
j≥1

∫
Ω

(ddcu j)n < +∞.

and ∫
Ω

(ddc max(u, ρ))n = sup
j≥1

∫
Ω

(ddcu j)n

for every ρ ∈ F -PS H−(Ω) ∩ L∞(Ω) with supΩ ρ < 0. In particular,∫
Ω

(ddc max(u,−1))n < +∞.

Proof. Let {ϕk} ⊂ E0(Ω) such that ϕk ↘ u in Ω as k ↗ +∞ and

sup
k≥1

∫
Ω

(ddcϕk)n < +∞.

Since max(u j, ρk)↘ u j in Ω as k ↗ +∞, by Proposition 3.4 in [19] and Proposition 4.2 in [19] we infer that∫
Ω

(ddcu j)n = sup
k≥1

∫
Ω

(ddc max(u j, ϕk))n ≤ sup
k≥1

∫
Ω

(ddcϕk)n.

This implies that

sup
j≥1

∫
Ω

(ddcu j)n ≤ sup
k≥1

∫
Ω

(ddcϕk)n < +∞.

Now, assume that ρ ∈ F -PS H−(Ω) ∩ L∞(Ω), supΩ ρ < 0. Thanks to Proposition 3.4 in [19] and Proposition 2.3 we
have ∫

Ω

(ddc max(u, ρ))n = sup
k≥1

∫
Ω

(ddc max(ϕk, ρ))n

= sup
k≥1

∫
Ω

(ddcϕk)n

= sup
k≥1

sup
j≥1

∫
Ω

(ddc max(u j, ϕk))n = sup
j≥1

∫
Ω

(ddcu j)n.

The proof is complete.

Proposition 2.5. Let Ω be a bounded F -hyperconvex domain in Cn. Assume that u ∈ F (Ω) ∩ L∞(Ω) and v ∈
F -PS H−(Ω) such that (ddcu)n ≤ (ddcv)n in {v > −∞}. Then, u ≥ v in Ω.
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Proof. Without loss of generality we can assume that −1 ≤ u ≤ 0 on Ω. Let j ∈ N∗ and define

v j := (1 +
1
j
)(v −

1
j
) in Ω.

Choose p > 0 such that jp < 1 + 1
j . It is easy to see that

(1 + (−u)p)(ddcu)n ≤ 2(ddcu)n ≤ 2(ddcv)n ≤ (1 + (−v j)p)(ddcv j)n on {v j > −∞}.

Proposition 4.4 in [19] implies that u ≥ v j in Ω. Letting j → +∞ we conclude that u ≥ v in Ω which is what we
wanted to prove.

3. Proof of Theorem 1.2

We need the following.

Lemma 3.1. Let Ω be a bounded F -hyperconvex domain in Cn and let u, v ∈ F (Ω) be such that
(i) u ≥ v in Ω;
(ii) (ddcu)n ≤ (ddcv)n on {v > −∞};
(iii)
∫

Ω
(ddc max(u,−1))n ≥

∫
Ω

(ddc max(v,−1))n.
Then, u = v in Ω.

Proof. Let R > 0 be such that Ω b B(0,R) and define ρ(z) := |z|2 − R2, z ∈ Cn. Let ε, δ ∈ (0, 1). We set

uε,δ := max(u,−2δR2ε−1) and vε,δ := max((1 − ε)uε,δ + δρ, v).

Since supΩ ρ < 0 and u ≥ v in Ω, by Proposition 2.3 and Proposition 2.4 we conclude by (iii) that∫
Ω

(ddcvε,δ)n =

∫
Ω

(ddc max(v,−1))n

≤

∫
Ω

(ddc max(u,−1))n =

∫
Ω

(ddcuε,δ)n.

(3.1)

Since uε,δ = u on {v > −2δR2ε−1}, by Theorem 4.8 in [18] and using (ii), we get

(ddcv)n ≥ (ddcu)n = (ddcuε,δ)n on {v > −2δR2ε−1}.

Hence, Proposition 2.6 in [19] implies that

(ddcvε,δ)n ≥ (1 − ε)n(ddcuε,δ)n on {v > −2δR2ε−1}. (3.2)

Because vε,δ = (1 − ε)uε,δ + δρ in {v < −δR2ε−1} ∪ {v < u − δR2}, by Theorem 4.8 in [18] we infer that

(ddcvε,δ)n ≥ (1 − ε)n(ddcuε,δ)n + δn(ddcρ)n on {v < −δR2ε−1} ∪ {v < u − δR2}.

Combining this with (3.2) we arrive at

(ddcvε,δ)n ≥ (1 − ε)n(ddcuε,δ)n + δn1{v<u−δR2}(ddcρ)n on Ω.

It follows that ∫
Ω

(ddcvε,δ)n ≥ (1 − ε)n
∫

Ω

(ddcuε,δ)n + δn
∫
{v<u−δR2}

(ddcρ)n.

Letting ε→ 0 we conclude by (3.1) that ∫
{v<u−δR2}

(ddcρ)n = 0, ∀δ > 0.

Therefore, by Proposition 2.3 in [19] we infer that v ≥ u in Ω, and hence, u = v in Ω. The proof is complete.
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We now are able to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Since Ω has the F -approximation property, there exists an increasing sequence of negative
plurisubharmonic functions ρ j defined on bounded hyperconvex domains Ω j such that Ω ⊂ Ω j+1 ⊂ Ω j and ρ j ↗ ρ ∈
E0(Ω) a.e. on Ω. Let k ∈ N be such that k ≥ 1. Proposition 2.4 implies that∫

Ω

(ddc max(u,−k))n =

∫
Ω

(ddc max(u,−1))n < +∞.

Since the measure 1Ω(ddc max(u,−k))n vanishes on all pluripolar subsets of Ω j, by Lemma 5.14 in [6] there exists
u j,k ∈ F (Ω j) such that

(ddcu j,k)n = 1Ω(ddc max(u,−k))n in Ω j.

Theorem 3.7 in [20] states that the function u j := (lim supk→+∞ u j,k)∗ belongs to F (Ω j), where ∗ denotes the upper
semi-continuous regularization. By Theorem 5.5 in [6] and Proposition 2.5 we infer that u j,k ≤ u j+1,k ≤ max(u,−k) on Ω,
and hence,

u j ≤ u j+1 ≤ u on Ω.

We now claim that
(ddcu j)n ≥ (ddcu)n on Ω ∩ {u > −∞} (3.3)

and ∫
Ω j

(ddcu j)n ≤

∫
Ω

(ddc max(u,−1))n. (3.4)

Indeed, fix a > 0 and let k ∈ N∗ be such that k ≥ a. Since

(ddcu j,k+s)n ≥ 1Ω∩{u>−a}(ddcu)n in Ω j, ∀s ≥ 0,

Proposition 4.3 in [20] implies that

(ddc max(u j,k, . . . , u j,k+s))n ≥ 1Ω∩{u>−a}(ddcu)n in Ω j, ∀s ≥ 0.

Main Theorem in [7] states that
(ddc(sup

l≥0
u j,k+l)∗)n ≥ 1Ω∩{u>−a}(ddcu)n in Ω j

because max(u j,k, . . . , u j,k+s) ↗ (supl≥0 u j,k+l)∗ a.e. in Ω j as s ↗ +∞. Moreover, since (supl≥0 u j,k+l)∗ ↘ u j a.e. in Ω j

as k ↗ +∞, again by Main Theorem in [7] we infer that

(ddcu j)n ≥ 1Ω∩{u>−a}(ddcu)n in Ω j.

Letting a→ +∞, we get
(ddcu j)n ≥ (ddcu)n on Ω ∩ {u > −∞}.

Now, by Lemma 3.3 in [1] and Corollary 3.4 in [1] we have∫
Ω j

(ddcu j)n = lim
k→+∞

∫
Ω j

(ddc(sup
l≥0

u j,k+l)∗)n

≤ sup
k≥1

∫
Ω j

(ddcu j,k)n =

∫
Ω

(ddc max(u,−1))n.

This proves the claim. Let v be the least F -upper semicontinuous majorant of sup j≥1 u j in Ω. Then, v ∈ F -PS H−(Ω)
and v ≤ u on Ω. By Theorem 4.5 in [17] and using (3.3) we infer that

(ddcv)n ≥ (ddcu)n on {v > −∞}. (3.5)
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We claim that v ∈ F (Ω). Indeed, put vk := max(v, kρ), where k ∈ N∗. Proposition 3.4 in [19] implies that vk ∈ E0(Ω).
Since max(u j, kρ j) ↗ vk a.e. in Ω as j ↗ +∞, by Proposition 2.7 in [19] and Lemma 3.3 in [1] we obtain by (3.4)
that ∫

Ω

(ddcvk)n ≤ lim inf
j→+∞

∫
Ω

(ddc max(u j, kρ j))n

≤ lim inf
j→+∞

∫
Ω j

(ddcu j)n ≤

∫
Ω

(ddc max(u,−1))n.

Since vk ↘ v, by Proposition 2.4 we obtain v ∈ F (Ω). This proves the claim. Now, again by Proposition 2.7 in [19]
and Proposition 3.4 in [19] we have∫

Ω

(ddc max(v,−1))n ≤ lim inf
k→+∞

∫
Ω

(ddc max(vk,−1))n

≤ lim inf
k→+∞

∫
Ω

(ddcvk)n ≤

∫
Ω

(ddc max(u,−1))n.

Combining this with (3.5) and using Lemma 3.1 we conclude that v = u in Ω. Thus, u j ↗ u a.e. in Ω as j ↗ +∞.
This completes the proof of Theorem 1.2.
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