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Abstract 1. Let (R,m) be a Noetherian local ring which is a quotient of a Gorenstein local
ring. Let M be a finitely generated R-module. Denote by KM the canonical module of M .
In this paper, we study the generalized Cohen-Macaulayness and the non-Cohen-Macaulay
locus of KM . Firstly we introduce the notion of canonical system of parameters of M in order
to characterize the generalized Cohen-Macaulayness of KM . We give two other parametric
characterizations for KM to be generalized Cohen-Macaulay. Then we present the relation
between the non-Cohen-Macaulay locus of KM and that of M .

1 Introduction

The depth and the Cohen-Macaulayness of canonical modules have attracted the interest of a
number of researchers, see [A], [AG], [Sch1], [Nh], [BN]. Aoyama and Goto [AG] proved that
if R is a Noetherian local with the total quotient ring Q(R) such that R is unmixed and R
admits the canonical module KR, then KR is a Cohen-Macaulay R-module if and only if there
exists a Cohen-Macaulay intermediate ring B between R and Q(R) such that B is a finitely
generated R-module with dimR(B/R) ≤ dimR − 2 and dimBn = dimR for any maximal
ideal n of B. However, the fact is not valid any more whenever dimR(B/R) = dimR − 1,
see Example 2.5.
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Let (R,m) be a Noetherian local ring, let M be a finitely generated R-module with
dimM = d. For each system of parameters (s.o.p. for short) (x1, . . . , xd) of M , set

I(x1, . . . , xd;M) = `R(M/(x1, . . . , xd)M) − e(x1, . . . , xd;M).

It is well-known that M is Cohen-Macaulay if and only if I(x1, . . . , xd;M) = 0 for some
(for all) s.o.p. (x1, . . . , xd) of M . A similar parametric characterization for the Cohen-
Macaulayness of canonical module was given in [Nh] and [BN] as follows. Suppose that R
is a quotient of a Gorenstein local ring. Denote by KM the canonical module of M . For an
Artinian R-module A, denote by Rl(A) := `R(A/msA) the residual length of A defined by
Sharp and Hamieh [SH], where s > 0 is an integer such that msA = mnA for all n ≥ s. Then
KM is Cohen-Macaulay if and only if Rl

(
H2

m(M/(x1, . . . , xd−3)M)
)

= 0 for some (for all)
strict f-sequence (x1, . . . , xd) of M . Here, the notion of strict f-sequence was introduced in
[CMN], and if (x1, . . . , xd) is a strict f-sequence of M , then it is a s.o.p. of M .

Set I(M) := sup I(x1, . . . , xd;M), where the supremum runs over all s.o.p (x1, . . . , xd) of
M . We say that M is generalized Cohen-Macaulay if I(M) < ∞, see [CST].

Theorem 1.1. (See [CST], [Tr]). The following statements are equivalent:

(a) M is generalized Cohen-Macaulay;

(b) There exists a s.o.p. (x1, . . . , xd) of M such that sup
n1 ,...,nd∈N

I(xn1
1 , . . . , xnd

d ;M) < ∞;

(c) M has a standard s.o.p. (x1, . . . , xd), i.e. I(x1, . . . , xd;M) = I(x2
1, . . . , x

2
d;M).

In this paper, firstly we establish an analogue for the canonical modules of the parametric
characterizations in Theorem 1.1 for generalized Cohen-Macaulay modules, where the role
of the number Rl

(
H2

m(M/(x1, . . . , xd−3)M)
)

in the study of KM is as useful as that of
the number I(x1, . . . , xd;M) in the study of M , for strict f-sequences (x1, . . . , xd) of M . We
introduce the notion of canonical system of parameters (canonical s.o.p. for short) as follows.

Definition 1.2. A strict f-sequence x = (x1, . . . , xd) is said to be a canonical s.o.p. of M if

Rl
(
H2

m(M/(x1, . . . , xd−3)M)
)

= Rl
(
H2

m(M/(x2
1, . . . , x

2
d−3)M)

)
.

If x is at the same time an unconditioned strict f-sequence and a canonical s.o.p. of M , then
x is said to be an unconditioned canonical s.o.p. of M .

The following theorem is the first main result of this paper.

Theorem 1.3. Suppose that R is a quotient of a Gorenstein local ring. The following four
statements are equivalent:

(a) KM is generalized Cohen-Macaulay.

(b) cM := sup
x

Rl
(
H2

m(M/(x1, . . . , xd−3)M)
)

< ∞ where x = (x1, . . . , xd) runs over all

strict f-sequences of M .
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(c) There exists a strict f-sequence (x1, . . . , xd) of M such that

sup
n1 ,...,nd−3∈N

Rl
(
H2

m(M/(xn1
1 , . . . , x

nd−3

d−3 )M)
)

< ∞.

(d) There is an unconditioned canonical s.o.p. of M .

Futhermore, if (x1, . . . , xd) is an unconditioned canonical s.o.p. of M , then

Rl
(
H2

m(M/(x1, . . . , xd−3)M)
)

= cM =
d−3∑

i=0

(
d − 3

i

)
`(H i+2

m (KM )).

It should be mentioned that the statements (b) and (c) of Theorem 1.3 improve the main
result of [LN].

Secondly, Y. Aoyama [A, Theorem 1] studied the relation between the depth of KR and
that of R in case where R is not Cohen-Macaulay. He proved that for given integers 0 ≤ r < n
and 2 ≤ s ≤ n, there exists a complete local ring R such that dimR = n, depthR = r and
depthKR = s. This is the motivation for us to discuss about the relation between the non
Cohen-Macaulay locus of KM and that of M .

Denote by nCM(M) the non-Cohen-Macaulay locus of M . If R is a quotient of a Goren-
stein local ring, then nCM(M) is closed under Zariski topology and dimnCM(M) ≤ d − 1,
see [C]. Moreover, if M is unmixed, then dimnCM(M) ≤ d − 2.

The following theorem is the second main result of this paper.

Theorem 1.4. Suppose that R is a quotient of a Gorenstein local ring. The following
statements are true.

(a) dimnCM(KM ) ≤ min{d − 3,dimnCM(M)}.

(b) For given integers −1 ≤ s ≤ d − 3 and s ≤ r ≤ d − 2, there exists a complete unmixed
Noetherian local ring (R,m) such that dimnCM(R) = r and dimnCM(KR) = s.

In the next section, we present some preliminaries that will be used in the sequel. Section
3 and Section 4 are devoted to prove the main results of this paper (Theorems 1.3, 1.4).

2 Preliminaries

Throughout this paper, let (R,m) be a Noetherian local ring which is a quotient of an n-
dimensional local Gorenstein ring (R′,m′). Let M be a finitely generated R-module with
dimM = d. For each integer i ≥ 0, let K i

M := Extn−i
R′ (M,R′) denote the i-th deficiency

module of M . Then K i
M is a finitely generated R-module and the local duality (see [BS,

11.2.6]) gives the isomorphism H i
m(M) ∼= HomR(K i

M , E(R/m)), where E(R/m) is the in-
jective envelope of R/m. Let KM be the canonical module Kd

M of M . For an Artinian
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R-module A, let Rl(A) := `R(A/msA) be the residual length of A defined by Sharp-Hamieh
[SH], where s > 0 is an integer such that mnA = msA for all n ≥ s.

The notion of filter regular sequence (f-sequence for short) introduced in [CST] can be
considered as a generalization of the known concept of regular sequence. An element x ∈ m is
said to be a filter regular element (f-element for short) of M if x /∈ p for all p ∈ AssR M \{m}.
A sequence (x1, . . . , xt) of elements in m is said to be an f-sequence of M if xi is an f-element
of M/(x1, . . . , xi−1)M for all i ≤ t.

Remark 2.1. An element x ∈ m is an f-element of M if and only if `R(0 :M x) < ∞.
Moreover, each f-sequence of length d is a s.o.p. of M .

A special kind of f-sequences is the class of strict f-sequences introduced in [CMN]. In
the original definition of strict f-sequence, the set of attached primes AttR H i

m(M) defined
by I. G. Macdonald [Mac] was used. However, we note that AttR H i

m(M) = AssR K i
M by [S,

Theorem 2.3], therefore we can recall the notion of strict f-sequence as follows.

Definition 2.2. An element x ∈ m is said to be a strict f-element of M if x /∈ p for all

p ∈
( d⋃

i=1

AssR K i
M

)
\ {m}. A sequence (x1, . . . , xt) of elements in m is said to be a strict

f-sequence of M if xj+1 is a strict f-element of M/(x1, . . . , xj)M for all j = 0, . . . , t − 1. A
sequence (x1, . . . , xt) of elemets in m is said to be an unconditioned strict f-sequence of M if
it is a strict f-sequence in any order.

Note that AssR M ⊆
d⋃

i=0

AssR K i
M , see [Sch2, Proposition 2.3(c)]. Hence, each strict f-

sequence is an f-sequence of M . In particular, if x ∈ m is a strict f-element of M , then
`R(0 :M x) < ∞. Moreover, if (x1, . . . , xd) is a strict f-sequence, then it is a s.o.p. of M .

Here are some properties of strict f-sequence that we need in the proof of the main results.

Lemma 2.3. ([CMN, Lemmas 3.4, 4.2 ], [GN, Theorem 3.5])

(a) A sequence (x1, . . . , xt) of elements in m is a strict f-sequence of M if and only if it is
an f-sequence of K i

M for all integers i ≥ 0.

(b) If (x1, . . . , xt) ∈ m is a strict f-sequence of M , then so is (xn1
1 , . . . , xnt

t ) for all positive
integers n1, . . . , nt.

(c) For each integer t > 0, there exists an unconditioned strict f-sequence of M of length t.

Lemma 2.4. ([LN, Lemmas 2.5, 2.7]) Let x ∈ m be a strict f-element of M . The following
statements are true.

(a) For each integer i ≥ 0, there exists an integer n0 such that for all n ≥ n0 we have

Rl(H i
m(M)) = `R(H0

m(K i
M )) = `R(0 :Ki

M
xn).
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(b) For each integer i ≥ 1, there is an exact sequence

0 → K i+1
M /xK i+1

M → K i
M/xM → (0 :Ki

M
x) → 0.

In particular, H i
m

(
KM/xKM

) ∼= H i
m

(
KM/xM

)
for any i ≥ 2.

Next, we discuss about the Cohen-Macaulayness and generalized Cohen-Macaulayness
of the canonical module. Following P. Schenzel [Sch2, Definition 5.1], R is said to have a
birational Macaulayfication if there is an intermediate ring B between R and Q(R) such that
B is a finitely generated Cohen-Macaulay R-module. As we mentioned in the introduction,
Aoyama and Goto [AG] proved that if R is unmixed, then KR is Cohen-Macaulay if and
only if there exists a birational Macaulayfication B of R such that dimR(B/R) ≤ dimR− 2.
When this is the case, B is uniquely determined and B ∼= EndR(KR) as an R-algebra. Note
that the condition dimR(B/R) ≤ dimR − 2 can not be removed. The following example
given by S. Goto shows that the result does not valid any more if dimR(B/R) = dimR − 1.

Example 2.5. Let A = F [X,Y ] be the polynomial ring over an infinite field F and J =

(X3, V )(X3,XV, Y 3), where V = X2 + XY + Y 2. Let M = (X,Y ). Then
√

J = M. We set
I = JAM. Then the Rees algebra R = R(I) of I is a Buchsbaum ring with depthR(I) = 2.
Since AM is a regular local ring of dimension 2, R = R(I) is a Cohen-Macaulay ring, but KR
is not a Cohen-Macaulay R-module. Therefore KRn is not a Cohen-Macaulay Rn-module
where n denotes the graded maximal ideal of R, although the Noetherian local domain Rn

possesses a birational Cohen-Macaulayfication.

It is well-known that M is Cohen-Macaulay if and only if I(x1, . . . , xd;M) = 0 for some
(for all) s.o.p. (x1, . . . , xd) of M , where

I(x1, . . . , xd;M) := `(M/(x1, . . . , xd)M) − e(x1, . . . , xd;M)

and e(x1, . . . , xd;M) is the multiplicity of M with respect to (x1, . . . , xd). Moreover, if x ∈ m
is an M -regular element, then M is Cohen-Macaulay if and only if so is M/xM.

It is clear that if M is Cohen-Macaulay, then so is KM . The converse statement is not true,
see Theorem 1.4(b). Note that KM satisfies the condition Serre (S2). Therefore KM is Cohen-
Macaulay whenever d ≤ 2. In case where d ≥ 3, we have the following characterizations for
the canonical module to be Cohen-Macaulay.

Lemma 2.6. ([Nh, Theorem 4.2], [BN, Theorem 2.5]). The following statements are true.

(a) KM is Cohen-Macaulay if and only if Rl
(
Hd−k−1

m (M/(x1, . . . , xk)M)
)

= 0 for a (and
for all) strict f-sequence (x1, . . . , xd) of M and all k = 0, . . . , d − 3.

(b) If d ≥ 4, then KM is Cohen-Macaulay if and only if KM/xM is Cohen-Macaulay for
every strict f-element x of M .

Following Cuong, Schenzel and Trung [CST], M is said to be generalized Cohen-Macaulay
if I(M) := sup I(x1, . . . , xd;M) < ∞, where (x1, . . . , xd) runs over all s.o.p. of M. Note that
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M is generalized Cohen-Macaulay if and only if `R(H i
m(M)) < ∞ for all i < d. Note that

KM satisfies the condition Serre (S2), therefore KM is generalized Cohen-Macaulay whenever
d ≤ 3. In case where d ≥ 4, we have the following characterizations for the canonical module
to be generalized Cohen-Macaulay.

Lemma 2.7. ([LN, Main theorem]) The following statements are equivalent:

(a) KM is generalized Cohen-Macaulay.

(b) There exists a number c(M) such that Rl
(
Hd−k−1

m (M/(x1, . . . , xk)M)
)
≤ c(M) for all

strict f-sequences x = (x1, . . . , xd) of M and all k = 1, . . . , d − 3.

(c) There exist a strict f-sequence x = (x1, . . . , xd) of M and a number c(x,M) such that
Rl

(
Hd−k−1

m (M/(xn1
1 , . . . , xnk

k )M)
)
≤ c(x,M) for all k = 1, . . . , d − 3 and all positive

integers n1, . . . , nd−3.

Furthermore, if the conditions (a), (b), (c) satisfy, then

Rl
(
Hd−k−1

m (M/(x1, . . . , xk)M)
)
≤

k∑

i=0

(
k

i

)
`(H i+2

m (KM ))

for any k = 1, . . . , d − 3. The equality holds true when x1, . . . , xk ∈ m2k−1q, where

q = min{t ∈ N | mt H i
m(KM ) = 0 for all i < d}.

The notion of standard system of parameters (standard s.o.p. for short) defined in [Tr]
(see also [Sch1]) is very important in the study of generalized Cohen-Macaulay modules. A
s.o.p. (x1, . . . , xd) of M is said to be a standard s.o.p. if

`R(M/(x1, . . . , xd)M) − e(x1, . . . , xd;M) = `R(M/(x2
1, . . . , x

2
d)M) − e(x2

1, . . . , x
2
d;M).

Then M is generalized Cohen-Macaulay if and only if there exists a standard s.o.p. of M .
Note that if (x1, . . . , xd) is a standard s.o.p. of M , then

I(x1, . . . , xd;M) = I(M) =
d−1∑

i=0

(
d − 1

i

)
`(H i

m(M)).

In the introduction, we introduce the notion of canonical s.o.p. (see Definition 1.2), which
will be used in the next section to characterize the generalized Cohen-Macaulayness of the
canonical module. The following lemma gives a relation between standard s.o.p. of M and
canonical s.o.p. of M .

Lemma 2.8. If (x1, . . . , xd) be a standard s.o.p. of M, then it is a canonical s.o.p of M.

Proof. If d ≤ 2, there is nothing to prove. Let d ≥ 3. Suppose that (x1, . . . , xd) is a stan-
dard s.o.p. of M. Then M is generalized Cohen-Macaulay, cf. [Tr]. Hence `R(K i

M ) < ∞
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for all i < d. So, each s.o.p. of M is an f-sequence of K i
M for all i. It follows by Lemma

2.3(a) that each s.o.p. of M is a strict f-sequence. Since (x1, . . . , xd) is a standard s.o.p. of
M , so is (x2

1, . . . , x
2
d). Note that M/(x1, . . . , xd−3)M is generalized Cohen-Macaulay. Hence

`R

(
H2

m(M/(x1, . . . , xd−3)M)
)

< ∞. Similarly, `R

(
H2

m(M/(x2
1, . . . , x

2
d−3)M)

)
< ∞. There-

fore, we get by [Tr, Proposition 2.9] that

Rl
(
H2

m(M/(x1, . . . , xd−3)M)
)

= `(H2
m(M/(x1, . . . , xd−3)M))

=
d−1∑

i=2

(
d − 3

i − 1

)
`(H i

m(M))

= `R

(
H2

m(M/(x2
1, . . . , x

2
d−3)M)

)

= Rl
(
H2

m(M/(x2
1, . . . , x

2
d−3)M)

)
.

The converse statement of Lemma 2.8 is not true. In fact, by Theorem 1.4, there is an
unmixed complete local ring R such that R is not generalized Cohen-Macaulay, but KR is
generalized Cohen-Macaulay. By Theorem 1.3, there is a canonical s.o.p. of R, but R does
not admit a standard s.o.p.

3 Proof of Theorem 1.3

Before proving Theorem 1.3, we need some auxiliary lemmas.

For an Artinian R-module A, set dimR A = dim(R/AnnR A). Note that A has a natural

structure as an Artinian R̂-module and dimR A ≥ dimR̂ A, see [CN, Proposition 2.4(ii),
Corollary 4.7]. Moreover, `R(A) < ∞ if and only if dimR A = dimR̂ A ≤ 0.

Since KM satisfies the condition Serre (S2), we have dimR H i
m(KM ) ≤ i − 2 for all i < d

(see [Sch2, Propositions 2.2(c), 2.3(d)]). In particular, if d ≥ 3, then H i
m(KM ) = 0 for i ≤ 1

and `R(H2
m(KM )) < ∞.

Lemma 3.1. Let d ≥ 4, let x ∈ m be a strict f-element of M . Then `R(0 :H3
m(KM) x) < ∞

and
Rl(Hd−2

m (M/xM)) = `R(H2
m(KM )/xH2

m(KM )) + `R(0 :H3
m(KM) x).

Proof. Set N = M/xM. Let y be a strict f-element of N . Then by Lemma 2.4(a) that

Rl(Hd−2
m (N)) = `R(0 :Kd−2

N
yn) < ∞

for all large enough integers n. Note that yn is a strict f-element of N . Therefore, we have
by Lemma 2.4(b) the exact sequence

0 → KN/ynKN → KN/ynN → (0 :Kd−2
N

yn) → 0.
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Since d ≥ 4 and KN/ynN satisfies the condition Serre (S2), we have depthKN/ynN ≥ 2. Since
`R(0 :Kd−2

N
yn) < ∞, it follows by the above exact sequence that

(0 :Kd−2
N

yn) = H0
m(0 :Kd−2

N
yn) ∼= H1

m(KN/ynKN ).

Since yn is KN -regular, we have the exact sequence

0 → KN → KN → KN/ynKN → 0.

As dimKN ≥ 3 and KN satisfies the condition Serre (S2), we get depthKN ≥ 2. So,

H1
m(KN/ynKN ) ∼= (0 :H2

m(KN) yn).

Since `R(H2
m(KN )) < ∞, it follows by Lemma 2.4(b) that

(0 :H2
m(KN ) yn) = H2

m(KN ) ∼= H2
m(KM/xKM )

for all large enough integers n. Therefore we get by all the aboves facts that

Rl
(
Hd−2

m (M/xM)) = `R(H2
m(KM/xKM )

)
.

Hence `R(H2
m(KM/xKM )) < ∞. From the exact sequence

0 → KM → KM → KM/xKM → 0,

we have the exact sequence

0 → H2
m(KM )/xH2

m(KM ) → H2
m(KM/xKM ) → (0 :H3

m(KM) x) → 0.

Now, the result follows.

Lemma 3.2. Let d ≥ 4, let (x1, . . . , xd) be an unconditioned strict f-sequence of M . Then

Rl(Hd−k−1
m (M/(xn1

1 , . . . , xnk
k )M)) ≤ Rl

(
Hd−k−1

m (M/(xm1
1 , . . . , xmk

k )M)
)

for all integers 1 ≤ k ≤ d − 3 and all positive integers ni ≤ mi for i = 1, . . . , k.

Proof. We prove the lemma by induction on d.

Let d = 4. Then k = 1. We have by Lemma 3.1 that

Rl
(
Hd−2

m (M/xnM)
)

= `R(H2
m(KM )/xnH2

m(KM )) + `R(0 :H3
m(KM) xn)

≤ `R(H2
m(KM)/xmH2

m(KM )) + `R(0 :H3
m(KM) xm)

= Rl
(
Hd−2

m (M/xmM)
)
.

Assume that d > 4. Set N = M/(xn2
2 , . . . , xnk

k )M and L = M/xm1
1 M. Then dimL ≥ 4

and dimN = d− k + 1 ≥ 4. Since (x1, . . . , xd) is an unconditioned strict f-sequence of M , it
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follows by Lemma 2.3(b) that (x1, x
n2
2 , . . . , xnk

k ) is also an unconditioned strict f-sequence of
M . Hence, x1 is a strict f-element of N . Therefore we get

Rl
(
Hd−k−1

m (M/(xn1
1 , . . . , xnk

k )M)
)

= Rl
(
H(d−k+1)−2

m (N/xn1
1 N)

)

≤ Rl
(
H(d−k+1)−2

m (N/xm1
1 N)

)

= Rl
(
Hd−k−1

m (M/(xm1
1 , xn2

2 , . . . , xnk
k )M)

)

= Rl
(
Hd−k−1

m (L/(xn2
2 , . . . , xnk

k )L)
)
.

It is clear that (x2, . . . , xk) is an unconditioned strict f-sequence of L and dimL = d− 1. So,
we get by induction hypothesis that

Rl
(
Hd−k−1

m (L/(xn2
2 , . . . , xnk

k )L)
)

= Rl
(
H(d−1)−(k−1)−1

m (L/(xn2
2 , . . . , xnk

k )L)
)

≤ Rl
(
H(d−1)−(k−1)−1

m (L/(xm2
2 , . . . , xmk

k )L)
)

= Rl
(
Hd−k−1

m (M/(xm1
1 , xm2

2 , . . . , xmk
k )M)

)
.

The following property of Artinian module is useful in the proof of Theorem 1.3. Let A
be an Artinian R-module. It follows by [Ro, Theorem 6] and [CN, Corollary 4.7] that

dimR̂ A = inf{t ∈ N | ∃x1, . . . , xt ∈ m such that `R(0 :A (x1, . . . , xt)) < ∞}.

A system (x1, . . . , xt) of elements in m (where t = dimR̂ A) is said to be a system of parameters
of A if `R(0 :A (x1, . . . , xt)) < ∞. It is clear that if (x1, . . . , xt) is a system of parameters of
A, then dimR̂(0 :A (x1, . . . , xn)) = t− n for all n ≤ t. If dimR̂ A > 0 and x ∈ m be such that
dimR̂(0 :A x) = dimR̂ A − 1, then x is said to be a parameter of A.

Lemma 3.3. Let A be an Artinian R-module. If dimR̂ A > 0 and x is a parameter of A,
then for all positive integers n we have

(0 :A xn) 6= (0 :A xn+1).

Proof. Assume in contrary that (0 :A xn) = (0 :A xn+1) for some integer n > 0. We claim
that A = (0 :A xn). In fact, let a ∈ A. Since A is m-torsion, we have msa = 0 for some integer
s > 0. Hence xsa = 0. If s ≤ n, then a ∈ (0 :A xn). So, we assume that s ≥ n + 1. Then
we have xn+1(xs−n−1a) = 0. Hence xs−n−1a ∈ (0 :A xn+1) = (0 :A xn). Therefore xs−1a = 0.
Continue this process, after some steps we have xn+1a = 0. Hence a ∈ (0 :A xn+1) = (0 :A xn).
Therefore, A = (0 :A xn) and the claim is proved. Note that xn is also a parameter of A.
Since dimR̂ A > 0, we have by the claim that

dimR̂ A = dimR̂(0 :A xn) = dimR̂ A − 1.

This gives a contradiction.

Corollary 3.4. Let d ≥ 4 and let x ∈ m be a strict f-element of M such that

Rl
(
Hd−2

m (M/xM)
)

= Rl
(
Hd−2

m (M/x2M)
)
.
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Then `R(H3
m(KM )) < ∞, xH i

m(KM ) = 0 for all i ≤ 3, and

Rl(Hd−2
m (M/xM)) = Rl(Hd−2

m (M/xnM)) = `R(H2
m(KM )) + `R(H3

m(KM ))

for all n > 0. In particular, if d = 4, then M is generalized Cohen-Macaulay canonical.

Proof. Since KM satisfies the condition Serre (S2), it follows that `R(H2
m(KM ) < ∞ and

dimR H3
m(KM ) ≤ 1. By Lemma 3.1 and by our assumption, xH2

m(KM ) = x2H2
m(KM ) and

(0 :H3
m(KM) x) = (0 :H3

m(KM) x2). It follows by Nakayama Lemma that xH2
m(KM ) = 0.

Next, we claim that `R(H3
m(KM )) < ∞. In fact, suppose `R(H3

m(KM)) = ∞. Then
dimR H3

m(KM ) = 1. Hence dimR̂ H3
m(KM ) = 1 by [CNN, Proposition 2.4, Corollary 4.2(iii)].

Since `R(0 :H3
m(KM) x) < ∞ by Lemma 3.1, it follows that x is a parameter of H3

m(KM).
Hence (0 :H3

m(KM) x) 6= (0 :H3
m(KM) x2) by Lemma 3.3. This gives a contradiction, and the

claim is proved. Since (0 :H3
m(KM ) x) = (0 :H3

m(KM) x2), we get by the same arguments as in
the proof of Lemma 3.3 that H3

m(KM ) = (0 :H3
m(KM) x). So, xH3

m(KM ) = 0. Now, the rest
statement follows by Lemma 3.1.

Lemma 3.5. Suppose that d ≥ 4. Let x = (x1, . . . , xk) be a strict f-sequence of M , where
1 ≤ k ≤ d − 3 is an integer. Then, there exists a positive integer m(x) such that

Rl
(
Hd−k

m (M/(x1, . . . , xk−1)M)
)
≤ Rl

(
Hd−k−1

m (M/(x1, . . . , xk−1, x
m(x)
k )M)

)
.

Proof. Set N := M/(x1, . . . , xk−1)M). We can choose a positive integer m(x) such that

x
m(x)
k H0

m(Kd−k
N ) = 0. Note that x

m(x)
k is a filter regular element of Kd−k

N by Lemma 2.3(a),
i.e. it is Kd−k

N -regular in dimension > 0 in sense of [BN1]. Therefore, we have by [DN,
Lemma 2.3] the following exact sequence

0 → H0
m(Kd−k

N ) → H0
m(Kd−k

N /x
m(x)
k Kd−k

N ) → (0 :H1
m(Kd−k

N ) x
m(x)
k ) → 0.

Since x
m(x)
k is a strict f-element of N , we have by Lemma 2.4(b) the following exact sequence

0 → Kd−k
N /x

m(x)
k Kd−k

N → Kd−k−1

N/x
m(x)
k N

→ (0 :Kd−k−1
N

x
m(x)
k ) → 0.

Therefore, it follows by Lemma 2.4(a) that

Rl
(
Hd−k

m (M/(x1, . . . , xk−1)M)
)

= `R(H0
m(Kd−k

N ))

≤ `R

(
H0

m(Kd−k
N /x

m(x)
k Kd−k

N )
)

≤ `R

(
H0

m(Kd−k−1

N/x
m(x)
k N

)
)

= Rl
(
Hd−k−1

m (M/(x1, . . . , xk−1, x
m(x)
k )M)

)
.

Now, we are ready to prove the first main result of this paper.
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Proof of Theorem 1.3. (a) ⇒ (d). By our assumption (a), `R(H i
m(KM )) < ∞ for all

i < d. Set
q = min{t ∈ N | mtH i

m(KM ) = 0 for all i < d}.
Then there exists by Lemma 2.3 an unconditioned f-sequence (x1, . . . , xd) of M contained in

m2d−4q. We have by Lemma 2.7 that

Rl
(
H2

m(M/(x1, . . . , xd−3)M)
)

=

d−3∑

i=0

(
d − 3

i

)
`R(H i+2

m KM ))

= Rl
(
H2

m(M/(x2
1, . . . , x

2
d−3)M)

)
.

Therefore, (x1, . . . , xd) is an unconditioned canonical s.o.p. of M .

(d) ⇒ (c). Suppose that (x1, . . . , xd) is an unconditioned canonical s.o.p. of M . It is enough
to prove the following equalities

Rl
(
H2

m(M/(x1, . . . , xd−3)M)
)

= Rl
(
H2

m(M/(xn1
1 , . . . , x

nd−3

d−3 )M)
)

for all positive integers n1, . . . , nd−3. We prove this by induction on d. If d ≤ 3, there is
nothing to prove. The case where d = 4 follows by Corollary 3.4.

Let d > 4 and assume that the result is valid for d−1. Let n1, . . . , nk be positive integers.
Set N = M/x1M and N ′ = M/x2

1M. Then dimN = d − 1 = dimN ′. Since (x1, . . . , xd) is
an unconditioned canonical s.o.p. of M , we have by Lemma 3.2 that

Rl
(
H2

m(N/(x2, . . . , xd−3)N)
)
≤ Rl

(
H2

m(N/(x2
2, . . . , x

2
d−3)N)

)

≤ Rl
(
H2

m(M/(x2
1, . . . , x

2
d−3)M)

)

= Rl(H2
m(N/(x2, . . . , xd−3)N)).

Hence Rl
(
H2

m(N/(x2, . . . , xd−3)N)
)

= Rl
(
H2

m(N/(x2
2, . . . , x

2
d−3)N)

)
. It follows that (x2, . . . , xd)

is an unconditioned canonical s.o.p. of N . Therefore, we get by induction hypothesis that

Rl
(
H2

m(N/(x2, . . . , xd−3)N)
)

= Rl
(
H2

m(N/(xn2
2 , . . . , x

nd−3

d−3 )N)
)

for all positive integers n2, . . . , nd−3. Similarly, since (x1, . . . , xd) is an unconditioned canon-
ical s.o.p. of M , we have by Lemma 3.2 that

Rl
(
H2

m(N ′/(x2, . . . , xd−3)N
′)
)

= Rl
(
H2

m(N ′/(x2
2, . . . , x

2
d−3)N

′)
)
.

Hence (x2, . . . , xd) is an unconditioned canonical s.o.p. of N ′. Therefore, we get by induction
that

Rl
(
H2

m(N ′/(x2, . . . , xd−3)N
′)
)

= Rl
(
H2

m(N ′/(xn2
2 , . . . , x

nd−3

d−3 )N ′)
)
,

for any positive integers n2, . . . , nd−3. As (x1, . . . , xd) is an unconditioned canonical s.o.p. of
M , it follows by Lemma 3.2 that

Rl
(
H2

m(N/(x2, . . . , xd−3)N)
)

= Rl
(
H2

m(N ′/(x2, . . . , xd−3)N
′)
)
.
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For given positive integers n2, . . . , nd−3, we have Rl
(
H2

m(L/x1L)
)

= Rl
(
H2

m(L/x2
1L)

)
by the

above equalities, where L = M/(xn2
2 , . . . , xnk

k )M. Since x1 is a strict f-element of L, we have
by Corollary 3.4 that

Rl
(
H2

m(L/x1L)
)

= Rl
(
H2

m(L/xn1
1 L)

)
,

the equalities are proved.

(c) ⇒ (a). Assume that there exists a strict f-sequence x = (x1, . . . , xd) of M such that

cx,M := sup
n1,...,nd−3∈N

Rl
(
H2

m(M/(xn1
1 , . . . , x

nd−3

d−3 )M)
)

< ∞.

Let n = (n1, . . . , nd−3) be a tuple of d − 3 positive integers. Note that (xn1
1 , . . . , x

nd−3

d−3 ) is a
strict f-sequence of M by Lemma 2.3(b). Therefore, there exists by Lemma 3.5 a positive
integer m(x, n) such that

Rl
(
H3

m(M/(xn1
1 , . . . , x

nd−4

d−4 )M)
)
≤ Rl

(
H2

m(M/(xn1
1 , . . . , x

nd−4

d−4 , x
nd−3m(x,n)
d−3 )M)

)
.

It follows by our assumption that

sup
n1 ,...,nd−4

Rl
(
H3

m(M/(xn1
1 , . . . , x

nd−4

d−4 )M)
)
≤ sup

n1 ,...,nd−3

Rl
(
H2

m(M/(xn1
1 , . . . , x

nd−4

d−4 , x
nd−3m(x,n)
d−3 )M)

)

≤ sup
m1 ,...,md−3∈N

Rl
(
H2

m(M/(xm1
1 , . . . , x

md−3

d−3 )M)
)

< ∞.

By the same arguments, we get

sup
n1 ,...,nk

Rl
(
Hd−k−1

m (M/(xn1
1 , . . . , xnk

k )M)
)

< ∞

for all k = 1, . . . , d−3. Therefore, KM is generalized Cohen-Macaulay by Lemma 2.7(c)⇒(a).

(a) ⇒ (b) follows by Lemma 2.7 (a)⇒(b).

(b) ⇒ (c) is trivial.

Finally, let (x1, . . . , xd) is an unconditioned canonical s.o.p. of M . Let n > 2d−4q be an
integer, where q is the number defined from the begining. Then, we get by Lemma 2.3 and
by the proof of (d) ⇒ (c) that

Rl
(
H2

m(M/(x1, . . . , xd−3)M)
)

= Rl
(
H2

m(M/(xn
1 , . . . , xn

d−3)M)
)

=
d−3∑

i=0

(
d − 3

i

)
`R(H i+2

m (KM )).

4 Proof of Theorem 1.4

In this section, we keep the assumption that (R,m) is a Noetherian local ring which is a
quotient of a Gorenstein local ring, M is a finitely generated R-module with dimM = d. Let
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KM be the canonical module of M . For each integer i ≥ 0, let K i
M be the i-th deficiency

module of M . The non Cohen-Macaulay locus of M , denoted by nCM(M), is defined by

nCM(M) = {p ∈ Spec(R) | Mp is not Cohen-Macaulay}.

Because R is a quotient of a Gorenstein local ring, nCM(M) is closed under Zariski topology,
see [CNN, Corollary 4.2](iv). Therefore, we can define its dimension dimnCM(M). If we
stipulate that dim∅ = −1, then M is Cohen-Macaulay if and only if dimnCM(M) = −1.
Moreover, M is generalized Cohen-Macaulay if and only if dimnCM(M) ≤ 0. In general, we
have the following result.

Lemma 4.1. ([C, Theorems 3.1, 3.3]). dimnCM(M) ≤ max
i<d

dimR H i
m(M). The equality

holds true if M is equidimensional.

It is clear that dimnCM(M) ≤ d−1. Moreover, dimnCM(M) = d−1 if and only if M has
an embedded prime of dimension d− 1. Following M. Nagata [Na], M is said to be unmixed

if dim(R̂/P) = dimR̂ M̂ for all P ∈ AssR̂ M̂ . Since R is a quotient of a Gorenstein local ring,
it follows by [Mat, Theorem 23.2] that M is unmixed if and only if dim(R/p) = d for all
p ∈ AssR M. Note that if M is unmixed, then dimnCM(M) ≤ d− 2. For each integer k ≥ 1,
it should be noticed that if M satisfies the condition Serre (Sk), then dimR H i

m(M) ≤ i − k
for all i < d, see [Sch2, Proposition 2.2](c). Therefore, by Lemma 4.1, we have the following
consequence.

Corollary 4.2. If M satisfies the condition Serre (Sk), then dimnCM(M) ≤ d − k − 1. In
particular, dimnCM(KM ) ≤ d − 3.

Next, we study the non Cohen-Macaulay locus under a flat extension.

Lemma 4.3. Let (S, n) be a Noetherian local ring and ϕ : R → S a flat local homomorphism
such that S/mS is Cohen-Macaulay of dimension t. If M is not Cohen-Macaulay, then

max
i<d+t

dimS H i
n(M ⊗R S) = dim(S/mS) + max

i<d
dimR H i

m(M).

In addition, if M and M ⊗R S are equidimensional, then

dimnCM(M ⊗R S) = dim(S/mS) + dimnCM(M).

Proof. Set dim(S/mS) = t. We have dim(M ⊗R S) = d + t by [Mat, Theorem 15.1]. Since
S/mS is Cohen-Macaulay, it follows by [BS1, Theorem 2.1] that

H i
n(M ⊗R S) ∼= H t

n

(
H i−t

m (M) ⊗R S
)

for all i ≥ t. Moreover, according to [Mat, Theorem 23.3], we have

depth(M ⊗R S) = depth M + depth(S/mS) ≥ t.

Hence H i
n(M ⊗R S) = 0 for all integers i < t. We set a(M) = a0(M).a1(M) . . . ad−1(M) and

a(M ⊗R S) = a0(M ⊗R S).a1(M ⊗R S) . . . ad+t−1(M ⊗R S), where ai(M) = AnnR H i
m(M)
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and ai(M ⊗R S) = AnnS H i
n(M ⊗R S) for all i. Then a(M)S ⊆ a(M ⊗R S) by the above

isomorphism. Since M is not Cohen-Macaulay, it follows by [C, Theorem 3.1(i)] and by the
same arguments as in the proof of [C, Theorem 5.1] that

max
i<d+t

dimS H i
n(M ⊗R S) = dim(S/mS) + max

i<d
dimR H i

m(M).

The rest statement follows by this equality and by Lemma 4.1.

Let t > 0 be an integer, let S = R[[x1, . . . , xt]] be the formal power series ring of t
variables over R. Then the natural map R → S is flat local and the fiber ring S/mS is
Cohen-Macaulay. So, R is Cohen-Macaulay if and only if so is S. The following lemma
shows some relations between the canonical modules and the deficiency modules of R and
that of S. The proof of this lemma given below was suggested by P. Schenzel.

Lemma 4.4. Let S = R[[x1, . . . , xt]] be the formal power series ring over R. Then

(a) KR is Cohen-Macaulay if and only if so is KS . If KR is not Cohen-Macaulay, then
dimnCM(KS) = t + dimnCM(KR).

(b) K i
S
∼= K i−t

R ⊗R S for all i ≥ t and K i
S = 0 for all i < t. In particular, if K i−t

R 6= 0, then
dimS K i

S = t + dimR K i−t
R .

Proof. (a) Since the ring S/mS is Gorenstein, KS
∼= KR⊗RS by [AG, Theorem 4.1]. It is clear

that the natural injection R → S is a local flat homomorphism. Since dimS/mS = t, we have
dimKS = t + dimKR. Because depth(S/mS) = t, it follows that depth KS = t + depthKR.
Therefore, KR is Cohen-Macaulay if and only if so is KS . Suppose that KR is not Cohen-
Macaulay. Note that KR and KS are equidimensional. So, we get by Lemma 4.3 that

dimnCM(KS) = dimnCM(KR ⊗R S) = t + dimnCM(KR).

(b) Let (R′,m′) be a Gorenstein local ring such that R is a factor ring of R′. Set R = R′/J
for some ideal J of R′. Suppose that dimR′ = n. The Local Duality Theorem (see [BS,
11.2.6]) provides the natural isomorphisms

H i
m(R) ∼= HomR(K i

R, E(R/m)) = HomR(Extn−i
R′ (R,R′), E(R/m))

for all i ∈ N. Let S ′ = R′[[x1, . . . , xt]] be the formal power series ring of t variables over R′.
For each integer i ≥ 0, we have the isomorphism

Exti
R′(R,R′) ⊗R′ S ′ ∼= Exti

S′(R ⊗R′ S ′, S′).

Note that S ′ is a Gorenstein ring with dimS ′ = n+t. This implies the following isomorphisms

K i
R ⊗R′ S ′ ∼= K i+t

R⊗R′S′

for all integers i ≥ 0. Now K i
R and R have the structure of an R′-module. So,

R ⊗R′ S ′ ∼= R ⊗R R′/J ⊗R′ S ′ ∼= R ⊗R S ∼= S;

K i
R ⊗R′ S ′ ∼= K i

R ⊗R R′/J ⊗R′ S ′ ∼= K i
R ⊗R S.
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Thus, K i
S
∼= K i−t

R ⊗R S for all i ≥ t. It is clear that K i
S = 0 for all i < t. Therefore, if

K i−t
R 6= 0, then dimS K i

S = t + dimR K i−t
R .

In order to prove Theorem 1.4, we need recall the notion of idealization introduced by
M. Nagata [Na]. We can make Cartesian product R × M into a ring with respect to the
componentwise addition and the multiplication defined by

(r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1).

This ring is called the idealization of M over R, and denoted by R n M . Note that R n M
is a commutative Noetherian local ring with the identity (1, 0). The unique maximal ideal
of R n M is m×M. Note that KR,KM ,KRnM are equidimensional. Therefore the following
lemma can be verified by Lemma 4.1, [C, Theorem 3.1] and [L].

Lemma 4.5. The following statements are true

(a) If dimM < dimR, then dimnCM(KRnM ) = dimnCM(KR).

(b) If dimM = dimR, then dimnCM(KRnM ) = max{dimnCM(KR),dimnCM(KM )}.

Proof of Theorem 1.4. (a) Note that dimnCM(KM ) ≤ d − 3 by Corollary 4.2. So, it is
enough to prove that dimnCM(KM ) ≤ dimnCM(M). If KM is Cohen-Macaulay, then there
is nothing to prove. Assume that KM is not Cohen-Macaulay. Set s = dimnCM(KM ). Then
there exists p ∈ nCM(KM ) such that dimR/ p = s. Hence (KM )p is not Cohen-Macaulay. It
follows that p ∈ Supp(KM ). Note that Ass(KM ) = {p ∈ Ass(M) | dimR/ p = d}. Therefore
dimR/ p +dimMp = d. Hence (KM )p

∼= KMp, see [Sch2, Proposition 2.2](b). So KMp is not
Cohen-Macaulay. It follows that Mp is not Cohen-Macaulay. Hence dimnCM(M) ≥ s.

(b) Let d ≥ 3 be an integer. Let r, s be integers such that −1 ≤ s ≤ d−3 and s ≤ r ≤ d−2.
We consider the following two cases.

• The case where s = −1. If r = −1, then any Cohen-Macaulay complete local ring of
dimension d satisfies the requirement. Assume that r ≥ 0. Let (R1,m1) be a Buchsbaum
complete local ring such that dimR1 = d − r ≥ 2, H1

m1
(R1) 6= 0 and H i

m1
(R1) = 0 for

i 6= d and i 6= 1 (such a local ring R1 exists by the construction of S. Goto [Go]). Then
R1 is not Cohen-Macaulay. Hence dimnCM(R1) = 0. Note that R1 is generalized Cohen-
Macaulay. Therefore, it follows by [BN, Corollary 2.7] that KR1 is Cohen-Macaulay. Hence
dimnCM(KR1) = −1. Let R = R1[[x1, . . . , xr]] be the formal power series ring of r variables
over R1. Then, R is a Noetherian complete local ring and dimR = d. Because KR1 is
Cohen-Macaulay, it follows by Lemma 4.4 that KR is Cohen-Macaulay, i.e. dimnCM(KR) =
−1 = s. Since R1 is Buchsbaum and H0

m1
(R1) = 0, it follows that R1 is unmixed, i.e.

dim(R1/p) = dimR1 for all p ∈ AssR1. Since R1 is not Cohen-Macaulay, we have by
Lemma 4.4 that dimnCM(R) = r + dimnCM(R1) = r. For each p ∈ Spec(R1), since
R/pR ∼= (R1/p)[[x1, . . . , xr]] is a domain, it follows that pR ∈ Spec(R) and dim(R/pR) =
r + dim(R1/p). Therefore, we have by the flatness of the natural injection R1 → R and by
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[Mat, Theorem 23.2] that

AssR =
⋃

p∈Ass R1

AssR(R/pR) = {pR | p ∈ AssR1}.

It follows that for each P ∈ AssR, there exists p ∈ AssR1 such that P = pR. Hence
dim(R/P) = r +dim(R1/p) = r +dimR1 = dimR = d. Therefore, R is a unmixed complete
local ring which satisfies the requirement.

• The left case where 0 ≤ s ≤ r. Let (R2,m2) be a Buchsbaum complete local ring such
that dimR2 = d − s ≥ 3, H0

m2
(R2) = 0 and Hd−s−1

m2
(R2) 6= 0 (such a local ring R2 exists

by the construction of S. Goto [Go]). It is clear that dimnCM(R2) = 0. Moreover, KR2 is
generalized Cohen-Macaulay. Note that Rl(Hd−s−1

m2
(R2)) = `R2(H

d−s−1
m2

(R2)) 6= 0. Therefore,
it follows by Lemma 2.6(a) that KR2 is not Cohen-Macaulay. Hence dimnCM(KR2) = 0.
Let R3 = R2[[x1, . . . , xs]] be the formal power series ring of s variables over R2. By the same
arguments in the above, we can show that R3 is a Noetherian unmixed complete local ring
with the unique maximal ideal n = (m2, x1, . . . , xs)R3 and dimR3 = d. Since R2 and KR2

are not Cohen-Macaulay, we get by Lemma 4.4 that

dimnCM(KR3) = s + dimnCM(KR2) = s;

dimnCM(R3) = s + dimnCM(R2) = s.

Therefore, if s = r, then we set R = R3 and the ring R satisfies the requirement. Now, we
can assume that s < r. It is clear that H i

n(R3) = 0 for all i < s. For each integer i ≥ s, we
have K i

R3
∼= K i−s

R2
⊗R2 R3 by Lemma 4.4(b). Note that the natural map R2 → R3 is flat.

Therefore, for any integer i < d, we get by Local Duality Theorem (see [BS, 11.2.6]) that if
H i

n(R3) 6= 0, then H i−s
m2

(R2) 6= 0 and

dimR3 H i
n(R3) = dimR2 H i−s

m2
(R2) + s = s.

Therefore, dimR3 H i
n(R3) ≤ s, for all i < d. Let a1, . . . , ad−r be a part of a system of pa-

rameters of R3. Set P = (a1, . . . , ad−r)R3 and Q = R3/(a1, . . . , ad−r)R3. Then we have the
following exact sequence of R3-modules

0 → P → R3 → Q → 0.

So, we have the following sequences

H i
n(R3) → H i

n(Q) → H i+1
n (P ) → H i+1

n (R3),

for all i. Note that dimQ = r ≤ d − 2 and dimP = dimR3 = d. Hence dimR3 Hr
n (Q) = r

and dimR3 H i
n(Q) < r for all i 6= r. Since r ≤ d − 2 and dimR3 H i

n(R3) ≤ s for all i < d, we
have dimR3 Hr

n(R3) ≤ s < r and dimR3 Hr+1
n (R3) ≤ s < r. Hence dimR3 Hr+1

n (P ) = r and
dimR3 H i

n(P ) < r for all i 6= r + 1 and i 6= d. Since R3 is unmixed, P is unmixed. Therefore,
we get by Lemma 4.1 that

dimnCM(P ) = max
i<d

dimR3 H i
n(P ) = r.
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Let R = R3 n P be the idealization of the R3-module P. Then R is a Noetherian local ring
with the unique maximal ideal m = n × P. Since R3 is complete under n-adic topology, R
is complete under m-adic topology, see [AW, Theorem 4.11]. Since R3 and P are unmixed
of dimension d, we can check that R is unmixed of dimension d. Since R is completed and
unmixed, we have by Lemma 4.1 that

dimnCM(R) = max
i<d

dimR H i
m(R).

Consider the following exact sequence 0 → P
ε→ R

ρ→ R3 → 0, where ε(x) = (0, x) for all
x ∈ P and ρ(a, x) = a for all (a, x) ∈ R. From the induced long exact sequence of local
cohomology modules, we can check that

dimR Hr+1
m (R) = dimR Hr+1

m (P ) = dimR3 Hr+1
n (P ) = r

and dimR H i
m(R) ≤ s < r for all i 6= r + 1 and i 6= d. Thus, dimnCM(R) = r. Since

r ≤ d − 2 and dimR3 Q = r, we have by the exact sequence 0 → P → R3 → Q → 0 that
KP

∼= KR3. Moreover, since KR2 is not Cohen-Macaulay, we have by Lemma 4.4(a) that
dimnCM(KR3) = s + dimnCM(KR2) = s. Hence, by Lemma 4.1 and Lemma 4.5, we have

dimnCM(KR) = max{dimnCM(KR3),dimnCM(KP )} = dimnCM(KR3) = s.
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