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Abstract . Let (R,m) be a Noetherian local ring which is a quotient of a Gorenstein local
ring. Let M be a finitely generated R-module. Denote by K, the canonical module of M.
In this paper, we study the generalized Cohen-Macaulayness and the non-Cohen-Macaulay
locus of K. Firstly we introduce the notion of canonical system of parameters of M in order
to characterize the generalized Cohen-Macaulayness of Kj;. We give two other parametric
characterizations for Kj; to be generalized Cohen-Macaulay. Then we present the relation
between the non-Cohen-Macaulay locus of Kj; and that of M.

1 Introduction

The depth and the Cohen-Macaulayness of canonical modules have attracted the interest of a
number of researchers, see [A], [AG], [Schl], [Nh], [BN]. Aoyama and Goto [AG] proved that
if R is a Noetherian local with the total quotient ring Q(R) such that R is unmixed and R
admits the canonical module K, then Ky is a Cohen-Macaulay R-module if and only if there
exists a Cohen-Macaulay intermediate ring B between R and Q(R) such that B is a finitely
generated R-module with dimg(B/R) < dim R — 2 and dim B, = dim R for any maximal
ideal n of B. However, the fact is not valid any more whenever dimg(B/R) = dimR — 1,
see Example 2.5.
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Let (R,m) be a Noetherian local ring, let M be a finitely generated R-module with
dim M = d. For each system of parameters (s.o.p. for short) (z1,...,z4) of M, set

I(xy,...;xq; M) =Lbr(M/(z1,...,2q)M) —e(z1,...,xq M).

It is well-known that M is Cohen-Macaulay if and only if I(xy,...,z4; M) = 0 for some
(for all) s.o.p. (z1,...,24) of M. A similar parametric characterization for the Cohen-
Macaulayness of canonical module was given in [Nh| and [BN] as follows. Suppose that R
is a quotient of a Gorenstein local ring. Denote by Kj; the canonical module of M. For an
Artinian R-module A, denote by RI(A) := ¢r(A/m*A) the residual length of A defined by
Sharp and Hamieh [SH], where s > 0 is an integer such that m*A = m™A for all n > s. Then
Ky is Cohen-Macaulay if and only if Rl (HZ(M/(z1, ..., za—3)M)) = 0 for some (for all)
strict f-sequence (x1,...,x4) of M. Here, the notion of strict f-sequence was introduced in
[CMN], and if (z1,...,x4) is a strict f-sequence of M, then it is a s.o.p. of M.

Set [(M) :=sup I(xy,...,xq; M), where the supremum runs over all s.o.p (z1,...,z4) of
M. We say that M is generalized Cohen-Macaulay if I(M) < oo, see [CST].

Theorem 1.1. (See [CST], [Tt]). The following statements are equivalent:

(a) M is generalized Cohen-Macaulay;
(b) There exists a s.o.p. (z1,...,xq) of M such that sup I(x}*,...,z}" M) < oo;

(c) M has a standard s.o.p. (x1,...,%4), i.e. I(x1,...,2q; M) = I(x3,... 2% M).

In this paper, firstly we establish an analogue for the canonical modules of the parametric
characterizations in Theorem 1.1 for generalized Cohen-Macaulay modules, where the role
of the number Rl (HZ(M/(z1,...,x4-3)M)) in the study of Ky is as useful as that of
the number I(x1,...,x4; M) in the study of M, for strict f-sequences (x1,...,x4) of M. We
introduce the notion of canonical system of parameters (canonical s.o.p. for short) as follows.

Definition 1.2. A strict f-sequence x = (z1,...,24) is said to be a canonical s.0.p. of M if
Rl (Ha(M/(x1, ..., xa—3)M)) = RU(HL(M/(23, ..., x5_5)M)).

If z is at the same time an unconditioned strict f-sequence and a canonical s.o.p. of M, then
z is said to be an unconditioned canonical s.o.p. of M.

The following theorem is the first main result of this paper.

Theorem 1.3. Suppose that R is a quotient of a Gorenstein local ring. The following four
statements are equivalent:

(a) K is generalized Cohen-Macaulay.
(b) car = sup RI(HZ(M/(21,...,2q—3)M)) < oo where x = (x1,...,2q) Tuns over all

strict f-s;quences of M.



(¢) There exists a strict f-sequence (x1,...,xq) of M such that

sup Rl (Ha(M/(2}, ...,z )M)) < .

(d) There is an unconditioned canonical s.o.p. of M.

Futhermore, if (z1,...,x4) is an unconditioned canonical s.0.p. of M, then
=3 ;4 o
RI(H2(M/ (11, ) M) = ey = ( Z. )aH;iQ(KM)).
i=0

It should be mentioned that the statements (b) and (c) of Theorem 1.3 improve the main
result of [LN].

Secondly, Y. Aoyama [A, Theorem 1] studied the relation between the depth of K and
that of R in case where R is not Cohen-Macaulay. He proved that for given integers 0 < r <n
and 2 < s < n, there exists a complete local ring R such that dim R = n, depth R = r and
depth Kz = s. This is the motivation for us to discuss about the relation between the non
Cohen-Macaulay locus of K, and that of M.

Denote by nCM(M) the non-Cohen-Macaulay locus of M. If R is a quotient of a Goren-
stein local ring, then nCM(M) is closed under Zariski topology and dimnCM(M) < d — 1,
see [C]. Moreover, if M is unmixed, then dimnCM(M) < d — 2.

The following theorem is the second main result of this paper.
Theorem 1.4. Suppose that R is a quotient of a Gorenstein local ring. The following
statements are true.
(a) dimnCM (K ) < min{d — 3,dimnCM(M)}.
(b) For given integers —1 < s < d—3 and s <r < d — 2, there exists a complete unmized

Noetherian local ring (R, m) such that dimnCM(R) = r and dimnCM(Kg) = s.

In the next section, we present some preliminaries that will be used in the sequel. Section
3 and Section 4 are devoted to prove the main results of this paper (Theorems 1.3, 1.4).

2 Preliminaries

Throughout this paper, let (R,m) be a Noetherian local ring which is a quotient of an n-
dimensional local Gorenstein ring (R',m’). Let M be a finitely generated R-module with
dim M = d. For each integer i > 0, let K}, := Ext;,*(M, R') denote the i-th deficiency
module of M. Then K}, is a finitely generated R-module and the local duality (see [BS,
11.2.6]) gives the isomorphism H: (M) = Hompg(K},;, E(R/m)), where E(R/m) is the in-
jective envelope of R/m. Let Ky be the canonical module K¢, of M. For an Artinian
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R-module A, let RI(A) := (r(A/m*A) be the residual length of A defined by Sharp-Hamieh
[SH], where s > 0 is an integer such that m"A = m* A for all n > s.

The notion of filter regular sequence (f-sequence for short) introduced in [CST] can be
considered as a generalization of the known concept of regular sequence. An element x € m is
said to be a filter reqular element (f-element for short) of M if x ¢ p for all p € Assg M\ {m}.
A sequence (zy, .. .,x;) of elements in m is said to be an f-sequence of M if z; is an f-element
of M/(xy,...,x;—1)M for all ¢ < t.

Remark 2.1. An element x € m is an f-element of M if and only if (r(0 3 =) < o0.

Moreover, each f-sequence of length d is a s.o.p. of M.

A special kind of f-sequences is the class of strict f-sequences introduced in [CMN]. In
the original definition of strict f-sequence, the set of attached primes Attg H (M) defined
by I. G. Macdonald [Mac] was used. However, we note that Attg H. (M) = Assg K}, by [S,
Theorem 2.3|, therefore we can recall the notion of strict f-sequence as follows.

Definition 2.2. An element z € m is said to be a strict f-element of M if x ¢ p for all
d

p € <UASSR K}M) \ {m}. A sequence (z1,...,x;) of elements in m is said to be a strict
i=1

f-sequence of M if x4y is a strict f-element of M/(xy,...,z;)M for all j =0,...,t —1. A
sequence (1, ...,x;) of elemets in m is said to be an unconditioned strict f-sequence of M if
it is a strict f-sequence in any order.

d
Note that Assg M C UASSR K}, see [Sch2, Proposition 2.3(c)]. Hence, each strict f-

i=0
sequence is an f-sequence of M. In particular, if x € m is a strict f-element of M, then
Cr(0 :pr ) < 00. Moreover, if (z1,...,24) is a strict f-sequence, then it is a s.o.p. of M.

Here are some properties of strict f-sequence that we need in the proof of the main results.
Lemma 2.3. ([CMN, Lemmas 3.4, 4.2 ], [GN, Theorem 3.5))
(a) A sequence (x1,...,7:) of elements in m is a strict f-sequence of M if and only if it is
an f-sequence of Kj, for all integers ¢ > 0.

(b) If (x1,...,7x¢) € m is a strict f-sequence of M, then so is (x7*,...,xy"*) for all positive
ntegers ny, . .., ny.

(c) For each integer t > 0, there exists an unconditioned strict f-sequence of M of length t.

Lemma 2.4. ([LN, Lemmas 2.5, 2.7]) Let x € m be a strict f-element of M. The following
statements are true.

(a) For each integer i > 0, there exists an integer ng such that for all n > ng we have

RIH, (M) = Cr(Hy (K}y)) = Cr(0 i, ).



(b) For each integer i > 1, there is an exact sequence
0 — Kyt /oKt — Ky — (0, @) — 0.
In particular, HQ(KM/:BKM) =} HQ(KM/QEM) for any i > 2.

Next, we discuss about the Cohen-Macaulayness and generalized Cohen-Macaulayness
of the canonical module. Following P. Schenzel [Sch2, Definition 5.1], R is said to have a
birational Macaulayfication if there is an intermediate ring B between R and Q(R) such that
B is a finitely generated Cohen-Macaulay R-module. As we mentioned in the introduction,
Aoyama and Goto [AG] proved that if R is unmixed, then Kp is Cohen-Macaulay if and
only if there exists a birational Macaulayfication B of R such that dimg(B/R) < dim R — 2.
When this is the case, B is uniquely determined and B = Endz(Kg) as an R-algebra. Note
that the condition dimgz(B/R) < dim R — 2 can not be removed. The following example
given by S. Goto shows that the result does not valid any more if dimg(B/R) = dim R — 1.

Example 2.5. Let A = F[X,Y] be the polynomial ring over an infinite field F' and J =
(X3, V)(X3, XV, Y?), where V = X2+ XY + Y2 Let 9 = (X,Y). Then v/J = M. We set
I = JAgy. Then the Rees algebra R = R(I) of I is a Buchsbaum ring with depth R(I) = 2.
Since Agy is a regular local ring of dimension 2, R = R(I) is a Cohen-Macaulay ring, but Kz
is not a Cohen-Macaulay R-module. Therefore K%, is not a Cohen-Macaulay R,-module
where n denotes the graded maximal ideal of R, although the Noetherian local domain R,
possesses a birational Cohen-Macaulayfication.

It is well-known that M is Cohen-Macaulay if and only if I(xy,...,x4; M) = 0 for some
(for all) s.o.p. (z1,...,24) of M, where

Hxy, ...,z M) =0 M)(x1,...,20)M) —e(x1,...,x45 M)
and e(x1, ..., xq; M) is the multiplicity of M with respect to (x1, ..., x4). Moreover, if z € m
is an M-regular element, then M is Cohen-Macaulay if and only if so is M/xz M.

It is clear that if M is Cohen-Macaulay, then so is Kj;. The converse statement is not true,
see Theorem 1.4(b). Note that K satisfies the condition Serre (S2). Therefore K is Cohen-
Macaulay whenever d < 2. In case where d > 3, we have the following characterizations for
the canonical module to be Cohen-Macaulay.

Lemma 2.6. ([Nh, Theorem 4.2}, [BN, Theorem 2.5]). The following statements are true.
(a) Ku is Cohen-Macaulay if and only if Rl (HE*(M/(21,...,2x)M)) = 0 for a (and
for all) strict f-sequence (x1,...,xq) of M and all k =0,...,d— 3.

(b) If d > 4, then Ky is Cohen-Macaulay if and only if Ko is Cohen-Macaulay for
every strict f-element x of M.

Following Cuong, Schenzel and Trung [CST], M is said to be generalized Cohen-Macaulay
if I(M) :=supl(xy,...,xq; M) < 00, where (z1,...,24) runs over all s.0.p. of M. Note that
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M is generalized Cohen-Macaulay if and only if {g(H (M)) < oo for all i < d. Note that
K satisfies the condition Serre (55), therefore K, is generalized Cohen-Macaulay whenever
d < 3. In case where d > 4, we have the following characterizations for the canonical module
to be generalized Cohen-Macaulay.

Lemma 2.7. ([LN, Main theorem|) The following statements are equivalent:

(a) Ky is generalized Cohen-Macaulay.

(b) There exists a number (M) such that Rl (HE (M /(x1,...,xx)M)) < (M) for all
strict f-sequences x = (x1,...,xq) of M and all k =1,...,d — 3.

(¢) There exist a strict f-sequence x = (x1,...,xq4) of M and a number c(x, M) such that
Rl (HIHFY(M/(ayr, ... 2t )M)) < c(z, M) for all k = 1,...,d — 3 and all positive
INLEGers Ny, ..., Ng_3.

Furthermore, if the conditions (a), (b), (c) satisfy, then
Lk
Rt O oneo0) < 30 (4 )

forany k=1,...,d— 3. The equality holds true when x,...,x; € mzkflq, where

q¢=min{t € N|m' H.(Ky) =0 for all i < d}.

The notion of standard system of parameters (standard s.o.p. for short) defined in [Tt]
(see also [Schl]) is very important in the study of generalized Cohen-Macaulay modules. A
s.0.p. (x1,...,x4) of M is said to be a standard s.o.p. if

(r(M/(21,...,20)M) —e(x1,..., 00 M) = Lr(M/(22, ... 22)M) — e(x?,... 23 M).
Then M is generalized Cohen-Macaulay if and only if there exists a standard s.o.p. of M.
Note that if (z1,...,x4) is a standard s.o.p. of M, then

d—1

I(a:l,...,Id;M):I(M):Z(

=0

T uman)

In the introduction, we introduce the notion of canonical s.o.p. (see Definition 1.2), which
will be used in the next section to characterize the generalized Cohen-Macaulayness of the
canonical module. The following lemma gives a relation between standard s.o.p. of M and
canonical s.o.p. of M.

Lemma 2.8. If (x1,...,xq) be a standard s.o.p. of M, then it is a canonical s.o.p of M.

Proof. If d < 2, there is nothing to prove. Let d > 3. Suppose that (xy,...,x4) is a stan-
dard s.o.p. of M. Then M is generalized Cohen-Macaulay, cf. [Tr]. Hence (r(K};) < oo
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for all i < d. So, each s.o.p. of M is an f-sequence of K%, for all 7. It follows by Lemma
2.3(a) that each s.o.p. of M is a strict f-sequence. Since (x1,...,x4) is a standard s.o.p. of
M, sois (z%,...,2%). Note that M/(x1,...,x4_3)M is generalized Cohen-Macaulay. Hence
(r(HLZ(M/(x1,...,xa—3)M)) < oo. Similarly, g(HZ(M/(23,... 23 5)M)) < oco. There-
fore, we get by [Tr, Proposition 2.9] that

Rl (HZ(M/ (1, ..., xq—3)M)) = L(HL(M/(z1, ..., xa—3)M))

(2_1) M)

sz( M/(a:l,...,$?l_3)]\/[))
=Rl (H2 (M/(23,...,25_5)M)).

O

The converse statement of Lemma 2.8 is not true. In fact, by Theorem 1.4, there is an
unmixed complete local ring R such that R is not generalized Cohen-Macaulay, but Kp is
generalized Cohen-Macaulay. By Theorem 1.3, there is a canonical s.o.p. of R, but R does
not admit a standard s.o.p.

3 Proof of Theorem 1.3

Before proving Theorem 1.3, we need some auxiliary lemmas.

For an Artinian R-module A, set dimg A = dim(R/ Anng A). Note that A has a natural

structure as an Artinian R-module and dimp A > dimp A, see [CN, Proposition 2.4(ii),
Corollary 4.7]. Moreover, {r(A) < oo if and only if dimp A = dimz A < 0.

Since Ky satisfies the condition Serre (Ss), we have dimg HE (Ky) <i—2for all i < d
(see [Sch2, Propositions 2.2(c), 2.3(d)]). In particular, if d > 3, then H: (K)) =0 for i <1
and ER(Hi(KM)) < Q.

Lemma 3.1. Let d > 4, let x € m be a strict f-element of M. Then (r(0 :y3 k,,) T) < o

and
RI(Hy (M /xM)) = Lr(HA(Ky) /e Hi(Kw)) + Cr(0 g (0 ©)-

Proof. Set N = M/xM. Let y be a strict f-element of N. Then by Lemma 2.4(a) that
RI(HL2(N)) = LR(0 g2 Y") < 00

for all large enough integers n. Note that y™ is a strict f-element of N. Therefore, we have
by Lemma 2.4(b) the exact sequence

0— KN/ynKN — KN/y”N — (0 :Kj‘(fz yn) — 0.



Since d > 4 and Ky, y satisfies the condition Serre (S3), we have depth Ky/,»n > 2. Since
(r(0 : K= y") < o0, it follows by the above exact sequence that

(0 K2 y") = H(0 K2 y") = Ho(Kn/y"Kn).
Since y" is Ky-regular, we have the exact sequence
0— Ky — Ky — Kn/y"Ky — 0.
As dim Ky > 3 and Ky satisfies the condition Serre (S3), we get depth K > 2. So,
Hy(Kn/y"Kn) = (0 2 (50, Y")-
Since (r(H2(Ky)) < oo, it follows by Lemma 2.4(b) that
(012 () ¥") = Ha(Kn) 2= Hy(Ky /2 Ky)
for all large enough integers n. Therefore we get by all the aboves facts that
R (Hy 2(M/2M)) = (p(Hy (K /xKyr)).
Hence (gr(H2 (K /xKy)) < co. From the exact sequence
0— Ky — Ky — Ky /eKy — 0,
we have the exact sequence
0 — Ha(Ku)/wHy(Kn) — Hy (K /oK) — (0 1535, ) — 0.
Now, the result follows. O

Lemma 3.2. Let d >4, let (x1,...,24) be an unconditioned strict f-sequence of M. Then
RICHg 1 (M /(2,2 )M)) < RU(HG (M (2™, . 2 )M))
for all integers 1 < k < d — 3 and all positive integers n; < m; fori=1,... k.
Proof. We prove the lemma by induction on d.
Let d = 4. Then k = 1. We have by Lemma 3.1 that

RI(Hy 2(M /2" M)) = Cr(Ha(Ky) /2" Hy(Ky)) + Cr(0 g3 5, ")
< Ur(H3(Ku) /2™ HA(Ku)) + Cr(0 g3y 2™)
=RI(HE*(M/2™M)).

Assume that d > 4. Set N = M/(zy?,...,2,*)M and L = M/z{" M. Then dim L > 4
and dim N =d — k+1 > 4. Since (z1,...,24) is an unconditioned strict f-sequence of M, it



follows by Lemma 2.3(b) that (z1,x5?,...,2.*) is also an unconditioned strict f-sequence of
M. Hence, 1 is a strict f-element of N. Therefore we get

Rl (HEFH (M) (2. 2 )M)) = RL(HEH2(N/2p N))
< RI(HWFD=2(N/2" N))
=RL(HE (M) (27 2%, ... 2 )M))
=RI(HE " (L) (252, ..., z")L)).

It is clear that (z,...,x)) is an unconditioned strict f-sequence of L and dim L = d — 1. So,
we get by induction hypothesis that

RL(HEFN(L/ (%2, ... af)L)) = RL(HDFD"1 L/ (252, ... 2*)L))
S RI(HED DL/ (ah2, .. 2 L))
=RI (Hi‘k_l(M/(:rTl,xgnz, L ap)M)).
O

The following property of Artinian module is useful in the proof of Theorem 1.3. Let A
be an Artinian R-module. It follows by [Ro, Theorem 6] and [CN, Corollary 4.7 that

dimp A = inf{t € N| 3zy,..., 2, € m such that (0 :4 (z1,...,2¢)) < 00}

A system (1, ..., ;) of elements in m (where ¢t = dimp A) is said to be a system of parameters
of Aif lr(0:4 (z1,...,2¢)) < 00. It is clear that if (z1,...,2¢) is a system of parameters of
A, then dimg(0:4 (21,...,2,)) =t —nforalln <t If dimz A > 0 and € m be such that
dimp(0 14 ) = dimp A — 1, then z is said to be a parameter of A.

Lemma 3.3. Let A be an Artinian R-module. If dimz A > 0 and x is a parameter of A,
then for all positive integers n we have

(0:42™) # (0:4 2™,

Proof. Assume in contrary that (0 :4 ") = (0 :4 2™*1) for some integer n > 0. We claim
that A = (0:4 ™). In fact, let a € A. Since A is m-torsion, we have m*a = 0 for some integer
s > 0. Hence z°a = 0. If s < n, then a € (0 :4 ™). So, we assume that s > n + 1. Then
we have "™ (257" 1a) = 0. Hence 2" ta € (0 :4 2™™) = (0 :4 2"). Therefore x°~1a = 0.
Continue this process, after some steps we have z""a = 0. Hence a € (0 :4 2™™') = (0 :4 2™).
Therefore, A = (0 :4 ™) and the claim is proved. Note that z" is also a parameter of A.

Since dimp A > 0, we have by the claim that
dimp A = dimp(0 :4 2") = dimp A — 1.
This gives a contradiction. O
Corollary 3.4. Let d > 4 and let x € m be a strict f-element of M such that
Rl (HLI?(M/xM)) = RL(HE(M/2* M)).
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Then (r(H2(Ky)) < 0o, zHL(Ky) = 0 for all i < 3, and
RI(HG 2 (M/xM)) = RU(HG*(M/a"M)) = Cr(Hy(Kyr)) + Cr(Ha (Kar))

for all n > 0. In particular, if d = 4, then M 1is generalized Cohen-Macaulay canonical.

Proof. Since K satisfies the condition Serre (Ss), it follows that ¢r(HZ(K)y) < oo and
dimg H2(K)y) < 1. By Lemma 3.1 and by our assumption, s H2(Ky) = ?H2(K)y) and
(0 g3k ) = (0 :p3x,,) 2°). It follows by Nakayama Lemma that xHZ(Ky) = 0.
Next, we claim that (r(H2(Ky)) < oo. In fact, suppose (gr(H2(Ky)) = oo. Then
dimg H} (Kp) = 1. Hence dimy H (Ky) = 1 by [CNN, Proposition 2.4, Corollary 4.2(iii)].
Since Lr(0 :p3 (k) ¥) < oo by Lemma 3.1, it follows that = is a parameter of H3(Ky).
Hence (0 :y3(k,,) ) # (0 g3k, 2°) by Lemma 3.3. This gives a contradiction, and the
claim is proved. Since (0 :y3x,,) ) = (0 153 (K,,) *°), we get by the same arguments as in
the proof of Lemma 3.3 that HJ(Ky) = (0 :p3(x,,) ©)- So, xHy(Ky) = 0. Now, the rest
statement follows by Lemma 3.1. O

Lemma 3.5. Suppose that d > 4. Let x = (x1,...,xx) be a strict f-sequence of M, where
1 <k <d-—3is an integer. Then, there exists a posztwe integer m(z) such that

Rl (HEF (M) (21, ... a51)M)) < RU(HEPN (M) (21, .. 2, 25 D) M)).

Proof. Set N := M/(xy,...,xx_1)M). We can choose a positive integer m(z) such that

:B;n@)Hg(Kf\l,_k) = 0. Note that :E;n@) is a filter regular element of K% * by Lemma 2.3(a),
i.e. it is K% *-regular in dimension > 0 in sense of [BN1]. Therefore, we have by [DN,
Lemma 2.3] the following exact sequence

0 — HY (K& ™) — HY(KG" /ol @ RKEF) = (01 ooy 237 ®) = 0.

m(z)

Since x, ' is a strict f-element of IV, we have by Lemma 2.4(b) the following exact sequence

0 — K& ja @ kg = Ky = (0 g @) — 0.

Therefore, it follows by Lemma 2.4(a) that
RL(H (M (1, . ap) M) = Cr(Ho (KTY))

< L (HY (K fot @ KH))
< Cr(Ha(K0 N )
= RL(HE Y M/ (21, ... x5, 2] @) M)).

Now, we are ready to prove the first main result of this paper.
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Proof of Theorem 1.3. (a) = (d). By our assumption (a), {r(H:(Ky)) < oo for all
t < d. Set '
qg=min{t € N | m'H_ (Ky) =0 for all i < d}.

Then there exists by Lemma 2.3 an unconditioned f-sequence (1, ..., z4) of M contained in
m2"""4. We have by Lemma 2.7 that

Rl (HZ(M/(z1, ..., 74-3)M)) = i (d - 3)£R(Hi1+2KM))

7
i=0
=RI(HL(M/(23,...,25_5)M)).
Therefore, (x1,...,x4) is an unconditioned canonical s.o.p. of M.

(d) = (c). Suppose that (x1,...,z4) is an unconditioned canonical s.o.p. of M. It is enough
to prove the following equalities

Rl (HA(M/(21,. .. ,xa—3)M)) = RL(Hg(M/(21, ..., 2)"5" ) M))
for all positive integers ni,...,ng_3. We prove this by induction on d. If d < 3, there is
nothing to prove. The case where d = 4 follows by Corollary 3.4.

Let d > 4 and assume that the result is valid for d — 1. Let nq, ..., nx be positive integers.
Set N = M/x1M and N’ = M/23M. Then dim N = d — 1 = dim N’. Since (x1,...,74) is
an unconditioned canonical s.0.p. of M, we have by Lemma 3.2 that

Rl (H(N/ (w2, ..., 24-3)N)) <RI (HA(N/(a3,...,25_5)N))
< RI(HA(M/(a2, ... a2 M))
= RI(H2(N/(22,...,24-3)N)).

Hence RI (HZ(N/(x2,...,xa—3)N)) = RI(HZ(N/(z3,...,23_4)N)). It follows that (3, ..., zq)
is an unconditioned canonical s.o.p. of N. Therefore, we get by induction hypothesis that

Rl (HZ(N/(z2,...,24-3)N)) = RL(HL(N/(252, ..., 25" )N))

for all positive integers na, . ..,n4_3. Similarly, since (xy,...,x4) is an unconditioned canon-
ical s.0.p. of M, we have by Lemma 3.2 that

Rl (HZ(N'/(2a, ..., 2a-3)N")) = R (HL(N'/ (23, ..., x5_5)N')).

Hence (z2, ..., x,4) is an unconditioned canonical s.o.p. of N’. Therefore, we get by induction
that
R1 (Hi(N’/(:Eg, e ,l’d_g)N/)) = RI (Hi(N’/(a:SZ, e ,a::llig?’)N’)),

for any positive integers na, ..., ng_3. As (x1,...,x4) is an unconditioned canonical s.o.p. of
M, it follows by Lemma 3.2 that

RI(HZ(N/(z2, ..., xa-3)N)) =Rl (HL(N'/ (2, ..., za—3)N')).
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For given positive integers ns, . .., n4_3, we have Rl (HZ(L/x1L)) = Rl (HZ(L/23L)) by the
above equalities, where L = M/(x3?,...,x,*)M. Since x; is a strict f-element of L, we have
by Corollary 3.4 that

Rl (H2(L/21L)) = Rl (H2(L/2}' L)),

the equalities are proved.

(c) = (a). Assume that there exists a strict f-sequence x = (1,...,24) of M such that
cgar = sup  RI(HZ(M/(az}*,... 23 )M)) < oc.
N yeeny ng_3€N
Let n = (ni,...,n4-3) be a tuple of d — 3 positive integers. Note that (z}*,...,z,%°) is a

strict f-sequence of M by Lemma 2.3(b). Therefore, there exists by Lemma 3.5 a positive
integer m(z,n) such that

RI(HZ(M/ (2, ..., ahYM)) < RL(HA(M/ (2, ..., xht )t a2 ") ).
It follows by our assumption that

sup  RL(HZ(M/(@,. .. 2l YM)) < sup  RI(HZ(M/(2, ... ahigt o™ @ )

N1y Nd—4 N1yeNd—3

< sup  RI(HL(M/(z,... 2} )M)) < occ.

By the same arguments, we get

sup RI(HL*H(M/(a7", ...,z )M)) < 0o

T yeees T
forall k =1,...,d—3. Therefore, K); is generalized Cohen-Macaulay by Lemma 2.7(c)=-(a).
(a) = (b) follows by Lemma 2.7 (a)=-(b).

(b) = (c) is trivial.

Finally, let (z1,...,24) is an unconditioned canonical s.0.p. of M. Let n > 2¢7%¢ be an
integer, where ¢ is the number defined from the begining. Then, we get by Lemma 2.3 and
by the proof of (d) = (c) that

Rl (Ha(M/(21, ..., xa—3)M)) = RU(HZ(M/(2}, ..., a}_5)M))

- Z (7)),

4 Proof of Theorem 1.4

In this section, we keep the assumption that (R, m) is a Noetherian local ring which is a
quotient of a Gorenstein local ring, M is a finitely generated R-module with dim M = d. Let
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Ky be the canonical module of M. For each integer i > 0, let K%, be the i-th deficiency
module of M. The non Cohen-Macaulay locus of M, denoted by nCM (M), is defined by

nCM(M) = {p € Spec(R) | M, is not Cohen-Macaulay}.

Because R is a quotient of a Gorenstein local ring, nCM(M ) is closed under Zariski topology,
see [CNN, Corollary 4.2|(iv). Therefore, we can define its dimension dimnCM(M). If we
stipulate that dim(@ = —1, then M is Cohen-Macaulay if and only if dimnCM(M) = —1.
Moreover, M is generalized Cohen-Macaulay if and only if dimnCM (M) < 0. In general, we
have the following result.

Lemma 4.1. ([C, Theorems 3.1, 3.3]). dimnCM(M) < max dimg H.(M). The equality

i<d
holds true if M s equidimensional.

It is clear that dimnCM (M) < d—1. Moreover, dimnCM (M) = d—1 if and only if M has
an embedded prime of dimension d — 1. Followmg M. Nagata [Na], M is said to be unmized

if dlm(R/iB) dimp M for all B € Assp M. Since Ris a quotient of a Gorenstein local ring,
it follows by [Mat, Theorem 23.2] that M is unmixed if and only if dim(R/p) = d for all
p € Assg M. Note that if M is unmixed, then dimnCM (M) < d — 2. For each integer k > 1,
it should be noticed that if M satisfies the condition Serre (Sy), then dimg H. (M) <i—k
for all ¢ < d, see [Sch2, Proposition 2.2](c). Therefore, by Lemma 4.1, we have the following
consequence.

Corollary 4.2. If M satisfies the condition Serre (Sy), then dimnCM(M) < d—k—1. In
particular, dimnCM(K)y) < d — 3.

Next, we study the non Cohen-Macaulay locus under a flat extension.

Lemma 4.3. Let (S,n) be a Noetherian local ring and ¢ : R — S a flat local homomorphism
such that S/mS is Cohen-Macaulay of dimension t. If M is not Cohen-Macaulay, then

max dimg H:(M ®r S) = dim(S/mS) + max dimp HE (M).

i<d+t

In addition, if M and M ®pg S are equidimensional, then
dimnCM(M ®g S) = dim(S/mS) + dimnCM(M).

Proof. Set dim(S/mS) = t. We have dim(M ®g S) = d +t by [Mat, Theorem 15.1]. Since
S/mS is Cohen-Macaulay, it follows by [BS1, Theorem 2.1] that

Hi{(M @g S) = H,(H; (M) ®r S)
for all ¢ > t. Moreover, according to [Mat, Theorem 23.3], we have
depth(M ®g S) = depth M + depth(S/mS) > t.
Hence Hy(M ®g S) = 0 for all integers i < ¢. We set a(M) = ag(M).a1(M)...az1(M) and
a(M ®rS) = ag(M ®r S).a1(M ®r S)...a414-1(M ®@p S), where a;,(M) = Anng H} (M)
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and a;(M ®pr S) = Anng H (M ®5 S) for all i. Then a(M)S C a(M ®z S) by the above
isomorphism. Since M is not Cohen-Macaulay, it follows by [C, Theorem 3.1(i)] and by the
same arguments as in the proof of [C, Theorem 5.1] that

max dimg H:(M ®r S) = dim(S/mS) + max dimp HL (M).

i<d+t
The rest statement follows by this equality and by Lemma 4.1. O
Let t > 0 be an integer, let S = R[[x1,...,2]] be the formal power series ring of ¢

variables over R. Then the natural map R — S is flat local and the fiber ring S/mS is
Cohen-Macaulay. So, R is Cohen-Macaulay if and only if so is S. The following lemma
shows some relations between the canonical modules and the deficiency modules of R and
that of S. The proof of this lemma given below was suggested by P. Schenzel.

Lemma 4.4. Let S = Rl[[z1,...,x]] be the formal power series ring over R. Then

(a) Kgr is Cohen-Macaulay if and only if so is Ks. If Kg is not Cohen-Macaulay, then
dimnCM(Kyg) =t + dimnCM(KR).

(b) KL 2 Kiy'@p S for alli >t and K =0 for all i < t. In particular, if K" #0, then
dims Kg =1+ dlmR K;z_t.

Proof. (a) Since the ring S/mS is Gorenstein, Kg = Kr®gS by [AG, Theorem 4.1]. It is clear
that the natural injection R — S is a local flat homomorphism. Since dim S/mS = ¢, we have
dim Kg =t + dim K. Because depth(S/mS) = t, it follows that depth Kg = t + depth K.
Therefore, Kr is Cohen-Macaulay if and only if so is Kg. Suppose that Kg is not Cohen-
Macaulay. Note that Kr and Kg are equidimensional. So, we get by Lemma 4.3 that

dimnCM(Kg) = dimnCM(Kr ®r S) =t + dimnCM(Kpg).
(b) Let (R',m") be a Gorenstein local ring such that R is a factor ring of R'. Set R = R'/.J

for some ideal J of R'. Suppose that dim R" = n. The Local Duality Theorem (see [BS,
11.2.6]) provides the natural isomorphisms

Hi(R) = Homp(K%, E(R/m)) = Homp(Ext™ (R, R'), E(R/m))

for all i € N. Let S’ = R'[[x1, ..., 2] be the formal power series ring of ¢ variables over R'.
For each integer ¢+ > 0, we have the isomorphism

Exth (R, R) ®p S =2 Exty (R ®p S, 9.
Note that S’ is a Gorenstein ring with dim S” = n+t¢. This implies the following isomorphisms
Ko S'= K o
for all integers ¢ > 0. Now K}é and R have the structure of an R’-module. So,
Rp S22 R®QrR/JQr S X RRrS XS,
Kpop S 2K @rR)J®p S = KL S.
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Thus, KL~ Kiy'@p S for all i > t. It is clear that K% = 0 for all i < t. Therefore, if
K}{t # 0, then dimg K§ =t + dimp K}{t. O

In order to prove Theorem 1.4, we need recall the notion of idealization introduced by
M. Nagata [Na]. We can make Cartesian product R x M into a ring with respect to the
componentwise addition and the multiplication defined by

(r1,m1)(ra, me) = (rire, rime + ramy).

This ring is called the idealization of M over R, and denoted by R x M. Note that R x M
is a commutative Noetherian local ring with the identity (1,0). The unique maximal ideal
of R x M is m x M. Note that Kg, K, Kgxy are equidimensional. Therefore the following
lemma can be verified by Lemma 4.1, [C, Theorem 3.1] and [L].

Lemma 4.5. The following statements are true

(a) If dim M < dim R, then dimnCM(Kpgwp) = dimnCM(Kg).
(b) If dim M = dim R, then dim nCM (K gy ) = max{dimnCM(Kg), dimnCM(Ky)}.

Proof of Theorem 1.4. (a) Note that dimnCM(K);) < d — 3 by Corollary 4.2. So, it is
enough to prove that dimnCM(K),) < dimnCM(M). If Kj; is Cohen-Macaulay, then there
is nothing to prove. Assume that K is not Cohen-Macaulay. Set s = dimnCM(K ). Then
there exists p € nCM(K,) such that dim R/p = s. Hence (K)), is not Cohen-Macaulay. It
follows that p € Supp(Kr). Note that Ass(Ky) = {p € Ass(M) | dim R/ p = d}. Therefore
dim R/ p +dim M, = d. Hence (Ky), = Ky, , see [Sch2, Proposition 2.2|(b). So Ky, is not
Cohen-Macaulay. It follows that M, is not Cohen-Macaulay. Hence dim nCM (M) > s.

(b) Let d > 3 be an integer. Let 7, s be integers such that —1 < s < d—3and s <7 < d—2.
We consider the following two cases.

e The case where s = —1. If r = —1, then any Cohen-Macaulay complete local ring of
dimension d satisfies the requirement. Assume that r > 0. Let (R;,m;) be a Buchsbaum
complete local ring such that dimRy = d —r > 2, Hy (Ry) # 0 and H, (R;) = 0 for
i # d and i # 1 (such a local ring R; exists by the construction of S. Goto [Go]). Then
R is not Cohen-Macaulay. Hence dimnCM(R;) = 0. Note that R; is generalized Cohen-
Macaulay. Therefore, it follows by [BN, Corollary 2.7] that Kg, is Cohen-Macaulay. Hence
dimnCM(Kg,) = —1. Let R = Ry|[[x1,. .., z,]| be the formal power series ring of r variables
over R;. Then, R is a Noetherian complete local ring and dim R = d. Because Kpg, is
Cohen-Macaulay, it follows by Lemma 4.4 that Ky is Cohen-Macaulay, i.e. dimnCM(Kgr) =
—1 = s. Since R; is Buchsbaum and HSH(Rl) = 0, it follows that R; is unmixed, i.e.
dim(R;/p) = dim Ry for all p € AssR;. Since R; is not Cohen-Macaulay, we have by
Lemma 4.4 that dimnCM(R) = r + dimnCM(R;) = r. For each p € Spec(R;), since
R/pR = (R1/p)[[z1,...,x,]] is a domain, it follows that pR € Spec(R) and dim(R/pR) =
r + dim(R; /p). Therefore, we have by the flatness of the natural injection Ry — R and by
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[Mat, Theorem 23.2] that

AssR = U Assp(R/pR) = {pR | p € Ass R }.
pEAss Ry

It follows that for each P € Ass R, there exists p € AssR; such that 8 = pR. Hence
dim(R/B) = r +dim(R; /p) = r +dim Ry = dim R = d. Therefore, R is a unmixed complete
local ring which satisfies the requirement.

e The left case where 0 < s < r. Let (R, my) be a Buchsbaum complete local ring such
that dim R, = d — s > 3, HY (Ry) = 0 and HZ *"'(R;) # 0 (such a local ring Ry exists
by the construction of S. Goto [Go]). It is clear that dimnCM(Ry) = 0. Moreover, Kg, is
generalized Cohen-Macaulay. Note that RI(HZ *~'(R,)) = (r,(HZ *~'(R,)) # 0. Therefore,
it follows by Lemma 2.6(a) that Ky, is not Cohen-Macaulay. Hence dim nCM(Kg,) = 0.
Let R = Ry[[x1, ..., x;]| be the formal power series ring of s variables over Rs. By the same
arguments in the above, we can show that R3 is a Noetherian unmixed complete local ring
with the unique maximal ideal n = (mgy, x1,...,x5)Rs and dim R3 = d. Since Ry and Kp,
are not Cohen-Macaulay, we get by Lemma 4.4 that

dimnCM(Kg,) = s +dimnCM(Kg,) = s;
dimnCM(R3) = s + dimnCM(R,) = s.

Therefore, if s = 7, then we set R = R3 and the ring R satisfies the requirement. Now, we
can assume that s < 7. It is clear that H!(R3) = 0 for all i < s. For each integer i > s, we
have K}, = K},* ®p, Ry by Lemma 4.4(b). Note that the natural map Ry — Rs is flat.
Therefore, for any integer i < d, we get by Local Duality Theorem (see [BS, 11.2.6]) that if
H}(Rs3) # 0, then HJ *(Rz) # 0 and

dimR3 Hé(Rg) = diHlR2 HIZH_ZS(RQ) + s =s.

Therefore, dimp, H.(R3) < s, for all i < d. Let ai,...,a4s_, be a part of a system of pa-
rameters of R3. Set P = (ay,...,aq—)R3 and Q = R3/(ay,...,a4—)R3. Then we have the
following exact sequence of Rs-modules

0—P— R3—Q—0.
So, we have the following sequences
H,(Rs) — Hy(Q) — H™(P) — H.™ (Rs),

for all 7. Note that dim@) = r < d — 2 and dim P = dim R3 = d. Hence dimp, H(Q) = r
and dimg, H.(Q) < r for all i # r. Since r < d — 2 and dimg, H:(R3) < s for all i < d, we
have dimpg, H'(R3) < s < r and dimg, H. ™ (R3) < s < r. Hence dimg, H.™'(P) = r and
dimp, H(P) < r for all i # 7+ 1 and i # d. Since R3 is unmixed, P is unmixed. Therefore,
we get by Lemma 4.1 that

dimnCM(P) = max dimg, H.(P) = r.

i<d
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Let R = R3 X P be the idealization of the R3-module P. Then R is a Noetherian local ring
with the unique maximal ideal m = n x P. Since Rj3 is complete under n-adic topology, R
is complete under m-adic topology, see [AW, Theorem 4.11]. Since R3 and P are unmixed
of dimension d, we can check that R is unmixed of dimension d. Since R is completed and
unmixed, we have by Lemma 4.1 that

dim nCM(R) = maxdimp H. (R).

i<d

Consider the following exact sequence 0 — P - R % Ry — 0, where €(z) = (0,z) for all
x € P and p(a,z) = a for all (a,z) € R. From the induced long exact sequence of local
cohomology modules, we can check that

dimp HY(R) = dimg HL(P) = dimp, HITHY(P) =7

and dimp H:(R) < s < r for all i« # r + 1 and ¢ # d. Thus, dimnCM(R) = r. Since
r < d— 2 and dimp, () = r, we have by the exact sequence 0 — P — R3 — () — 0 that
Kp = Kpg,. Moreover, since Kp, is not Cohen-Macaulay, we have by Lemma 4.4(a) that
dimnCM(Kg,) = s + dimnCM(Kg,) = s. Hence, by Lemma 4.1 and Lemma 4.5, we have

dim nCM(Kg) = max{dim nCM(Kg,), dimnCM(Kp)} = dimnCM(Kg,) = s.
U
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