GENERALIZED COHEN-MACAULAYNESS AND NON-COHEN-MACAULAY LOCUS OF CANONICAL MODULES

TRAN NGUYEN AN College of Education, Thai Nguyen University Thai Nguyen, Vietnam e-mail: antrannguyen@gmail.com

LE THANH NHAN College of Science, Thai Nguyen University Thai Nguyen, Vietnam e-mail: nhanlt2014@gmail.com

LUU PHUONG THAO College of Education, Thai Nguyen University Thai Nguyen, Vietnam e-mail: thaoktsp@gmail.com

Abstract¹. Let (R, \mathfrak{m}) be a Noetherian local ring which is a quotient of a Gorenstein local ring. Let M be a finitely generated R-module. Denote by K_M the canonical module of M. In this paper, we study the generalized Cohen-Macaulayness and the non-Cohen-Macaulay locus of K_M . Firstly we introduce the notion of canonical system of parameters of M in order to characterize the generalized Cohen-Macaulayness of K_M . We give two other parametric characterizations for K_M to be generalized Cohen-Macaulay. Then we present the relation between the non-Cohen-Macaulay locus of K_M and that of M.

1 Introduction

The depth and the Cohen-Macaulayness of canonical modules have attracted the interest of a number of researchers, see [A], [AG], [Sch1], [Nh], [BN]. Aoyama and Goto [AG] proved that if R is a Noetherian local with the total quotient ring Q(R) such that R is unmixed and R admits the canonical module K_R , then K_R is a Cohen-Macaulay R-module if and only if there exists a Cohen-Macaulay intermediate ring B between R and Q(R) such that B is a finitely generated R-module with $\dim_R(B/R) \leq \dim R - 2$ and $\dim B_n = \dim R$ for any maximal ideal \mathfrak{n} of B. However, the fact is not valid any more whenever $\dim_R(B/R) = \dim R - 1$, see Example 2.5.

¹Key words and phrases: Generalized Cohen-Macaulay canonical module, canonical sequence, strict f-sequence. Mathematics Subject Classification: 13D45, 13H10, 13E05.

The work is supported by the Vietnam National Foundation for Science and Technology Development (Nafosted) under grant number 101.04-2017.309. The authors also thank Vietnam Institute for advanced study in Mathematics for the kind support and hospitality while the paper was written.

Let (R, \mathfrak{m}) be a Noetherian local ring, let M be a finitely generated R-module with dim M = d. For each system of parameters (s.o.p. for short) (x_1, \ldots, x_d) of M, set

$$I(x_1, ..., x_d; M) = \ell_R(M/(x_1, ..., x_d)M) - e(x_1, ..., x_d; M).$$

It is well-known that M is Cohen-Macaulay if and only if $I(x_1, \ldots, x_d; M) = 0$ for some (for all) s.o.p. (x_1, \ldots, x_d) of M. A similar parametric characterization for the Cohen-Macaulayness of canonical module was given in [Nh] and [BN] as follows. Suppose that Ris a quotient of a Gorenstein local ring. Denote by K_M the canonical module of M. For an Artinian R-module A, denote by $Rl(A) := \ell_R(A/\mathfrak{m}^s A)$ the residual length of A defined by Sharp and Hamieh [SH], where s > 0 is an integer such that $\mathfrak{m}^s A = \mathfrak{m}^n A$ for all $n \ge s$. Then K_M is Cohen-Macaulay if and only if $Rl(H^2_{\mathfrak{m}}(M/(x_1, \ldots, x_{d-3})M)) = 0$ for some (for all) strict f-sequence (x_1, \ldots, x_d) of M. Here, the notion of strict f-sequence was introduced in [CMN], and if (x_1, \ldots, x_d) is a strict f-sequence of M, then it is a s.o.p. of M.

Set $I(M) := \sup I(x_1, \ldots, x_d; M)$, where the supremum runs over all s.o.p (x_1, \ldots, x_d) of M. We say that M is generalized Cohen-Macaulay if $I(M) < \infty$, see [CST].

Theorem 1.1. (See [CST], [Tr]). The following statements are equivalent:

- (a) M is generalized Cohen-Macaulay;
- (b) There exists a s.o.p. (x_1, \ldots, x_d) of M such that $\sup_{n_1, \ldots, n_d \in \mathbb{N}} I(x_1^{n_1}, \ldots, x_d^{n_d}; M) < \infty;$
- (c) *M* has a standard s.o.p. (x_1, \ldots, x_d) , i.e. $I(x_1, \ldots, x_d; M) = I(x_1^2, \ldots, x_d^2; M)$.

In this paper, firstly we establish an analogue for the canonical modules of the parametric characterizations in Theorem 1.1 for generalized Cohen-Macaulay modules, where the role of the number $\operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1},\ldots,x_{d-3})M)\right)$ in the study of K_{M} is as useful as that of the number $I(x_{1},\ldots,x_{d};M)$ in the study of M, for strict f-sequences (x_{1},\ldots,x_{d}) of M. We introduce the notion of canonical system of parameters (canonical s.o.p. for short) as follows.

Definition 1.2. A strict f-sequence $\underline{x} = (x_1, \ldots, x_d)$ is said to be a *canonical s.o.p.* of M if

$$\operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(M/(x_{1},\ldots,x_{d-3})M)\right) = \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(M/(x_{1}^{2},\ldots,x_{d-3}^{2})M)\right).$$

If \underline{x} is at the same time an unconditioned strict f-sequence and a canonical s.o.p. of M, then \underline{x} is said to be an *unconditioned canonical s.o.p.* of M.

The following theorem is the first main result of this paper.

Theorem 1.3. Suppose that R is a quotient of a Gorenstein local ring. The following four statements are equivalent:

- (a) K_M is generalized Cohen-Macaulay.
- (b) $c_M := \sup_{\underline{x} \in \mathcal{X}} \operatorname{Rl}\left(H^2_{\mathfrak{m}}(M/(x_1,\ldots,x_{d-3})M)\right) < \infty$ where $\underline{x} = (x_1,\ldots,x_d)$ runs over all strict f-sequences of M.

(c) There exists a strict f-sequence (x_1, \ldots, x_d) of M such that

$$\sup_{n_1,\dots,n_{d-3}\in\mathbb{N}} \operatorname{Rl}\left(H^2_{\mathfrak{m}}(M/(x_1^{n_1},\dots,x_{d-3}^{n_{d-3}})M)\right) < \infty.$$

(d) There is an unconditioned canonical s.o.p. of M.

1

Furthermore, if (x_1, \ldots, x_d) is an unconditioned canonical s.o.p. of M, then

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1},\ldots,x_{d-3})M)\right) = c_{M} = \sum_{i=0}^{d-3} \binom{d-3}{i} \ell(H_{\mathfrak{m}}^{i+2}(K_{M}))$$

It should be mentioned that the statements (b) and (c) of Theorem 1.3 improve the main result of [LN].

Secondly, Y. Aoyama [A, Theorem 1] studied the relation between the depth of K_R and that of R in case where R is not Cohen-Macaulay. He proved that for given integers $0 \le r < n$ and $2 \le s \le n$, there exists a complete local ring R such that dim R = n, depth R = r and depth $K_R = s$. This is the motivation for us to discuss about the relation between the non Cohen-Macaulay locus of K_M and that of M.

Denote by nCM(M) the non-Cohen-Macaulay locus of M. If R is a quotient of a Gorenstein local ring, then nCM(M) is closed under Zariski topology and $\dim nCM(M) \le d-1$, see [C]. Moreover, if M is unmixed, then $\dim nCM(M) \le d-2$.

The following theorem is the second main result of this paper.

Theorem 1.4. Suppose that R is a quotient of a Gorenstein local ring. The following statements are true.

- (a) dim nCM(K_M) \leq min{d-3, dim nCM(M)}.
- (b) For given integers $-1 \le s \le d-3$ and $s \le r \le d-2$, there exists a complete unmixed Noetherian local ring (R, \mathfrak{m}) such that dim $\operatorname{nCM}(R) = r$ and dim $\operatorname{nCM}(K_R) = s$.

In the next section, we present some preliminaries that will be used in the sequel. Section 3 and Section 4 are devoted to prove the main results of this paper (Theorems 1.3, 1.4).

2 Preliminaries

Throughout this paper, let (R, \mathfrak{m}) be a Noetherian local ring which is a quotient of an *n*dimensional local Gorenstein ring (R', \mathfrak{m}') . Let M be a finitely generated R-module with dim M = d. For each integer $i \geq 0$, let $K_M^i := \operatorname{Ext}_{R'}^{n-i}(M, R')$ denote the *i*-th deficiency module of M. Then K_M^i is a finitely generated R-module and the local duality (see [BS, 11.2.6]) gives the isomorphism $H^i_{\mathfrak{m}}(M) \cong \operatorname{Hom}_R(K_M^i, E(R/\mathfrak{m}))$, where $E(R/\mathfrak{m})$ is the injective envelope of R/\mathfrak{m} . Let K_M be the canonical module K_M^d of M. For an Artinian *R*-module *A*, let $\operatorname{Rl}(A) := \ell_R(A/\mathfrak{m}^s A)$ be the *residual length* of *A* defined by Sharp-Hamieh [SH], where s > 0 is an integer such that $\mathfrak{m}^n A = \mathfrak{m}^s A$ for all $n \ge s$.

The notion of filter regular sequence (f-sequence for short) introduced in [CST] can be considered as a generalization of the known concept of regular sequence. An element $x \in \mathfrak{m}$ is said to be a *filter regular element* (f-element for short) of M if $x \notin \mathfrak{p}$ for all $\mathfrak{p} \in \operatorname{Ass}_R M \setminus \{\mathfrak{m}\}$. A sequence (x_1, \ldots, x_t) of elements in \mathfrak{m} is said to be an f-sequence of M if x_i is an f-element of $M/(x_1, \ldots, x_{i-1})M$ for all $i \leq t$.

Remark 2.1. An element $x \in \mathfrak{m}$ is an f-element of M if and only if $\ell_R(0:_M x) < \infty$. Moreover, each f-sequence of length d is a s.o.p. of M.

A special kind of f-sequences is the class of strict f-sequences introduced in [CMN]. In the original definition of strict f-sequence, the set of attached primes $\operatorname{Att}_R H^i_{\mathfrak{m}}(M)$ defined by I. G. Macdonald [Mac] was used. However, we note that $\operatorname{Att}_R H^i_{\mathfrak{m}}(M) = \operatorname{Ass}_R K^i_M$ by [S, Theorem 2.3], therefore we can recall the notion of strict f-sequence as follows.

Definition 2.2. An element $x \in \mathfrak{m}$ is said to be a *strict* f-element of M if $x \notin \mathfrak{p}$ for all $\mathfrak{p} \in \left(\bigcup_{i=1}^{d} \operatorname{Ass}_{R} K_{M}^{i}\right) \setminus {\mathfrak{m}}$. A sequence (x_{1}, \ldots, x_{t}) of elements in \mathfrak{m} is said to be a *strict* f-sequence of M if x_{j+1} is a strict f-element of $M/(x_{1}, \ldots, x_{j})M$ for all $j = 0, \ldots, t - 1$. A sequence (x_{1}, \ldots, x_{t}) of elements in \mathfrak{m} is said to be an unconditioned strict f-sequence of M if it is a strict f-sequence in any order.

Note that $\operatorname{Ass}_R M \subseteq \bigcup_{i=0}^d \operatorname{Ass}_R K_M^i$, see [Sch2, Proposition 2.3(c)]. Hence, each strict f-sequence is an f-sequence of M. In particular, if $x \in \mathfrak{m}$ is a strict f-element of M, then $\ell_R(0:_M x) < \infty$. Moreover, if (x_1, \ldots, x_d) is a strict f-sequence, then it is a s.o.p. of M.

Here are some properties of strict f-sequence that we need in the proof of the main results.

Lemma 2.3. ([CMN, Lemmas 3.4, 4.2], [GN, Theorem 3.5])

- (a) A sequence (x_1, \ldots, x_t) of elements in \mathfrak{m} is a strict f-sequence of M if and only if it is an f-sequence of K_M^i for all integers $i \ge 0$.
- (b) If $(x_1, \ldots, x_t) \in \mathfrak{m}$ is a strict f-sequence of M, then so is $(x_1^{n_1}, \ldots, x_t^{n_t})$ for all positive integers n_1, \ldots, n_t .
- (c) For each integer t > 0, there exists an unconditioned strict f-sequence of M of length t.

Lemma 2.4. ([LN, Lemmas 2.5, 2.7]) Let $x \in \mathfrak{m}$ be a strict f-element of M. The following statements are true.

(a) For each integer $i \ge 0$, there exists an integer n_0 such that for all $n \ge n_0$ we have

$$\operatorname{Rl}(H^{i}_{\mathfrak{m}}(M)) = \ell_{R}(H^{0}_{\mathfrak{m}}(K^{i}_{M})) = \ell_{R}(0:_{K^{i}_{M}}x^{n}).$$

(b) For each integer $i \ge 1$, there is an exact sequence

$$0 \to K_M^{i+1}/x K_M^{i+1} \to K_{M/xM}^i \to (0:_{K_M^i} x) \to 0.$$

In particular, $H^i_{\mathfrak{m}}(K_M/xK_M) \cong H^i_{\mathfrak{m}}(K_{M/xM})$ for any $i \ge 2.$

Next, we discuss about the Cohen-Macaulayness and generalized Cohen-Macaulayness of the canonical module. Following P. Schenzel [Sch2, Definition 5.1], R is said to have a *birational Macaulayfication* if there is an intermediate ring B between R and Q(R) such that B is a finitely generated Cohen-Macaulay R-module. As we mentioned in the introduction, Aoyama and Goto [AG] proved that if R is unmixed, then K_R is Cohen-Macaulay if and only if there exists a birational Macaulayfication B of R such that $\dim_R(B/R) \leq \dim R - 2$. When this is the case, B is uniquely determined and $B \cong \operatorname{End}_R(K_R)$ as an R-algebra. Note that the condition $\dim_R(B/R) \leq \dim R - 2$ can not be removed. The following example given by S. Goto shows that the result does not valid any more if $\dim_R(B/R) = \dim R - 1$.

Example 2.5. Let A = F[X, Y] be the polynomial ring over an infinite field F and $J = (X^3, V)(X^3, XV, Y^3)$, where $V = X^2 + XY + Y^2$. Let $\mathfrak{M} = (X, Y)$. Then $\sqrt{J} = \mathfrak{M}$. We set $I = JA_{\mathfrak{M}}$. Then the Rees algebra $\mathcal{R} = \mathcal{R}(I)$ of I is a Buchsbaum ring with depth $\mathcal{R}(I) = 2$. Since $A_{\mathfrak{M}}$ is a regular local ring of dimension 2, $\overline{\mathcal{R}} = \mathcal{R}(\overline{I})$ is a Cohen-Macaulay ring, but $K_{\mathcal{R}}$ is not a Cohen-Macaulay \mathcal{R} -module. Therefore $K_{\mathcal{R}_n}$ is not a Cohen-Macaulay \mathcal{R}_n -module where \mathfrak{n} denotes the graded maximal ideal of \mathcal{R} , although the Noetherian local domain \mathcal{R}_n possesses a birational Cohen-Macaulayfication.

It is well-known that M is Cohen-Macaulay if and only if $I(x_1, \ldots, x_d; M) = 0$ for some (for all) s.o.p. (x_1, \ldots, x_d) of M, where

$$I(x_1, ..., x_d; M) := \ell(M/(x_1, ..., x_d)M) - e(x_1, ..., x_d; M)$$

and $e(x_1, \ldots, x_d; M)$ is the multiplicity of M with respect to (x_1, \ldots, x_d) . Moreover, if $x \in \mathfrak{m}$ is an M-regular element, then M is Cohen-Macaulay if and only if so is M/xM.

It is clear that if M is Cohen-Macaulay, then so is K_M . The converse statement is not true, see Theorem 1.4(b). Note that K_M satisfies the condition Serre (S_2) . Therefore K_M is Cohen-Macaulay whenever $d \leq 2$. In case where $d \geq 3$, we have the following characterizations for the canonical module to be Cohen-Macaulay.

Lemma 2.6. ([Nh, Theorem 4.2], [BN, Theorem 2.5]). The following statements are true.

- (a) K_M is Cohen-Macaulay if and only if $\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_1,\ldots,x_k)M)\right) = 0$ for a (and for all) strict f-sequence (x_1,\ldots,x_d) of M and all $k = 0,\ldots,d-3$.
- (b) If $d \ge 4$, then K_M is Cohen-Macaulay if and only if $K_{M/xM}$ is Cohen-Macaulay for every strict f-element x of M.

Following Cuong, Schenzel and Trung [CST], M is said to be generalized Cohen-Macaulay if $I(M) := \sup I(x_1, \ldots, x_d; M) < \infty$, where (x_1, \ldots, x_d) runs over all s.o.p. of M. Note that

M is generalized Cohen-Macaulay if and only if $\ell_R(H^i_{\mathfrak{m}}(M)) < \infty$ for all i < d. Note that K_M satisfies the condition Serre (S_2) , therefore K_M is generalized Cohen-Macaulay whenever $d \leq 3$. In case where $d \geq 4$, we have the following characterizations for the canonical module to be generalized Cohen-Macaulay.

Lemma 2.7. ([LN, Main theorem]) The following statements are equivalent:

- (a) K_M is generalized Cohen-Macaulay.
- (b) There exists a number c(M) such that $\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_1,\ldots,x_k)M)\right) \leq c(M)$ for all strict f-sequences $\underline{x} = (x_1,\ldots,x_d)$ of M and all $k = 1,\ldots,d-3$.
- (c) There exist a strict f-sequence $\underline{x} = (x_1, \ldots, x_d)$ of M and a number $c(\underline{x}, M)$ such that Rl $\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_1^{n_1}, \ldots, x_k^{n_k})M)\right) \leq c(\underline{x}, M)$ for all $k = 1, \ldots, d-3$ and all positive integers n_1, \ldots, n_{d-3} .

Furthermore, if the conditions (a), (b), (c) satisfy, then

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_1,\ldots,x_k)M)\right) \leq \sum_{i=0}^k \binom{k}{i} \ell(H_{\mathfrak{m}}^{i+2}(K_M))$$

for any $k = 1, \ldots, d-3$. The equality holds true when $x_1, \ldots, x_k \in \mathfrak{m}^{2^{k-1}q}$, where

$$q = \min\{t \in \mathbb{N} \mid \mathfrak{m}^t H^i_{\mathfrak{m}}(K_M) = 0 \text{ for all } i < d\}.$$

The notion of standard system of parameters (standard s.o.p. for short) defined in [Tr] (see also [Sch1]) is very important in the study of generalized Cohen-Macaulay modules. A s.o.p. (x_1, \ldots, x_d) of M is said to be a *standard s.o.p.* if

$$\ell_R(M/(x_1,\ldots,x_d)M) - e(x_1,\ldots,x_d;M) = \ell_R(M/(x_1^2,\ldots,x_d^2)M) - e(x_1^2,\ldots,x_d^2;M).$$

Then M is generalized Cohen-Macaulay if and only if there exists a standard s.o.p. of M. Note that if (x_1, \ldots, x_d) is a standard s.o.p. of M, then

$$I(x_1, \dots, x_d; M) = I(M) = \sum_{i=0}^{d-1} {d-1 \choose i} \ell(H^i_{\mathfrak{m}}(M))$$

In the introduction, we introduce the notion of canonical s.o.p. (see Definition 1.2), which will be used in the next section to characterize the generalized Cohen-Macaulayness of the canonical module. The following lemma gives a relation between standard s.o.p. of M and canonical s.o.p. of M.

Lemma 2.8. If (x_1, \ldots, x_d) be a standard s.o.p. of M, then it is a canonical s.o.p of M.

Proof. If $d \leq 2$, there is nothing to prove. Let $d \geq 3$. Suppose that (x_1, \ldots, x_d) is a standard s.o.p. of M. Then M is generalized Cohen-Macaulay, cf. [Tr]. Hence $\ell_R(K_M^i) < \infty$ for all i < d. So, each s.o.p. of M is an f-sequence of K_M^i for all i. It follows by Lemma 2.3(a) that each s.o.p. of M is a strict f-sequence. Since (x_1, \ldots, x_d) is a standard s.o.p. of M, so is (x_1^2, \ldots, x_d^2) . Note that $M/(x_1, \ldots, x_{d-3})M$ is generalized Cohen-Macaulay. Hence $\ell_R(H^2_{\mathfrak{m}}(M/(x_1, \ldots, x_{d-3})M)) < \infty$. Similarly, $\ell_R(H^2_{\mathfrak{m}}(M/(x_1^2, \ldots, x_{d-3}^2)M)) < \infty$. Therefore, we get by [Tr, Proposition 2.9] that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1},\ldots,x_{d-3})M)\right) = \ell(H_{\mathfrak{m}}^{2}(M/(x_{1},\ldots,x_{d-3})M))$$
$$= \sum_{i=2}^{d-1} {d-3 \choose i-1} \ell(H_{\mathfrak{m}}^{i}(M))$$
$$= \ell_{R}\left(H_{\mathfrak{m}}^{2}(M/(x_{1}^{2},\ldots,x_{d-3}^{2})M)\right)$$
$$= \operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1}^{2},\ldots,x_{d-3}^{2})M)\right).$$

The converse statement of Lemma 2.8 is not true. In fact, by Theorem 1.4, there is an unmixed complete local ring R such that R is not generalized Cohen-Macaulay, but K_R is generalized Cohen-Macaulay. By Theorem 1.3, there is a canonical s.o.p. of R, but R does not admit a standard s.o.p.

3 Proof of Theorem 1.3

Before proving Theorem 1.3, we need some auxiliary lemmas.

For an Artinian *R*-module *A*, set $\dim_R A = \dim(R/\operatorname{Ann}_R A)$. Note that *A* has a natural structure as an Artinian \widehat{R} -module and $\dim_R A \ge \dim_{\widehat{R}} A$, see [CN, Proposition 2.4(ii), Corollary 4.7]. Moreover, $\ell_R(A) < \infty$ if and only if $\dim_R A = \dim_{\widehat{R}} A \le 0$.

Since K_M satisfies the condition Serre (S_2) , we have $\dim_R H^i_{\mathfrak{m}}(K_M) \leq i-2$ for all i < d(see [Sch2, Propositions 2.2(c), 2.3(d)]). In particular, if $d \geq 3$, then $H^i_{\mathfrak{m}}(K_M) = 0$ for $i \leq 1$ and $\ell_R(H^2_{\mathfrak{m}}(K_M)) < \infty$.

Lemma 3.1. Let $d \ge 4$, let $x \in \mathfrak{m}$ be a strict f-element of M. Then $\ell_R(0:_{H^3_\mathfrak{m}(K_M)} x) < \infty$ and

$$\operatorname{Rl}(H^{d-2}_{\mathfrak{m}}(M/xM)) = \ell_R(H^2_{\mathfrak{m}}(K_M)/xH^2_{\mathfrak{m}}(K_M)) + \ell_R(0:_{H^3_{\mathfrak{m}}(K_M)}x).$$

Proof. Set N = M/xM. Let y be a strict f-element of N. Then by Lemma 2.4(a) that

$$\operatorname{Rl}(H^{d-2}_{\mathfrak{m}}(N)) = \ell_R(0:_{K^{d-2}_N} y^n) < \infty$$

for all large enough integers n. Note that y^n is a strict f-element of N. Therefore, we have by Lemma 2.4(b) the exact sequence

$$0 \to K_N/y^n K_N \to K_{N/y^n N} \to (0:_{K_N^{d-2}} y^n) \to 0.$$

Since $d \ge 4$ and $K_{N/y^n N}$ satisfies the condition Serre (S_2) , we have depth $K_{N/y^n N} \ge 2$. Since $\ell_R(0:_{K_N^{d-2}} y^n) < \infty$, it follows by the above exact sequence that

$$(0:_{K_N^{d-2}} y^n) = H^0_{\mathfrak{m}}(0:_{K_N^{d-2}} y^n) \cong H^1_{\mathfrak{m}}(K_N/y^n K_N).$$

Since y^n is K_N -regular, we have the exact sequence

$$0 \to K_N \to K_N \to K_N / y^n K_N \to 0.$$

As dim $K_N \ge 3$ and K_N satisfies the condition Serre (S_2) , we get depth $K_N \ge 2$. So,

$$H^1_{\mathfrak{m}}(K_N/y^nK_N) \cong (0:_{H^2_{\mathfrak{m}}(K_N)} y^n).$$

Since $\ell_R(H^2_{\mathfrak{m}}(K_N)) < \infty$, it follows by Lemma 2.4(b) that

$$(0:_{H^2_{\mathfrak{m}}(K_N)} y^n) = H^2_{\mathfrak{m}}(K_N) \cong H^2_{\mathfrak{m}}(K_M/xK_M)$$

for all large enough integers n. Therefore we get by all the aboves facts that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-2}(M/xM)\right) = \ell_R(H_{\mathfrak{m}}^2(K_M/xK_M)).$$

Hence $\ell_R(H^2_{\mathfrak{m}}(K_M/xK_M)) < \infty$. From the exact sequence

$$0 \to K_M \to K_M \to K_M / x K_M \to 0,$$

we have the exact sequence

$$0 \to H^2_{\mathfrak{m}}(K_M)/xH^2_{\mathfrak{m}}(K_M) \to H^2_{\mathfrak{m}}(K_M/xK_M) \to (0:_{H^3_{\mathfrak{m}}(K_M)} x) \to 0.$$

Now, the result follows.

Lemma 3.2. Let $d \ge 4$, let (x_1, \ldots, x_d) be an unconditioned strict f-sequence of M. Then

$$\operatorname{Rl}(H_{\mathfrak{m}}^{d-k-1}(M/(x_1^{n_1},\ldots,x_k^{n_k})M)) \leq \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_1^{m_1},\ldots,x_k^{m_k})M)\right)$$

for all integers $1 \le k \le d-3$ and all positive integers $n_i \le m_i$ for $i = 1, \ldots, k$.

Proof. We prove the lemma by induction on d.

Let d = 4. Then k = 1. We have by Lemma 3.1 that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-2}(M/x^{n}M)\right) = \ell_{R}(H_{\mathfrak{m}}^{2}(K_{M})/x^{n}H_{\mathfrak{m}}^{2}(K_{M})) + \ell_{R}(0:_{H_{\mathfrak{m}}^{3}(K_{M})}x^{n})$$
$$\leq \ell_{R}(H_{\mathfrak{m}}^{2}(K_{M})/x^{m}H_{\mathfrak{m}}^{2}(K_{M})) + \ell_{R}(0:_{H_{\mathfrak{m}}^{3}(K_{M})}x^{m})$$
$$= \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-2}(M/x^{m}M)\right).$$

Assume that d > 4. Set $N = M/(x_2^{n_2}, \ldots, x_k^{n_k})M$ and $L = M/x_1^{m_1}M$. Then dim $L \ge 4$ and dim $N = d - k + 1 \ge 4$. Since (x_1, \ldots, x_d) is an unconditioned strict f-sequence of M, it

	-	

follows by Lemma 2.3(b) that $(x_1, x_2^{n_2}, \ldots, x_k^{n_k})$ is also an unconditioned strict f-sequence of M. Hence, x_1 is a strict f-element of N. Therefore we get

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_{1}^{n_{1}},\ldots,x_{k}^{n_{k}})M)\right) = \operatorname{Rl}\left(H_{\mathfrak{m}}^{(d-k+1)-2}(N/x_{1}^{n_{1}}N)\right)$$

$$\leq \operatorname{Rl}\left(H_{\mathfrak{m}}^{(d-k+1)-2}(N/x_{1}^{m_{1}}N)\right)$$

$$= \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_{1}^{m_{1}},x_{2}^{n_{2}},\ldots,x_{k}^{n_{k}})M)\right)$$

$$= \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(L/(x_{2}^{n_{2}},\ldots,x_{k}^{n_{k}})L)\right).$$

It is clear that (x_2, \ldots, x_k) is an unconditioned strict f-sequence of L and dim L = d - 1. So, we get by induction hypothesis that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(L/(x_{2}^{n_{2}},\ldots,x_{k}^{n_{k}})L)\right) = \operatorname{Rl}\left(H_{\mathfrak{m}}^{(d-1)-(k-1)-1}(L/(x_{2}^{n_{2}},\ldots,x_{k}^{n_{k}})L)\right) \\ \leq \operatorname{Rl}\left(H_{\mathfrak{m}}^{(d-1)-(k-1)-1}(L/(x_{2}^{m_{2}},\ldots,x_{k}^{m_{k}})L)\right) \\ = \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_{1}^{m_{1}},x_{2}^{m_{2}},\ldots,x_{k}^{m_{k}})M)\right).$$

The following property of Artinian module is useful in the proof of Theorem 1.3. Let A be an Artinian R-module. It follows by [Ro, Theorem 6] and [CN, Corollary 4.7] that

$$\dim_{\widehat{R}} A = \inf\{t \in \mathbb{N} \mid \exists x_1, \dots, x_t \in \mathfrak{m} \text{ such that } \ell_R(0:_A (x_1, \dots, x_t)) < \infty\}.$$

A system (x_1, \ldots, x_t) of elements in \mathfrak{m} (where $t = \dim_{\widehat{R}} A$) is said to be a system of parameters of A if $\ell_R(0:_A(x_1, \ldots, x_t)) < \infty$. It is clear that if (x_1, \ldots, x_t) is a system of parameters of A, then $\dim_{\widehat{R}}(0:_A(x_1, \ldots, x_n)) = t - n$ for all $n \leq t$. If $\dim_{\widehat{R}} A > 0$ and $x \in \mathfrak{m}$ be such that $\dim_{\widehat{R}}(0:_A x) = \dim_{\widehat{R}} A - 1$, then x is said to be a parameter of A.

Lemma 3.3. Let A be an Artinian R-module. If $\dim_{\widehat{R}} A > 0$ and x is a parameter of A, then for all positive integers n we have

$$(0:_A x^n) \neq (0:_A x^{n+1}).$$

Proof. Assume in contrary that $(0 :_A x^n) = (0 :_A x^{n+1})$ for some integer n > 0. We claim that $A = (0 :_A x^n)$. In fact, let $a \in A$. Since A is m-torsion, we have $\mathfrak{m}^s a = 0$ for some integer s > 0. Hence $x^s a = 0$. If $s \leq n$, then $a \in (0 :_A x^n)$. So, we assume that $s \geq n + 1$. Then we have $x^{n+1}(x^{s-n-1}a) = 0$. Hence $x^{s-n-1}a \in (0 :_A x^{n+1}) = (0 :_A x^n)$. Therefore $x^{s-1}a = 0$. Continue this process, after some steps we have $x^{n+1}a = 0$. Hence $a \in (0 :_A x^{n+1}) = (0 :_A x^n)$. Therefore, $A = (0 :_A x^n)$ and the claim is proved. Note that x^n is also a parameter of A. Since $\dim_{\widehat{R}} A > 0$, we have by the claim that

$$\dim_{\widehat{R}} A = \dim_{\widehat{R}} (0:_A x^n) = \dim_{\widehat{R}} A - 1.$$

This gives a contradiction.

Corollary 3.4. Let $d \ge 4$ and let $x \in \mathfrak{m}$ be a strict f-element of M such that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-2}(M/xM)\right) = \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-2}(M/x^{2}M)\right).$$

 \Box

Then $\ell_R(H^3_{\mathfrak{m}}(K_M)) < \infty$, $xH^i_{\mathfrak{m}}(K_M) = 0$ for all $i \leq 3$, and

$$\operatorname{Rl}(H^{d-2}_{\mathfrak{m}}(M/xM)) = \operatorname{Rl}(H^{d-2}_{\mathfrak{m}}(M/x^{n}M)) = \ell_{R}(H^{2}_{\mathfrak{m}}(K_{M})) + \ell_{R}(H^{3}_{\mathfrak{m}}(K_{M}))$$

for all n > 0. In particular, if d = 4, then M is generalized Cohen-Macaulay canonical.

Proof. Since K_M satisfies the condition Serre (S_2) , it follows that $\ell_R(H^2_{\mathfrak{m}}(K_M) < \infty$ and $\dim_R H^3_{\mathfrak{m}}(K_M) \leq 1$. By Lemma 3.1 and by our assumption, $xH^2_{\mathfrak{m}}(K_M) = x^2H^2_{\mathfrak{m}}(K_M)$ and $(0 :_{H^3_{\mathfrak{m}}(K_M)} x) = (0 :_{H^3_{\mathfrak{m}}(K_M)} x^2)$. It follows by Nakayama Lemma that $xH^2_{\mathfrak{m}}(K_M) = 0$. Next, we claim that $\ell_R(H^3_{\mathfrak{m}}(K_M)) < \infty$. In fact, suppose $\ell_R(H^3_{\mathfrak{m}}(K_M)) = \infty$. Then $\dim_R H^3_{\mathfrak{m}}(K_M) = 1$. Hence $\dim_{\widehat{R}} H^3_{\mathfrak{m}}(K_M) = 1$ by [CNN, Proposition 2.4, Corollary 4.2(iii)]. Since $\ell_R(0 :_{H^3_{\mathfrak{m}}(K_M)} x) < \infty$ by Lemma 3.1, it follows that x is a parameter of $H^3_{\mathfrak{m}}(K_M)$. Hence $(0 :_{H^3_{\mathfrak{m}}(K_M)} x) \neq (0 :_{H^3_{\mathfrak{m}}(K_M)} x^2)$ by Lemma 3.3. This gives a contradiction, and the claim is proved. Since $(0 :_{H^3_{\mathfrak{m}}(K_M)} x) = (0 :_{H^3_{\mathfrak{m}}(K_M)} x^2)$, we get by the same arguments as in the proof of Lemma 3.3 that $H^3_{\mathfrak{m}}(K_M) = (0 :_{H^3_{\mathfrak{m}}(K_M)} x)$. So, $xH^3_{\mathfrak{m}}(K_M) = 0$. Now, the rest statement follows by Lemma 3.1. □

Lemma 3.5. Suppose that $d \ge 4$. Let $\underline{x} = (x_1, \ldots, x_k)$ be a strict f-sequence of M, where $1 \le k \le d-3$ is an integer. Then, there exists a positive integer $m(\underline{x})$ such that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k}(M/(x_1,\ldots,x_{k-1})M)\right) \leq \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_1,\ldots,x_{k-1},x_k^{m(\underline{x})})M)\right).$$

Proof. Set $N := M/(x_1, \ldots, x_{k-1})M$. We can choose a positive integer $m(\underline{x})$ such that $x_k^{m(\underline{x})} H^0_{\mathfrak{m}}(K_N^{d-k}) = 0$. Note that $x_k^{m(\underline{x})}$ is a filter regular element of K_N^{d-k} by Lemma 2.3(a), i.e. it is K_N^{d-k} -regular in dimension > 0 in sense of [BN1]. Therefore, we have by [DN, Lemma 2.3] the following exact sequence

$$0 \to H^0_{\mathfrak{m}}(K_N^{d-k}) \to H^0_{\mathfrak{m}}(K_N^{d-k}/x_k^{m(\underline{x})}K_N^{d-k}) \to (0:_{H^1_{\mathfrak{m}}(K_N^{d-k})} x_k^{m(\underline{x})}) \to 0.$$

Since $x_k^{m(\underline{x})}$ is a strict f-element of N, we have by Lemma 2.4(b) the following exact sequence

$$0 \to K_N^{d-k}/x_k^{m(\underline{x})}K_N^{d-k} \to K_{N/x_k^{m(\underline{x})}N}^{d-k-1} \to (0:_{K_N^{d-k-1}} x_k^{m(\underline{x})}) \to 0.$$

Therefore, it follows by Lemma 2.4(a) that

$$Rl\left(H_{\mathfrak{m}}^{d-k}(M/(x_{1},\ldots,x_{k-1})M)\right) = \ell_{R}\left(H_{\mathfrak{m}}^{0}(K_{N}^{d-k})\right)$$

$$\leq \ell_{R}\left(H_{\mathfrak{m}}^{0}(K_{N}^{d-k}/x_{k}^{m(\underline{x})}K_{N}^{d-k})\right)$$

$$\leq \ell_{R}\left(H_{\mathfrak{m}}^{0}(K_{N/x_{k}^{m(\underline{x})}N}^{d-k-1})\right)$$

$$= Rl\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_{1},\ldots,x_{k-1},x_{k}^{m(\underline{x})})M)\right).$$

Now, we are ready to prove the first main result of this paper.

Proof of Theorem 1.3. (a) \Rightarrow (d). By our assumption (a), $\ell_R(H^i_{\mathfrak{m}}(K_M)) < \infty$ for all i < d. Set

$$q = \min\{t \in \mathbb{N} \mid \mathfrak{m}^t H^i_{\mathfrak{m}}(K_M) = 0 \text{ for all } i < d\}.$$

Then there exists by Lemma 2.3 an unconditioned f-sequence (x_1, \ldots, x_d) of M contained in $\mathfrak{m}^{2^{d-4}q}$. We have by Lemma 2.7 that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1},\ldots,x_{d-3})M)\right) = \sum_{i=0}^{d-3} {d-3 \choose i} \ell_{R}(H_{\mathfrak{m}}^{i+2}K_{M}))$$
$$= \operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1}^{2},\ldots,x_{d-3}^{2})M)\right).$$

Therefore, (x_1, \ldots, x_d) is an unconditioned canonical s.o.p. of M.

(d) \Rightarrow (c). Suppose that (x_1, \ldots, x_d) is an unconditioned canonical s.o.p. of M. It is enough to prove the following equalities

$$\operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(M/(x_{1},\ldots,x_{d-3})M)\right) = \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(M/(x_{1}^{n_{1}},\ldots,x_{d-3}^{n_{d-3}})M)\right)$$

for all positive integers n_1, \ldots, n_{d-3} . We prove this by induction on d. If $d \leq 3$, there is nothing to prove. The case where d = 4 follows by Corollary 3.4.

Let d > 4 and assume that the result is valid for d-1. Let n_1, \ldots, n_k be positive integers. Set $N = M/x_1M$ and $N' = M/x_1^2M$. Then dim $N = d - 1 = \dim N'$. Since (x_1, \ldots, x_d) is an unconditioned canonical s.o.p. of M, we have by Lemma 3.2 that

$$\operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N/(x_{2},\ldots,x_{d-3})N)\right) \leq \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N/(x_{2}^{2},\ldots,x_{d-3}^{2})N)\right)$$
$$\leq \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(M/(x_{1}^{2},\ldots,x_{d-3}^{2})M)\right)$$
$$= \operatorname{Rl}(H^{2}_{\mathfrak{m}}(N/(x_{2},\ldots,x_{d-3})N)).$$

Hence $\operatorname{Rl}\left(H^2_{\mathfrak{m}}(N/(x_2,\ldots,x_{d-3})N)\right) = \operatorname{Rl}\left(H^2_{\mathfrak{m}}(N/(x_2^2,\ldots,x_{d-3}^2)N)\right)$. It follows that (x_2,\ldots,x_d) is an unconditioned canonical s.o.p. of N. Therefore, we get by induction hypothesis that

$$\mathrm{Rl}\left(H^{2}_{\mathfrak{m}}(N/(x_{2},\ldots,x_{d-3})N)\right) = \mathrm{Rl}\left(H^{2}_{\mathfrak{m}}(N/(x_{2}^{n_{2}},\ldots,x_{d-3}^{n_{d-3}})N)\right)$$

for all positive integers n_2, \ldots, n_{d-3} . Similarly, since (x_1, \ldots, x_d) is an unconditioned canonical s.o.p. of M, we have by Lemma 3.2 that

$$\operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N'/(x_{2},\ldots,x_{d-3})N')\right) = \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N'/(x_{2}^{2},\ldots,x_{d-3}^{2})N')\right).$$

Hence (x_2, \ldots, x_d) is an unconditioned canonical s.o.p. of N'. Therefore, we get by induction that

$$\operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N'/(x_{2},\ldots,x_{d-3})N')\right) = \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N'/(x_{2}^{n_{2}},\ldots,x_{d-3}^{n_{d-3}})N')\right)$$

for any positive integers n_2, \ldots, n_{d-3} . As (x_1, \ldots, x_d) is an unconditioned canonical s.o.p. of M, it follows by Lemma 3.2 that

$$\operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N/(x_{2},\ldots,x_{d-3})N)\right) = \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(N'/(x_{2},\ldots,x_{d-3})N')\right)$$

For given positive integers n_2, \ldots, n_{d-3} , we have $\operatorname{Rl}\left(H^2_{\mathfrak{m}}(L/x_1L)\right) = \operatorname{Rl}\left(H^2_{\mathfrak{m}}(L/x_1^2L)\right)$ by the above equalities, where $L = M/(x_2^{n_2}, \ldots, x_k^{n_k})M$. Since x_1 is a strict f-element of L, we have by Corollary 3.4 that

$$\operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(L/x_{1}L)\right) = \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(L/x_{1}^{n_{1}}L)\right),$$

the equalities are proved.

(c) \Rightarrow (a). Assume that there exists a strict f-sequence $\underline{x} = (x_1, \ldots, x_d)$ of M such that

$$c_{\underline{x},M} := \sup_{n_1,\dots,n_{d-3} \in \mathbb{N}} \operatorname{Rl}\left(H^2_{\mathfrak{m}}(M/(x_1^{n_1},\dots,x_{d-3}^{n_{d-3}})M)\right) < \infty.$$

Let $\underline{n} = (n_1, \ldots, n_{d-3})$ be a tuple of d-3 positive integers. Note that $(x_1^{n_1}, \ldots, x_{d-3}^{n_{d-3}})$ is a strict f-sequence of M by Lemma 2.3(b). Therefore, there exists by Lemma 3.5 a positive integer $m(\underline{x}, \underline{n})$ such that

$$\operatorname{Rl}\left(H^{3}_{\mathfrak{m}}(M/(x_{1}^{n_{1}},\ldots,x_{d-4}^{n_{d-4}})M)\right) \leq \operatorname{Rl}\left(H^{2}_{\mathfrak{m}}(M/(x_{1}^{n_{1}},\ldots,x_{d-4}^{n_{d-4}},x_{d-3}^{n_{d-3}m(\underline{x},\underline{n})})M)\right)$$

It follows by our assumption that

$$\sup_{n_1,\dots,n_{d-4}} \operatorname{Rl}\left(H^3_{\mathfrak{m}}(M/(x_1^{n_1},\dots,x_{d-4}^{n_{d-4}})M)\right) \leq \sup_{n_1,\dots,n_{d-3}} \operatorname{Rl}\left(H^2_{\mathfrak{m}}(M/(x_1^{n_1},\dots,x_{d-4}^{n_{d-4}},x_{d-3}^{n_{d-3}m(\underline{x},\underline{n})})M)\right)$$
$$\leq \sup_{m_1,\dots,m_{d-3}\in\mathbb{N}} \operatorname{Rl}\left(H^2_{\mathfrak{m}}(M/(x_1^{m_1},\dots,x_{d-3}^{m_{d-3}})M)\right) < \infty.$$

By the same arguments, we get

$$\sup_{n_1,\ldots,n_k} \operatorname{Rl}\left(H_{\mathfrak{m}}^{d-k-1}(M/(x_1^{n_1},\ldots,x_k^{n_k})M)\right) < \infty$$

for all k = 1, ..., d-3. Therefore, K_M is generalized Cohen-Macaulay by Lemma 2.7(c) \Rightarrow (a). (a) \Rightarrow (b) follows by Lemma 2.7 (a) \Rightarrow (b). (b) \Rightarrow (c) is trivial.

Finally, let (x_1, \ldots, x_d) is an unconditioned canonical s.o.p. of M. Let $n > 2^{d-4}q$ be an integer, where q is the number defined from the beginning. Then, we get by Lemma 2.3 and by the proof of $(d) \Rightarrow (c)$ that

$$\operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1},\ldots,x_{d-3})M)\right) = \operatorname{Rl}\left(H_{\mathfrak{m}}^{2}(M/(x_{1}^{n},\ldots,x_{d-3}^{n})M)\right)$$
$$= \sum_{i=0}^{d-3} \binom{d-3}{i} \ell_{R}(H_{\mathfrak{m}}^{i+2}(K_{M})).$$

4 Proof of Theorem 1.4

In this section, we keep the assumption that (R, \mathfrak{m}) is a Noetherian local ring which is a quotient of a Gorenstein local ring, M is a finitely generated R-module with dim M = d. Let

 K_M be the canonical module of M. For each integer $i \ge 0$, let K_M^i be the *i*-th deficiency module of M. The non Cohen-Macaulay locus of M, denoted by nCM(M), is defined by

 $\operatorname{nCM}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \text{ is not Cohen-Macaulay} \}.$

Because R is a quotient of a Gorenstein local ring, nCM(M) is closed under Zariski topology, see [CNN, Corollary 4.2](iv). Therefore, we can define its dimension dim nCM(M). If we stipulate that dim $\emptyset = -1$, then M is Cohen-Macaulay if and only if dim nCM(M) = -1. Moreover, M is generalized Cohen-Macaulay if and only if dim $nCM(M) \leq 0$. In general, we have the following result.

Lemma 4.1. ([C, Theorems 3.1, 3.3]). dim nCM(M) $\leq \max_{i < d} \dim_R H^i_{\mathfrak{m}}(M)$. The equality holds true if M is equidimensional.

It is clear that dim $nCM(M) \leq d-1$. Moreover, dim nCM(M) = d-1 if and only if M has an embedded prime of dimension d-1. Following M. Nagata [Na], M is said to be *unmixed* if dim $(\widehat{R}/\mathfrak{P}) = \dim_{\widehat{R}} \widehat{M}$ for all $\mathfrak{P} \in \operatorname{Ass}_{\widehat{R}} \widehat{M}$. Since R is a quotient of a Gorenstein local ring, it follows by [Mat, Theorem 23.2] that M is unmixed if and only if dim $(R/\mathfrak{p}) = d$ for all $\mathfrak{p} \in \operatorname{Ass}_R M$. Note that if M is unmixed, then dim $nCM(M) \leq d-2$. For each integer $k \geq 1$, it should be noticed that if M satisfies the condition Serre (S_k) , then dim_R $H^i_{\mathfrak{m}}(M) \leq i-k$ for all i < d, see [Sch2, Proposition 2.2](c). Therefore, by Lemma 4.1, we have the following consequence.

Corollary 4.2. If M satisfies the condition Serre (S_k) , then dim nCM $(M) \leq d - k - 1$. In particular, dim nCM $(K_M) \leq d - 3$.

Next, we study the non Cohen-Macaulay locus under a flat extension.

Lemma 4.3. Let (S, \mathfrak{n}) be a Noetherian local ring and $\varphi : R \to S$ a flat local homomorphism such that $S/\mathfrak{m}S$ is Cohen-Macaulay of dimension t. If M is not Cohen-Macaulay, then

$$\max_{i < d+t} \dim_S H^i_{\mathfrak{n}}(M \otimes_R S) = \dim(S/\mathfrak{m}S) + \max_{i < d} \dim_R H^i_{\mathfrak{m}}(M).$$

In addition, if M and $M \otimes_R S$ are equidimensional, then

 $\dim \operatorname{nCM}(M \otimes_R S) = \dim(S/\mathfrak{m}S) + \dim \operatorname{nCM}(M).$

Proof. Set dim $(S/\mathfrak{m}S) = t$. We have dim $(M \otimes_R S) = d + t$ by [Mat, Theorem 15.1]. Since $S/\mathfrak{m}S$ is Cohen-Macaulay, it follows by [BS1, Theorem 2.1] that

$$H^i_{\mathfrak{n}}(M \otimes_R S) \cong H^t_{\mathfrak{n}}(H^{i-t}_{\mathfrak{m}}(M) \otimes_R S)$$

for all $i \geq t$. Moreover, according to [Mat, Theorem 23.3], we have

$$\operatorname{depth}(M \otimes_R S) = \operatorname{depth} M + \operatorname{depth}(S/\mathfrak{m}S) \ge t.$$

Hence $H^i_{\mathfrak{n}}(M \otimes_R S) = 0$ for all integers i < t. We set $\mathfrak{a}(M) = \mathfrak{a}_0(M).\mathfrak{a}_1(M)...\mathfrak{a}_{d-1}(M)$ and $\mathfrak{a}(M \otimes_R S) = \mathfrak{a}_0(M \otimes_R S).\mathfrak{a}_1(M \otimes_R S)...\mathfrak{a}_{d+t-1}(M \otimes_R S)$, where $\mathfrak{a}_i(M) = \operatorname{Ann}_R H^i_{\mathfrak{m}}(M)$

and $\mathfrak{a}_i(M \otimes_R S) = \operatorname{Ann}_S H^i_\mathfrak{n}(M \otimes_R S)$ for all *i*. Then $\mathfrak{a}(M)S \subseteq \mathfrak{a}(M \otimes_R S)$ by the above isomorphism. Since *M* is not Cohen-Macaulay, it follows by [C, Theorem 3.1(i)] and by the same arguments as in the proof of [C, Theorem 5.1] that

$$\max_{i < d+t} \dim_S H^i_{\mathfrak{n}}(M \otimes_R S) = \dim(S/\mathfrak{m}S) + \max_{i < d} \dim_R H^i_{\mathfrak{m}}(M).$$

The rest statement follows by this equality and by Lemma 4.1.

Let t > 0 be an integer, let $S = R[[x_1, \ldots, x_t]]$ be the formal power series ring of t variables over R. Then the natural map $R \to S$ is flat local and the fiber ring $S/\mathfrak{m}S$ is Cohen-Macaulay. So, R is Cohen-Macaulay if and only if so is S. The following lemma shows some relations between the canonical modules and the deficiency modules of R and that of S. The proof of this lemma given below was suggested by P. Schenzel.

Lemma 4.4. Let $S = R[[x_1, \ldots, x_t]]$ be the formal power series ring over R. Then

- (a) K_R is Cohen-Macaulay if and only if so is K_S . If K_R is not Cohen-Macaulay, then $\dim nCM(K_S) = t + \dim nCM(K_R)$.
- (b) $K_S^i \cong K_R^{i-t} \otimes_R S$ for all $i \ge t$ and $K_S^i = 0$ for all i < t. In particular, if $K_R^{i-t} \ne 0$, then $\dim_S K_S^i = t + \dim_R K_R^{i-t}$.

Proof. (a) Since the ring $S/\mathfrak{m}S$ is Gorenstein, $K_S \cong K_R \otimes_R S$ by [AG, Theorem 4.1]. It is clear that the natural injection $R \to S$ is a local flat homomorphism. Since dim $S/\mathfrak{m}S = t$, we have dim $K_S = t + \dim K_R$. Because depth $(S/\mathfrak{m}S) = t$, it follows that depth $K_S = t + \operatorname{depth} K_R$. Therefore, K_R is Cohen-Macaulay if and only if so is K_S . Suppose that K_R is not Cohen-Macaulay. Note that K_R and K_S are equidimensional. So, we get by Lemma 4.3 that

$$\dim \operatorname{nCM}(K_S) = \dim \operatorname{nCM}(K_R \otimes_R S) = t + \dim \operatorname{nCM}(K_R).$$

(b) Let (R', \mathfrak{m}') be a Gorenstein local ring such that R is a factor ring of R'. Set R = R'/J for some ideal J of R'. Suppose that dim R' = n. The Local Duality Theorem (see [BS, 11.2.6]) provides the natural isomorphisms

$$H^{i}_{\mathfrak{m}}(R) \cong \operatorname{Hom}_{R}(K^{i}_{R}, E(R/\mathfrak{m})) = \operatorname{Hom}_{R}(\operatorname{Ext}^{n-i}_{R'}(R, R'), E(R/\mathfrak{m}))$$

for all $i \in \mathbb{N}$. Let $S' = R'[[x_1, \ldots, x_t]]$ be the formal power series ring of t variables over R'. For each integer $i \ge 0$, we have the isomorphism

$$\operatorname{Ext}_{R'}^{i}(R,R') \otimes_{R'} S' \cong \operatorname{Ext}_{S'}^{i}(R \otimes_{R'} S',S').$$

Note that S' is a Gorenstein ring with dim S' = n+t. This implies the following isomorphisms

$$K_R^i \otimes_{R'} S' \cong K_{R \otimes_{R'} S}^{i+t}$$

for all integers $i \ge 0$. Now K_R^i and R have the structure of an R'-module. So,

$$R \otimes_{R'} S' \cong R \otimes_R R'/J \otimes_{R'} S' \cong R \otimes_R S \cong S;$$

$$K_R^i \otimes_{R'} S' \cong K_R^i \otimes_R R'/J \otimes_{R'} S' \cong K_R^i \otimes_R S.$$

Thus, $K_S^i \cong K_R^{i-t} \otimes_R S$ for all $i \ge t$. It is clear that $K_S^i = 0$ for all i < t. Therefore, if $K_R^{i-t} \ne 0$, then $\dim_S K_S^i = t + \dim_R K_R^{i-t}$.

In order to prove Theorem 1.4, we need recall the notion of idealization introduced by M. Nagata [Na]. We can make Cartesian product $R \times M$ into a ring with respect to the componentwise addition and the multiplication defined by

$$(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + r_2m_1).$$

This ring is called the *idealization* of M over R, and denoted by $R \ltimes M$. Note that $R \ltimes M$ is a commutative Noetherian local ring with the identity (1,0). The unique maximal ideal of $R \ltimes M$ is $\mathfrak{m} \times M$. Note that $K_R, K_M, K_{R \ltimes M}$ are equidimensional. Therefore the following lemma can be verified by Lemma 4.1, [C, Theorem 3.1] and [L].

Lemma 4.5. The following statements are true

(a) If dim $M < \dim R$, then dim $\operatorname{nCM}(K_{R \ltimes M}) = \dim \operatorname{nCM}(K_R)$.

(b) If dim $M = \dim R$, then dim nCM $(K_{R \ltimes M}) = \max\{\dim nCM(K_R), \dim nCM(K_M)\}$.

Proof of Theorem 1.4. (a) Note that dim $nCM(K_M) \leq d-3$ by Corollary 4.2. So, it is enough to prove that dim $nCM(K_M) \leq \dim nCM(M)$. If K_M is Cohen-Macaulay, then there is nothing to prove. Assume that K_M is not Cohen-Macaulay. Set $s = \dim nCM(K_M)$. Then there exists $\mathfrak{p} \in nCM(K_M)$ such that $\dim R/\mathfrak{p} = s$. Hence $(K_M)_\mathfrak{p}$ is not Cohen-Macaulay. It follows that $\mathfrak{p} \in \operatorname{Supp}(K_M)$. Note that $\operatorname{Ass}(K_M) = \{\mathfrak{p} \in \operatorname{Ass}(M) \mid \dim R/\mathfrak{p} = d\}$. Therefore $\dim R/\mathfrak{p} + \dim M_\mathfrak{p} = d$. Hence $(K_M)_\mathfrak{p} \cong K_{M_\mathfrak{p}}$, see [Sch2, Proposition 2.2](b). So $K_{M_\mathfrak{p}}$ is not Cohen-Macaulay. It follows that $M_\mathfrak{p}$ is not Cohen-Macaulay. Hence dim $nCM(M) \geq s$.

(b) Let $d \ge 3$ be an integer. Let r, s be integers such that $-1 \le s \le d-3$ and $s \le r \le d-2$. We consider the following two cases.

• The case where s = -1. If r = -1, then any Cohen-Macaulay complete local ring of dimension d satisfies the requirement. Assume that $r \ge 0$. Let (R_1, \mathfrak{m}_1) be a Buchsbaum complete local ring such that dim $R_1 = d - r \ge 2$, $H^1_{\mathfrak{m}_1}(R_1) \ne 0$ and $H^i_{\mathfrak{m}_1}(R_1) = 0$ for $i \ne d$ and $i \ne 1$ (such a local ring R_1 exists by the construction of S. Goto [Go]). Then R_1 is not Cohen-Macaulay. Hence dim $\operatorname{nCM}(R_1) = 0$. Note that R_1 is generalized Cohen-Macaulay. Therefore, it follows by [BN, Corollary 2.7] that K_{R_1} is Cohen-Macaulay. Hence dim $\operatorname{nCM}(K_{R_1}) = -1$. Let $R = R_1[[x_1, \ldots, x_r]]$ be the formal power series ring of r variables over R_1 . Then, R is a Noetherian complete local ring and dim R = d. Because K_{R_1} is Cohen-Macaulay, it follows by Lemma 4.4 that K_R is Cohen-Macaulay, i.e. dim $\operatorname{nCM}(K_R) =$ -1 = s. Since R_1 is Buchsbaum and $H^0_{\mathfrak{m}_1}(R_1) = 0$, it follows that R_1 is unmixed, i.e. dim $(R_1/\mathfrak{p}) = \dim R_1$ for all $\mathfrak{p} \in \operatorname{Ass} R_1$. Since R_1 is not Cohen-Macaulay, we have by Lemma 4.4 that dim $\operatorname{nCM}(R) = r + \dim \operatorname{nCM}(R_1) = r$. For each $\mathfrak{p} \in \operatorname{Spec}(R_1)$, since $R/\mathfrak{p}R \cong (R_1/\mathfrak{p})[[x_1, \ldots, x_r]]$ is a domain, it follows that $\mathfrak{p}R \in \operatorname{Spec}(R)$ and dim $(R/\mathfrak{p}R) =$ $r + \dim(R_1/\mathfrak{p})$. Therefore, we have by the flatness of the natural injection $R_1 \to R$ and by [Mat, Theorem 23.2] that

Ass
$$R = \bigcup_{\mathfrak{p} \in \operatorname{Ass} R_1} \operatorname{Ass}_R(R/\mathfrak{p}R) = \{\mathfrak{p}R \mid \mathfrak{p} \in \operatorname{Ass} R_1\}.$$

It follows that for each $\mathfrak{P} \in \operatorname{Ass} R$, there exists $\mathfrak{p} \in \operatorname{Ass} R_1$ such that $\mathfrak{P} = \mathfrak{p}R$. Hence $\dim(R/\mathfrak{P}) = r + \dim(R_1/\mathfrak{p}) = r + \dim R_1 = \dim R = d$. Therefore, R is a unmixed complete local ring which satisfies the requirement.

• The left case where $0 \leq s \leq r$. Let (R_2, \mathfrak{m}_2) be a Buchsbaum complete local ring such that dim $R_2 = d - s \geq 3$, $H^0_{\mathfrak{m}_2}(R_2) = 0$ and $H^{d-s-1}_{\mathfrak{m}_2}(R_2) \neq 0$ (such a local ring R_2 exists by the construction of S. Goto [Go]). It is clear that dim $\operatorname{nCM}(R_2) = 0$. Moreover, K_{R_2} is generalized Cohen-Macaulay. Note that $\operatorname{Rl}(H^{d-s-1}_{\mathfrak{m}_2}(R_2)) = \ell_{R_2}(H^{d-s-1}_{\mathfrak{m}_2}(R_2)) \neq 0$. Therefore, it follows by Lemma 2.6(a) that K_{R_2} is not Cohen-Macaulay. Hence dim $\operatorname{nCM}(K_{R_2}) = 0$. Let $R_3 = R_2[[x_1, \ldots, x_s]]$ be the formal power series ring of s variables over R_2 . By the same arguments in the above, we can show that R_3 is a Noetherian unmixed complete local ring with the unique maximal ideal $\mathfrak{n} = (\mathfrak{m}_2, x_1, \ldots, x_s)R_3$ and dim $R_3 = d$. Since R_2 and K_{R_2} are not Cohen-Macaulay, we get by Lemma 4.4 that

$$\dim nCM(K_{R_3}) = s + \dim nCM(K_{R_2}) = s;$$

$$\dim nCM(R_3) = s + \dim nCM(R_2) = s.$$

Therefore, if s = r, then we set $R = R_3$ and the ring R satisfies the requirement. Now, we can assume that s < r. It is clear that $H^i_{\mathfrak{n}}(R_3) = 0$ for all i < s. For each integer $i \ge s$, we have $K^i_{R_3} \cong K^{i-s}_{R_2} \otimes_{R_2} R_3$ by Lemma 4.4(b). Note that the natural map $R_2 \to R_3$ is flat. Therefore, for any integer i < d, we get by Local Duality Theorem (see [BS, 11.2.6]) that if $H^i_{\mathfrak{n}}(R_3) \neq 0$, then $H^{i-s}_{\mathfrak{m}_2}(R_2) \neq 0$ and

$$\dim_{R_3} H^i_{\mathfrak{n}}(R_3) = \dim_{R_2} H^{i-s}_{\mathfrak{m}_2}(R_2) + s = s.$$

Therefore, $\dim_{R_3} H^i_{\mathfrak{n}}(R_3) \leq s$, for all i < d. Let a_1, \ldots, a_{d-r} be a part of a system of parameters of R_3 . Set $P = (a_1, \ldots, a_{d-r})R_3$ and $Q = R_3/(a_1, \ldots, a_{d-r})R_3$. Then we have the following exact sequence of R_3 -modules

$$0 \to P \to R_3 \to Q \to 0.$$

So, we have the following sequences

$$H^i_{\mathfrak{n}}(R_3) \to H^i_{\mathfrak{n}}(Q) \to H^{i+1}_{\mathfrak{n}}(P) \to H^{i+1}_{\mathfrak{n}}(R_3),$$

for all *i*. Note that dim $Q = r \leq d-2$ and dim $P = \dim R_3 = d$. Hence dim_{R₃} $H^r_{\mathfrak{n}}(Q) = r$ and dim_{R₃} $H^i_{\mathfrak{n}}(Q) < r$ for all $i \neq r$. Since $r \leq d-2$ and dim_{R₃} $H^i_{\mathfrak{n}}(R_3) \leq s$ for all i < d, we have dim_{R₃} $H^r_{\mathfrak{n}}(R_3) \leq s < r$ and dim_{R₃} $H^{r+1}_{\mathfrak{n}}(R_3) \leq s < r$. Hence dim_{R₃} $H^{r+1}_{\mathfrak{n}}(P) = r$ and dim_{R₃} $H^i_{\mathfrak{n}}(P) < r$ for all $i \neq r+1$ and $i \neq d$. Since R_3 is unmixed, P is unmixed. Therefore, we get by Lemma 4.1 that

$$\dim \operatorname{nCM}(P) = \max_{i < d} \dim_{R_3} H^i_{\mathfrak{n}}(P) = r.$$

Let $R = R_3 \ltimes P$ be the idealization of the R_3 -module P. Then R is a Noetherian local ring with the unique maximal ideal $\mathfrak{m} = \mathfrak{n} \times P$. Since R_3 is complete under \mathfrak{n} -adic topology, Ris complete under \mathfrak{m} -adic topology, see [AW, Theorem 4.11]. Since R_3 and P are unmixed of dimension d, we can check that R is unmixed of dimension d. Since R is completed and unmixed, we have by Lemma 4.1 that

$$\dim \operatorname{nCM}(R) = \max_{i < d} \dim_R H^i_{\mathfrak{m}}(R).$$

Consider the following exact sequence $0 \to P \xrightarrow{\epsilon} R \xrightarrow{\rho} R_3 \to 0$, where $\epsilon(x) = (0, x)$ for all $x \in P$ and $\rho(a, x) = a$ for all $(a, x) \in R$. From the induced long exact sequence of local cohomology modules, we can check that

$$\dim_R H^{r+1}_{\mathfrak{m}}(R) = \dim_R H^{r+1}_{\mathfrak{m}}(P) = \dim_{R_3} H^{r+1}_{\mathfrak{n}}(P) = r$$

and $\dim_R H^i_{\mathfrak{m}}(R) \leq s < r$ for all $i \neq r+1$ and $i \neq d$. Thus, $\dim \operatorname{nCM}(R) = r$. Since $r \leq d-2$ and $\dim_{R_3} Q = r$, we have by the exact sequence $0 \to P \to R_3 \to Q \to 0$ that $K_P \cong K_{R_3}$. Moreover, since K_{R_2} is not Cohen-Macaulay, we have by Lemma 4.4(a) that $\dim \operatorname{nCM}(K_{R_3}) = s + \dim \operatorname{nCM}(K_{R_2}) = s$. Hence, by Lemma 4.1 and Lemma 4.5, we have

$$\dim nCM(K_R) = \max\{\dim nCM(K_{R_3}), \dim nCM(K_P)\} = \dim nCM(K_{R_3}) = s$$

Acknowledgment. We wish to express our gratitude to Professor Shiro Goto and Professor Shin-ichiro Iai for many useful suggestions.

References

- [AW] D. D. Anderson, M. Winders, Idealization of a module, J. Commutative Algebra, 1 (2009), 1-55.
- [A] Y. Aoyama, On the depth and the projective dimension of the canonical module, Japan.
 J. Math., 6 (1980), 61-66.
- [AG] Y. Aoyama, S. Goto, On the endomorphism ring of the canonical module, J. Math. Kyoto Univ., 25 (1985), 21-30.
- [BS] M. Brodmann, R. Y. Sharp, "Local cohomology: an algebraic introduction with geometric applications", Cambridge University Press, 1998.
- [BS1] M. Brodmann, R. Y. Sharp, On the dimension and multiplicity of local cohomology modules, Nagoya Math. J., 167 (2002), 217-233.
- [BN] M. Brodmann, L. T. Nhan, On canonical Cohen-Macaulay modules, J. Algebra, 371 (2012), 480-491.
- [BN1] M. Brodmann, L. T. Nhan, A finiteness result for associated primes of certain Extmodules, Comm. Algebra, 36 (2008), 1527-1536.

- [C] N. T. Cuong, On the least degree of polynomials bounding above the differences between lengths and multiplicities of certain systems of parameters in local rings, Nagoya Math. J., 125 (1992), 105-114.
- [CMN] N. T. Cuong, M. Morales, L. T. Nhan, The finiteness of certain sets of attached prime ideals and the length of generalized fractions, J. Pure Appl. Algebra, 189, (2004), 109-121.
- [CN] N. T. Cuong, L. T. Nhan, On the Noetherian dimension of Artinian modules, Vietnam J. Math., 30 (2002), 121-130.
- [CNN] N. T. Cuong, L. T. Nhan, N. T. K. Nga, On pseudo supports and non Cohen-Macaulay locus of a finitely generated module, J. Algebra, 323 (2010), 3029-3038.
- [CST] N. T. Cuong, P. Schenzel, N. V. Trung, Verallgemeinerte Cohen Macaulay moduln, Math. Nachr., 85 (1978), 57-75.
- [DN] T. D. Dung, L. T. Nhan, A uniform bound of irreducibility index of good parameter ideals for certain class of modules, Preprint.
- [L] N. T. H. Loan, On canonical modules of idealizations, Journal of Commutative Algebra, 9 (2017), 107-117.
- [LN] N. T. H. Loan, L. T. Nhan, On generalized Cohen-Macaulay canonical modules, Comm. Algebra, 41 (2013), 4453-4462.
- [Go] S. Goto, On Buchsbaum ring, J. Algebra, 67 (1980), 272-279.
- [GN] S. Goto, L. T. Nhan, On the sequentially polynomial type of modules, J. Math. Soc. Japan, 70 (2018), 363-383.
- [Mac] I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Mathematica., **11** (1973).
- [Mat] H. Matsumura, "Commutative ring theory", Cambridge University Press, 1986.
- [Na] M. Nagata, "Local rings", Interscience, New York, 1962.
- [Nh] L. T. Nhan, A remark on the monomial conjecture and Cohen-Macaulay canonical modules, Proc. Amer. Math. Soc., 134 (2006), 2785-2794.
- [Ro] R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford, 26 (1975), 269-273.
- [Sch1] P. Schenzel, Standard systems of parameters and their blowing-up rings, Journal für die reine und angewandte Mathematik, 344 (1983) 201-220.
- [Sch2] P. Schenzel, On Birational Macaulay fications and Cohen-Macaulay canonical modules, J. Algebra, 275 (2004), 751-770.
- [S] R. Y. Sharp, Some results on the vanishing of local cohomology modules, Proc. London Math. Soc., 30 (1975), 177-195.

- [SH] R. Y. Sharp, M. A. Hamieh, Lengths of certain generalized fractions, J. Pure Appl. Algebra, 38 (1985), 323-336.
- [Tr] N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J., 102 (1986), 1-49.