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Abstract

An adjusted sparse tensor product spectral Galerkin approximation method based on spherical
harmonics is introduced and analyzed for solving pseudodifferential equations on the sphere with
random input data. These equations arise from geodesy where the sphere is taken as a model of the
earth. Numerical solutions to the corresponding k-th order statistical moment equations are found
in adjusted sparse tensor approximation spaces which are accordingly designed to the regularity of
the data and the equation. Established convergence theorem shows that the adjusted sparse tensor
Galerkin discretization is superior not only to the full tensor product but also to the standard sparse
tensor counterpart when the data’s statistical moments are of mixed unequal regularity. Numerical
experiments illustrate our theoretical results.

Keywords: Stochastic pseudodifferential equations, statistical moments, hyperbolic cross spectral
methods
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1 Introduction

Pseudodifferential operators have long been used [12, 17] as a modern and powerful tool to tackle lin-
ear boundary-value problems. Svensson [33] introduces this approach to geodesists who study [9, 11]
these problems on the sphere which is taken as a model of the earth. Together with powerful comput-
ers, advanced numerical schemes are capable of producing highly accurate and efficient deterministic
numerical simulations, provided that the problem data are known exactly. However, in reality the
problem data are prone to uncertainty for many reasons. One is the unavoidable error due to imper-
fect measurement devices. Secondly, the error arises when estimating the problem parameters based
on a large but finite number of system samples. Finally, parameters of the system originate from a
mathematical model which is itself only an approximation of the actual process. Under such circum-
stances, highly accurate results of a single deterministic simulation for one particular set of problem
parameters are of limited use. In this paper we suggest and analyze a natural and efficient numerical
approach to solve pseudodifferential equations on the sphere, accounting for uncertainty in the input
data.

We consider the following pseudifferential equation

Lu = f on S, (1.1)
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where S is the unit sphere, i.e., S =
{
x ∈ R3 : |x| = 1

}
and L is a pseudodifferential operator that

assigns to any distribution v defined on S a distribution

Lv =
∞∑
`=0

∑̀
m=−`

L̂(`)v̂`,mY`,m. (1.2)

Here, the sequence
¶
L̂(`)

©∞
`=0

is the spherical symbol of L, and v̂`,m is the Fourier coefficient of v
with respect to the spherical harmonic Y`,m for all ` ∈ N and m = −`, . . . , `. Precise definitions of
pseudodifferential operators, Fourier coefficients and spherical harmonics are presented in Section 2.

Equation (1.1) with deterministic input data f has been solved by using different approximation
methods. They could be continuous piecewise bilinear basis functions [14], spherical radial basis
functions [19, 24, 25, 34] or spherical splines [26]. In this paper, spaces of spherical harmonics are
used to solve (1.1) with random right-hand side. These functions are important in many theoretical
and practical applications, particularly in the computation of atomic orbital electron configurations,
representation of gravitational fields, geoids, and the magnetic fields of planetary bodies and stars,
and characterization of the cosmic microwave background radiation, see e.g. [6, 10, 18, 27] and the
references therein. The representation (1.2) results in diagonal Galerkin matrices of L with respect
to bases of spherical harmonics. This property shows that subsets of spherical harmonics are very
natural Galerkin bases to solve pseudodifferential equations on the sphere. In this paper, spherical
harmonics will appear to be even more important for the case of the random data f when numerical
solutions of the randomized problem will lead to a high-dimensional formulation, suffering from the
curse of dimensionality. Under such circumstances, diagonality of the Galerkin matrix will make the
solution of the linear system fast and simple.

In the present paper we assume that the input data (and therefore the solution) depends on a
“random event” ω ∈ Ω (assuming (Ω,Σ,P) is the underlying probability space) which allows to treat
f as a random field being a measurable mapping

f :

®
Ω → H−α(S),
ω 7→ f(·, ω).

(1.3)

This together with the continuity of the inverse of L implies that the solution u is a random field too.
Since parametrization of Ω requires in general infinitely many variables, numerical solution to (1.1)
leads to an infinite dimensional problem (see e.g. [7] for the case of a random coefficient). By a
suitable truncation procedure [31] the number of stochastic dimensions can be reduced to a finite
number, which, however, can still be large. This together with the tensor product discretization will
lead to a prohibitive number of unknowns. Practical solution of this high-dimensional problem makes
mandatory the use of sparse/adaptive discretization methods and specific solution procedures, see e.g.
[15, 16, 28] and the references therein.

In many applications the solution u(x, ω) is not of interest as a function of ω. Frequently the
mean field Eu(x) :=

∫
Ω u(x, ω)dP(ω), the covariance Cu(x, y) := E[(u(x, ω)−Eu(x))(u(y, ω)−Eu(y))],

and higher order statistical moments Mku(x1, . . . , xk) are the quantities of interest. Tensorization of
(1.1) and integration over the set of elementary events Ω provides a formulation whose solution is the
quantity of interest itself [29, 30, 35]:

(L⊗ · · · ⊗ L)︸ ︷︷ ︸
k times

Mku =Mkf, (1.4)

Numerical solutions to the equation (1.4) have a huge challenge: the solution Mku is a function on
a 2k-dimensional manifold S × · · · × S (k times) and this yields to an exponential in k growth of
complexity for the full tensor product discretizations. An efficient discretization of (1.4) must be
carefully adjusted to the regularity of Mku and also to the nature of the equation itself.

Extending the approach in [2, 5] we propose in this paper an adjusted sparse tensor product
spectral discretization of (1.4) based on suitable combination of bases of spherical harmonics on
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individual spheroids S. We first consider the case when Mkf has a finite equal mixed regularity,
i.e, Mkf ∈ Hs(S) ⊗ · · · ⊗ Hs(S) for some s ∈ R. We prove that the Galerkin discretization by
standard sparse tensor product spherical harmonics with degree from a standard hyperbolic cross
achieves the same convergence rate as the discretization by the space of full tensor product spherical
harmonics (see Theorem 3.5). This yields a significant gain in the convergence rate, expressed in
terms of the total number of unknowns since the cardinality of the standard sparse space grows
like 2k

(k−1)!T
2(ln T + k ln 2)k−1 (see Lemma 3.6) compared to the cardinality (T + 1)2k of the full

space. When the right hand side Mkf (and hence the Mku) has an unequal mixed regularity, i.e.,
Mku ∈ Hs1(S) ⊗ · · · ⊗Hsk(S) where s1 ≤ . . . ≤ sk, we propose the use of an adjusted sparse tensor
product spectral Galerkin approximation which follows an adjusted hyperbolic cross of degrees. This
adjustment of degrees is based on not only the regularity of the input data but also on the order of the
operator. This adjusted sparse tensor product approximation space produces the optimal convergence
rate (see Theorem 4.3) with a minimal number of required unknowns. We prove an upper bound for the
dimension of the adjusted sparse tensor product approximation space (see Theorem 4.1) which shows
that to achieve the optimal convergence rate, the adjusted sparse approximation method requires

2ν+1T 2

ν!
[ln T + (ν + 1) ln 2]ν × exp

Ñ
k∑
ν+2

s− α
sj − s

Å
3

2

ã− 2(sj−s)
s−α

é
unknowns if the smoothness satisfies s = s1 = . . . = sν+1 < sν+2 ≤ . . . ≤ sk, see Corollary 4.4.

The structure of the paper is as follows. In Section 2, we first review Sobolev spaces on the
unit sphere and tensor products of these spaces. We then present pseudodifferential operators on the
unit sphere and problems with random data. In Section 3, we investigate the use of standard sparse
tensor product spectral Galerkin method in solving statistical moment equations which arises from
pseudifferential equations with random input data. In Section 4, we introduce nonuniform (adjusted)
hyperbolic cross sets and approximation spaces of spherical harmonics based on nonuniform hyperbolic
scross sets. These adjusted sparse tensor product approximation spaces are then used to solve k-order
statistical moment equations of pseudifferential equations on spheres. The final section (Section 5)
presents our numerical experiments which illustrate our theoretical results.

Throughout, we adopt the following notation: for any positive real numbers x, y we write x . y
if there exists a constant C independent of any parameters which x and y might depend on, so that
x ≤ Cy.

2 Preliminaries

2.1 Sobolev spaces

Throughout this paper, we denote by S the unit sphere in R3, i.e., S := {x ∈ R3 : |x| = 1} where
| · | is the Euclidean norm in R3. A spherical harmonic of order ` on S is the restriction to S of a
homogeneous harmonic polynomial of degree ` in R3. The space of all spherical harmonics of order `
is the eigenspace of the Laplace–Beltrami operator ∆S corresponding to the eigenvalue λ` = −`(`+1).
The dimension of this space being 2` + 1, see e.g. [20], one may choose for it an orthonormal basis
{Y`,m}`m=−`. The collection of all the spherical harmonics Y`,m, m = −`, . . . , ` and ` = 0, 1, . . ., forms
an orthonormal basis for L2(S).

For s ∈ R, the Sobolev space Hs(S) is defined as usual by

Hs(S) :=
{
v ∈ D′(S) :

∞∑
`=0

∑̀
m=−`

(`+ 1)2s|v̂`,m|2 <∞
}
,

where D′(S) is the space of distributions on S and

v̂`,m :=

∫
S
v(x)Y`,m(x) dσx
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are the Fourier coefficients of v. Here dσx is the element of surface area. The space Hs(S) is equipped
with the inner product

〈v, w〉Hs(S) :=
∞∑
`=0

∑̀
m=−`

(`+ 1)2sv̂`,m“w`,m.
and the norm

‖v‖Hs(S) :=
√
〈v, v〉Hs(S) =

Ñ
∞∑
`=0

∑̀
m=−`

(`+ 1)2s|v̂`,m|2
é1/2

. (2.1)

When s = 0 we write 〈·, ·〉 instead of 〈·, ·〉H0(S). This is in fact the L2(S)-inner product. We note
that

| 〈v, w〉Hs(S) | ≤ ‖v‖Hs(S) ‖w‖Hs(S) ∀v, w ∈ Hs(S), ∀s ∈ R, (2.2)

and

‖v‖Hs1 (S) = sup
w∈Hs2 (S)
w 6=0

〈v, w〉
H
s1+s2

2 (S)

‖w‖Hs2 (S)

∀v ∈ Hs1(S), ∀s1, s2 ∈ R. (2.3)

We now introduce tensor products of Sobolev spaces. Given r, s ∈ R, the Sobolev space Hr,s
mix(S2)

is defined to be the space of all distributions v on S2 := S× S satisfying

∞∑
`1=0

∞∑
`2=0

`1∑
m1=−`1

`2∑
m2=−`2

(1 + `1)2r(1 + `2)2s
∣∣∣v̂(`1,`2),(m1,m2)

∣∣∣2 <∞, (2.4)

with the Fourier coefficients

v̂(`1,`2),(m1,m2) :=

∫
S

∫
S
v(x,y)Y`1,m1(x)Y`2,m2(y) dσx dσy. (2.5)

The inner product on Hr,s
mix(S2) is given by

〈v, w〉Hr,s
mix(S2) :=

∞∑
`1=0

∞∑
`2=0

`1∑
m1=−`1

`2∑
m2=−`2

(1 + `1)2r(1 + `2)2sv̂(`1,`2),(m1,m2)“w(`1,`2),(m1,m2) (2.6)

for any v, w ∈ Hr,s
mix(S2) and ‖v‖Hr,s

mix(S2) := 〈v, v〉1/2
Hr,s
mix(S2)

.

We denote by
⊗k
i=1Xi the tensor product of separable Hilbert spaces Xi, for i = 1, . . . , k. For the

corresponding inner products there holds (see, e.g., [1, page 298])〈
k⊗
i=1

vi,
k⊗
i=1

wi

〉
⊗k

i=1
Xi

=
k∏
i=1

〈vi, wi〉Xi ∀vi, wi ∈ Xi, i = 1, . . . , k, (2.7)

and thus

‖v1 ⊗ · · · ⊗ vk‖⊗k
i=1

Xi
=

k∏
i=1

‖vi‖Xi ∀vi ∈ Xi, i = 1, . . . , k. (2.8)

In the case Xi = X for i = 1, . . . , k, we denote X(k) :=
⊗k

i=1X. Noting (2.8), there holds

‖v1 ⊗ · · · ⊗ vk‖X(k) = ‖v1‖X · · · ‖vk‖X (2.9)

for every v1, . . . , vk ∈ X. Relation (2.7) and definition (2.6) provide the isometry Hr(S) ⊗ Hs(S) =
Hr,s
mix(S2). In what follows, we identify the space Hr,s

mix(S2) and the tensor product Hr(S) ⊗ Hs(S).
By this agreement, we define for any (r1, . . . , rk) ∈ Rk and k ≥ 2 the tensor product space on
Sk := S× . . .× S by

Hr1,...,rk
mix (Sk) :=

k⊗
i=1

Hri(S).
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Noting (2.6), the corresponding inner product and norm in Hr1,...,rk
mix (Sk) are defined by

〈v, w〉Hr1,...,rk
mix (Sk) :=

∞∑
`=0

∑̀
m=−`

k∏
i=1

(1 + `i)
2ri v̂`,m“w`,m, v, w ∈ Hr1,...,rk

mix (Sk), (2.10)

and
‖v‖Hr1,...,rk

mix (Sk) := 〈v, v〉1/2
H
r1,...,rk
mix (Sk)

, v ∈ Hr1,...,rk
mix (Sk). (2.11)

Here, we use the following notations

∞∑
`=0

∑̀
m=−`

:=
∞∑
`1=0

. . .
∞∑
`k=0

`1∑
m1=−`1

. . .
`k∑

mk=−`k

,

and

v̂`,m :=

∫
Sk
v(x1, . . . ,xk)Y`1,m1(x1) · · ·Y`k,mk(xk) dσx1 . . . dσxk , (2.12)

where ` = (`1, . . . , `k) and m = (m1, . . . ,mk). In the case r1 = · · · = rk = r, we denote Hr
mix(Sk)

instead of Hr,...,r
mix (Sk). Inequality (2.2) and the identity (2.3) combined with above definitions imply

〈v, w〉Hr1,...,rk
mix (Sk) ≤ ‖v‖Hr1,...,rk

mix (Sk) ‖w‖Hr1,...,rk
mix (Sk) ∀v, w ∈ Hr1,...,rk

mix (Sk) (2.13)

for any (r1, . . . , rk) ∈ Rk and

‖v‖Hr1,...,rk
mix (Sk) = sup

w∈H
t1,...,tk
mix

(Sk)
w 6=0

〈v, w〉
H
r1+t1

2 ,...,
rk+tk

2
mix (Sk)

‖w‖
H
t1,...,tk
mix (Sk)

∀v ∈ Hr1,...,rk
mix (Sk) (2.14)

for any (r1, . . . , rk) and (t1, . . . , tk) in Rk.

2.2 Pseudodifferential operators

Let {L̂(`)}`≥0 be a sequence of real numbers. A pseudodifferential operator L is a linear operator that
assigns to any v ∈ D′(S) a distribution

Lv :=
∞∑
`=0

∑̀
m=−`

L̂(`)v̂`,mY`,m. (2.15)

The sequence {L̂(`)}`≥0 is referred to as the spherical symbol of L. Let K(L) := {` : L̂(`) = 0}. Then

kerL = span{Y`,m : ` ∈ K(L), m = −`, . . . , `}.

Denoting M := dim kerL, we assume that 0 ≤M <∞. In this paper, we assume that L is a strongly
elliptic pseudodifferential operator of order 2α, i.e.,

C1(`+ 1)2α ≤ L̂(`) ≤ C2(`+ 1)2α for all ` /∈ K(L), (2.16)

for some positive constants C1 and C2.
More general pseudodifferential operators can be defined via Fourier transforms by using local

charts, see e.g., [13, 23]. It can be easily seen that if L is a pseudodifferential operator of order 2α
then L : Hs+α → Hs−α is bounded for all s ∈ R.

The following commonly seen pseudodifferential operators are strongly elliptic, see [33].
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• The Laplace–Beltrami operator (with the minus sign) is an operator of order 2 and has as symbol
L̂(`) = `(`+ 1). This operator is the restriction of the Laplacian on the sphere.

• The hypersingular integral operator (with the minus sign) is an operator of order 1 and has as
symbol L̂(`) = `(`+ 1)/(2`+ 1). This operator arises from the boundary-integral reformulation
of the Neumann problem with the Laplacian in the interior or exterior of the sphere.

• The weakly-singular integral operator is an operator of order −1 and has as symbol L̂(`) =
1/(2`+1). This operator arises from the boundary-integral reformulation of the Dirichlet problem
with the Laplacian in the interior or exterior of the sphere.

For a given function f , the pseudodifferential equation Lu = f is not uniquely solvable if the set K(L)
is nonempty. To assure the unique solvability of the equation, additional conditions must be included.
These conditions could be the introduction of an unisolvent system of M additional equations, or the
use of a new pseudodifferential equation L∗u = f in which L∗ is a strongly elliptic pseudodifferential
operator defined by

L̂∗(`) =

{
L̂(`) if ` /∈ K(L)

(1 + `)2α if ` ∈ K(L),

see, e.g., [26]. Noting (2.16), there holds

C1(1 + `)2α ≤ L̂∗(`) ≤ C2(1 + `)2α ∀` ≥ 0.

For the sake of presentational simplicity, we consider in this paper the pseudodifferential equation

Lu = f on S, (2.17)

where f ∈ H−α(S) is a given function and the operator L satisfies

C1(1 + `)2α ≤ L̂(`) ≤ C2(1 + `)2α ∀` ≥ 0. (2.18)

We define the bilinear form a : Hα(S)×Hα(S)→ R by

a(v, w) := 〈Lv,w〉 , v, w ∈ Hα(S). (2.19)

The corresponding variational formulation of (2.17) is: Find u ∈ Hα(S) satisfying

a(u, v) = 〈f, v〉 ∀v ∈ Hα(S). (2.20)

Noting (2.1) and (2.18), the bilinear form a(·, ·) is bounded and coercive in Hα(S). The well-known
Lax–Milgram theorem confirms the unique existence of the solution u ∈ Hα(S) of (2.20).

2.3 Problems with random data

In what follows we consider the equation (2.17) for random loading f , which leads to random solution
u. Let (Ω,Σ,P) be a probability space consisting of the space of elementary events Ω, σ-algebra of its
subsets Σ and the probability measure P on Σ. Suppose that f is a random field, i.e. a measurable
mapping satisfying

f :

{
Ω→ H−α(S)

ω 7→ f(·, ω).

Since the solution operator L−1 : H−α(S)→ Hα(S) is continuous, the solution u := L−1f is measurable
and satisfies

u :

{
Ω→ Hα(S)

ω 7→ u(·, ω).
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In order to introduce the notion of a k-th statistical moment of a random field we define (follow-
ing [30, 35]) for a positive integer k and a separable Hilbert space X a Bochner space

Lk(Ω, X) := {v : Ω→ X :

∫
Ω
‖v(ω)‖kX dP(ω) < +∞}

equipped with the norm

‖v‖Lk(Ω,X) :=

Å∫
Ω
‖v(ω)‖kX dP(ω)

ã1/k

.

Definition 2.1. Let v ∈ Lk(Ω, X). The k-th order moment Mkv ∈ X(k) of v is given by

Mkv :=

∫
Ω

Ä
v(ω)⊗ · · · ⊗ v(ω)︸ ︷︷ ︸

k times

ä
dP(ω).

By (2.9), the k-th order momentMkv is well defined for any v ∈ Lk(Ω, X). Let u(ω) be a random
solution of (2.17) with a random right hand side f(ω). We consider the tensor product operator
L(k) := L⊗ · · · ⊗ L (k times) which is a linear mapping

L(k) : Hα
mix(Sk)→ H−αmix(Sk), (2.21)

see [35, Proposition 2.4] for more details. Tensorization of Lu(ω) = f(ω) yields for every fixed
elementary event ω ∈ Ω

L(k)
Ä
⊗ki=1 u(ω)

ä
= ⊗ki=1f(ω) in H−αmix(Sk). (2.22)

Taking the mean of (2.22) yields the deterministic k-th statistical moment problem: Given Mkf ∈
H−αmix(Sk), find Mku ∈ Hα

mix(Sk) satisfying

L(k)Mku =Mkf. (2.23)

Noting (2.21), the variational counterpart of (2.23) is: GivenMkf ∈ H−αmix(Sk), findMku ∈ Hα
mix(Sk)

satisfying
A (Mku, v) =

¨¨
Mkf, v

∂∂
∀v ∈ Hα

mix(Sk), (2.24)

where A (·, ·) =
¨¨
L(k)·, ·

∂∂
is the bilinear form and 〈〈·, ·〉〉 is the H−αmix(Sk)×Hα

mix(Sk) duality pairing.
Proposition 2.4 in [35] implies

Lemma 2.2. The bilinear form A (·, ·) : Hα
mix(Sk)×Hα

mix(Sk)→ R is bounded and Hα
mix(Sk)-elliptic,

i.e.,
A (v, w) ≤ Ck1 ‖v‖Hα

mix(Sk) ‖w‖Hα
mix(Sk) , (2.25)

and
Ck2 ‖v‖

2
Hα
mix(Sk) ≤ A (v, v) (2.26)

for all v, w ∈ Hα
mix(Sk).

The continuity and coercivity of the bilinear form A (·, ·) assure the unique solvability of (2.24).

3 Standard sparse tensor product spectral Galerkin method

The choice of suitable finite dimensional approximation subspaces to solve the problem (2.23) numer-
ically is one of the main ingredients deciding the efficiency of computation. The most naive option is
to find Galerkin solutions in full tensor product approximation spaces. For every positive integer T ,
we denote

δT :=
¶
` = (`1, . . . , `k) ∈ Nk : `i ≤ T for i = 1, . . . , k

©
, (3.1)
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and
ST := span

¶
Y`,m : ` ∈ δT , mi = −`i, . . . , `i for i = 1, . . . , k

©
, (3.2)

where
Y`,m(x1, . . . ,xk) := Y`1,m1(x1) · · ·Y`k,mk(xk), (x1, . . . ,xk) ∈ Sk.

It is obvious that

dim (ST ) = (T + 1)2k. (3.3)

Note that
¶
Y`,m : ` ∈ Nk,m = −`, . . . , `

©
forms an orthogonal basis of H0

mix(Sk). For any distribution
v defined on S of the form

v =
∞∑
`=0

∑̀
m=−`

v̂`,mY`,m, (3.4)

we denote by PT v the truncated series

PT v :=
∑
`∈δT

∑̀
m=−`

v̂`,mY`,m. (3.5)

This truncation is the orthogonal projection into the space ST with respect to 〈·, ·〉H0
mix(Sk).

The following lemma, which is included here for completeness, shows the projection error
‖v − PT v‖Hα

mix(Sk) when

v ∈
k⋂
j=1

Hα,...,

jth
↓
s ,...,α

mix (Sk).

Lemma 3.1. For every v ∈ ⋂kj=1H
α,...,

jth
↓
s ,...,α

mix (Sk), where s ≥ α, there holds

‖v − PT v‖Hα
mix(Sk) ≤

1

(T + 2)s−α

Ñ
k∑
j=1

‖v‖2
jth

↓
Hα,...,s,...,α
mix (Sk)

é1/2

. (3.6)

Proof. Noting (3.5) and the definition of δT (3.1), we have that

‖v − PT v‖2Hα
mix(Sk) =

∑
`/∈δT

∑̀
m=−`

k∏
i=1

(1 + `i)
2α |v̂`,m|2

=
k∑
j=1

Ñ
∞∑
`1=0

· · ·
∞∑

`j=T +1

· · ·
∞∑
`k=0

∑̀
m=−`

k∏
i=1

(1 + `i)
2α |v̂`,m|2

é
.

Since v ∈ Hα,...,

jth
↓
s ,...,α

mix (Sk) for every j = 1, . . . , k, there holds

‖v − PT v‖2Hα
mix(Sk) =

k∑
j=1


∞∑
`1=0

· · ·
∞∑

`j=T +1

· · ·
∞∑
`k=0

∑̀
m=−`

(1 + `j)
2s

k∏
i=1
i 6=j

(1 + `i)
2α

(1 + `j)2s−2α
|v̂`,m|2


≤ 1

(T + 2)2(s−α)

Ñ
k∑
j=1

‖v‖2
jth

↓
Hα,...,s,...,α
mix (Sk)

é
.
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The inequality (3.6) is proved. 2

We consider the Galerkin formulation: Find µT ∈ ST satisfying

A (µT , v) =
¨¨
Mkf, v

∂∂
∀v ∈ ST . (3.7)

The unique existence of the Galerkin solution µT ∈ ST is guaranteed by the Lax–Milgram theorem,
noting the boundedness and coercivity of the bilinear form A (·, ·) (see Lemma 2.2). Céa’s lemma and
the approximation property of ST (Lemma 3.1) imply the follwing lemma.

Lemma 3.2. Let s be a real number satisfying s ≥ α. Assume that Mku is the solution of (2.24)

and µT ∈ ST is the full tensor Galerkin solution of (3.7). If Mku ∈ ⋂kj=1H
α,...,

jth
↓
s ,...,α

mix (Sk) for some
s ≥ α, then ∥∥∥Mku− µT

∥∥∥
Hα
mix(Sk)

≤ 1

(T + 2)s−α

Ñ
k∑
j=1

‖Mku‖2
jth

↓
Hα,...,s,...,α
mix (Sk)

é1/2

. (3.8)

The error estimation (3.8) shows that if s > α, the approximate solution µT converges to the
weak solution Mku when T goes to infinity. However, the size of the discretized problem (3.7) grows
exponentially when the order k increases, see (3.3). The error estimation (3.8) can also be written as

∥∥∥Mku− µT
∥∥∥
Hα
mix(Sk)

≤
Ç

1

dim (ST )

å s−α
2k

Ñ
k∑
j=1

‖Mku‖2
jth

↓
Hα,...,s,...,α
mix (Sk)

é1/2

, (3.9)

noting (3.3). We observe that the convergence rate in (3.9) depends heavily on the number k which
can lead to a prohibitive number of unknowns in the corresponding discretized problems. This effect
is known as the curse of dimensionality. In practical applications, approximation spaces must be
adapted to the solution of the problem in order to avoid taking unnecessarily many degrees of freedom
which are responsible for consuming most of computational resources but contribute insignificantly to
approximation quality [22].

In the remainder of this section, we present the use of a standard hyperbolic cross approximation in
solving pseudifferential equations on the sphere with random input data. This approximation method
has been used to solve the Dirichlet-to-Neumann equation arising when solving the Neumann problem
exterior to a spheroid with random boundary condition, see [4]. Let T be a positive real number. We
introduce the uniform hyperbolic cross index set

δeT :=

®
` = (`1, . . . , `k) ∈ Nk :

k∏
i=1

(1 + `i) ≤ T
´
, (3.10)

and the associated finite element space

SeT := span
¶
Y`,m : ` ∈ δeT , mi = −`i, . . . , `i for i = 1, . . . , k

©
. (3.11)

For any

v =
∞∑
`=0

∑̀
m=−`

v̂`,mY`,m,

we define by P eT v the truncated series

P eT v :=
∑
`∈δeT

∑̀
m=−`

v̂`,mY`,m (3.12)

which is the orthogonal projection onto SeT w.r.t. the inner product 〈·, ·〉H0
mix(Sk). The following

lemma, which is proved in [4], allows to quantify the projection error.
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Lemma 3.3. Let T be a positive integer. Let s and t be real numbers such that t ≤ s. For any
v ∈ Hs

mix(Sk), there holds

‖v − P eT v‖Ht
mix(Sk) ≤

1

(T + 1)s−t
‖v‖Hs

mix(Sk) . (3.13)

Lemma 3.3 gives the approximation property of the projection P eT in the case that T is a positive
integer. For technical reasons, we also need the aproximation error when T is a positive real number
which is presented in the next lemma.

Lemma 3.4. Let T be a positive real number. Let s and t be real numbers such that t ≤ s. For any
v ∈ Hs

mix(Sk), there holds

‖v − P eT v‖Ht
mix(Sk) ≤

1

T s−t
‖v‖Hs

mix(Sk) . (3.14)

Proof. Noting (3.10) and (3.11), there hold

δebT c ⊂ δ
e
T and SebT c ⊂ S

e
T ,

where bT c := max {n ∈ Z : n ≤ T }. Since P eT v is the best approximation of v in the space SeT w.r.t.
the ‖·‖Ht

mix(Sk), we then have

‖v − P eT v‖Ht
mix(Sk) ≤ ‖v − η‖Ht

mix(Sk) ∀η ∈ SeT . (3.15)

Noting that P ebT cv ∈ S
e
bT c ⊂ S

e
T , it follows from (3.15) that

‖v − P eT v‖Ht
mix(Sk) ≤

∥∥∥v − P ebT cv∥∥∥Ht
mix(Sk)

. (3.16)

Applying Lemma 3.3 for bT c and using (3.16), we obtain

‖v − P eT v‖Ht
mix(Sk) ≤

∥∥∥v − P ebT cv∥∥∥Ht
mix(Sk)

≤ 1

(bT c+ 1)s−t
‖v‖Hs

mix(Sk)

≤ 1

T s−t
‖v‖Hs

mix(Sk) , (3.17)

finishing the proof of the lemma.
2

Lemma 3.3 suggests that the sparse tensor product space SeT can be used to solve the k-th prob-
lem (2.23) approximately. We consider the following Galerkin formulation: Given Mkf ∈ H−αmix(Sk),
find µeT ∈ SeT satisfying

A (µeT , v) =
¨¨
Mkf, v

∂∂
∀v ∈ SeT . (3.18)

The unique existence of the Galerkin solution µeT of (3.18) is assured due to the boundedness and
coercivity of the bilinear form A (·, ·) (see Lemma 2.2). Recalling (2.24) and (3.18), we have

A (Mku− µeT , v) = 0 ∀v ∈ SeT . (3.19)

We have the following a priori convergence estimate.

Lemma 3.5. Let T be a positive integer. Assume that Mku and µeT are the weak and approximate
solutions of the k-th problem (2.23) defined by (2.24) and (3.18), respectively. Let s and t be real
numbers satisfying t ≤ α ≤ s. If Mkf ∈ Hs−2α

mix (Sk), then∥∥∥Mku− µeT
∥∥∥
Ht
mix(Sk)

.
1

(T + 1)s−t

∥∥∥Mkf
∥∥∥
Hs−2α
mix (Sk)

(3.20)

with a constant independent of T .
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Proof. Noting the continuity and Hα
mix(Sk)-ellipticity of A (Lemma 2.2), Céa’s Lemma gives∥∥∥Mku− µeT
∥∥∥
Hα
mix(Sk)

. inf
v∈SeT

∥∥∥Mku− v
∥∥∥
Hα
mix(Sk)

.

Combining this and the result in Lemma 3.3 we derive∥∥∥Mku− µeT
∥∥∥
Hα
mix(Sk)

.
1

(T + 1)s−α

∥∥∥Mku
∥∥∥
Hs
mix(Sk)

. (3.21)

Assume that t < α. The duality (2.14), (2.10) and (2.18) yield

∥∥∥Mku− µeT
∥∥∥
Ht
mix(Sk)

= sup
v∈H2α−t

mix
(Sk)

v 6=0

¨
Mku− µeT , v

∂
Hα
mix(Sk)

‖v‖H2α−t
mix (Sk)

. sup
v∈H2α−t

mix
(Sk)

v 6=0

A (Mku− µeT , v)

‖v‖H2α−t
mix (Sk)

. (3.22)

This together with the Galerkin orthogonality (3.19) and Lemma 2.2 implies∥∥∥Mku− µeT
∥∥∥
Ht
mix(Sk)

. sup
v∈H2α−t

mix
(Sk)

v 6=0

A (Mku− µeT , v − P eT v)

‖v‖H2α−t
mix (Sk)

.
∥∥∥Mku− µeT

∥∥∥
Hα
mix(Sk)

sup
v∈H2α−t

mix
(Sk)

v 6=0

‖v − P eT v‖Hα
mix(Sk)

‖v‖H2α−t
mix (Sk)

. (3.23)

Recalling (3.13) and (3.21) we obtain∥∥∥Mku− µeT
∥∥∥
Ht
mix(Sk)

.
1

(T + 1)s−t

∥∥∥Mku
∥∥∥
Hs
mix(Sk)

=
1

(T + 1)s−t

∥∥∥∥ÄL−1
ä(k)Mkf

∥∥∥∥
Hs
mix(Sk)

.

The inequality (3.20) follows then by the continuity of the operator (L−1)(k) : Hs−2α
mix (Sk)→ Hs

mix(Sk).
2

The results in Lemmas 3.5 and 3.2 show that the standard sparse hyperbolic cross approximation
space SeT produces the same convergence rate as the full tensor product approximation space ST when
the right hand side Mkf is of equal mixed regularity. In the following lemma, we prove an upper
bound for the dimension of SeT which shows a significant advantage of the standard sparse tensor
product approximation method over the naive full tensor product one.

Lemma 3.6. The dimension of the standard sparse hyperbolic cross approximation space defined
by (3.11) is bounded above by

dim (SeT ) ≤ 2k

(k − 1)!
T 2 (ln T + k ln 2)k−1 ∀T ≥ T ∗, (3.24)

for some positive integer T ∗ which depends only k.

Proof. Recalling the definition of SeT in (3.11), the dimension of SeT is estimated by

dim (SeT ) =
∑
`∈δeT

k∏
i=1

(1 + 2`i) ≤ 2k
∑
`∈δeT

k∏
i=1

(1 + `i)

≤ 2kT card (δeT ) . (3.25)

11



Applying Theorem 3.5 in [3], there exists a T ∗ depending only on k such that for every T ≥ T ∗, there
holds

card (δeT ) <
T (ln T + k ln 2)k

(k − 1)! (ln T + k ln T + k − 1)
≤ T (ln T + k ln 2)k−1

(k − 1)!
. (3.26)

It follows from (3.25) and (3.26) that

dim (SeT ) ≤ 2k

(k − 1)!
T 2 (ln T + k ln 2)k−1 ,

finishing the proof of the lemma. 2

4 Adjusted sparse tensor product spectral Galerkin method

The uniform hyperbolic cross sets δeT defined in (3.10) is designed according to the level sets of the
Fourier coefficients of functions v from the Hs

mix(Sk) of equal mixed regularity. In this case, the
standard sparse tensor product spectral Galerkin solution µeT ∈ SeT behaves asymptotically as the
best N -term approximation. If a function v possesses a nonequal mixed regularity, the level sets of
the Fourier coefficients of v do not agree with the uniform hyperbolic cross set δeT and therefore,
the standard sparse tensor product spectral Galerkin method will not be robust and other adjusted
sparse tensor product spectral methods must be employed, accordingly to the level sets of the Fourier
coefficients. In this section, we consider the case when the solution Mku is of unequal mixed smooth
regularity, i.e., when Mku ∈ Hs1(S) ⊗ · · · ⊗Hsk(S) and s1 ≤ · · · ≤ sk. The spectral approximation
spaces must be asymptotically adjusted to the level sets of the Fourier coefficients. We first introduce
nonuniform hyperbolic cross set which will be used to define the approximation spaces. Let r1, . . . ,
rk be k real numbers satisfying

0 < r = r1 = . . . = rν+1 < rν+2 ≤ . . . ≤ rk (0 ≤ ν ≤ k − 2). (4.1)

We denote by γT (r1, . . . , rk) the nonuniform hyperbolic cross index set

γT (r1, . . . , rk) :=

{
` = (`1, . . . , `k) ∈ Nk :

k∏
i=1

(1 + `i)
ri ≤ T

}
. (4.2)

The space SγT (r1, . . . , rk) is then defined by

SγT (r1, . . . , rk) := span {Y`,m : ` ∈ γT (r1, . . . , rk),mi = −`i, . . . , `i for i = 1, . . . , k} . (4.3)

The following theorem presents one of the main results of this paper in which we prove an upper
bound for the dimension of the space SγT (r1, . . . , rk).

Theorem 4.1. Let r1,. . . , rk be positive real numbers satisfying (4.1). The dimension of the space
SγT (r1, . . . , rk) satisfies

dim (SγT (r1, . . . , rk)) ≤
2ν+1T 2/r

ν!

î
ln
Ä
T 1/r

ä
+ (ν + 1) ln 2

óν
× exp

(
k∑
ν+2

1

rj/r − 1

Å
3

2

ã−2(rj/r−1)
)
∀T ≥ T ∗,

for some positive integer T ∗ which depends only on k.

12



Proof. Noting (4.2) and (4.3), the dimension of SγT (r1, . . . , rk) is equal to

dim (SγT (r1, . . . , rk)) =
∑

`∈γT (r1,...,rk)

k∏
i=1

(1 + 2`i) =
∑∏ν+1

i=1
(1+`i)

r
∏k
j=ν+2

(1+`j)
rj

≤T

k∏
i=1

(1 + 2`i). (4.4)

Noting that if (`1, . . . `k) ∈ Nk, then there holds

ν+1∏
i=1

(1 + `i)
r

k∏
j=ν+2

(1 + `j)
rj ≤ T ⇐⇒


∏k
j=ν+2(1 + `j)

rj ≤ T ,

∏ν+1
i=1 (1 + `i) ≤ T 1/r∏k

j=ν+2(1 + `j)
−rj/r.

This together with (4.4) yields

dim (SγT (r1, . . . , rk)) =
∑∏k

j=ν+2
(1+`j)

rj≤T

k∏
j=ν+2

(1 + 2`j)
∑∏ν+1

i=1
(1+`i)

≤T 1/r
∏k
j=ν+2

(1+`j)
−rj/r

ν+1∏
i=1

(1 + 2`i). (4.5)

We have ∑∏ν+1
i=1

(1+`i)

≤T 1/r
∏k
j=ν+2

(1+`j)
−rj/r

ν+1∏
i=1

(1 + 2`i) ≤ 2ν+1
∑∏ν+1

i=1
(1+`i)

≤T 1/r
∏k
j=ν+2

(1+`j)
−rj/r

ν+1∏
i=1

(1 + `i)

≤ 2ν+1T 1/r
k∏

j=ν+2

(1+`j)
−rj/rcard

(`1, . . . , `ν+1) :
ν+1∏
i=1

(1+`i) ≤ T 1/r
k∏

j=ν+2

(1+`j)
−rj/r

 .
This together with (4.5) gives

dim (SγT (r1, . . . , rk)) ≤ 2ν+1T 1/r
∑∏k

j=ν+2
(1+`j)

rj≤T

Ñ
k∏

j=ν+2

(1 + 2`j)(1 + `j)
−rj/r

é
× card

(`1, . . . , `ν+1) :
ν+1∏
i=1

(1 + `i) ≤ T 1/r
k∏

j=ν+2

(1 + `j)
−rj/r

 . (4.6)

Applying (3.26), there exists T ∗ > 0 depending only k such that for any T > T ∗ there holds

card

(`1, . . . , `ν+1) :
ν+1∏
i=1

(1 + `i) ≤ T 1/r
k∏

j=ν+2

(1 + `j)
−rj/r


≤ 1

ν!
T 1/r

k∏
j=ν+2

(1 + `j)
−rj/r

Ñ
ln

T 1/r
k∏

j=ν+2

(1 + `j)
−rj/r

+ (ν + 1) ln 2

éν

≤ 1

ν!
T 1/r

î
ln
Ä
T 1/r

ä
+ (ν + 1) ln 2

óν k∏
j=ν+2

(1 + `j)
−rj/r,

noting that r and rj are positive numbers. This together (4.6) yields

dim (SγT (r1, . . . , rk)) ≤
2ν+1T 2/r

ν!

î
ln
Ä
T 1/r

ä
+ (ν + 1) ln 2

óν
×

∑∏k
j=ν+2

(1+`j)
rj≤T

k∏
j=ν+2

(1 + 2`j)(1 + `j)
−2rj/r. (4.7)
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We also have

∑∏k
j=ν+2

(1+`j)
rj≤T

k∏
j=ν+2

(1 + 2`j)(1 + `j)
−2rj/r ≤

k∏
j=ν+2

∑
(1+`j)

rj≤T
(1 + 2`j)(1 + `j)

−2rj/r

≤
k∏

j=ν+2

∑
n
rj
j
≤T ,

nj≥1

(2nj − 1)n
−2rj/r
j

≤
k∏

j=ν+2

∞∑
nj=1

(2nj − 1)n
−2rj/r
j . (4.8)

We can write

∞∑
nj=1

(2nj − 1)n
−2rj/r
j = 1 +

∞∑
nj=2

(2nj − 1)n
−2rj/r
j ≤ 1 + 2

∞∑
nj=2

n
1−2rj/r
j

≤ 1 +
1

rj/r − 1

Å
3

2

ã−2(rj/r−1)

< exp

Ç
1

rj/r − 1

Å
3

2

ã−2(rj/r−1)
å
,

where in the second inequality we use the result in [8, Lemma 2.2] and in the last inequality we employ
the well-known inequality

1 + x < ex ∀x > 0.

Hence, there holds

k∏
j=ν+2

∞∑
nj=1

(2nj − 1)n
−2rj/r
j ≤ exp

(
k∑
ν+2

1

rj/r − 1

Å
3

2

ã−2(rj/r−1)
)
. (4.9)

From (4.7)–(4.9) follows the theorem.
2

In the remainder of this section, approximation spaces of tensors of spherical harmonics based on
nonuniform hyperbolic crosses will be used to find approximate solutions to the statistical moment
equation (2.23). Suppose that the solution Mku of (2.23) has an unequal mixed smooth regularity,
i.e.,

Mku ∈ Hs1,...,sk
mix (Sk),

where
α < s = s1 = . . . = sν+1 < sν+2 ≤ · · · ≤ sk (0 ≤ ν ≤ k − 2). (4.10)

Noting (2.18), this happens when

Mkf ∈ Hs−2α,...,s−2α,sν+2−2α,...,sk−2α
mix (Sk).

Noting (4.2) and (4.3), we denote

ΓT ,α(s, . . . , s, sν+2, . . . , sk) := γT

Å
1, . . . , 1,

sν+2 − α
s− α

, . . . ,
sk − α
s− α

ã
and

ST ,α(s, . . . , s, sν+2, . . . , sk) := SγT

Å
1, . . . , 1,

sν+2 − α
s− α

, . . . ,
sk − α
s− α

ã
. (4.11)

For any

v =
∞∑
`=0

∑̀
m=−`

v̂`,mY`,m,
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we define by P
s,...,s,sν+2,...,sk
T ,α v the truncated series

P
s,...,s,sν+2,...,sk
T ,α v :=

∑
`∈ΓT ,α(s,...,s,sν+2,...,sk)

∑̀
m=−`

v̂`,mY`,m.

The operator P
s,...,s,sν+2,...,sk
T ,α is the orthogonal projection into ST ,α(s, . . . , s, sν+2, . . . , sk) with respect

to the inner product 〈·, ·〉H0
mix(Sk). The following lemma presents approximation error of the projection

P
s,...,s,sν+2,...,sk
T ,α .

Lemma 4.2. Let s, sν+2, . . . , sk be real numbers satisfying

α ≤ s < sν+2 ≤ · · · ≤ sk.

For any v ∈ Hs,...,s,sν+2,...,sk
mix (Sk), there holds∥∥∥v − P s,...,s,sν+2,...,sk

T ,α v
∥∥∥
Hα
mix(Sk)

≤ 1

T s−α
‖v‖

H
s,...,s,sν+2,...,sk
mix (Sk)

.

Proof. We have

∥∥∥v − P s,...,s,sν+2,...,sk
T ,α v

∥∥∥2

Hα
mix(Sk)

=
∑

`/∈ΓT ,α(s,...,s,sν+2,...,sk)

∑̀
m=−`

k∏
i=1

(1 + `i)
2α |v̂`,m|2

=
∑

`/∈ΓT ,α(s,...,s,sν+2,...,sk)

∑̀
m=−`

ν+1∏
i=1

(1 + `i)
2s

k∏
j=ν+2

(1 + `j)
2sj

ν+1∏
i=1

(1 + `i)
k∏

j=ν+2

(1 + `j)
(sj−α)/(s−α)

2(s−α)
|v̂`,m|2

≤ 1

T 2(s−α)

∑
`/∈ΓT ,α(s,...,s,sν+2,...,sk)

∑̀
m=−`

ν+1∏
i=1

(1 + `i)
2s

k∏
j=ν+2

(1 + `j)
2sj |v̂`,m|2

≤ 1

T 2(s−α)
‖v‖2

H
s,...,s,sν+2,...,sk
mix (Sk)

.

The desired inequality is obtained by taking the square root both sides of the above inequality. 2

The results in Lemma 4.2 suggests that the space ST ,α(s, . . . , s, sν+2, . . . , sk) defined by (4.11) can
be used to solve the problem (2.23) approximately. We consider the following Galerkin formulation:

Given Mkf ∈ Hs−2α,...,s−2α,sν+2−2α,...,sk−2α
mix (Sk), find µ̃T ∈ ST ,α(s, . . . , s, sν+2, . . . , sk) satisfying

A (µ̃T , v) =
¨¨
Mkf, v

∂∂
∀v ∈ ST ,α(s, . . . , s, sν+2, . . . , sk). (4.12)

By Lemma 2.2, Galerkin formulation (4.12) is well posed.
The next theorem presents an error estimate when solving the statistical moment equation by

using the adjusted sparse tensor product approximation spaces, see (4.12).

Theorem 4.3. Let s1,. . . , sk be real numbers satisfying (4.10). Assume that Mku is the solution of
(2.24) and µ̃T ∈ ST ,α(s, . . . , s, sν+2, . . . , sk) is the adjusted sparse tensor Galerkin solution of (4.12)

for the data Mkf ∈ Hs−2α,...,s−2α,sν+2−2α,...,sk−2α
mix (Sk). Then for every t ≤ α, there holds∥∥∥Mku− µ̃T
∥∥∥
Ht
mix(Sk)

.
1

T
(s−α)(sk−t)

sk−α

∥∥∥Mkf
∥∥∥
H
s−2α,...,s−2α,sν+2−2α,...,sk−2α

mix (Sk)
.

In particular, there holds∥∥∥Mku− µ̃T
∥∥∥
Hα
mix(Sk)

.
1

T s−α
∥∥∥Mkf

∥∥∥
H
s−2α,...,s−2α,sν+2−2α,...,sk−2α

mix (Sk)
.
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Proof. Recalling (2.24) and (4.12), we have

A (Mku− µ̃T , v) = 0 ∀v ∈ ST ,α(s, . . . , s, sν+2, . . . , sk). (4.13)

The Céa’s lemma gives∥∥∥Mku− µ̃T
∥∥∥
Hα
mix(Sk)

. inf
v∈ST ,α(s,...,s,sν+2,...,sk)

∥∥∥Mku− v
∥∥∥
Hα
mix(Sk)

.

This together with the result in Lemma 4.2 yields∥∥∥Mku− µ̃T
∥∥∥
Hα
mix(Sk)

.
1

T s−α
∥∥∥Mku

∥∥∥
H
s,...,s,sν+2,...,sk
mix (Sk)

. (4.14)

Noting (3.10), we have

(`1, . . . , `k) ∈ δeT (s−α)/(sk−α) ⇐⇒
k∏
i=1

(1 + `i) ≤ T
s−α
sk−α ⇐⇒

k∏
i=1

(1 + `i)
sk−α
s−α ≤ T .

By (4.10), there holds

1 <
sν+2 − α
s− α

≤ . . . ≤ sk − α
s− α

.

This suggests

k∏
i=1

(1 + `i)
sk−α
s−α ≤ T =⇒

ν+1∏
i=1

(1 + `i)
k∏

i=ν+2

(1 + `i)
si−α
s−α ≤ T

=⇒ (`1, . . . , `k) ∈ γT
Å

1, . . . , 1,
sν+2 − α
s− α

, . . . ,
sk − α
s− α

ã
.

It follows that

δeT (s−α)/(sk−α) ⊂ γT
Å

1, . . . , 1,
sν+2 − α
s− α

, . . . ,
sk − α
s− α

ã
and thus

SeT (s−α)/(sk−α) ⊂ ST ,α (s, . . . , s, sν+2, . . . , sk) . (4.15)

Noting (3.12) and (4.15), and applying Lemma 3.4, for every v ∈ H2α−t
mix (Sk) we have

P eT (s−α)/(sk−α)v ∈ S
e
T (s−α)/(sk−α) ⊂ ST (s−α)/(sk−α),α (s, . . . , s, sν+2, . . . , sk) , (4.16)

and ∥∥∥v − P eT (s−α)/(sk−α)v
∥∥∥
Hα
mix(Sk)

≤ 1Å
T

s−α
sk−α

ãα−t ‖v‖H2α−t
mix

. (4.17)

Similar arguments as used to obtain (3.22) yield

∥∥∥Mku− µ̃T
∥∥∥
Ht
mix(Sk)

= sup
v∈H2α−t

mix
(Sk)

v 6=0

¨
Mku− µ̃T , v

∂
Hα
mix(Sk)

‖v‖H2α−t
mix (Sk)

. sup
v∈H2α−t

mix
(Sk)

v 6=0

A
Ä
Mku− µ̃T , v

ä
‖v‖H2α−t

mix (Sk)

. (4.18)
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It follows from (4.18), (4.13) and (2.25) that

∥∥∥Mku− µ̃T
∥∥∥
Ht
mix(Sk)

. sup
v∈H2α−t

mix
(Sk)

v 6=0

A
Ä
Mku− µ̃T , v − P eT (s−α)/(sk−α)

v
ä

‖v‖H2α−t
mix (Sk)

.
∥∥∥Mku− µ̃T

∥∥∥
Hα
mix(Sk)

sup
v∈H2α−t

mix
(Sk)

v 6=0

∥∥∥v − P eT (s−α)/(sk−α)
v
∥∥∥
Hα
mix(Sk)

‖v‖H2α−t
mix (Sk)

.

This together with (4.14) and (4.17) implies∥∥∥Mku− µ̃T
∥∥∥
Ht
mix(Sk)

.
1

T s−α
Å
T

s−α
sk−α

ãα−t ∥∥∥Mku
∥∥∥
H
s,...,s,sν+2,...,sk
mix (Sk)

.

The above inequality together with the continuity ofÄ
L(k)

ä−1
: H

s−α,...,s−α,sν+2−α,...,sk−α
mix (Sk)→ H

s,...,s,sν+2,...,sk
mix (Sk)

yields the desired inequality.
2

We next present an estimate for the dimension of the space ST ,α(s, . . . , s, sν+2, . . . , sk) in which
the Galerkin solution defined by (4.12) is found.

Corollary 4.4. There exists a positive number T ∗ depending only on k such that for every T ≥ T ∗,
there holds

dim (ST ,α(s, . . . , s, sν+2, . . . , sk)) ≤
2ν+1T 2

ν!
[ln T + (ν + 1) ln 2]ν

× exp

Ñ
k∑
ν+2

s− α
sj − s

Å
3

2

ã− 2(sj−s)
s−α

é
. (4.19)

Proof. The inequality (4.19) is obtained by applying Theorem 4.1 for the space ST ,α(s, . . . , s, sν+2, . . . , sk)
and noting (4.11). 2

The estimation (4.19) gives an upper bound for the dimension of the approximation space. In
our numerical experiments (Section 5), the space ST ,1/2(3, 5) will be used to solve the second order
statistical moment equation of the hypersingular integral equation on the unit sphere. We observe the
dimensions of ST ,1/2(3, 5) with respect to different values of T . Corollary 4.4 shows that

dim
Ä
ST ,1/2(3, 5)

ä
≤ 2T 2 exp

Ç
5

4

Å
3

2

ã−8/5
å
.

The numbers in Table 1 show that dim
Ä
ST ,1/2(3, 5)

ä
behaves like O (T η) where η appears to be close

to number 2 as suggested by our theoretical results.
In Theorem 4.3, the approximate solution µ̃T is sought in the space

ST ,α(s, . . . , s, sν+2, . . . , sk)

which gives the optimal convergence rate when the error is estimated in the enery norm (Hα
mix(Sk)-

norm). In the case that we want to find an approximate solution to (2.23) and evaluate the error in a
Ht
mix(S)-norm for some t < α, an optimal convergence rate can be obtained by finding the approximate

solution µtT in the space

ST ,t(s, . . . , s, sν+2, . . . , sk) = SγT

Å
1, . . . , 1,

sν+2 − t
s− t

, . . . ,
sk − t
s− t

ã
,
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T dim
Ä
ST ,1/2(3, 5)

ä
Expected order of T (≈ 2)

1 4
4 28 1.4037
8 98 1.8074
12 208 1.8561
16 364 1.9453
20 585 2.1262
30 1281 1.9331
40 2292 2.0223
50 3654 2.0901
60 5253 1.9909
70 7049 1.9078
80 9372 2.1331
90 11888 2.0190
100 14675 1.9990

Table 1: Sizes of the adjusted sparse tensor product approximation spaces ST ,1/2(3, 5).

see (4.11). The corresponding Galerkin equation is

A
Ä
µtT , v

ä
=
¨¨
Mkf, v

∂∂
∀v ∈ ST ,t(s, . . . , s, sν+2, . . . , sk).

Employing a similar argument as in the proof of Theorem 4.3 yields∥∥∥Mk − µtT
∥∥∥
Ht
mix(Sk)

.
1

(T + 1)s−t

∥∥∥Mkf
∥∥∥
H
s−2α,...,s−2α,sν+2−2α,...,sk−2α

mix (Sk)
,

where the positive constant in the above inequality is independent of T .

5 Numerical experiments

In this section, we consider the hypersingular integral equation on the sphere

Nu(ω) = f(ω) on S, (5.1)

where N is the hypersingular integral operator (with a minus) given by

N v(x) = − 1

4π

∂

∂νx

∫
S
v(y)

∂

∂νy

1

|x− y|
dσy +

∫
S
v dσ. (5.2)

The equation arises from the boundary-integral reformulation of the Neumann problem with the
Laplacian in the interior or exterior of the sphere; see e.g. [21, 32, 36].

We present numerical results illustrating convergence of the standard and adjusted sparse approx-
imations for the k-order statistical moment equation which arising from (5.1). For sake of simplicity,
we restrict to the second moment problem,

N (2)M2u =M2f on S2. (5.3)

We assume that second moments of the dataM2f are known from elsewhere and report on convergence
behavior of the standard and adjusted spectral approximations to second moment of the solution to the
exact functionM2u. In our two numerical experiments below we choose two different functionsM2f
with equal and unequal mixed smoothnesses. We compare performance of standard sparse, adjusted
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sparse and full tensor product approximations analyzed in Sections 3 and 4. We emphasize that the
data M2f in both numerical tests are artificial. They do not come from a mathematical model and
are chosen to illustrate convergence of the numerical schemes. An application of the suggested method
to real models and data, e.g. in Earth observation, is outside the scope of this paper.

We first solve the equation (5.3) when

M2f(x,y) = sin (|x− n| |y − n|) , n = (0, 0, 1). (5.4)

The functionM2f belongs to H2−ε,2−ε
mix (S2) for any ε > 0. Thus, the solutionM2u of the equation (5.3)

belongs to H3−ε,3−ε
mix (S2). We compute approximate solutions by using full and standard sparse tensor

products of polynomials for different discretization levels T . In Figure 1 we plot the H
1/2
mix(S2)-norm

of the Galerkin errors and observe that the convergence rate with respect to the polynomial degree
is almost the same for both methods: the slope of the convergence curve in the logarithmic plot is
around 2.5. This agrees with the statement of Lemma 3.5. On the other hand, the standard sparse

polynomial degree
1 2 3 4 6 9 13 19 31

10-5

10-4

10-3

10-2

10-1

100

full
standard sparse
expected order (-2.5)

Figure 1: Relative error in energy norm for the right-hand side M2f from (5.4) vs. the maximal
polynomial degree.

tensor discretization requires only O
(
T 2(ln T + 2 ln 2)

)
unknowns, which is significantly smaller than

O
(
T 4
)

unknowns when using the full tensor discretization, see Table 5 and Figure 2. The coefficient
distribution of the solution is also observed in Figure 3, in which we present

c`1,`2 =

Ã
`1∑

m1=−`1

`2∑
m2=−`2

◊�(M2u)
2

`1,`2,m1,m2
, `1, `2 = 0, . . . , 40.

In Figure 3 we also sketch two hyperbolic curves (`1 +1)(`2 +1) = L+1 for L = 19 and 39 to illustrate
the hyperbolic decay pattern of the coefficients c`1,`2 .

We then solve the equation (5.3) with unequal mixed regularity right hand side given by

M2f(x,y) = e|x−n||y−n|
3

. (5.5)

This right hand side belongs to the space H2−ε,4−ε
mix (S2) for any ε > 0 and the solution is an element of

H3−ε,5−ε
mix (S2). The equation (5.3) with the right hand side (5.5) is then solved by using the Galerkin

method with full, standard sparse and adjusted sparse tensor product approximation spaces. Here, the
adjusted sparse tensor product approximation spaces are the spaces ST ,1/2(3, 5), (see (4.11)), which
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Degree full standard sparse adjusted sparse

1 16 7 4
4 625 58 28
8 6561 267 98
12 28561 633 208
16 83521 1180 364
20 194481 2066 585
30 923521 4981 1281

Table 1: Sizes of full tensor product approximation space ST , standard sparse tensor product approx-
imation space SeT and adjusted sparse tensor product approximation space ST ,1/2(3, 5).

number of unknowns
100 102 104 106 108

10-5

10-4

10-3

10-2

10-1

100

full
standard sparse

Figure 2: Relative error in energy norm for the right-hand side M2f from (5.4) vs. the number of
unknowns.

are accordingly chosen for the pseudodifferential equation (5.3) of order 1 with the right hand side
M2f belonging to the space H2−ε,4−ε

mix (S2). We compute approximate solutions by using these three
approximation methods.

In Figure 4, we plot the H
1/2
mix(S)-error and observe the convergence rates. It appears that the con-

vergence rates with respect to polynomials degrees are almost the same for all methods (around 2.5).
This agrees with our theoretical results in Theorem 4.3. Nevertheless, the adjusted sparse tensor prod-
uct approximation approach requires only O

(
T 2
)

unknowns in comparison to O
(
T 2(ln T + 2 ln 2)

)
unknowns of the standard sparse and to O(T 4) unknowns of the full tensor product approximation

approaches, see Table 5. We also plot the H
1/2
mix(S)-error with respect to the number of unknowns, see

Figure 5. In this figure, our adjusted sparse tensor product approximation method is superior not only
to the full tensor but also to the standard sparse tensor approximation methods. This superiority is due
to the fact that the adjusted sparse tensor product approximation spaces are based on the hyperbolic
cross set ΓT ,1/2(3, 5) which is asymptotically adjusted to the level sets of the Fourier coefficients of the
solutionM2u. Figure 6 illustrates the adjusted hyperbolic decay pattern of the coefficients c`1,`2 of the
solution. In this figure, we also sketch two adjusted hyperbolic curves (1+`1)(1+`2)(5−1/2)/(3−1/2) = L
for L = 20 and L = 126.
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Figure 3: Coefficient distribution of M2u when M2f is defined by (5.4).
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polynomial degree
1 2 3 4 6 9 13 19 31 50

10-6

10-5

10-4

10-3
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10-1

100

full
standard sparse
adjusted sparse
expected order (-2.5)

Figure 4: Relative error in energy norm for the right-hand side M2f from (5.5) vs. the maximal
polynomial degree.

number of unknowns
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Figure 5: Relative error in energy norm for the right-hand side M2f from (5.5) vs. the number of
unknowns.
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