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Abstract In this paper, scalarizing functions defined with the help of the
Hiriart-Urruty signed distance are used to characterize set order relations and
weak optimal solutions in set optimization studied with Kuroiwa’s set ap-
proach and to introduce a new concept of slope for a set-valued map. It turns
out that this slope possesses most properties of the strong slope of a scalar-
valued function. As applications, we obtain criteria for error bounds of a lower
level set and the existence of weak optimal solutions under a Palais-Smale type
condition.
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1 Introduction

Optimization problems with set-valued data have been recently attracted more
attention due to their important real-world applications in socio-economics, see
[5], [20].

Consider an optimization problem (SP) with the objective map being a
set-valued map F from a set X into a vector space Y . There are several
approaches to defining an optimal solution, say x̄, for such a problem, and
we restrict ourselves to the two ones of them. In the first approach, one take
ȳ ∈ F (x̄) and compares ȳ to elements y of the image set F (X) with respect
to an order in Y , where F (X) := {y | y ∈ F (x), x ∈ X}. Meanwhile, in the
second approach proposed by Kuroiwa [21], the set F (x̄) is compared to other
sets F (x) (x ∈ X) with respect to set order relations in 2Y .

To address the needs which arose in set optimization, some useful tools
from Variational Analysis such as derivative, coderivative, slope for set-valued
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maps have been extensively developed (we refer the interested reader to the
monographs [20] and [23] for literature in this field).

Recall that the concept of so called strong slope for a real-valued function
has been introduced by De Giorgi, Marino, and Tosques in [8]. Later, several
kinds of local and nonlocal slopes are defined in [10], and extended to vector-
valued maps in [6]-[7] and to set-valued maps in [25]. Numerous applications
of slopes can be found in the study of error bounds, sharp and weak sharp
minima, metric regularity..., see for instance, [2], [3], [4], [25].

It should be noted that the slopes introduced in [25] for a set-valued map
are useful in the study of its local properties (various kinds of metric regularity)
around some point of its graph but they may not be a right tool for dealing with
set optimization problems studied with Kuroiwa’s set approach. Motivated by
this fact, we use in this paper the scalarizing function, which has been defined
in [16] with the help of the Hiriart-Urruty signed distance, to introduce a new
concept of slope for a set-valued map. It turns out that this slope possesses
most properties of the strong slope of a scalar-valued function. This slope
together with obtained here scalar characterizations of set order relations and
weak optimal solutions allow us to establish criteria for error bounds for a
lower level set and the existence of these solutions under a Palais-Smale type
condition.

The paper is organized as follows. In Section 2, we recall some notions from
vector optimization and set optimization. Section 3 is devoted to scalarization
for set order relations and weak optimal solutions of set-valued optimization
problem. Section 4 concerns with the new concept of slope of a set-valued
map. Criteria for error bounds and the existence of weak optimal solutions are
established in the last section.

2 Preliminaries

In this section, we recall some concepts from vector optimization and set opti-
mization [20], [24] such as efficiency, set order relations, cone continuity, cone
convexity and coderivative for a set-valued map.

Throughout the paper, Rn is the n-dimensional euclidean space, Rn+ is the

nonnegative orthant of Rn, R := R1 and R := R ∪ {+∞}. For any t ∈ R,
[t]+ := max{t, 0}. Unless otherwise specified, X is a complete metric space,
Y is a Banach space with the dual Y ∗ and the dual pairing 〈., .〉. By B and

B̊ we mean the closed unit ball and the open unit ball in a normed space,
respectively. For a nonempty subset U of X or Y , intU and bdU stand for its
interior and boundary, respectively, and both the notations dU (u) and d(u;U)
stand for the distance from u to U .

Let K ⊂ Y be a nontrivial closed pointed convex cone (pointedness means
K ∩ (−K) = {0}). The cone K induces a partial order in Y as follows: for
y1, y2 ∈ Y ,

y1 ≤ y2 iff y2 − y1 ∈ K.
Let K∗ := {k∗ ∈ Y ∗ : 〈k∗, k〉 ≥ 0, ∀ k ∈ K}.
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Let A ⊂ Y be a nonempty set. We say that ā ∈ A is a Pareto minimal
point of A if a 6≤ ā for all a ∈ A, a 6= ā. By MinA we mean the set of all Pareto
minimal points of A. The lower less oder �l [21] is a set order relation induced
by K in the family of nonempty subsets of Y : for any nonempty subsets A1, A2

of Y ,
A1 �l A2 iff A2 ⊆ A1 +K.

Assuming that K has nonempty interior intK, we will also consider the strict
lower less oder ≺l given by

A1 ≺l A2 iff A2 ⊆ A1 + intK.

From now on, it is assumed that intK 6= ∅ whenever the relation ≺l is under
consideration. It is easy to see that

A1 �l A2 and A2 �l A1 iff A1 +K = A2 +K.

We use the symbol ≡l in the following sense

A1 ≡l A2 iff A1 +K = A2 +K.

Further, recall [24] that A is K-bounded if there exists a nonempty bounded
subset M of Y such that A ⊂ M + K (or, in terms of the lower set order
relation, if M �l A) and K-compact if any cover of A of the form

{Uα : α ∈ I, Uα is open}

admits a finite subcover. It is known that if A is K-compact, then it is K-
bounded [24].

Let f : X → R be a function and F : X ⇒ Y a set-valued map. The
domains of f and F are the sets given by domf := {x ∈ X : f(x) < +∞}
and domF := {x ∈ X : F (x) 6= ∅}, respectively. The graph of F is the set

grF := {(x, y) ∈ X × Y | x ∈ domF, y ∈ F (x)}.

Let t be a scalar and A be a nonempty subset A of Y . The lower level set
of f at t and the lower level set of F at A are defined by

[f ≤ t] := {x ∈ X | f(x) ≤ t}

and
[F �l A] := {x ∈ X | F (x) �l A},

respectively.
For an extended-valued function f : X → R, we say that x̄ ∈ domf is a

local minimizer of f if there exists a neighborhood U of x̄ such that

f(x) ≥ f(x̄), ∀x ∈ domf ∩ U.

For a map f : X → Y , we say that x̄ ∈ X is a local Pareto minimizer of f
if there exists a neighborhood U of x̄ such that

f(x) 6≤ f(x̄), ∀x ∈ U, f(x) 6= f(x̄).
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Let be given a set-valued map F : X ⇒ Y . Following Kuroiwa in his set
approach to a set-valued optimization problem [21], we say that x̄ ∈ domF is
a local �l-minimizer of F (or a local optimal solution of (SP)) if there exists a
neighborhood U of x̄ such that

F (x) �l F (x̄) for some x ∈ domF ∩ U implies F (x̄) �l F (x).

Assume that K has nonempty interior. We say that x̄ is a local weak �l-
minimizer of F (or a local weak optimal solution of (SP)) if there exists a
neighborhood U of x̄ such that for all x ∈ domF ∩ U

either F (x) ≡l F (x̄) or F (x) 6≺l F (x̄).

When U = X, we have corresponding global concepts of minimizer/solutions.
From now on, it is assumed that intK 6= ∅ whenever a local/global weak
�l-minimizer is under consideration.

Observe that x̄ is a local �l-minimizer iff there exists a neighborhood U of
x̄ such that for all x ∈ domF ∩ U

either F (x) ≡l F (x̄) or F (x) 6�l F (x̄).

It is clear that if x̄ is a local �l-minimizer of F , then it is a local weak �l-
minimizer of F .

Next, we recall some concepts for a set-valued map such as continuity,
convexity, boundedness.

Definition 1 (see [24]) We say that

(i) F is K-upper semicontinuous (K-u.s.c.) at x ∈ domF if ∀ε > 0, ∃δ > 0
such that for all u ∈ domF satisfying d(u;x) ≤ δ, we have

F (u) ⊂ F (x) + εB̊ +K

or F (x) + εB̊ �l F (u), in terms of the set order relation �l.
(ii) F is K-bounded from below (in short, K-bounded) if the set F (X) is K-

bounded , i.e., if there exists a nonempty bounded set M ⊂ Y such that

M �l F (x), ∀x ∈ domF.

Definition 2 Assume that X is a linear space and domF is convex. We say
that

(i) F is convex [1] if for any x1, x2 ∈ domF and λ ∈ [0, 1], one has

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2)

(ii) F is K-convex [22] if for any x1, x2 ∈ domF and λ ∈ [0, 1], one has

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) +K

or, in terms of the order relation �l,

F (λx1 + (1− λ)x2) �l λF (x1) + (1− λ)F (x2).
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In what follows we always assume that X is a linear space and domF is
convex whenever the above concepts of convexity are involved. One can check
that if F is convex, then it is K-convex and F is convex iff its graph is convex.

We conclude this section by recalling the concepts of subdifferential and
coderivative. Assume that X is a Banach space and X∗ is its dual. Assume
that f is convex. The subdifferential of f at x ∈ domf denoted by ∂f(x) is
given by

∂f(x) := {x∗ ∈ X∗ | 〈x∗, u− x〉 ≤ f(u)− f(x), ∀u ∈ domf}.

Let V be a nonempty closed convex subset of Y and v̄ ∈ V . Recall that the
normal cone N(v̄;V ) to V at v̄ is defined by

N(v̄;V ) = {v∗ ∈ V ∗ | 〈v∗, v − v̄〉 ≤ 0 for all v ∈ V }.

Assume that the set-valued map F is convex, i.e. its graph is convex. For
(x, y) ∈ grF , the coderivative of convex analysis D∗F (x, y) at (x, y) is a set-
valued map between the spaces Y ∗ and X∗ defined as follows (see [1]): for any
y∗ ∈ Y ∗,

D∗F (x, y)(y∗) = {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x, y); grF )}.

3 Scalar characterizations of the lower less order and of weak
optimal solutions of (SP)

In this section, we recall the Hiriart-Urruty signed distance [18], some scalar-
izing functions considered in [16] and establish scalar characterizations of the
lower less order and of weak optimal solutions of (SP).

The Hiriart-Urruty signed distance function ∆U associated to a nonempty
set U ⊂ Y in the special case U = −K is given by

∆−K(y) := d−K(y)− dY \(−K)(y) =

{
−dY \(−K)(y) if y ∈ −K
d−K(y) otherwise.

Some useful properties of ∆−K are collected in the following proposition.

Proposition 1 The function ∆−K has the properties:

(i) It is Lipschitz of rank 1 on Y , convex and positively homogeneous.
(ii) (Triangle inequality) For any y1, y2 ∈ Y , we have

∆−K(y1 + y2) ≤ ∆−K(y1) +∆−K(y2).

(iii) (K-monotonicity) For any y1, y2 ∈ Y , we have

y1 ≤ y2 implies ∆−K(y1) ≤ ∆−K(y2).

(iv) (Boundedness and positivity of subdifferential) For any y ∈ Y ,we have

∂∆−K(y) ⊂ K∗ ∩ B.
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Proof The properties (i)-(iii) are known, see e.g. [26], and the last one can be
derived from [18, Prop. 2 and 5]. ut

Below are some illustrating examples , see [16, Example 3.1] and [15, Propo-
sition 2.3].

Example 1 (i) If K = {0}, then ∆−K(y) = ‖y‖ for all y ∈ Y .
(ii) If Y = Rn and K = Rn+, then for all y = (yi) ∈ Rn

∆−Rn
+

(y) =

{
−mini |yi| if y ∈ −Rn+√∑n

i=1([yi]+)2 otherwise.

Moreover, ∂∆−R+
n

(0) = conv{v ∈ Rn+ : ‖v‖ = 1}.
(iii) If Y = R and K = R+, then ∆−K(y) = y and ∂∆−K(y) = 1 for all y ∈ R.

Let be given two nonempty K-bounded subsets A and B of Y . Define

hK(A,B) := sup
b∈B

inf
a∈A

∆−K(a− b).

Remark 1 The bifunction hK(., .) has been introduced in [16] and used there to
define a Hausdorff-type distance as follows. Let A,B be nonempty K-bounded
subsets of Y . A Hausdorff-type distance relative to the ordering cone K be-
tween A and B, denoted by dK(A,B), is defined as follows:

dK(A,B) := max{hK(A,B), hK(B,A)}.

The name is originated from the fact that when K = {0}, this distance reduces
to the classical Hausdorff distance given by

d(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

In the mentioned paper, a concept of directional derivative for a set-valued
map has been introduced with the help of the Hausdorff-type distance.

In what follows, we abbreviate hK(A,B) to h(A,B). We recall nice prop-
erties of the bifunction h.

Proposition 2 Let A, B and C be nonempty K-bounded subsets of Y . Then

(i) h(A,B) is finite.
(ii) The triangle inequality holds:

h(A,B) ≤ h(A,C) + h(C,B).

(iii) h(A,B) = h(A+K,B +K).
(iv) h(A,A) = 0 if intK = ∅ or MinA 6= ∅ (for instance, if A is K-compact).
(v) h(A,B) = 0 if A,B are K-compact and A ≡l B.

(vi) h(A,B) = h(A1, B1) if A,B,A1, B1 are K-compact and A ≡l A1, B ≡l B1.
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Proof The assertions (i)-(iv) have been established in [16, Lemmas 3.1, 3.4
and 3.5]. The assertions (v)-(vi) follow the assertions (iii)-(iv): h(A,B) =
h(A+K,B +K) = h(A+K,A+K) = 0 and h(A,B) = h(A+K,B +K) =
h(A1 +K,B1 +K) = h(A1, B1). ut

Recall that a nonempty subset A of Y is said to have the domination
property [24] if MinA 6= ∅ and

A ⊆ MinA+K.

The above inclusion is equivalent to A+K = MinA+K or A ≡l MinA.

Proposition 3 [16, Lemma 3.2] Let A and B be nonempty K-compact subsets
of Y . Then

h(A,B) = h(MinA,MinB).

Proof Lemma 3.1 in [11] and Theorem 4.3 in [24] imply that the sets A and
B being K-compact have the domination property. Hence, A ≡l MinA and
B ≡l MinB and the assertion follows from Proposition 2 (vi). ut

Proposition 4 [16, Lemma 3.2] Let A and B be nonempty subsets of Y .

(i) If A is K-compact, then for any b ∈ Y the function

∆−K(.− b) : A→ R

attains its finite infimum on A.
(ii) If A is K-bounded and B is K-compact, then the function

inf
a∈A

∆−K(a− .) : B → R

attains its finite maximum on B.
(iii) If A and B are K-compact, then

h(A,B) = max
b∈B

min
a∈A

∆−K(a− b).

We will characterize the set order relation �l in term of the bifunction h.
For a nonempty subsets M of Y , let

µ1(M) := sup
m∈M

∆−K(−m)

and
µ2(M) := sup

m∈M
∆−K(m).

Lemma 1 Let A, B and M be nonempty subsets of Y and ρ ≥ 0 be a scalar.

(i) Assume that µ1(M) is finite and µ1(M) ≥ 0. Then

A+ ρM �l B ⇒ h(A,B) ≤ ρµ1(M).

If B is K-compact, then

A+ ρM ≺l B ⇒ h(A,B) < ρµ1(M).
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(ii) Assume that µ2(M) is finite and µ2(M) ≥ 0. Then

A+ ρM 6≺l B ⇒ h(A,B) ≥ −ρµ2(M).

If A is K-compact, then

A+ ρM 6�l B ⇒ h(A,B) > −ρµ2(M).

Proof (i) It follows from A + ρM �l B that B ⊂ A + ρM + K. For any
b ∈ B there is a ∈ A and m ∈ M such that a − b + ρm ∈ −K. Hence,
∆−K(a− b+ ρm) ≤ 0 and

∆−K(a− b) ≤ ∆−K(a− b+ ρm) +∆−K(−ρm) ≤ ρ∆−K(−m) ≤ ρµ1(M).

Therefore, infa∈A∆−K(a − b) ≤ ∆−K(a − b) ≤ ρµ1. As b ∈ B is arbitrarily
chosen, we get

h(A,B) = sup
b∈B

inf
a∈A

∆−K(a− b) ≤ ρµ1(M).

Next, assume that A + ρM ≺l B. Then for any b ∈ B there is a ∈ A and
m ∈M such that a− b+ ρm ∈ −intK. Hence, ∆−K(a− b+ ρm) < 0 and

∆−K(a− b) ≤ ∆−K(a− b+ ρm) +∆−K(−ρm) < ρ∆−K(−m) ≤ ρµ1(M).

Therefore, infa∈A∆−K(a − b) ≤ ∆−K(a − b) < ρµ1. Thus, for any b ∈ B we
have infa∈A∆−K(a− b) < ρµ1. By Lemma 4, the function infa∈A∆−K(.− b)
attains its maximum on B. Hence, we get

h(A,B) = sup
b∈B

inf
a∈A

∆−K(a− b) < ρµ1(M).

(ii) It follows from A+ρM 6≺l B that B 6⊂ A+ρM+intK. Then there exists
b ∈ B such that for any a ∈ A and any m ∈M one has a− b+ ρm /∈ −intK.
Then we have ∆−K(a− b+ ρm) ≥ 0 and therefore,

∆−K(a− b) ≥ ∆−K(a− b+ ρm)−∆−K(ρm) ≥ −ρ∆−K(m) ≥ −ρµ2(M).

It is easy to see now that

h(A,B) = sup
b∈B

inf
a∈A

∆−K(a− b) ≥ −ρµ2.

Next, assume that A + ρM 6�l B. Then there exists b ∈ B such that for
any a ∈ A and any m ∈ M one has a − b + ρm /∈ −K. Since K is closed, we
have ∆−K(a− b+ ρm) > 0 and therefore,

∆−K(a− b) ≥ ∆−K(a− b+ ρm)−∆−K(ρm) > −ρ∆−K(m) ≥ −ρµ2(M).

Since A is K-compact, Proposition 4 implies that ∆−K(.− b) attains its mini-
mum on A, and we get infa∈A∆−K(a− b) = mina∈A∆−K(a− b) > −ρµ2(M).
Hence,

h(A,B) = sup
b∈B

inf
a∈A

∆−K(a− b) > −ρµ2.

ut
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As a consequence of Lemma 1, we obtain the following important charac-
terization of the relations �l and ≺l in terms of the bifunction h.

Proposition 5 Assume that A and B are nonempty K-compact subsets of Y .
Then the following implications hold:

A �l B ⇔ h(A,B) ≤ 0

and
A ≺l B ⇔ h(A,B) < 0.

Next, we will study some scalarizing functions. Let a be a vector of Y and
A be a nonempty K-bounded subset of Y . Assume that F has K-bounded
values. To the map F , the vector a and the set A, we associate two scalar-
valued functions gF,a, gF,A : domF → R defined as follows: For x ∈ domF

gF,a(x) = inf
y∈F (x)

∆−K(y − a)

and
gF,A(x) = sup

a∈A
inf

y∈F (x)
∆−K(y − a).

One can see that

gF,A(x) = sup
a∈A

gF,a(x) = h(F (x), A).

The following result states that the function gF,A inherits continuity and
convexity of the map F .

Proposition 6 Assume that K has nonempty interior, F has K-bounded val-
ues and x ∈ domF . Assume further that A is a nonempty K-bounded subset
of Y . If F is K-u.s.c. at x, then gF,A is lower semicontinuous (in brief, l.s.c.)
at this point and if F is K-convex, then gF,A is convex.

Proof Observe that µ1(B̊) := supb∈(̊B∆−K(−b) is finite because the function

∆−K is 1-Lipschitz. Moreover, µ1(B̊) > 0 because ∆−K(k̄) > 0 for any k̄ ∈
intK ∩ B̊.

Now, suppose that F is K-u.s.c. at x. Then ∀ε > 0, ∃δ > 0 such that

F (x) + εB̊ �l F (u), ∀u ∈ B(x, δ) ∩ domF.

By Lemma 1, we have h(F (x), F (u)) ≤ εµ1(B̊) for u ∈ B(x, δ) ∩ domF . The
triangle inequality, see Proposition 2, implies h(F (x), F (u)) ≥ h(F (x), A) −
h(F (u), A). Therefore, for u ∈ B(x, δ) ∩ domF we have

−εµ1(B̊) ≤ −h(F (x), F (u)) ≤ h(F (u), A)− h(F (x), A) = gF,A(u)− gF,A(x),

which means that gF,A is l.s.c. at x.
Next, assume that F is K-convex. It follows from [14, Proposition 2.2(c)]

that for any a ∈ A, the function gF,a is convex. Therefore, gF,A is con-
vex because it is the supremum of a family of convex functions gF,A(x) =
supa∈A gF,a(x). ut
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We deduce from Proposition 5 the following characterizations of a lo-
cal/glocal weak �l-minimizer of F .

Proposition 7 Assume that F has K-compact values and x̄ ∈ domF . Denote
Ā := F (x̄). Then x̄ is a local weak �l-minimizer of F iff it is a local minimizer
of gF,Ā: for some neighborhood U of x̄, one has

gF,Ā(x) ≥ 0 = gF,Ā(x̄), ∀x ∈ domF ∩ U.

The assertion holds true if “local” is replaced by “global”.

Proof Recall that gF,Ā(x) = h((F (x), Ā) = h(F (x), F (x̄)). Observe that by
Proposition 2 (iv) we have gF,Ā(x̄) = 0. The assertions follow from the defini-
tions of a local/globall weak �l-minimizer and Proposition 5. ut

Proposition 8 Assume that F is K-convex and K-compact-valued. Then x̄ ∈
domF is a local weak �l-minimizer of F iff it is its global weak �l-minimizer.

Proof Assume that x̄ is a local weak �l-minimizer of F . Denote Ā := F (x̄).
Proposition 7 implies that x̄ is a local minimizer of the function gF,Ā. Since
this function is convex by Proposition 6, x̄ is then its global minimizer, i.e.,
gF,Ā(x) ≥ gF,Ā(x̄) = 0 for all x ∈ domF . Proposition 5 implies that x̄ is a
global weak �l-minimizer of F . ut

4 A new concept of slope for a set-valued map

We first recall the notion of strong slope introduced by De Giorgi, Marino,
and Tosques in [8].

Definition 3 Let f : X → R be a function, and let x ∈ domf . The strong
slope |∇f |(x) of f at x is defined by

|∇f |(x) :=

{
0 x is a local minimizer of f

lim supu→x
f(x)−f(u)
d(x;u) otherwise

Extending the concept of strong slope to a single- vector-valued map f :
X → Y , Bednarczuk and Kruger [6]-[7] introduced the concepts of lower and
upper slopes for f . We recall here the lower slope, which is closely related to
our concept of slope in the set-valued case. Assume that K has a nonempty
interior. The lower slope −|∇f |(x) of f at x ∈ X is defined by

−|∇f |(x) := lim sup
x′→x

sup{r > 0 :
f(x)− f(x′)

d(x;x′)
∈ K + rK̊},

where K̊ := {k ∈ intK : d(k; bdK) = 1}. Theorem 3.1 in [15] shows that the
lower slope can also be represented in the form

−|∇f |(x) = lim supu→x
−∆−K(f(u)− f(x))

d(x;u)
.

Now, let us introduce a new concept of slope for the set-valued case. From
now on, we will assume that the cone K has nonempty interior.
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Definition 4 Assume that F has K-bounded values, and let x ∈ domF . The
slope |∇F |(x) of F at x is defined by

|∇F |(x) :=

{
0 x is a local weak �l −minimizer of F

lim supu→x
−h(F (u),F (x))

d(x;u) otherwise

Remark 2 (a) When F is single-valued, the above slope reduces to the lower
slope and when Y = R, K = R+ and F is scalar- single-valued, Definition
4 reduces to Definition 3.

(b) Consider the case when F is “constant” around a point x ∈ domF in the
sense that F (u) ≡l A for all u ∈ domF ∩ U , where U is a neighborhood
of x and A is K-bounded (note that it may happen that F (u) 6= F (u′) for
some u, u′ ∈ domF ∩U). Then x is a local �l-minimizer of F and we have
|∇F |(x) = 0.

Proposition 9 Suppose that F has K-compact-values and x ∈ domF is not
a local weak �l-minimizer of F . Then

|∇F |(x) = lim sup
u→x,F (u)≺lF (x)

−h(F (u), F (x))

d(x;u)

and if |∇F |(x) is finite, then it is nonnegative. We also have

|∇F |(x) = lim sup
u→x,F (u)≺lF (x)

−h(MinF (u),MinF (x))

d(x;u)
.

Proof Since x is not a local weak �l-minimizer of F , it is not constant around
x in the sense explained in Remark 2(b), and there exists a sequence {xi}
converging to x such that F (xi) ≺l F (x) for all i. By Lemma 1, we have
h(F (xi), F (x)) < 0 and therefore, |∇F |(x) ≥ 0. For any u satisfying F (u) 6≺l
F (x), one has −h(F (u), F (x)) ≤ 0 due to Lemma 1. The desired equality
follows. It is clear now that if |∇F |(x) is finite, then it is nonnegative. The
last equality follows from Proposition 3. ut

We illustrate the notion of slope for set-valued maps by some examples.

Example 2 Let X = R, Y = R2, K = R2
+.

(a) Let F be a set-valued map defined by

F (x) =

{x} × [x2, 2x2] if x > 0
{0} × [−1, 1] if x = 0
{−x} × [−0.5x,−2x] if x < 0

This map is K-u.s.c. on R and R2
+-bounded. One can check that

|∇F |(x) =


1 if x ≥ 1/2

2x if 0 < x < 1/2
0 if x = 0
1 if x < 0
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Note that x = 0 is the only local weak �l-minimizer of F and hence,
|∇F |(0) = 0. For the reader’s convenience, we provide detailed calculation of
|∇F |(x) at x > 0. Recall that by Proposition 9, we have

|∇F |(x) = lim sup
u→x,F (u)≺lF (x)

−h(MinF (u),MinF (x))

d(x;u)
.

Since F (x + t) 6≺l F (x) for t > 0 and F (x + t) ≺l F (x) for t < 0, we will
consider u = x+ t with t < 0. Observe that MinF (u) = {(u, u2)} for u > 0. It
follows from Example 1 (ii) that

h(MinF (x+ t),MinF (x)) = ∆−R2
+

((t, 2xt+ t2)) = −min{|t|, |2xt+ t2|}.

As x > 0, for |t| sufficiently small, one has

h(MinF (x+ t),MinF (x)) = tmin{1, 2x+ t} =

{
t(2x+ t) if 0 < x < 1/2

t if 1/2 ≤ x

Therefore,

|∇F |(x) =

{
2x if 0 < x < 1/2

1 if 1/2 ≤ x

(b) Let F be a set-valued map defined by

F (x) =

{
{(x, x2), (x, 2x2)} if x > 0
{(x,−x2)} if x ≤ 0

Then

|∇F |(x) =


1 if x ≥ 1/2

2x if 0 < x < 1/2
−2x if − 1/2 ≤ x ≤ 0

1 if x < −1/2

Note that |∇F |(0) = 0, but x = 0 is not a local weak �l-minimizer of F .

Remark 3 Example 2 (b) shows that the slope of F may be equal to zero at
a point which is not a local weak �l-minimizer of F . As the reader will see,
when F is K-convex, its slope equals to zero at a point x iff x is a local weak
�l-minimizer.

We establish some properties of the slope.

Proposition 10 Suppose that F has K-compact values and x̄ ∈ domF . De-
note Ā := F (x̄). Then

|∇F |(x̄) = |∇gF,Ā|(x̄).
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Proof If x̄ is a local weak �l-minimizer of F , Proposition 7 implies that it is
a local minimizer of the function gF,Ā. Definitions 3 and 4 imply |∇F |(x̄) =
|∇gF,Ā|(x̄) = 0. Next, if x̄ is not a local weak �l-minimizer of F , Proposition
7 implies that it is not a local minimizer of the function gF,Ā. From Definitions
3 and 4, we get

|∇F |(x̄) = lim supx→x̄
−h(F (x),F (x̄))

d(x;x̄) = lim supx→x̄
gF,Ā(x̄)−gF,Ā(x)

d(x;x̄)

= |∇gF,Ā|(x̄).

ut

Example 3 Let F be the map considered in Example 2 (a). We illustrate the
equality stated in Proposition 10 for x > 0. By the definition and Proposition
3, we have

gF,x(u) = h(MinF (u),MinF (x)) =

{
u− x if x ≥ 1/2

u2 − x2 if 0 < x < 1/2

Therefore, for x > 0, we have

|∇F |(x) = ∇gF,x(x) =

{
1 if x ≥ 1/2

2x if 0 < x < 1/2

It is well known that the strong slope of a convex l.s.c. function possesses
some nice properties. We will show that the slope of set-valued maps enjoys
similar properties. Recall that for a convex l.s.c. function, any local minimizer
is the global one. Moreover, we have the following result.

Proposition 11 Assume that X is a Banach space. Let f : X → R be a
proper convex l.s.c. function and x̄ ∈ domf . Then x̄ is a global minimizer of
f iff |∇f |(x̄) = 0 .

Proof It suffices to consider the “if” part. Without loss of generality, we may
assume that f(x̄) = 0. Suppose to the contrary that there exists u ∈ domf
such that f(u) < f(x̄) = 0. Let ti = 1/(i + 1) for i = 1, 2, ... and xi :=
x̄ + ti(u − x̄) = (1 − ti)x̄ + tiu. Note that i ∈]0, 1[ and xi → x̄. Since f is
convex, we have f(xi) ≤ (1− ti)f(x̄) + tif(u) = tif(u) < 0. It is easy to check
that

f(x̄)− f(xi)

d(xi; x̄)
≥ f(x̄)− f(u)

d(u; x̄)
=
−f(u)

d(u; x̄)
.

Letting i→ +∞, we deduce from the above inequality that

|∇f |(x̄) = lim sup
x′→x̄

f(x̄)− f(x′)

d(x′; x̄)
≥ lim sup

i→∞

f(x̄)− f(xi)

d(xi; x̄)
≥ −f(u)

d(u; x̄)
> 0,

which is a contradiction to the assumption that |∇f |(x̄) = 0. ut

First we provide a sufficient condition of a global weak �l-minimizer of F .
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Theorem 1 Assume that X is a Banach space and F is K-convex K-u.s.c.
K-compact-valued. Then x̄ ∈ domF is a global weak �l-minimizer of F iff
|∇F |(x̄) = 0.

Proof We prove the “if” part. Let Ā := F (x̄). Proposition 6 yields that the
function gF,Ā is convex, l.s.c. It follows from Proposition 10 that

|∇gF,Ā|(x̄) = |∇F |(x̄) = 0,

which together with Proposition 11 yield that x̄ is a global minimizer of the
function gF,Ā. Then x̄ also is a local weak �l-minimizer of F by Proposition
7. Proposition 8 implies that x̄ is a global weak �l-minimizer of F . ut

In the convex case, the strong slope of a convex function can be expressed in
a more simple form and can also be calculated be means of the subdifferential
of convex analysis. Namely, we have the following.

Proposition 12 [4, Proposition 3.1] Let X be a Banach space and f : X → R
be a proper convex l.s.c. function. Suppose that x is not a (global) minimizer
of f . Then

|∇f |(x) = sup
f(u))<f(x)

f(x)− f(u)

‖x− u‖
= d(0, ∂f(x)).

It turns out that a set-valued version of Proposition 12 holds. First we
show that “limsup” in the definition of the slope can be replaced by “sup” in
the convex case.

Proposition 13 Suppose that X is a Banach sapace, F is K-convex K-u.s.c.
K-compact-valued and x̄ ∈ domF is not a local weak �l-minimizer of F . Then

|∇F |(x̄) = sup
F (x)≺lF (x̄)

−h(F (x), F (x̄))

d(x; x̄)
.

Proof It suffices to check the inequality

|∇F |(x̄) ≥ sup
F (x)≺lF (x̄)

−h(F (x), F (x̄))

d(x; x̄)

because the inverse one is immediate from the definition. Denote Ā := F (x̄).
By Proposition 10, we have

|∇F |(x̄) = |∇gF,Ā|(x̄).

On the other hand, Proposition 6 implies that gF,Ā is convex lsc. Recall that
gF,Ā(x̄) = 0. Applying Proposition 12 we get

|∇gF,Ā|(x̄) = sup
gF,Ā(x)<gF,Ā(x̄)

−gF,Ā(x)

d(x; x̄)
= sup
gF,Ā(x)<0

−h(F (x), F (x̄))

d(x; x̄)
.
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Since F (x) ≺l F (x̄) implies gF,Ā(x) = h(F (x), F (x̄)) < 0 by Proposition 5, we
obtain

|∇gF,Ā|(x̄) ≥ sup
F (x)≺lF (x̄)

−h(F (x), F (x̄))

d(x; x̄)

and the desired inequality follows. ut

Next, we establish a relation between the slope of F and its coderivative.
Let z ∈ Y . Consider the function gF,z associated to F and z given by

gF,z(x) := inf
y∈F (x)

∆−K(y − z)

and let
VF,z(x) := {y ∈ F (x) | ∆−K(y − z) = gF,z(x)}.

If F is convex, then Proposition 2.2(c) in [14] yields that that the function
gF,z is convex and if F has K-compact values, then Proposition 3.1(i) in [13]
yields that VF,z has nonempty values on domF .

When F is convex and closed (i.e. the graph of F is closed), using the exact
sum rule for convex functions and arguments similar to that involved in the
proof of [13, Theorem 3.3], one can establish the following relation.

Proposition 14 Assume that X is separable and F is convex closed. Then
for any yx ∈ VF,z(x), we have

∂gF,z(x) = ∪y∗∈∂∆−K(yx−z)D
∗F (x, yx)(y∗).

Assume that F is convex and closed. The subdifferential of F at x ∈ domF
is defined by

∂F (x) := ∪y∈F (x) ∪yx∈VF,y(x),y∗∈∂∆−K(yx−y) D
∗F (x, yx)(y∗).

Proposition 15 Assume that X is a separable Banach space. Assume further
that F is convex closed K-compact-valued and x ∈ domF . Denote A = F (x).
Then

∂F (x) ⊂ ∂gF,A(x).

Proof Let x∗ ∈ ∂F (x). Let y ∈ F (x) and yx ∈ VF,y(x), y∗ ∈ ∂∆−K(yx − y)
such that x∗ ∈ D∗F (x, yx)(y∗). By the definition, (x∗,−y∗) ∈ N((x, yx); grF )
and therefore, we have

〈x∗, x′ − x〉 − 〈y∗, y′ − yx〉 ≤ 0 for all (x′, y′) ∈ grF.

In particular, for all x′ ∈domF we have

〈x∗, x′ − x〉 ≤ 〈y∗, y′ − yx〉 for all y′ ∈ F (x′).

Further, since y∗ ∈ ∂∆−K(yx − y) and the signed distance function satisfies
the triangle inequality, we have

〈y∗, y′ − yx〉 ≤ ∆−K(y′ − y)−∆−K(yx − y) ≤ ∆−K(y′ − yx).
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Consequently, we get

〈x∗, x′ − x〉 ≤ ∆−K(y′ − yx).

As y′ ∈ F (x′) is arbitrarily chosen, yx ∈ F (x) and gF,A(x) = 0 , we obtain

〈x∗, x′ − x〉 ≤ supv∈F (x) infy′∈F (x′)∆−K(y′ − v) = h(F (x′), F (x))

= gF,A(x′) = gF,A(x′)− gF,A(x).
(1)

Therefore, x∗ ∈ ∂gF,A(x). ut

Now we are ready to establish a relation between the slope of F and its
subdifferential.

Theorem 2 Assume that F is K-convex F is K-u.s.c. K-compact-valued and
x ∈ domF . Then

ξd(0, ∂F (x)) ≤ |∇F |(x) ≤ d(0, ∂F (x)),

where ξ := sup{dY \K(ko) | k0 ∈ intK , d−K(k0) = 1}.

Proof Observe that the first inequality

|∇F |(x) ≤ d(0, ∂F (x))

follows from Propositions 10, 12 and 15:

|∇F |(x) = |∇gF,A|(x) = d(0, ∂gF,A(x)) ≤ d(0, ∂F (x)).

We can also establish it directly by using the proof of Proposition 15 as follows.
Let x∗ ∈ ∂F (x). It follows from the relations (1) that for all x′ ∈domF we
have

〈x∗, x′ − x〉 ≤ h(F (x′), F (x))

and, hence,

−h(F (x′), F (x))

‖x′ − x‖
≤ −〈x

∗, x′ − x〉
‖x′ − x‖

≤ ‖x∗‖.

Thus, |∇F |(x) ≤ ‖x∗‖, as it was to be shown.
Next, we prove that

|∇F |(x) ≥ ξd(0, ∂F (x)).

Let η be a scalar such that

η < d(0,∪y∈F (x) ∪yx∈VF,y(x),y∗∈∂∆−K(yx−y) D
∗F (x, yx)(y∗)). (2)

Let k0 ∈ intK such that ∆−K(k0) = d−K(k0) = 1. Consider a set-valued map
G : u ∈ X ⇒ G(u) := F (u)+η‖u−x‖k0. We claim that x is not a local weak �l
minimizer of the G. Suppose to the contrary that there exists a neighborhood
U of x such that for any u ∈ domF ∩U , we have either G(u)+K = G(x)+K =
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F (x) + K or G(u) = F (u) + η‖u − x‖k0 6≺l G(x) = F (x). In the first case,
Proposition 2 implies h(G(u), F (x)) = 0. In the second case, Lemma 1 yields

h(F (u), F (x)) + η‖x− u‖ ≥ 0. (3)

By the assumption, F (u) is K-compact and Proposition 4 (b) yields the exis-
tence of z ∈ F (x) such that infv∈F (u)∆−K(v − z) = h(F (u), F (x)). Consider
the function gF,z. Since z ∈ F (x), we have gF,z(x) ≤ 0. The inequality (3)
then gives gF,z(u) + η‖x − u‖ ≥ gF,z(x) for any u ∈ domF ∩ U . Thus, x is a
local minimizer of the function gF,z(.) +η‖x− .‖. Recall that the function gF,z
also is convex and l.s.c. We have 0 ∈ ∂(gF,z(.) + η‖x− .‖)(x). The exact sum
rule, see [19, Proposition 1, p.200], gives

0 ∈ ∂gF,z(x) + ηBY ∗ = ∂gF,z(x) + ηBY ∗ .

Applying Proposition 14 to the map F and the function gF,z, we can find
yx ∈ VF,z(x) such that

∂gF,z(x) = ∪y∗∈∂∆−K(yx−z)D
∗F (x, yx)(y∗).

Therefore,

0 ∈ ∪y∈F (x) ∪yx∈VF,y(x),y∗∈∂∆−K(yx−y) D
∗F (x, yx)(y∗)) + ηBY ∗ ,

which is a contradiction to (2).
We have showed that x is not a local weak �l minimizer of G. Then there

exists a sequence {ui} with ui ∈ domF such that ui → x and G(ui) ≺l G(x)
for all i. Hence, we have F (ui) + η‖ui − x‖k0 ≺l F (x). Lemma 1 implies
h(F (ui), F (x)) < η‖ui − x‖∆−K(−k0) = −η‖ui − x‖dY \K(k0). Hence,

−h(F (ui), F (x)

‖ui − x‖
> ηdKc(k0).

As ui → x, we get
|∇F |(x) ≥ ηdKc(k0).

Since k0 ∈ intK satisfying d−K(k0) = 1 and η > 0 satisfying (2) are arbitrarily
chosen, we obtain the desired inequality. ut

Remark that ξ ≤ 1 because dY \K(ko) ≤ d−K(k0) = 1. When K = R+
n , we

have ξ = 1/
√
n and in the special case n = 1, we have |∇F |(x) = d(0, ∂F (x)).

5 Criteria for error bounds of a lower level set and existence of
weak optimal solutions

In the remaining of this section, we will assume that X is a complete metric
space. For the sake of simplicity, let gA stand for gF,A and g+

A be the function
defined by g+

A(x) = [gA(x)]+ and we use the notation U c for the complement
of a subset U of X, i.e., U c := X \ U .

In 1994, A. Hamel established the following result for a l.s.c. function [17].
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Theorem 3 Assume that f : X → R is a proper l.s.c. function and for all
x ∈ [f ≤ α]c there exists u ∈ [f ≤ α]c, u 6= x such that f(u) + d(x;u) ≤ f(x).
Then [f ≤ α] 6= ∅, and

d(x; [f ≤ α]) ≤ [f(x)− α]+, ∀x ∈ domf. (4)

It turns out that a set-valued version of Theorem 3 holds.

Theorem 4 Suppose that F is K-bounded, K-u.s.c., K-compact-valued and
A ⊂ Y is a nonempty K-compact set. If for any x ∈ [F �l A]c there exists
u ∈ [F �l A]c, u 6= x satisfying

F (u) + ρd(x, u)k0 �l F (x), (5)

where k0 ∈ intK with ∆−K(−k0) = −1 and ρ > 0, then [F �l A] 6= ∅ and

ρd(x; [F �l A]) ≤ [gA(x)]+, for all x ∈ domF. (6)

Remark 4 Theorems 3 and 4 say that the lower level sets [f ≤ α] and [F �l A]
have global error bounds. Roughly speaking, the difficulty appeared while one
calculates the lower level sets [f ≤ α] and [F �l A] could make the calculation
of the distances to these sets from a point outside them difficult or impossible.
In such a situation, the existence of error bounds give us an upper bound for
these distances through the functions [f(.) − α]+ and [gA(.)]+ which can be
more easily calculated. In the scalar case, error bounds are known to be useful
in the study of convergence of numerical algorithms, subdifferential calculus...
(see for instance the works [2] and [4]). In the set-valued case, further study
of applications of error bounds is needed. Note that (6) reduces to (4) when
Y = R, K = R1

+, F is a single-valued function f , A = {α} with α ∈ R, k0 = 1
and ∆−K(y) = d(y;−R+).

To prove Theorem 4, we need an auxiliary result.

Proposition 16 Suppose that F is K-u.s.c. K-compact-valued and A is a
nonempty K-compact subset of Y . Then

[F �l A] = [gA ≤ 0]

and the lower level set [F �l A] is closed.

Proof Propositions 6 implies that the function gA is l.s.c. and hence its lower
level set [gA ≤ 0] is closed. Proposition 5 yields that F (x) �l A iff h(F (x), A) ≤
0. Since gA(x) = h(F (x), A), the assertion follows. ut

Let us return to the proof of Theorem 4.

Proof Proposition 6 implies that the function gA is proper and l.s.c. and Propo-
sition 16 implies that [F �l A] = [gA ≤ 0]. Further, by Lemma 1, the relation
(5) gives

h(F (u), F (x)) ≤ ρd(x, u)∆−K(−k0) = −ρd(x, u).
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Recall that by the triangle inequality (see Proposition 2) we have h(F (u), A)−
h(F (x), A) ≤ h(F (u), F (x)). Therefore,

gA(x) + ρd(x, u) = h(F (u), A) + ρd(x, u) ≤ h(F (x), A) = gA(u).

Applying Theorem 3 to the function gA, we get [gA ≤ 0] 6= ∅, and

ρd(x; [gA ≤ 0]) ≤ [gA(x)]+, ∀x ∈ domgA.

Since [F �l A] = [gA ≤ 0], the assertion follows. ut

We establish a sufficient condition for the lower sublevel [F �l A] has an
error bound in terms of slope.

Theorem 5 Suppose that F is K-bounded K-u.s.c. and K-compact-valued.
Assume further that

inf
x∈[F�lA]c

|∇F |(x) > 0.

Set

σA := inf
x∈[F�lA]c

gA(x)

d(x; [F �l A])
.

Then for any ρ ≤ σA we have

ρd(x; [F �l A]) ≤ g+
A(x), ∀x ∈ X.

Proof First, we show that

inf
x∈[F�lA]c

|∇F |(x) ≤ σA. (7)

Let ρ > σA. By the definition of σA, there exists x̄ ∈ [F �l A]c such that

ρ >
gA(x̄)

d(x̄; [F �l A])
.

Since x̄ ∈ [F �l A]c, Proposition 5 implies that gA(x̄) > 0 and hence,

g+
A(x̄) = gA(x̄) < ρd(x̄; [F �l A]).

Let r > 0 be a scalar such that g+
A(x̄) < rρ < ρd(x̄; [F �l A]). It is clear that

r < d(x̄; [F �l A]). Since g+
A(x) ≥ 0 for all x ∈ X, we have

g+
A(x̄) < g+

A(x) + rρ, ∀x ∈ X.

According to Proposition 6, gA is l.s.c. and hence, so is the function g+
A . Ap-

plying the Ekeland variational principle established in [9] to the function g+
A

and x̄, we find u ∈ X such that d(x̄;u) ≤ r and

g+
A(u) < g+

A(x) + ρd(x, u), ∀x ∈ X,x 6= u.

Again, since d(x̄;u) ≤ r < d(x̄; [F �l A]), we deduce that u ∈ [F �l A]c and
gA(u) > 0. Note that the set [F �l A]c is open and there exists a neighborhood
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U of u such that U ⊂ [F �l A]c = [0 < gA]. For any x ∈ U , we have gA(x) > 0.
Hence, g+

A(x) = gA(x) and

gA(u) < gA(x) + ρd(x, u), ∀x ∈ U, x 6= u.

The definition of the strong slope implies |∇gA|(u) ≤ ρ. Recall that u ∈ [F �l
A]c. Then we have

inf
u∈[F�lA]c

|∇gA|(u) ≤ ρ

and since ρ > σA is arbitrary, (7) follows.
By the assumption, now we have

σA > 0.

As ρ ≤ σA, we get ρd(x; [F �l A]) ≤ gA(x) for all x ∈ [F �l A]c or

ρd(x; [F �l A]) ≤ g+
A(x), ∀x ∈ X.

ut

Remark 5 Let F be the map in Example 2 (a) and A = {1}× [1, 3]. Note that
[F �l A] = [−1, 1] and infx∈[F�lA]c |∇F |(x) = 1 > 0. Theorem 5 applied to
this case yields that F has a global error bound modulus σA = 1 at A.

We conclude the section with a result about the existence of a global weak
�l-minimizer under the following Palais-Smale type condition involving slope.

Palais-Smale condition (PS) Any sequence {xi} (xi ∈ domF ) satisfying

(i) {F (xi)} is bounded in the sense that there exists K-bounded sets A1 and
A2 such that

A1 �l F (xi) �l A2, ∀n

(ii) |∇F |(xi)→ 0

contains a convergent subsequence.

Theorem 6 Assume that F is K-bounded K-u.s.c. and K-compact-valued.
If F satisfies the Palais-Smale condition (PS), then F has a global weak �l-
minimizer.

To prove this theorem, we need a slope version of the Ekeland variational
principle for set-valued maps and an auxiliary result.

Theorem 7 Suppose that F is K-bounded, K-u.s.c. and K-compact-valued.
Then for any ε > 0, there exists x̄ ∈ X such that

|∇F |(x̄) ≤ ε.
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Proof Let k0 ∈ intK be such that ∆−K(k0) = −1. Applying the set-valued
version of the Ekeland variational principle stated in Theorem 4.1 in [12], we
find x̄ ∈ domF such that

F (x) + εd(x, x̄)k0 6�l F (x̄), ∀x ∈ domF, x 6= x̄.

Lemma 1 gives

−h(F (x), F x̄))

d(x, x̄)
≤ ε for all x ∈ domF, x 6= x̄

and therefore, |∇F |(x̄) ≤ ε. ut

Lemma 2 Suppose that A is a nonempty subset of Y such that L := [F �l
A] 6= ∅. Let x̄ ∈ L and denote by F|L : L ⇒ Y the restriction of F to the set
L. Then

(i) x̄ is a local weak �l-minimizer of F|L on L iff it is a local weak �l-minimizer
of F on X.

(ii) |∇F|L |(x̄) = |∇F |(x̄).

Proof First, we show that

x ∈ [F �l A]c implies F (x) 6≺l F (u), ∀u ∈ [F �l A]. (8)

Indeed, if F (x) ≺l F (u), we deduce from F (u) ⊆ F (x) + intK and F (u) �l A
that

A ⊆ F (u) +K ⊆ F (x) + intK +K ⊆ F (x) +K,

which means that F (x) �l A, a contradiction to x ∈ [F �l A]c.
Next, we prove the only if part in the assertion (i). Assume that x̄ is a local

weak �l-minimizer of F|L on L and let U be the neighborhood of x̄ in X such
that for all x ∈ (domF ∩ L) ∩ U either F (x) ≡l F (x̄) or F (x) 6≺l F (x̄). Let
x ∈ (domF ∩ [F �l A]c) ∩ U . Then either F (x) ≡l F (x̄) or F (x) 6≺l F (x̄) by
(8). Thus, x̄ is a local weak �l-minimizer of F on X.

Finally, if x̄ is a local weak �l-minimizer of F on X and F|L on L, then
|∇F|L |(x̄) = |∇F |(x̄) = 0. Otherwise, it follows from Proposition 6 and the
implication

F (u) ≺l F (x̄) and F (x̄) �l A imply F (u) ≺l A

that
|∇F |(x̄) = lim supu→x̄,F (u)≺lF (x̄)

−h(F (u),F (x̄))
d(x̄;u)

= lim supu→x̄,F (u)≺lF (x̄),F (u)≺lA
−h(F (u),F (x̄))

d(x̄;u)

= lim supu→x̄,u∈L,F (u)≺lF (x̄)
−h(F (u),F (x̄))

d(x̄;u)

= |∇F|L(x̄).

ut

We return to the proof of Theorem 6.
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Proof Since F is K-bounded, there exists a nonempty K-bounded setA1 such
that for all x ∈ domF we have

A1 �l F (x).

By Lemma 2, we may assume that for all x ∈ domF we have

F (x) �l A2.

with A2 := F (ū) for an arbitrary ū ∈ domF because all the assumptions of
the theorem remain satisfied if we replace X by the set L := [F �l F (ū)],
which is a complete metric space.

Let ko ∈ intK be such that ∆−K(k0) = 1. Take a sequence of positive
scalars {εi} such that εi → 0 and εi < εj for i < j. Since F is K-bounded,
for each i, Proposition 3.1 in [12] implies the existence of an εik0-approximate
minimizer ui ∈ domF of F , which means that

F (x) + εik0 6�l F (ui), ∀x ∈ domF. (9)

For each i = 1, 2, ..., let Ui := [F �l F (ui)] and let F|Ui
be the restriction of the

map F to the set Ui. The set-valued version of the Ekeland variational principle
stated in Theorem 7 applied to F|Uj

implies the existence of a sequence {xi}
with xi ∈ Ui such that for all i = 1, 2, ...

|∇F|Ui
|(xi) ≤ εi.

By Lemma 2, for all i = 1, 2, ... we have

|∇F |(xi) = |∇F|Ui
|(xi) ≤ εi.

Note that since xi ∈ Ui, we have F (xi) �l F (ui). One can deduce from (9)
that xi also is an εik0-approximate minimizer of F on X, i.e.,

F (x) + εik0 6�l F (xi), ∀x ∈ domF, x 6= xi.

By Lemma 1, it follows that

h(F (x), F (xi)) > −εi∆−K(k0) = −εi, ∀x ∈ domF. (10)

By the Palais-Smale condition, the sequence {xi} contains a convergent
subsequence. Going to a subsequence if necessary, we may assume that xi → x̄
for some x̄ ∈ domF . Since F is K-u.s.c. at x̄, for i = 1, 2, ... one can find
integers ki such that k1 < k2 < ..., i < ki and

F (x̄) +
εiB
µ1(B)

�l F (xj) ∀j ≥ ki,

where µ1(B) := supb∈B∆−K(−b). Applying Lemma 1, we get

h(F (x̄), F (xj)) ≤
εi

µ1(B)
µ1(B) = εi, ∀j ≥ ki. (11)
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Now, let x ∈ domF be an arbitrary element. We will estimate the quantity
h(F (x), F (x̄)). For i = 1, 2, ..., we deduce from (10) and (11) that

h(F (x), F (x̄)) ≥ h(F (x), F (xki))− h(F (x̄), F (xki)) ≥ −εki − εi > −2εi

(recall that since ki > i, we have εki < εi). Since εi → 0, we get h(F (x), F (x̄)) ≥
0 for all x ∈ domF . Proposition 7 implies that x̄ is a global weak �l-minimizer
of F . ut

Remark 6 (i) The map F in Example 2 (a) satisfies all conditions of Theorem
6 and it has a global �l-minimizer x = 0.

(ii) Note that the condition that F is K-bounded cannot be dropped as
one can see in the case with F being the map in Example 2 (b).
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