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Abstract. In this article, we present a cost-benefit analysis of the approximation in tensor products of Hilbert spaces of
Sobolev-analytic type. The Sobolev part is defined on a finite dimensional domain, whereas the analytical space is defined on an
infinite dimensional domain. As main mathematical tool, we use the ε-dimension in Hilbert spaces which gives the lowest number
of linear information that is needed to approximate an element from the unit ball W in a Hilbert space Y up to an accuracy ε > 0
with respect to the norm of a Hilbert space X. From a practical point of view this means that we a priori fix an accuracy and
ask for the amount of information to achieve this accuracy. Such an analysis usually requires sharp estimates on the cardinality
of certain index sets which are in our case infinite-dimensional hyperbolic crosses. As main result, we obtain sharp bounds of the
ε-dimension of the Sobolev-analytic-type function classes which depend only on the smoothness differences in the Sobolev spaces
and the dimension of the finite dimensional domain where these spaces are defined. This implies in particular that, up to constants,
the costs of the infinite dimensional (analytical) approximation problem is dominated by the finite-variate Sobolev approximation
problem. We demonstrate this procedure with examples of functions spaces stemming from the regularity theory of parametric
partial differential equations.

Keywords: infinite-dimensional hyperbolic cross approximation, mixed Sobolev-analytic-type smoothness, ε-dimension, Kol-
mogorov n-width, linear information, parametric elliptic PDEs, collective Galerkin approximation.

1. Introduction. The main emphasis of this paper lies on the cost-benefit ratio of the approximation for
a class of functions stemming from an anisotropic tensor product of smoothness spaces. Let X,Y be Hilbert
spaces, W the uniball in Y , and Y a linear subspace of X. Since we are interested in the cost-benefit ratio of
the approximation, we focus on the so-called ε-dimension nε(W,X). It is defined as

nε(W,X) := inf

{
n : ∃ Mn : dimMn ≤ n, sup

w∈W
inf
v∈Mn

‖w − v‖X ≤ ε
}
,

where Mn ⊂ X is a linear manifold in X of dimension ≤ n. The important concept here is the fact that an
approximation quality ε > 0 is a priori fixed and the smallest dimension n of any approximation space realizing
the approximation error is sought after. This is the inverse of the usual Kolmogorov n-width dn(W,X) [11]
which is given by

dn(W,X) := inf
Mn

sup
w∈W

inf
v∈Mn

‖w − v‖X ,
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where the outer infimum is taken over all linear manifolds Mn in X of dimension at most n. Let us recall two
close different n-widths which are also related to linear approximation. The linear n-width λn(W,X) introduced
by Tikhomirov [17] is given by

λn(W,X) := inf
Λn

sup
w∈W

‖f − Λn(w)‖X ,

where the inf is taken over all linear operators Λn in X with rank ≤ n. The Gel’fand n-width dn(W,X) (see
[18, 15]) is defined by

dn(W,X) := inf
L−n

inf{ε ≥ 0 : W ∩ L−n ⊂ εU},

where the outer inf is taken over all linear subspaces L−n in X of codimension ≤ n, and U is the unit ball
in X. Since X and Y are Hilbert spaces, it is well kown that these quantities coincide. Hence, nε(W,X) can
be seen also as the smallest number of linear functionals that are needed by a linear algorithm to give for
all f ∈ W an approximation with an error of at most ε, i.e., nε(W,X) is the information complexity of the
approximation problem as defined in IBC [13, Page 106]. For a survey and a bibliography on various n-widths
see the monograph [8]. For a survey and a bibliography on computational complexity see the monographs
[13, 14].

To be more specific, we deal with functions defined on a product domain Tm × I∞, where Tm := [0, 1]m is
the m-dimensional torus with m < ∞, and I∞ := [−1, 1]∞ is infinite dimensional. Denote by F the set of all
sequences s := {sj}j∈N of nonnegative integers such that supp(s) is finite, where supp(s) is the support of s,
that is the set of all j ∈ N such that sj 6= 0. The fundamental Hilbert space is the set of functions v on Tm× I∞
which is defined as

L :=

v :=
∑

(k,s)∈Zm×F

vk,sφk,s such that
∑

(k,s)∈Zm×F

|vk,s|2 <∞

 ,

where {φk,s}(k,s)∈Zm×F denotes an orthonormal system with respect to the inner product

(v, w)L =
∑

(k,s)∈Zm×F

vk,sw̄k,s.

In order to study approximation numbers such as nε(W,X), we need to define the smoothness space X and
the smoothness class W as well. Smoothness spaces are modeled here by general sequences of scalars λ :=
{λ(k, s)}(k,s)∈Zm×F with λ(k, s) 6= 0. Then, we define the associated Hilbert space (see (3.2))

(1.1) Lλ :=

v ∈ L : ṽ :=
∑

(k,s)∈Zm×F

λ(k, s) vk,sφk,s ∈ L

 .

For v ∈ Lλ, we define

‖v‖2Lλ := ‖ṽ‖2L =
∑

(k,s)∈Zm×F

|λ(k, s)|2 |vk,s|2,

where ṽ is defined in (1.1) (see (3.3)). Let us assume to have two such sequences λ and ν with ν ≤ λ in the
point-wise sense. Then we can chose

X = Lν and W = Uλ,

where Uλ denotes the unit ball in Lλ. Hence, we are left with estimating nε(Uλ,Lν). To account for the fact
that we work on a product domain Tm × I∞, the concrete smoothness spaces are parametrized by a number a
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and a positive sequence b = (bj)j∈N such that ρa,b(k, s) are tensor product and order dependent weights (see
also (4.1))

(1.2) ρa,b(k, s) := |k|a∞
s!

|s|1!
b−s,

where |k|∞ := max1≤j≤m |kj | and for s ∈ F,

s! :=

∞∏
j=1

sj !, |s|1 :=

∞∑
j=1

sj , and b−s :=

∞∏
j=1

b
−sj
j .

Both Aα,b := Lλ and Kβ := Lν with λ(k, s) = ρα,b(k, s) (α > 0) and ν(k, s) = |k|β∞, respectively, will be of this
specific form. The space Aα,b is of Sobolev-analytic-type, while the space Kβ is of Sobolev-type. We provide
a motivation for such classes of function spaces by considering the regularity spaces arising in the theory of
parametric partial differential equations (PDEs). The simpler case of tensor product weights

(1.3) ρ̃a,b(k, s) := |k|a∞ b−s

was already treated in [7]. As shown in Section 2 (see (2.4)–(2.5) and Lemmas 2.1 and 2.2), the tensor product
and order dependent weights of the form (1.2) are more natural and important than the tensor product weights
of the form (1.3), since they are the majorants of the coefficients in Taylor and Legendre expansions of the
solution to parametric operator equations and in particular, parametric elliptic PDEs.

The main contribution of this paper is the fact that the ε-dimension in the space Kβ of our Sobolev-analytic-
type function class Uα,b, which is defined as the unit ball in Aα,b, depends only on the Sobolev smoothness
differences in the spaces Aα,b and Kβ , and the dimension of the finite dimensional domain where these spaces
are defined. More precisely, let α > β ≥ 0 and b = (bj)j∈N be a positive sequence. Assume that

(1.4) Cp :=
∑
s∈F

(
|s|1!

s!
bs

)p
<∞

for p = m/(α− β), where bs :=
∏∞
j=1 b

sj
j . Then we have for every ε ∈ (0, 1],

(1.5) 2m
(
bε−1/(α−β)c − 1

)m
≤ nε(U

α,b,Kβ) ≤ 3mCm/(α−β) ε
−m/(α−β).

These tight estimates imply in particular that, up to constants, the costs of solving the infinite dimensional
(analytical) approximation problem are dominated by the finite-variate Sobolev-smooth approximation problem.
The bounds in (1.5) are derived from the inequalities

|Ea,b(1/ε)| − 1 ≤ nε(Uλ,Lν) ≤ |Ea,b(1/ε)|,

and the tight estimates

(1.6) 2mbT 1/ac
m
≤ |Ea,b(T )| ≤ 3mCm/a T

m/a

for a = α− β, of the cardinality of infinite-dimensional hyperbolic crosses

Ea,b(T ) :=
{

(k, s) ∈ Zm × F : 0 < ρa,b(k, s) ≤ T
}
.

The main difficulty in establishing (1.6) is the upper bound which requires a condition for the `p(F)-summability

of the sequence
(
|s|1!
s! bs

)
s∈F

, i.e., a condition for (1.4), for any p such that 0 < p <∞. A necessary and sufficient

condition for the case 0 < p ≤ 1 of this `p(F)-summability have been proven in [4]. In the present paper, we

prove a necessary and sufficient condition for the `p(F)-summability of the sequence
(
|s|1!
s! bs

)
s∈F

for 1 < p <∞.

This result is novel. The proof is much more technically complicate and based on a different idea. Results similar
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to (1.5) and (1.6), have been proven in [7] for the situation where tensor product and order dependent weights
ρα,b(k, s) are replaced by simpler tensor product weights ρ̃α,b(k, s). For the last situation the proof of a

necessary and sufficient condition for the `p(F)-summability of the respective sequence
(
bs
)
s∈F

for 0 < p <∞,

is a simple task, see Lemma 4.2 and the referred Lemma 7.1 in [4] in its proof.

The above results then are applied to obtain estimates for the error of the collective Galerkin approximation
of a parametrized elliptic Poisson problem. For these parametric elliptic PDEs the solution u belongs to suitable
spaces Aα,b, and the collective Galerkin approximation uEα−β,b(T ) is from a finite-dimensional subspace of Kβ ,
related to the infinite-dimensional hyperbolic cross index set Eα−β,b(T ). In particular, with the help of well-
known Céa’s lemma we derive that for n := |E1,b(T )|, there holds the upper bound ‖u− uE1,b(T )‖L2(I∞,V,µ) ≤
B n1/m with an absolute constant B (see Theorem 6.3 for details).

The remainder of the paper is organized as follows: In Section 2, we consider the general parametrized
elliptic Poisson problem and its regularity results both with respect to the spatial and with respect to the
infinite-dimensional parametric component. In Section 3, we review the setting of infinite dimensional tensor
products of Hilbert spaces and the associated approximation and ε-dimension. In Section 4, we give more
details on the applications of the general setting to the smoothness spaces arising in parametric PDEs. The
main mathematical results concern the cardinality of the infinite dimensional hyperbolic crosses in Section 5.
This section is split into two steps. The first result in Subsection 5.1 addresses the inclusion of the sequence(
|s|1!
s! bs

)
s∈F
∈ `p(F) with 0 < p <∞. The main result in this subsection is Theorem 5.3 which is proven based

on a result in Subsection 5.2. A suitable `p–norm of the sequence
(
|s|1!
s! bs

)
s∈F
∈ `p(F) enters as an absolute

constant, c.f. (1.4). In Section 6, we combine our results to derive sharp estimates of the ε-dimension and its
inverse, the Kolmogorov n-widths of the Sobolev-analytic-type function classes. These results are then applied
to the collective Galerkin approximation of parametric elliptic PDEs.

Notation. We give a collection of notation (a part of it has been introduced before) which will be used in
the present paper: Zm∗ := Zm \ {0}; Tm is the m-dimensional torus which is defined as the cross product of m
copies of the interval [0, 1] with the identification of the end points; R∞ is the set of all sequences y = (yj)

∞
j=1

with yj ∈ R; |k|∞ := max1≤j≤m |kj | for k ∈ Zm. Similarly, we set I = [−1, 1] and I∞ is the set of all
sequences y = (yj)

∞
j=1 with yj ∈ I. Z∞ is the set of all sequences s = (sj)

∞
j=1 with sj ∈ Z. Furthermore,

Z∞+ := {s ∈ Z∞ : sj ≥ 0, j = 1, 2, ...}, yj is the jth coordinate of y ∈ R∞. Moreover, F is a subset of Z∞+ of all
s such that supp(s) is finite, where supp(s) is the support of s, that is the set of all j ∈ N such that sj 6= 0. If
s ∈ F, we define

s! :=

∞∏
j=1

sj !, |s|1 :=

∞∑
j=1

sj , and bs :=

∞∏
j=1

b
sj
j

for a sequence b = (bj)j∈N of positive numbers. We use the convention: 0
0 := 0.

2. Parametric operator equations. Let us briefly recall the setting of [12]. Denote by X a real separable
Banach space over the field R and by X ′ its topological dual, i.e., the space of bounded linear functionals. We
consider a map

G : (I∞, ‖·‖∞)→ LI(X,X ′), y 7→ G(y) = Gy,

where ‖y‖∞ := supj∈N |yj | and LI(X,X ′) denotes the space of boundedly invertible linear operators X → X ′.
By G−1

y ∈ LI(X ′, X), we denote the element such that Gy ◦G−1
y = IdX′ and G−1

y ◦Gy = IdX . We define

G−1 : (I∞, ‖·‖∞)→ LI(X ′, X), y 7→ G−1(y) = G−1
y .

We assume that G−1 is bounded by C(G) i.e., that

sup
y∈I∞
‖y‖∞≤1

∥∥G−1(y)
∥∥
L(X′,X)

= sup
y∈I∞

∥∥G−1
y

∥∥
L(X′,X)

≤ C(G).(2.1)
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Moreover, we assume that G is analytic with respect to every yj with j ∈ N and that there is a sequence
d : N→ R with d ∈ `p(N) for a fixed 0 < p ≤ 1 such that for all s ∈ F \ {0}

sup
y∈I∞

∥∥G−1(0)∂syG(y)
∥∥
L(X,X)

≤ C(G)ds.(2.2)

Furthermore, we observe that we can write the solution u ∈ X of the operator equation Gyu(y) = f for given
f ∈ X ′ in terms of the solution operator

S : I∞ ×X ′ → X, (y, f) 7→ S(y, f) := G−1(y)f = G−1
y f,

and [12, Thm. 4] provides the bound

sup
y∈I∞

sup
f∈X′
‖f‖

X′=1

∥∥∂syS(y, f)
∥∥
X
≤ C(G)

ln(2)
|s|!ds(2.3)

for all s ∈ F \ {0}. This implies a (generalized) Taylor’s series representation of

u(y) = uf (y) =
∑
s∈F

1

s!
∂syuf (y)ys =

∑
s∈F

(
1

s!
∂syuf (y)

∣∣
y=0

)
ys =

∑
s∈F

(
1

s!
∂syS(y, f)

∣∣
y=0

)
ys.(2.4)

Hence, the coefficients are bounded by∥∥∥∥ 1

s!
∂syuf (y)

∣∣
y=0

∥∥∥∥
X

≤ C(G)

ln(2)

|s|!
s!

ds ‖f‖X′ ,(2.5)

which fits exactly into our framework, i.e., the upper bound has the structure of ρ−1
a,b(k, s) with a = 0 from

(1.2). We will, however, study a more specific example in more detail, since we also need spatial regularity
results, which allows also for a > 0. For the elliptic PDEs (2.6) formulated in the next section, some particular
estimates for the coefficients in the Taylor and Legendre expansions which are similar to (2.3) and (2.5) were
established in earlier papers [1, 4, 5].

2.1. Parametric elliptic PDEs. Here, we consider a more specific problem which fits into the framework
outlined above. We chose X = H1

0 (Ω) and hence X ′ = H−1(Ω) where Ω := [0, 1]m. The operator is

Ga : I∞ → L(H1
0 (Ω), H−1(Ω)), y 7→

(
H1

0 (Ω) 3 u 7→ −div(a(y)∇xu) ∈ H−1(Ω)
)
,

where a : Ω× I∞ → R+ is a function satisfying

0 < r < a(x,y) ≤ R < ∞, x ∈ Ω, y ∈ I∞.

In order to derive spatial regularity, we will restrict ourselves to f ∈ L2(Ω) ⊂ H−1(Ω). Moreover, we restrict
ourselves to periodic problems, that is a(y)(x) := a(x,y) is a function of x = (x1, ..., xm) ∈ Ω and of parameters
y = (y1, y2, ...) ∈ I∞ on Ω× I∞, and the function f(x) is a function of x = (x1, ..., xm) ∈ Ω. Hence, we consider
the parametric elliptic problem

(2.6) −div(a(y)∇xu(y)) = f in Ω, u|∂Ω = 0, y ∈ I∞.

Throughout the present paper, we assume that a(y) and f as functions on x can be extended to 1-periodic
functions in each variable xj on the whole Rm, and hence a(y) and f can be considered as functions defined
on Tm. We also preliminarily assume that f ∈ L2(Tm) and the diffusions a satisfy the uniform ellipticity
assumption which ensures condition (2.1)

0 < r < a(y)(x) = a(x,y) ≤ R < ∞, x ∈ Tm, y ∈ I∞.
5



Let V := H1
0 (Tm) and denote by W the subspace of V equipped with the semi-norm and norm

|v|W := ‖∆v‖L2(Tm), ‖v‖W :=
(
‖v‖2V + |v|2W

)1/2
.

Note that if v ∈ L2(Tm) ∩W and

v =
∑

k∈Zm∗

vkek,

where ek(x) := ei2πkx, i.e., {ek}k∈Zm is the usual orthonormal basis of L2(Tm) (the e0 part is taken care of by
the boundary condition of V := H1

0 (Tm)), then from the definition and Parseval’s identity we have

(2.7) (2π)2
∑

k∈Zm∗

|k|2∞|vk|2 ≤ ‖v‖2V =

m∑
i=1

‖∂iv‖2L2(Tm) = (2π)2
∑

k∈Zm∗

|k|22|vk|2 ≤ (2π)2m
∑

k∈Zm∗

|k|2∞|vk|2,

and

(2.8) (2π)4
∑

k∈Zm∗

|k|4∞|vk|2 ≤ |v|2W ≤ (2π)4m2
∑

k∈Zm∗

|k|4∞|vk|2,

where we used the norm equivalence |k|∞ ≤ |k|2 ≤
√
m|k|∞ for all k ∈ Zm.

2.2. Spatial regularity. By the well-known Lax-Milgram lemma, for every y ∈ I∞ there exists a unique
(weak) solution u ∈ V to equation (2.6) which satisfies the variational equation∫

Tm
a(x,y)∇u(x,y) · ∇v(x) dx =

∫
Tm

f(x) v(x) dx, ∀v ∈ V.

We skip the explicit dependence on the parameter y in this section. Moreover, this solution satisfies the
inequality

‖u‖V ≤
‖f‖V ∗
r

,

where V ∗ = H−1(Tm) denotes the dual of V . Observe that there holds the embedding L2(Tm) ↪→ V ∗ and the
inequality

‖f‖V ∗ ≤ ‖f‖L2(Tm).

Now, denote by W 1
∞(Tm) the space of functions v on Tm, equipped with the semi-norm and the norm

|v|W 1
∞(Tm) := max

1≤i≤m
‖∂xiv‖L∞(Tm), ‖v‖W 1

∞(Tm) := ‖v‖L∞(Tm) + |v|W 1
∞(Tm)

respectively. If we assume that a ∈ W 1
∞(Tm), then the solution u of (2.6) is in W . Moreover, u satisfies the

estimates

|u|W ≤ 1

r

(
1 +
|a|W 1

∞(Tm)

r

)
‖f‖L2(Tm),

and

‖u‖W ≤ 1

r

[
1 +

(
1 +
|a|W 1

∞(Tm)

r

)]
‖f‖L2(Tm).

This spatial regularity implies certain approximation rate if we use trigonometric polynomials in a Galerkin
approach. For a real positive number T ≥ 1 we define the index set

GZm(T ) := {k ∈ Zm : |k|∞ ≤ T}.
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Denote by Tn with n = (2bT c)m = |GZm(T )| the space of trigonometric polynomials

Tn :=

v :
∑

k∈GZm (T )

vkek


of dimension n. Let Pn be the projection from L2(Tm) onto Tn. Then, using 2−1n1/m = bT c ≤ T ≤ 2−1n1/m+1
and T ≥ 1, we get that

(2.9)
‖u− Pn(u)‖V ≤ 2π

m ∑
k∈Zm\GZm (T )

|k|2∞|uk|2
 1

2

≤ 2π
√
m

 ∑
k∈Zm\GZm (T )

T−2|k|4∞|uk|2
 1

2

≤ 2π
√
mT−1|u|W ≤ 4π

√
mn−1/m|u|W

holds for all u ∈ W . Furthermore, we obtain nε(W, V ) . |GZm(ε−1)| for 0 < ε ≤ 1, where W := {v ∈ W :
|v|W ≤ 1}. Let un be the Galerkin approximation, i.e., the unique solution of the problem∫

Tm
a(x,y)∇un(x,y) · ∇v(x) dx =

∫
Tm

f(x) v(x) dx, ∀v ∈ Tn.

Then, we get with Céa’s lemma and (2.9) that

‖u− un‖V ≤
√
R

r
inf
v∈Tn

‖u− v‖V =

√
R

r
‖u− Pn(u)‖V ≤

√
R

r
4π
√
mn−1/m|u|W ≤ C n−1/m,

where we can explicitly compute the constant to be

C := 4π

√
mR

r

1

r

(
1 +
|a|W 1

∞(Tm)

r

)
‖f‖L2(Tm).

2.3. Parametric regularity. A probability measure on I∞ is the infinite tensor product measure µ of the
univariate uniform probability measures on the one-dimensional I, i.e.

dµ(y) =
⊗
j∈N

1

2
dyj .

Here, the sigma algebra Σ for µ is generated by the finite rectangles
∏
j∈N Ij , where only a finite number of the

Ij are different from I and those that are different are intervals contained in I. Then, (I∞,Σ, µ) is a probability
space.

Now, let L2(I∞, µ) denote the Hilbert space of functions on I∞ equipped with the inner product

〈v, w〉 :=

∫
I∞
v(y)w(y) dµ(y).

The norm in L2(I∞, µ) is defined as ‖v‖ := 〈v, v〉1/2. In what follows, µ is fixed, and, for convention, we
write L2(I∞, µ) := L2(I∞). Furthermore, let L2(Tm) be the usual Hilbert space of Lebesgue square-integrable
functions on Tm based on the univariate normed Lebesgue measure. Then, we define

L2(Tm × I∞) := L2(Tm)⊗ L2(I∞).

For s ∈ N the space L2(Tm × Is) = L2(Tm)⊗ L2(Is) can be considered as a subspace of L2(Tm × I∞).

Let us reformulate the parametric equation (2.6) in the variational form. For every y ∈ I∞, by the well-
known Lax-Milgram lemma, there exists a unique solution u(y) ∈ V in weak form which satisfies the variational
equation ∫

Tm
a(x,y)∇u(y)(x) · ∇v(x) dx =

∫
Tm

f(x) v(x) dx, ∀v ∈ V.
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Moreover, u(y) satisfies the estimate

(2.10) ‖u(y)‖V ≤
‖f‖V ∗
r

, ∀y ∈ I∞.

Denote by L2(I∞, V, µ) the Bochner space of all mappings v from I∞ to V such that the norm

‖v‖L2(I∞,V,µ) :=

(∫
I∞
‖v(y)‖2V dµ(y)

)1/2

is finite. Furthermore, denote by L∞(I∞, V ) the space of all mappings v from I∞ to V such that v is defined
everywhere in I∞ and uniformly bounded in V , and that the norm

‖v‖L∞(I∞,V ) := sup
y∈I∞

‖v(y)‖V

is finite. Since µ is a probability measure, we have that ‖v‖L2(I∞,V,µ) ≤ ‖v‖L∞(I∞,V ) for every v ∈
L∞(I∞, V ). Hence, the space L∞(I∞, V ) is continuously embedded into L2(I∞, V, µ) and we can write
L∞(I∞, V ) ⊂ L2(I∞, V, µ). On the other hand, by (2.10) we have that u ∈ L∞(I∞, V ). From the inclusions
u ∈ L∞(I∞, V ) ⊂ L2(I∞, V, µ) it follows that u admits the unique expansions

(2.11) u =
∑
s∈F

us Ls,

where {Ls}∞s=0 is the family of univariate orthonormal Legendre polynomials in L2(I) and

Ls(y) :=
∏

j∈supp(s)

Lsj (yj).

The expansion (2.11) for u converges in L2(I∞, V, µ), where the Legendre coefficients us ∈ V are defined by

us := 〈u, Ls〉 :=

∫
I∞
u(y)Ls(y) dµ(y) s ∈ F.

From [1, Theorem 2.1] (or from the more general bound (2.3) for the parametric elliptic PDEs (2.6)) and
the formulas for the Legendre coefficients

us =
1

s!

∏
j: sj 6=0

√
2sj + 1

2sj

∫
I∞
∂syu(y)

∏
j: sj 6=0

(1− y2
j )sjdµ(y)

we derive the following result.

Lemma 2.1. Assume that the diffusions a are infinitely times differentiable with respect to y and that there
exists a positive sequence a = (aj)j∈N such that

‖∂sya(y)‖V ≤ as, y ∈ I∞, s ∈ F.

Then we have

‖us‖V ≤ K
|s|1!

s!
ds, s ∈ F,

where K := ‖f‖V ′
r and d := a

ln 2 .

For the proof of the following lemma see [6, Lemma 5.5].

Lemma 2.2. Assume that f ∈ L2(Tm), and assume that the diffusions a ∈ L∞(I∞,W 1
∞(Tm)) and they are

affinely dependent with respect to y as

(2.12) a(y)(x) = a(x) +

∞∑
j=1

yj ψj(x), x ∈ Tm, y ∈ I∞, a, ψj ∈W 1
∞(Tm).
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Then we have that

‖us‖W ≤ K
|s|1!

s!
ds, s ∈ F,

where

K :=
1

r

(
1 +

(
1 +
|a|L∞(I∞,W 1

∞(Tm))

r

))
‖f‖L2(Tm)

and d = (dj)j∈N with

dj :=
1

r
√

3

(( |a|L∞(I∞,W 1
∞(Tm))

r
+ 2

)
‖ψj‖L∞(Tm) + |ψj |W 1

∞(Tm)

)
.

The affine structure in (2.12) makes it easy to check the condition (2.2). Furthermore, see [16, Section 2.3] for
more details where the setting of general operator equations includes parametric elliptic PDEs as special case.

We will see in Section 4 that the spatial and parametric regularities of the solution u to (2.6) induce a joint
regularity in infinite tensor product Hilbert spaces which is appropriate to hyperbolic cross approximation in
infinite dimension.

3. Approximation in infinite tensor product Hilbert spaces of joint regularity. In this section,
we recall some results on approximation in infinite tensor product Hilbert spaces of joint regularity which were
proven in [7, Subsection 3.1]. We first introduce the notion of the infinite tensor product of separable Hilbert
spaces. Let Hj , j = 1, ...,m, be separable Hilbert spaces with inner products 〈·, ·〉j . First, we define the finite-
dimensional tensor product of Hj , j = 1, ...,m, as the tensor vector space H1 ⊗H2 ⊗ · · · ⊗Hm equipped with
the inner product

(3.1) 〈⊗mj=1φj ,⊗mj=1ψj〉 :=

m∏
j=1

〈φj , ψj〉j for all φj , ψj ∈ Hj .

By taking the completion under this inner product, the resulting Hilbert space is defined as the tensor product
space H1 ⊗H2 ⊗ · · · ⊗Hm of Hj , j = 1, ...,m. Next, we consider the infinite-dimensional case. If Hj , j ∈ N, is
a collection of separable Hilbert spaces and ξj , j ∈ N, is a collection of unit vectors in these Hilbert spaces then
the infinite tensor product ⊗j∈NHj is the completion of the set of all finite linear combinations of simple tensor
vectors ⊗j∈Nφj where all but finitely many of the φj ’s are equal to the corresponding ξj . The inner product of
⊗j∈Nφj and ⊗j∈Nψj is defined as in (3.1) with m =∞. For details on infinite tensor product of Hilbert spaces,
see [2].

Now, we will need a tensor product of Hilbert spaces of a special structure. Let H1 and H2 be two given
infinite-dimensional separable Hilbert spaces. Consider the infinite tensor product Hilbert space

L := Hm
1 ⊗H∞2 where Hm

1 := ⊗mj=1H1, H∞2 := ⊗∞j=1H2.

Let {φ1,k}k∈Z and {φ2,s}s∈N be given orthonormal bases of H1 and H2, respectively. Then, {φ1,k}k∈Zm and
{φ2,s}s∈F are orthonormal bases of Hm

1 and H∞2 , respectively, where

φ1,k := ⊗mj=1φ1,kj , k ∈ Zm, φ2,s := ⊗∞j=1φ2,sj , s ∈ F.

Moreover, the set {φk,s}(k,s)∈Zm×F is an orthonormal basis of L, where

φk,s := φ1,k ⊗ φ2,s.

Thus, every v ∈ L can be represented by the series

v =
∑

(k,s)∈Zm×F

vk,s φk,s,
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where for v = v1 ⊗ v2,

vk,s := 〈v, φk,s〉L = (v1, φ1,k)Hm1
(v2, φ2,s)H∞2

is the Fourier coefficient with index (k, s) of v with respect to the orthonormal basis {φk,s}(k,s)∈Zm×F. Further-
more, there holds Parseval’s identity

‖v‖2L =
∑

(k,s)∈Zm×F

|vk,s|2.

Now let us assume that a general sequence of scalars λ := {λ(k, s)}(k,s)∈Zm×F is given. Then, we define the
associated space

(3.2) Lλ :=

v ∈ L : ṽ :=
∑

(k,s)∈Zm×F

λ(k, s) vk,sφk,s ∈ L

 .

For v ∈ Lλ, we define

(3.3) ‖v‖2Lλ := ‖ṽ‖2L =
∑

(k,s)∈Zm×F

|λ(k, s)|2 |vk,s|2,

where the last equality stems from Parseval’s identity.

Define Fs := { s ∈ F : supp(s) ⊂ {1, · · · , s} }. We consider

(3.4) Ls :=

v =
∑

(k,s)∈Zm×Fs

vk,s φk,s

 and Lλs := Lλ ∩ Ls.

Moreover, let the non-vanishing sequences of scalars λ := {λ(k, s)}(k,s)∈Zm×F and ν := {ν(k, s)}(k,s)∈Zm×F be

given with associated spaces Lλ and Lν with corresponding norms and subspaces Lλs and Lνs , c.f. (3.4). As in
Section 2.2, we define for T ≥ 1 the index-set

GZm×F(T ) :=
{

(k, s) ∈ Zm × F : 0 < |λ(k, s)/ν(k, s)| ≤ T
}
,

which induces a subspace

P(T ) :=

g ∈ L : v =
∑

(k,s)∈GZm×F(T )

vk,s φk,s

 ⊂ L.
We are interested in the Lν-norm approximation of elements from Lλ by elements from P(T ). To this end, for
v ∈ L and T ≥ 1, we define the operator ST as

ST (v) :=
∑

(k,s)∈GZm×F(T )

vk,s φk,s.

We make the assumption throughout this section that GZm×F(T ) is a finite set for every T ≥ 1. Obviously, ST
is the orthogonal projection onto P(T ). Furthermore, we define the set GZm×Fs(T ), the subspace Ps(T ) and
the operator Ss,T (v) in the same way by replacing F with Fs.

The following lemma gives an upper bound for the error of the orthogonal projection ST with respect to the
parameter T .

Lemma 3.1. For arbitrary T ≥ 1, we have that

‖v − ST (v)‖Lν ≤ T−1‖v‖Lλ , ∀v ∈ Lλ ∩ Lν .
10



Recall that Uλ is the unit ball in Lλ, i.e., Uλ := {v ∈ Lλ : ‖v‖Lλ ≤ 1}, and denote by Uλs the unit ball in
Lλs , i.e., Uλs := {v ∈ Lλs : ‖v‖Lλs ≤ 1}. We then have the following corollary.

Corollary 3.2. For arbitrary T ≥ 1,

sup
v∈Uλ

inf
w∈P(T )

‖v − w‖Lν = sup
v∈Uλ

‖v − ST (v)‖Lν ≤ T−1.

Now we are in the position to give lower and upper bounds on the ε-dimension nε(Uλ,Lν).

Lemma 3.3. Let ε ∈ (0, 1]. Then, we have

|GZm×F(1/ε)| − 1 ≤ nε(Uλ,Lν) ≤ |GZm×F(1/ε)|.

In a similar way, by using the set GZm×Fs(T ), the subspace Ps(T ) and the operator Ss,T (f), we can prove
the following lemma for nε(Uλs ,Lνs ).

Lemma 3.4. Let ε ∈ (0, 1]. Then we have

|GZm×Fs(1/ε)| − 1 ≤ nε(Uλs ,Lνs ) ≤ |GZm×Fs(1/ε)|.

These lemmas show that we need to estimate the cardinality of the index sets |GZm×F(1/ε)| and
|GZm×Fs(1/ε)|. We will treat this problem in Section 5 for infinite tensor product Hilbert spaces of joint
regularity which are related to the solution of parametric PDEs.

4. Joint regularity of the solution of parametric elliptic PDEs. In order to apply our results on
approximation in Section 3 to the parametric elliptic model problem (2.6) we show that the solution to this
problem belongs to certain infinite tensor product Hilbert spaces of joint regularity. To this end, we combine
the results from Subsections 2.2 and 2.3 to derive explicit formulas for the sequences λ and ν for these spaces.

We focus on functions defined in L2(Tm) ⊗ L2(I∞). Let ek(x) := ei2πkx. Then {ek}k∈Z is an orthonormal
basis of L2(T). Let {Ls}∞s=0 be the family of univariate orthonormal Legendre polynomials in L2(I). For
(k, s) ∈ Zm × F, we define

L(k,s)(x,y) := ek(x)Ls(y), ek(x) :=

m∏
j=1

ekj (xj), Ls(y) :=
∏

j∈supp(s)

Lsj (yj).

Note that {L(k,s)}(k,s)∈Zm×F is an orthonormal basis of L2(Tm×I∞). Moreover, we have the following expansion
for every v ∈ L2(Tm × I∞),

v =
∑

(k,s)∈Zm×F

vk,sL(k,s),

where for (k, s) ∈ Zm × F, vk,s := 〈v, L(k,s)〉 denotes the Fourier coefficient with index (k, s) of v with respect
to the orthonormal basis {L(k,s)}(k,s)∈Zm×F.

We present two specific examples for sequences λ and their associated function spaces Lλ which naturally
arise in the regularity theory of parametric elliptic partial differential equations, in particular, of problem (2.6).
Let the pair α,b be given by

α > 0; b = (bj)j∈N, bj > 0, j ∈ N.

For each (k, s) ∈ Zm × F, we define the scalar ρ(k, s) by

(4.1) ρ(k, s) = ρα,b(k, s) := |k|α∞
s!

|s|1!
b−s.
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Then, we define the associated space

Lρ =: Aα,b(Tm × I∞)

=

v ∈ L2(Tm × I∞) : ṽ :=
∑

(k,s)∈Zm×F

ρα,b(k, s) vk,s L(k,s) ∈ L2(Tm × I∞)

 .

For v ∈ Aα,b(Tm × I∞), we define

‖v‖2Aα,b(Tm×I∞) := ‖ṽ‖2L2(Tm×I∞) =
∑

(k,s)∈Zm×F

ρ2
α,b(k, s) |vk,s|2 .

Next, for β ≥ 0, we set

θ(k, s) = θβ(k, s) := |k|β∞

where β determines the spatial regularity and use this to define the Sobolev-type space

Lθ = Kβ(Tm × I∞)

:=

v ∈ L2(Tm × I∞) : ṽ :=
∑

(k,s)∈Zm×F

θβ(k, s) vk,s L(k,s) ∈ L2(Tm × I∞)

 .

Again, for v ∈ Kβ(Tm × I∞), we define

‖v‖2Kβ(Tm×I∞) := ‖ṽ‖2L2(Tm×I∞) =
∑

(k,s)∈Zm×F

|vk,s|2 θ2
β(k, s).

Lemma 4.1. We have

‖v‖L2(I∞,V,µ) ≤ 2π
√
m‖v‖K1(Tm×I∞), v ∈ K1(Tm × I∞).

and

‖v‖L2(I∞,W,µ) ≤
√

2(2π)2m‖v‖K2(Tm×I∞), v ∈ K2(Tm × I∞).

Proof. For a function v ∈ K1(Tm × I∞) of the form

(4.2) v =
∑

(k,s)∈Zm×F

vk,sL(k,s) =
∑
s∈F

vs Ls, vs :=
∑

k∈Zm
vk,sek,

we have by (2.7)

‖v‖2L2(I∞,V,µ) =
∑
s∈F
‖vs‖2V ≤ (2π)2m

∑
(k,s)∈Zm×F

|k|2∞|vk,s|2 = (2π)2m‖v‖2K1(Tm×I∞).

Similarly, if v ∈ K2(Tm × I∞) and is of the form (4.2), we obtain with (2.7) and (2.8)

‖v‖2L2(I∞,W,µ) =
∑
s∈F
‖vs‖2W =

∑
s∈F

(
‖vs‖2V + |vs|2W

)
≤

∑
(k,s)∈Zm×F

(
(2π)2m|k|2∞ + (2π)4m2|k|4∞

)
|vk,s|2(4.3)

≤ 2(2π)4m2
∑

(k,s)∈Zm×F

θ2
2(k, s)|vk,s|2 = 2(2π)4m2‖v‖2K2(Tm×I∞).
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Lemma 4.2. Let 0 < p ≤ ∞ and b = (bj)j∈N be a positive sequence. Then the sequence
(
bs
)
s∈F belongs to

`p(F) if and only if ‖b‖`∞(N) < 1 and b ∈ `p(N).

Proof. The proof of this lemma is the same as that of Lemma 7.1 in [4].

Lemma 4.3. Let the assumptions and notation of Lemma 2.1 hold. Let furthermore c = (cj)j∈N be any
positive sequence such that cj > 1 and such that the sequence c−1 = (c−1

j )j∈N belongs to `2(N). Then, for the
sequence

b := (bj)j∈N, bj := cjdj ,

the solution u to (2.6) belongs to A1,b := A1,b(Tm × I∞) and

‖u‖A1,b ≤ K ‖(c−s)‖`2(F).

Proof. Notice that by Lemma 4.2 the sequence
(
c−s
)
s∈F belongs to `2(F). Hence, by (2.7) and Lemma 2.1 we

have that

‖u‖2A1,b =
∑

(k,s)∈Zm×F

|k|2∞
(

s!

|s|1!
b−s

)2

|uk,s|2 ≤
∑
s∈F

(
s!

|s|1!
b−s

)2

‖us‖2V

≤ K2
∑
s∈F

c−2s = K2 ‖(c−s)‖2`2(F) < ∞.

In the same way, from Eq. (2.8), Lemma 4.2 and Lemma 2.2 we deduce the following result.

Lemma 4.4. Let the assumptions and notation of Lemma 2.2 hold. Let furthermore c = (cj)j∈N be any
positive sequence such that cj > 1 and such that the sequence c−1 = (c−1

j )j∈N belongs to `2(N). For the sequence

b := (bj)j∈N, bj := cjdj ,

the solution u to (2.6) then belongs to A2,b := A2,b(Tm × I∞) and

(4.4) ‖u‖A2,b ≤ K ‖(c−s)‖`2(F).

5. The cardinality of infinite-dimensional hyperbolic crosses. For T > 0, consider the hyperbolic
cross

Ea,b(T ) :=
{

(k, s) ∈ Zm × F : 0 < ρa,b(k, s) ≤ T
}
,

in the infinite-dimensional case, where we recall

ρa,b(k, s) := |k|a∞
s!

|s|1!
b−s.

In order to obtain estimates on the ε-dimension in the norm of Kβ(Tm× I∞) of the unit ball in Aα,b(Tm× I∞),
we want to employ Lemma 3.3 or Lemma 3.4 respectively. This, however, needs an estimate on n = |Ea,b(T )|
with a = α− β. In this section, we establish such an estimate for the cardinality of Ea,b(T ).

As a preparatory step, we first have to study sharp conditions for the inclusion
(
|s|1!
s! bs

)
s∈F
∈ `p(F) with

0 < p < ∞. The main difference to the existing literature is, that we explicitly allow for p > 1. This result,
though it is of its own interest, will be used in defining the constant in (5.12) for the cost estimate.
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5.1. A condition for summability of sequences. In this subsection, given a sequence b = (bj)
∞
j=1, we

are interested in a necessary and sufficient condition for the inclusion
(
|s|1!
s! bs

)
s∈F
∈ `p(F) with 0 < p <∞. We

first recall a previous result for the case 0 < p ≤ 1 which has been proven in [4].

Theorem 5.1. Let 0 < p ≤ 1 and b = (bj)
∞
j=1 be a positive sequence. Then the sequence

(
|s|1!
s! bs

)
s∈F

belongs to `p(F) if and only if ‖b‖`1(N) < 1 and b ∈ `p(N).

As shown in [3, 4, 5], the `p(F)-summability with some 0 < p < 1 of the sequence of the energy norm of the
coefficients in chaos polynomial Taylor and Legendre expansions, together with Stechkin’s lemma plays a basic
role in construction of nonlinear n-term approximation methods for the solution of parametric and stochastic
elliptic PDEs. The proof of this `p(F)-summability relies upon Theorem 5.1.

In the present paper, we need a necessary and sufficient condition on the sequence b = (bj)
∞
j=1 for the `p(F)-

summability of the sequence
(
|s|1!
s! bs

)
s∈F

in the case 0 < p < ∞ which is a basic condition for construction

of a linear approximation by orthogonal projection in the space Kβ := Kβ(Tm × T∞) for functions from
Aα,b := Aα,b(Tm × T∞) and hence, collective Galerkin approximation in the Bochner space L2(I∞, V, µ) of
the solution u of the parametric elliptic problem (2.6). This necessary and sufficient condition of the `p(F)-
summability in the case 1 < p < ∞ as well as its proof are different from those in the case 0 < p ≤ 1. In the
proof, we use in particular, the following well known inequality between the arithmetic and geometric means,
see, e.g., [10, 2.5, pp. 17-18]. For nonnegative numbers a1, ..., an and positive numbers p1, ..., pn, there holds
true the inequality

(5.1) ap11 · · · apnn <

(
a1p1 + · · ·+ anpn
p1 + · · ·+ pn

)p1+···+pn

unless all the a1, ..., an are equal.

Theorem 5.2. Let 1 < p <∞ and b = (bj)
∞
j=1 be a nonnegative sequence with infinitely many positive bj.

Then, the sequence
(
|s|1!
s! bs

)
s∈F

belongs to `p(F) if and only if ‖b‖`1(N) ≤ 1.

Proof.
Necessity. Assume that the sequence b is given and ‖b‖`1(N) > 1. Then we fix a J ∈ N large enough so that

B := b1 + · · ·+ bJ > 1.

For each s ∈ N, we define s∗ ∈ F by

s∗j =

⌊
s
bj
B

⌋
+ 1 if 1 ≤ j ≤ J, and s∗j = 0 if j > J.

So s∗j ≥ s
bj
B for every 1 ≤ j ≤ J , and then

|s∗|1
s∗j
≥ s

s∗j
≥ s

s
bj
B + 1

=
B

bj

(
1

1 + B
sbj

)
≥ B

bj
λs, for all 1 ≤ j ≤ J,

where

Λs = min

{(
1 +

B

sbj

)−1

: 1 ≤ j ≤ J

}
.

Hence, we have with

C(s∗) :=
|s∗|1!√

2π|s∗|1(|s∗|1/e)|s∗|1
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that

|s∗|1!

s∗!
bs∗ = C(s?)

 J∏
j=1

√
2πs∗j (s

∗
j/e)

s∗j

s∗j !

( √
2π|s∗|1∏J

j=1

√
2πs∗j

) J∏
j=1

(
|s∗|1
s∗j

bj

)s∗j
≥ (2π)(1−J)/2C(s?)

 J∏
j=1

√
2πs∗j (s

∗
j/e)

s∗j

s∗j !

( |s∗|1∏J
j=1 s

∗
j

)1/2

(ΛsB)|s
∗|1 .

Observe that there are a number σ > 1 and a number s̄ := s̄(J) ∈ N large enough such that

ΛsB ≥ σ, ∀s ≥ s̄.

From the estimate

|s∗|1∏J
j=1 s

∗
j

≥ JJ |s∗|1−J1 ≥ JJ(s+ J)1−J ,

which stems from an application of (5.1) and the observation that |s∗|1 ≤ s+ J , and the Stirling formula

lim
k→∞

k!
√

2πk
(
k
e

)k = 1,

we obtain

|s∗|1!

s∗!
bs∗ ≥ CJ(λsB)|s

∗|1(s+ J)(1−J)/2 ≥ CJσs(s+ J)(1−J)/2, ∀s ≥ s̄,

where CJ is a positive constant depending on J only. Therefore, for arbitrary s ≥ s̄

∑
s∈F

(
|s|1!

s!
bs

)p
≥
(
|s∗|1!

s∗!
bs∗
)p
≥ CpJ

(
σs(s+ J)(1−J)/2

)p
→ ∞, s→∞.

The necessity is proven.

Sufficiency. Assume that the sequence b is given and ‖b‖`1(N) ≤ 1. We fix an integer m satisfying the inequality
m(p − 1) > 2. Since the sequence b has infinitely many positive terms bj , without loss of generality we may

assume that bj > 0 for all j = 1, ...,m+ 1. Put s = (s′, s
′′
) with s′ = (s1, ..., sm) and s

′′
= (sm+1, sm+2, ...) for

s ∈ F. We have ∑
s∈F

(
|s|1!

s!
bs

)p
=

∞∑
M=0

∑
s∈F,|s|1=M

(
|s|1!

s!
bs

)p

=

∞∑
M=0

∑
s′:|s′|1≤M

∑
s′′∈F:|s′′ |1=M−|s′|1

(
|s|1!

s!
bs

)p

≤
∞∑
M=0

∑
s′:|s′|1≤M

 ∑
s′′∈F,|s′′ |1=M−|s′|1

|s|1!

s!
bs

p

.

From the well-known multinomial theorem we derive that∑
s′′∈F,|s′′ |1=M−|s′|1

|s|1!

s!
bs =

M !

k!
ak,
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where for the sake of readability, we have made the definitions

k = (k1, k2, . . . , km, km+1) = (s1, s2, . . . , sm,M − |s′|1),

a = (a1, a2, . . . , am, am+1) = (b1, b2, . . . , bm, bm+1 + bm+2 + . . . ).

Hence,

∑
s∈F

(
|s|1!

s!
bs

)p
≤
∞∑
M=0

∑
k∈Zm+1

+ :|k|1=M

(
M !

k!
ak

)p
.

Putting

J1,M := {k ∈ Nm+1 : |k|1 = M}, J2,M := {k ∈ Zm+1
+ : |k|1 = M,

m+1∏
j=1

kj = 0},

we obtain ∑
s∈F

(
|s|1!

s!
bs

)p
≤
∞∑
M=0

∑
k∈J1,M

(
M !

k!
ak

)p
+

∞∑
M=0

∑
k∈J2,M

(
M !

k!
ak

)p
=: I1 + I2.

We have with the notation

k̂j := (k1, . . . , kj−1, kj+1, . . . , km+1)

that

I2 ≤
∞∑
M=0

m+1∑
j=1

∑
k∈Zm+1

+ :|k̂j |1=M

(
M !

k̂j !
ak11 . . . a

kj−1

j−1 a
kj+1

j+1 . . . a
km+1

m+1

)p
.

On the other hand,

m+1∑
j=1

∑
k:|k̂j |1=M

(
M !

k̂j !
ak11 . . . a

kj−1

j−1 a
kj+1

j+1 . . . a
km+1

m+1

)p

≤
m+1∑
j=1

 ∑
k:|k̂j |1=M

M !

k̂j !
ak11 . . . a

kj−1

j−1 a
kj+1

j+1 . . . a
km+1

m+1

p

=

m+1∑
j=1

(
a1 + . . . aj−1 + aj+1 + · · ·+ am+1

)Mp

=:

m+1∑
j=1

AMp
j .

Since b is a nonnegative sequence with infinitely many positive terms bj , and ‖b‖`1(N) ≤ 1, we deduce that a is
a positive vector in Rm+1 with a1 + · · ·+ am+1 ≤ 1, and consequently, Aj < 1 for 1 ≤ j ≤ m+ 1. Hence,

I2 ≤
m+1∑
j=1

∞∑
M=0

AMp
j <∞.

Let us estimate I1. Putting

J3,M := {k ∈ Nm+1 : |k|1 = M,
ajki
aikj

∈ [1/2, 2] for all i, j = 1, ...,m+ 1},
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J4,M := {k ∈ Nm+1 : |k|1 = M,
ajki
aikj

6∈ [1/2, 2] for some i, j = 1, ...,m+ 1},

we split I1 into two sums I3 and I4 as

I1 =

∞∑
M=0

∑
k∈J3,M

(
M !

k!
ak

)p
+

∞∑
M=0

∑
k∈J4,M

(
M !

k!
ak

)p
=: I3 + I4.

By Stirling’s approximation,

M !

k!
ak ≤ C (2π)−m/2

m+1∏
j=1

(Maj/kj)
kj

M m+1∏
j=1

k−1
j

1/2

,

where C is an absolute constant.

We estimate I3. For all k ∈ J3,M , we have by definition

aj/kj ≤ 2(a1 + ...+ am+1)/(k1 + ...+ km+1) ≤ 2/M,

and therefore,

k−1
j ≤ 2/(aminM),

where

amin = min{a1, · · · , am+1} > 0.

Also, as mentioned above, we have a1 + · · ·+ am+1 ≤ 1. All these together with the inequality (5.1) give

m+1∏
j=1

(Maj/kj)
kj

M m+1∏
j=1

k−1
j

1/2

≤

m+1∑
j=1

aj

M

2(m+1)/2
(
a−m−1

min M−m
)1/2 ≤ 2(m+1)/2a

−(m+1)/2
min M−m/2.

Therefore, again, by using the well-known multinomial theorem we have that

(5.2)

∑
k∈J3,M

(
M !

k!
ak

)p
≤
(

2(m+1)/2a
−(m+1)/2
min M−m/2

)p−1 ∑
k∈J3,M

M !

k!
ak

≤ C3M
−m(p−1)/2

∑
k∈J1,M

M !

k!
ak

≤ C3M
−m(p−1)/2

m+1∑
j=1

aj

M

≤ C3M
−m(p−1)/2.

This and the inequality m(p− 1)/2 > 1 imply that

I3 ≤ C3

∞∑
M=0

M−m(p−1)/2 < ∞.

Now, we estimate I4. Take any k ∈ J4,M , and rearrange (1, 2, . . . ,m+ 1) to (i1, i2, . . . , im+1) so that

ai1
ki1
≥ ai2
ki2
≥ · · · ≥

aim+1

kim+1

.(5.3)
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Then denoting αij :=
aij
kij

, by definition we have

αi1
αim+1

> 2,

Therefore, since

αi1
αi2
· αi2
αi3
· · · αim

αim+1

=
αi1
αim+1

> 2,

there exists ν ∈ N, 1 ≤ ν ≤ m+ 1 such that

(5.4)
αiν
αiν+1

≥ m
√

2.

From (5.3) we have

ai1 + ai2 + · · ·+ aiν
ki1 + ki2 + · · ·+ kiν

≥ aiν
kiν

= αiν

and

aiν+1
+ aiν+2

+ · · ·+ aim+1

kiν+1
+ kiν+2

+ · · ·+ kim+1

≤
aiν+1

kiν+1

= αiν+1
.

We define the two nonempty sets: e = {i1, i2, . . . iν} ⊂ {1, 2, ..,m} and e′ = {1, 2, ..,m} \ e. From (5.4) we
obtain

(5.5)
(
∑
j∈e aj)/(

∑
j∈e kj)

(
∑
j∈e′ aj)/(

∑
j∈e′ kj)

≥ m
√

2.

Therefore, by the inequality (5.1),

(5.6)

m+1∏
j=1

(Maj/kj)
kj

M m+1∏
j=1

k−1
j

1/2

≤M1/2
m+1∏
j=1

(Maj/kj)
kj

≤M1/2

(
M
∑
j∈e aj∑

j∈e kj

)∑
j∈e kj

(
M
∑
j∈e′ aj∑

j∈e′ kj

)∑
j∈e′ kj

=: M1/2

(
Mc1
r1

)r1 (Mc2
r2

)r2
,

with r1 + r2 = M and c1 + c2 = ‖b‖`1(N) ≤ 1, where

c1 =
∑
j∈e

aj , c2 =
∑
j∈e′

aj , r1 =
∑
j∈e

kj , r2 =
∑
j∈e′

aj .

Consider the function

h(x) =

(
x

Mc1

)x(
M − x
Mc2

)M−x
, x ∈ (0,M).
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Notice that the function h has an absolute minimum in the interval (0,M) at the point xmin = Mc1
c1+c2

, and is
decreasing in the interval (0, xmin) and increasing in the interval (xmin,M). By (5.5) we have

c1/r1

c2/(M − r1)
≥ m
√

2

which implies that

0 < r1 ≤
Mc1

c1 + c2
m
√

2
<

Mc1
c1 + c2

= xmin,

and therefore,

(Mc1/r1)r1(Mc2/(M − r1))(M−r1) = 1/h(r1) ≤ 1/h(Mc1/(c1 + c2
m
√

2)) = δM ,

where

(5.7) δ :=
(
c1 + c2

m
√

2
)c1/(c1+c2

m√2)
(
c1 + c2

m
√

2
m
√

2

)(c2
m√2)/(c1+c2

m√2)

.

Combining this with (5.6) we obtain

m+1∏
j=1

(Maj/kj)
kj

M m+1∏
j=1

k−1
j

1/2

≤ δMM1/2.

Hence, similarly to (5.2) we derive that∑
k∈J4,M

(
M !

k!
ak

)p
≤ C4δ

(p−1)MM (p−1)/2.(5.8)

Observe that the positive numbers c1, c2 and therefore, the positive number δ as defined in (5.7) depend only
on the nonempty set e ⊂ {1, ...,m}, i.e., c1 = c1(e), c2 = c2(e) and δ = δ(e). Consider the production in the
right hand of (5.7). Since

c1(e) + c2(e)
m
√

2 >
c1(e) + c2(e) m

√
2

m
√

2
,

applying the inequality (5.1) to this production with c1(emax), c2(emax), gives for all the nonempty sets e ⊂
{1, ...,m},

0 < δ(e) ≤ δmax := δ(emax) < c1(emax) + c2(emax) ≤ 1,

where emax ⊂ {1, ...,m} is a set such that

δ(emax) = max
e⊂{1,...,m}, e 6=∅

δ(e).

Thus, provided with (5.8) and δ ≤ δmax < 1, we arrive at

I4 ≤ C4

∞∑
M=0

δ(p−1)M
max M (p−1)/2 < ∞.

The proof of sufficiency is complete.

In Theorem 5.2, the assumption that the nonnegative sequence b = (bj)
∞
j=1 has infinitely many positive bj , is

essential. Indeed, if b = (b1, b2, 0, 0, . . . ) with b1 = b2 = 1/2, then a computation shows that
(
|s|1!
s! bs

)
s∈F
6∈ `p(F)

for all p ≤ 2. However, one can prove that for 3 < p < ∞ and any non-negative sequence b = (bj)
∞
j=1, the

sequence
(
|s|1!
s! bs

)
s∈F

belongs to `p(F) if and only if ‖b‖`1(N) ≤ 1. For application we will consider only positive

sequences b = (bj)
∞
j=1 when this assumption always holds.
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5.2. Estimates of the cardinality of infinite-dimensional hyperbolic crosses. We are now in the
position to derive an estimate for the cardinality of Ea,b(T ). We will do this together with estimating the
cardinality of finite-dimensional hyperbolic crosses. For arbitrary s ∈ N, consider the hyperbolic cross

Ea,b,s(T ) :=
{

(k, s) ∈ Zm × Fs : 0 < ρa,b(k, s) ≤ T
}

with the notation from (3.4).

Theorem 5.3. Let a > 0, b = (bj)j∈N be a positive sequence. Then we have that

(5.9) |Ea,b(T )| <∞, ∀T ≥ 1

if only if

(5.10)

{
‖b‖`1(N) < 1, b ∈ `m/a(N), m/a ≤ 1,

‖b‖`1(N) ≤ 1, m/a > 1.

If (5.9) holds, i.e., if |Ea,b(T )| <∞, then we have for every T ≥ 1 and every s ≥ 0,

(5.11) 2m
(
bT 1/ac − 1

)m
≤ |Ea,b,s(T )| ≤ |Ea,b(T )| ≤ C Tm/a,

where

(5.12) C := 3m
∑
s∈F

(
|s|1!

s!
bs

)m/a
.

Proof. Let T ≥ 1 be given. For s ∈ F, we put

Ts := T 1/a

(
|s|1!

s!
bs

)1/a

.

By definition we have

|Ea,b(T )| =
∑
s∈F

∑
k∈ Zm: 0<|k|∞≤Ts

1 ≤
∑
s∈F

(2Ts + 1)m ≤
∑
s∈F

(3Ts)
m

≤ 3m Tm/a
∑
s∈F

(
|s|1!

s!
bs

)m/a(5.13)

With the definition (5.12), this already shows the upper bound of (5.11). On the other hand, we have

|Ea,b(T )| ≥
∑
s∈F

Tms = Tm/a
∑
s∈F

(
|s|1!

s!
bs

)m/a
.

Hence, Theorems 5.1 and 5.2 establish the equivalence between (5.9) and (5.10).

The remaining lower bound in (5.11) can be proven in the same way as that for [7, Theorem 2.13]. To be
precise, we consider (k,0) ∈ Zm × Fs ⊂ Zm × F with kj ≤ T 1/a − 1. Then a direct counting argument yields
the assertion.

6. Final approximation rates.
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6.1. ε-dimension and n-widths. For a finite subset G in Zm × F, denote by V(G) the subspace in
L2(Tm × I∞) of all functions f of the form

v =
∑

(k,s)∈G

vk,sL(k,s)

and define the linear operator SG : L2(Tm × I∞)→ V(G) by

SGv :=
∑

(k,s)∈G

vk,sL(k,s).

Moreover, let Ss,G be the restriction of the operator SG on L2(Tm × Is).
Then, for s ∈ N, we define the spaces Aα,bs (Tm × I∞), Kβ

s (Tm × I∞) and Vs(G) as the intersections of
Aα,b(Tm×I∞), Kβ(Tm×I∞) and V(G) with L2(Tm×Is). Furthermore, let Uα,b(Tm×I∞) and Uα,bs (Tm×I∞)
be the unit ball in Aα,b(Tm × I∞) and Aα,bs (Tm × I∞), respectively. In the following theorems, we drop for
convenience (Tm × I∞) from the relevant notations. For example, we write Uα,b instead Uα,b(Tm × I∞).

From the results on the cardinality of infinite-dimensional hyperbolic crosses in Section 5 and the results on
approximation in infinite tensor product Hilbert spaces in Section 3 we can now deduce results on approximation
in the norm of Kβ of functions from Uα,b and in the norm of Kβ

s of functions from Uα,bs in terms of ε-dimension
and n-widths as follows.

Theorem 6.1. Let α > β ≥ 0 and b = (bj)j∈N be a positive sequence. Assume that{
‖b‖`1(N) < 1, b ∈ `m/(α−β)(N), m/(α− β) ≤ 1,

‖b‖`1(N) ≤ 1, m/(α− β) > 1.

Then we have for every s ∈ N and every ε ∈ (0, 1],

(6.1) 2m
(
bε−1/(α−β)c − 1

)m
≤ nε(U

α,b
s ,Kβ

s ) ≤ nε(U
α,b,Kβ) ≤ C ε−m/(α−β),

where C is the constant defined in (5.12).

Proof. By putting H1 = L2(T) and H2 = L2(I); φ1,k := ek and φ2,s := Ls; λ(k, s) := ρα,b(k, s); ν(k, s) := |k|β∞,
we have L = L2(Tm × I∞); Uλ = Uα,b; Lν = Kβ ; GZm×F(1/ε) = Eα−β,b(1/ε); GZm×Fs(1/ε) = Eα−β,b,s(1/ε).
The conditions on the sequence b allow to use (5.11) from Theorem 5.3, i.e.,

2m
(
bT 1/ac − 1

)m
≤ |Ea,b,s(T )| ≤ |Ea,b(T )| ≤ C Tm/a

with T = ε−1. The fact that we can can replace the cardinalities of the index set by the ε-dimensions follows
from Lemmas 3.3 and 3.4.

Similarly, from Corollary 3.2 and Theorem 5.3 we obtain

Theorem 6.2. Under the assumptions of Theorem 6.1, and with E(T ) := Eα−β,b(T ) and n := |E(T )|, we
have for every s ∈ N,

dn(Uα,bs ,Kβ
s ) ≤ dn(Uα,b,Kβ) ≤ sup

v∈Uα,b
inf

g∈V(E(T ))
‖v − g‖Kβ

= sup
v∈Uα,b

‖v − SE(T )(v)‖Kβ ≤ C(α−β)/m n−(α−β)/m.

Notice that from Theorem 6.1 one can also derive the lower bound

dn(Uα,b,Kβ) ≥ dn(Uα,bs ,Kβ
s ) ≥ C ′ n−(α−β)/m,

where C ′ is a positive constant depending on α, β,m only.
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6.2. Application to Galerkin approximation of parametric elliptic PDEs. We now apply our
results on the ε-dimension and n-widths of Subsection 6.1 to the collective Galerkin approximation of parametric
elliptic PDEs (2.6).

Since u ∈ L2(I∞, V, µ), it can be defined as the unique solution of the variational problem: Find u ∈
L2(I∞, V, µ) such that

B(u, v) = F (v) ∀v ∈ L2(I∞, V, µ),

where

B(u, v) :=

∫
I∞

∫
Tm

a(x,y)∇u(x,y) · ∇v(x,y) dx dµ(y),

F (v) :=

∫
I∞

∫
Tm

f(x) v(x,y) dx dµ(y).

We define the collective Galerkin approximation uG to u as the unique solution to the problem: Find
uG ∈ V(G) such that

B(uG, v) = F (v) ∀v ∈ V(G).

By Céa’s lemma we have the estimate

‖u− uG‖L2(I∞,V,µ) ≤
√
R

r
inf

v∈V(G)
‖u− v‖L2(I∞,V,µ),

and consequently,

(6.2) ‖u− uG‖L2(I∞,V,µ) ≤
√
R

r
‖u− SGu‖L2(I∞,V,µ).

Theorem 6.3. Let the assumptions and the notation of Lemma 2.2 hold. Let furthermore c = (cj)j∈N be
any positive sequence such that cj > 1, such that the sequence c−1 = (c−1

j )j∈N belongs to `2(N) and such that
for the sequence

(6.3) b := (bj)j∈N, bj := cjdj ,

there holds the condition {
‖b‖`1(N) < 1, m = 1,

‖b‖`1(N) ≤ 1, m > 1.

For any T ≥ 1, put n := |E1,b(T )|; Vn := V
(
E1,b(T )

)
; Pn := SE1,b(T ). Then Pn is the orthogonal projector

from L2(I∞, V, µ) onto the space Vn of dimension n, and

‖u− uE1,b(T )‖L2(I∞,V,µ) ≤
√
R

r

∥∥u− Pnu∥∥L2(I∞,V,µ)
≤ B n−1/m,

where

B := 4π C1/m

√
mR

r
K ‖(c−s)‖`2(F),

C is the constant defined in (5.12) for a = 1 and b as in (6.3).
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Proof. By Lemma 4.4 the solution u belongs to A2,b := A2,b(Tm × I∞). Hence, by (6.2), Lemma 4.1, Theorem
6.2 and (4.4) we have

‖u− uE1,b(T )‖L2(I∞,V,µ) ≤
√
R

r
‖u− Pn(u)‖L2(I∞,V,µ) ≤

√
R

r
2π
√
m‖u− Pn(u)‖K1(Tm×I∞)

≤
√
R

r
4π
√
mC1/m‖u‖A2,b n−1/m ≤

√
R

r
4π
√
mC1/mK ‖c−1‖`2(F) n

−1/m

= B n−1/m.

The following theorem can be proven in a similar way.

Theorem 6.4. Let the assumptions and the notation of Lemma 2.1 hold. Let c = (cj)j∈N be any positive
sequence such that cj > 1, such that the sequence c−1 = (c−1

j )j∈N belongs to `2(N) and such that for the sequence

(6.4) b := (bj)j∈N, bj := cjdj ,

there holds the condition {
‖b‖`1(N) < 1, m = 1,

‖b‖`1(N) ≤ 1, m > 1.

For any T ≥ 1, put n := |E1,b(T )|; Vn := V
(
E1,b(T )

)
; Pn := SE1,b(T ). Then Pn is the orthogonal projector

from L2(Tm × I∞) onto the space Vn of dimension n, and∥∥u− Pnu∥∥L2(Tm×I∞)
≤ B n−1/m,

where

B := 4π C1/mK ‖(c−s)‖`2(F)

and C is the constant defined in (5.12) for a = 1 and b as in (6.4).

7. Concluding remarks. We derived upper and lower bounds of the ε-dimension and Komogorov n-
widths of Sobolev-analytic-type function spaces with certain product and order depended weights. The method-
ology of the paper follows a strict guideline: First, we fix the error and construct an index set that can realize
this error. Then, we compute a bound for the cardinality of this index set. The index set, we study here, might
also arise in different applications and hence are of its own interest. Thus, our approach is quite general and
can also be applied in other situations.
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