
CHARACTERIZATIONS OF DIFFERENTIABILITY, SMOOTHING

TECHNIQUES AND DC PROGRAMMING WITH APPLICATIONS TO

IMAGE RECONSTRUCTIONS

Nguyen Mau Nam1, Daniel Giles2, Le Thi Hoai An3, Nguyen Thai An4

Abstract. In this paper, we study characterizations of differentiability for real-valued functions

based on generalized differentiation. These characterizations provide the mathematical foundation

for Nesterov’s smoothing techniques in infinite dimensions. As an application, we provide a simple

approach to image reconstructions based on Nesterov’s smoothing techniques and DC programming

that involves the `1 − `2 regularization.

Key words. DC programming; the DCA; Fenchel conjugate; denoising; inpainting.

AMS subject classifications. 49J52, 49J53, 90C31

1 Introduction and Problem Formulation

Gradient-based methods and second-order methods in optimization have been strongly de-

veloped over the last decades to solve optimization problems. One of the disadvantages

of these methods is the requirement of the differentiability of the objective functions in-

volved, while nondifferentiability appears frequently and naturally in many optimization

models. A natural way to cope with the nondifferentiability in optimization is to approx-

imate nonsmooth objective functions by smooth functions that are favorable for applying

smooth optimization schemes. In his seminal paper [9], Nesterov proposed a method for ap-

proximating a class of nondifferentiable convex functions by smooth convex functions with

Lipschitz continuous gradients. It turns out that this type of functions is highly important

in solving nonsmooth optimization problems in many fields such as facility location, sparse

optimization and compressed sensing.

The first goal of this paper is to further study Nesterov’s smoothing techniques. Our idea

comes from a well-known fact that convex function f : Rn → R is Fréchet differentiable at

x̄ ∈ Rn if and only if the subdifferential in the sense of convex analysis ∂f(x̄) reduces to

a singleton. We start by studying characterizations of differentiability for functions that

are not necessarily convex in infinite dimensions. These characterizations allow us to study

Nesterov’s smoothing techniques in a more general setting, while having the potential of

applying to broader classes of nondifferentiable functions usually considered in optimization.

1Fariborz Maseeh Department of Mathematics and Statistics, Portland State University, Portland, OR

97207, USA (mau.nam.nguyen@pdx.edu). Research of this author was partly supported by the National

Science Foundation under grant DMS-1716057.
2Department of Mathematics, Santa Barbara City College, Santa Barbara, CA, USA

(djgiles1@pipeline.sbcc.edu).
3Computer Science and Applications Department, LGIPM, University of Lorraine, 57073 Metz, France

(hoai-an.le-thi@univ-lorraine.fr).
4Institute of Research and Development, Duy Tan University, Vietnam (thaian2784@gmail.com). Re-

search of this author was supported by the Vietnam National Foundation for Science and Technology De-

velopment under grant #101.01-2017.325.

1

Along with the difficulty in dealing with nondifferentiability, another challenge in modern

optimization is to go from convexity to nonconvexity as nonconvex optimization techniques

and algorithms allow us to solve more complex optimization problems arising naturally

in many practical applications. This is a motivation of the search for new optimization

methods to deal with broader classes of functions and sets where convexity is not assumed.

One of the most successful approaches to go beyond convexity is to consider the class of

DC functions, where DC stands for difference of convex functions. Given a linear space X,

a DC program is an optimization problem in which we would like to minimize a function

f : X → R representable as f = g − h, where g, h : X → R are convex functions. This

extension of convex programming is not too far to take advantage of the available tools

from convex analysis and optimization. At the same time, DC programming is sufficiently

large to apply to many nonconvex optimization problems faced in recent applications.

Although the role of DC functions had been known earlier in optimization theory, the first

algorithmic approach was developed by Pham Dinh Tao in 1985. The algorithm introduced

by Pham Dinh Tao for minimizing f = g − h, called the DCA, is based on subgradients of

the function h and subgradients of the Fenchel conjugate of the function g. This algorithm

is summarized as follows: with given x1 ∈ Rn, define yk ∈ ∂h(xk) and xk+1 ∈ ∂g∗(yk).

Under suitable conditions on the DC decomposition of the function f , two sequences {xk}
and {yk} in the DCA satisfy the monotonicity conditions in the sense that {g(xk)− h(xk)}
and {h∗(yk) − g∗(yk)} are both decreasing. In addition, the sequences {xk} and {yk}
converge to critical points of the primal function g − h and the dual function h∗ − g∗,

respectively. The DCA usually depends on the choice of the starting point. However, with

suitable initialization techniques, the DCA becomes very effective, producing sequences that

converge to global solutions of the problem; see [10, 11] and the references therein.

In our recent research, we have been successful in applying Nesterov’s smoothing techniques

and the DCA to a number of optimization problems in facility location and clustering.

This paper continues this effort by providing their applications to image reconstructions.

Consider an unknown image M of size N1 × N2. After the image is corrupted by a linear

operator A and distorted by some noise ε, we observe only the image b = A(M) + ε,

and seek to recover the true image M . The operator may act to simulate blurring, data

compression, or down-sampling. In the case that the operator is the identity, the problem

is called denoising.

We denote the columns of M as m1, . . . ,mN2 , to represent M in vectorized form as the

N1N2×1 column vector M = [mT
1 mT

2 · · · mT
N2

]T . The vectorized form of M can be attained

in MATLAB using the reshape function, and is equivalent to
∑N2

i=1(ei⊗IN1)(M ·ei), where

ei is the ith standard basis vector in RN2 and ⊗ is the Kronecker product. Conversely, a

vector M ∈ RN1N2 is reshaped into an N1 ×N2 matrix.

A vector is referred to as sparse when many of its entries are zero. An image x ∈ Rn (in

vectorized form) is said to have a sparse representation y under D if there is some n ×K
matrix D, known as a dictionary, and a vector y ∈ RK such that x = Dy. In this case the

dictionary D maps a sparse vector to a full image. The columns of D are called atoms, and

given a suitable dictionary in this model, theoretically any image can be built from a linear

2

combination of the columns (atoms) of the dictionary. Using a clever choice of dictionary

allows us to work with sparse vectors, thereby reducing the amount of computer memory

needed to store an image. Further, sparse representations tend to capture the true image

without extraneous noise.

The method in this paper is based on the following foundational model: Given a dictionary

D and an observed image b which has been corrupted by a linear operator A, recover a

sparse representation of the image by solving the minimization problem

min
y
‖y‖0 s.t. ‖A(Dy)− b‖2 ≤ ε

where ε > 0 is some small constraint term. Here ‖y‖0 is not a norm, but simply the

number of nonzero entries in y. It is common to approximate ‖ · ‖0 with ‖ · ‖1, or with

‖ · ‖1 − ‖ · ‖, known as `1 and (`1 − `2) regularization, respectively. In this paper, using the

DCA and Nesterov’s smoothing techniques, we develop a very simple algorithms based on

the (`1 − `2) regularization for image reconstructions. The proposed method allows us to

avoid solving subproblems in using the DCA for the (`1 − `2) regularization; see [12, 13]

and the references therein. We also apply this idea to build a simple but effective algorithm

for dictionary learning. Our numerical examples show that our algorithms are competitive

with state-of-the-art methods for image reconstructions.

2 Characterizations of Differentiability and Nesterov’s Smooth-

ing Techniques

In this section, we study characterizations of strict differentiability and their applications

to smoothing techniques. Consider a real normed space X with its topological dual denoted

by X∗ which consists of all real-valued linear continuous functions defined on X. It is

well-known that X∗ is a normed space with the dual norm given by

‖x∗‖ = sup{〈x∗, x〉 | ‖x‖ ≤ 1}, x∗ ∈ X∗,

where 〈x∗, x〉 = x∗(x).

Let f : X → R = (−∞,∞] be a extended-real-valued function with the effective domain

dom (f) = {x ∈ X | f(x) < ∞} and x̄ ∈ int(dom (f)). We first recall some classical

concepts of differentiability. We say that f is Gâteaux differentiable at x̄ if there exists

x∗ ∈ X∗ such that

lim
t→0+

f(x̄+ td)− f(x̄)− t〈x∗, d〉
t

= 0 for all d ∈ X.

Such an element x∗ is unique if exists and is called the Gâteaux derivative of f at x̄ denoted

by ∇Gf(x̄). It follows directly from the definition that f is Gâteaux differentiable at x̄ with

∇Gf(x̄) = x∗ if and only if

lim
t→0

f(x̄+ td)− f(x̄)− t〈x∗, d〉
t

= 0 for all d ∈ X.

3

We say that f is Fréchet differentiable at x̄ if there exists x∗ ∈ X∗ such that

lim
h→0

f(x̄+ h)− f(x̄)− 〈x∗, h〉
‖h‖

= 0.

The element x∗ is called the Fréchet derivative of f at x̄ denoted by ∇F f(x̄). It follows

from the definition that if f is Fréchet differentiable at x̄, then it is Gâteaux differentiable

at this point.

Let us now discuss a stronger concept of differentiability compared with the Gâteaux dif-

ferentiability. We say that f is Hadamard strictly differentiable if there exists x∗ ∈ X∗ such

that for each d ∈ X,

lim
x→x̄,t→0+

f(x+ td)− f(x)− t〈x∗, d〉
t

= 0,

where the convergence is uniform for d in compact subsets of X. The last condition is

automatic in the case where f is locally Lipschitz continuous around x̄ as in the proposition

below; see [3, Proposition 2.2.1].

Proposition 2.1 Let X be a normed space and let f : X → R with x̄ ∈ int(dom (f)) and

x∗ ∈ X∗. Then the following properties are equivalent:

(a) f is Hadamard strictly differentiable at x̄ and ∇Gf(x̄) = x∗.

(b) f is locally Lipschitz continuous around x̄, and for each d ∈ X one has

lim
x→x̄,t→0+

f(x+ td)− f(x)− t〈x∗, d〉
t

= 0.

We also say that f is Fréchet strictly differentiable at x̄ if there exists x∗ ∈ X∗ such that

lim
x,y→x̄,x 6=y

f(x)− f(y)− 〈x∗, x− y〉
‖x− y‖

= 0.

Note that if f is Fréchet strictly differentiable at x̄, then it is both Fréchet differentiable

and Hadamard strictly differentiable at this point.

Given a function f : X → R that is locally Lipschitz continuous around x̄ ∈ int(dom (f)),

the Clarke generalized directional derivative of f at x̄ in the direction d ∈ X is defined by

f◦(x̄; d) = lim sup
x→x̄,t→0+

f(x+ td)− f(x)

t
.

Based on the generalized derivative of f at x̄, the Clarke subdifferential of f at x̄ is defined

by

∂cf(x̄) = {x∗ ∈ X∗ | 〈x∗, d〉 ≤ f◦(x̄; d) for all d ∈ X}.

Note that in the case where f is convex,

∂cf(x̄) = ∂f(x̄) = {x∗ ∈ X∗ | 〈x∗, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ X},

which is the subdifferential in the sense of convex analysis of f at x̄. A characterization for

Hadamard strict differentiabily is given in the proposition below; see [3, Proposition 2.2.4].

4

Proposition 2.2 Let X be a normed space and let f : X → R with x̄ ∈ int(dom (f)). If

f is Hadamard strictly differentiable at x̄, then f is locally Lipschitz continuous around x̄

and ∂cf(x̄) = {∇Gf(x̄)}. Conversely, if f is locally Lipschitz continuous around x̄ and

∂cf(x̄) reduces to a singleton {x∗}, then f is Hadamard strictly differentiable at x̄ and

∇Gf(x̄) = x∗.

The following is a direct consequence of this result for the convex case.

Corollary 2.3 Let X be a normed space and let f : X → R be a convex function with

x̄ ∈ int(dom (f)). Then the following properties are equivalent:

(a) f is Hadamard strictly differentiable at x̄.

(b) f is locally Lipschitz continuous around x̄ and f is Gâteaux differentiable x̄.

(c) f is locally Lipschitz continuous around x̄ and ∂f(x̄) is a singleton.

In what follows we study a characterization for Fréchet differentiability based on Clarke

subdifferentials. For a nonempty subset Ø and x̄ ∈ X, the notation d(x̄; Ø) is used for the

distance from x̄ to Ø defined by

d(x̄; Ø) = inf{‖x̄− w‖ | w ∈ Ø}.

Given a set-valued mapping F : X →→ X∗, where both X and X∗ are equipped with the

strong topology. We say that F is upper semicontinuous at x̄ ∈ dom (F) := {x ∈ X | F (x) 6=
∅} if for any ε > 0, there exists δ > 0 such that

F (x) ⊂ B(F (x̄); ε) whenever x ∈ B(x̄; δ),

where B(F (x̄); ε) = {x∗ ∈ X∗ | d(x∗;F (x̄)) ≤ ε} and B(x̄; δ) denotes the closed ball with

center x̄ and radius δ.

The following version of the mean value theorem (see [3]) is useful in what follows.

Theorem 2.4 Let X be a normed space and let f : X → R be Lipschitz continuous on an

open set G ⊂ X. For any [a, b] ⊂ G, there exists z ∈ (a, b) such that

f(b)− f(a) ∈ 〈∂cf(z), b− a〉.

Let us now present a characterization of Fréchet strict differentiability based on Clarke sub-

differentials; see, e.g., [4]. We provide an alternative detailed proof here for the convenience

of the reader.

Theorem 2.5 Let X be a normed space and let f : X → R with x̄ ∈ int(dom (f)). Then

the following properties are equivalent:

(a) f is Fréchet strictly differentiable at x̄.

5

(b) f is locally Lipschitz continuous around x̄, ∂cf(x̄) is a singleton, and ∂cf(·) is upper

semicontinuous at x̄.

Proof. (a) =⇒ (b): Suppose that f is Fréchet strictly differentiable at x̄. It is not hard

to show that f is locally Lipschitz continuous around x̄. Let us first show that ∂cf(x̄) is a

singleton. Indeed,

f◦(x̄; v) = lim sup
x→x̄,t→0+

f(x+ tv)− f(x)

t
= 〈∇F f(x̄), v〉 for all v ∈ X.

Fix any x∗ ∈ ∂cf(x̄). Then 〈x∗, v〉 ≤ 〈∇F f(x̄), v〉 for all v ∈ X. This implies that x∗ =

∇F f(x̄). It remains to show that ∂cf(·) is upper semicontinuous at x̄. Fix any sequence

{xk} in X that converges to x̄, and fix any x∗k ∈ ∂cf(xk). Fix any ε > 0. Then there exists

δ > 0 such that

|f(x)− f(u)− 〈∇F f(x̄), x− u〉| ≤ ε‖x− u‖ whenever x, u ∈ B(x̄; δ).

Since {xk} converges to x̄, we can find k0 ∈ N such that xk ∈ B(x̄; δ/4) for all k ≥ k0.

Fix any k ≥ k0 and any v ∈ X. If ‖x − xk‖ < δ/4 and 0 < t < δ/(2(‖v‖ + 1)), then

‖x − x̄‖ ≤ ‖x − xk‖ + ‖xk − x̄‖ < δ/4 + δ/4 = δ/2 < δ. It follows that ‖x + tv − x̄‖ ≤
‖x− x̄‖+ t‖v‖ < δ/2 + δ/2 = δ, and so

f(x+ tv)− f(x) ≤ 〈∇F f(x̄), tv〉+ ε‖tv‖.

This implies
f(x+ tv)− f(x)

t
≤ 〈∇F f(x̄), v〉+ ε‖v‖ for such x, t.

It follows that

f◦(xk; v) = lim sup
t→0+,x→xk

f(x+ tv)− f(x)

t
≤ 〈∇F f(x̄), v〉+ ε‖v‖.

Now, 〈x∗k, v〉 ≤ f◦(xk; v) ≤ 〈∇F f(x̄), v〉 + ε‖v‖. Then ‖x∗k − ∇F f(x̄)‖ ≤ ε for all k ≥ k0.

Therefore, {x∗k} converges strongly to ∇F f(x̄). The upper semicontinuity of the Clarke

subdifferential mapping is now straightforward.

(b) =⇒ (a): Let us prove the converse by assuming that (b) is satisfied. Suppose that

∂cf(x̄) = {x∗}. Since ∂cf(·) is upper semicontinuous at x̄, for any ε > 0 there exists δ > 0

such that

∂cf(u) ⊂ B(x∗, ε) whenever u ∈ B(x̄, δ).

We can choose δ > 0 sufficiently small such that f is Lipschitz continuous on the open ball

B(x̄, δ). Fix any x, y ∈ B(x̄; δ) with x 6= y. By the subdifferential mean value theorem,

there exist u ∈ (x, y) and w∗ ∈ ∂cf(u) such that

f(x)− f(y) = 〈w∗, x− y〉.

Then ‖w∗ − x∗‖ ≤ ε, and hence∣∣f(x)− f(y)− 〈x∗, x− y〉
‖x− y‖

∣∣ =
∣∣〈w∗ − x∗, x− y〉

‖x− y‖
∣∣ ≤ ‖w∗ − x∗‖ ≤ ε.

6

Therefore, f is Fréchet strictly differentiable at x̄. �

Let us now derive a corollary for the convex case.

Corollary 2.6 Let X be a normed space and let f : X → R be a convex function with

x̄ ∈ int(dom (f)). Then the following properties are equivalent:

(a) f is Fréchet strictly differentiable at x̄.

(b) f is Fréchet differentiable at x̄.

(c) f is locally Lipschitz continuous around x̄, ∂f(x̄) is a singleton, and ∂f(·) : X →→ X∗

is upper semicontinuous at x̄.

Proof. The implication (a) =⇒ (b) is obvious. If f is Fréchet differentiable at x̄, it is

well-known that ∂cf(x̄) = ∂f(x̄) = {∇F f(x̄)} under the convexity of f . In addition, f is

locally bounded around x̄, so it is locally Lipschitz continuous around this point. Let us

show that the subdifferential mapping is upper semicontinuous at x̄. Let x∗ = ∇F f(x̄). We

have

lim
x→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

= 0.

For any ε > 0, we can choose δ > 0 such that

〈x∗, x− x̄〉 ≤ f(x)− f(x̄) + ε‖x− x̄‖ whenever ‖x− x̄‖ < δ.

Fix any x ∈ B(x̄; δ) and any u∗ ∈ ∂f(x). Then

〈x∗−u∗, x− x̄〉 = 〈x∗, x− x̄〉+ 〈u∗, x̄−x〉 ≤ f(x)−f(x̄)+ε‖x− x̄‖+f(x̄)−f(x) = ε‖x− x̄‖.

This implies ‖x∗ − u∗‖ ≤ ε, which justifies the upper semicontinuity of the subdifferential

mapping. Thus, the implication (b)=⇒ (c) holds. Finally, the implication (c)=⇒ (a) follows

from Theorem 2.5. �

Given a function f : X → R, recall that the Fenchel conjugate of f is given by

f∗(x∗) = sup{〈x∗, x〉 − f(x) | x ∈ X}, x∗ ∈ X∗.

Proposition 2.7 Let X be a normed space and let f : X → R be proper (i.e., dom (f) 6= ∅)
and strongly coercive in the sense that

γ

2
‖x‖2 + 〈u∗, x〉+ b ≤ f(x) for all x ∈ X, (2.1)

for some u∗ ∈ X∗, b ∈ R, and γ > 0. Then dom (f∗) = X∗ and f∗ is continuous on X∗,

where X∗ is equipped with the strong topology.

Proof. Fix any x∗ ∈ X∗. Then

−∞ < f∗(x∗) = sup{〈x∗, x〉−f(x) | x ∈ X} ≤ sup{−γ
2
‖x‖2 +〈x∗−u∗, x〉−b | x ∈ X} <∞.

7

This implies that dom (f∗) = X∗. Since f∗ : X → R is a convex function, to prove the

continuity of f on X∗, it suffices to prove that f is locally bounded above on a neighborhood

of the origin of X∗ with respect to the strong topology. Fix any δ > 0 and v∗ ∈ X∗ with

‖v∗‖ ≤ δ. Then

f∗(v∗) ≤ sup{−γ
2
‖x‖2 + 〈v∗ − u∗, x〉 − b | x ∈ X}

≤ sup{−γ
2
‖x‖2 + ‖v∗ − u∗‖‖x‖ − b | x ∈ X}

≤ sup{−γ
2
‖x‖2 + (‖u∗‖+ δ)‖x‖ − b | x ∈ X} <∞.

It follows that f is continuous at the origin, and so it is continuous on int(dom (f)) = X∗.

�

Definition 2.8 Let X be a normed space and let f : X → R be a proper convex function.

We say that ∂f(·) is strongly monotone with parameter σ > 0 if

σ‖x1 − x2‖2 ≤ 〈v∗1 − v∗2, x1 − x2〉 whenever v∗i ∈ ∂ϕ(xi), i = 1, 2.

In particular,

σ‖x1 − x2‖ ≤ ‖v∗1 − v∗2‖ whenever v∗i ∈ ∂ϕ(xi), i = 1, 2.

Theorem 2.9 Let X be a reflexive Banach space and let f : X → R be a proper lower

semicontinuous function. Suppose that f is strictly convex and strongly coercive. Then f∗

is Gâteaux differentiable. If we assume in addition that ∂f(·) is strongly monotone with

parameter σ > 0, then f∗ is Fréchet differentiable and ∇F f∗ is Lipschitz continuous with

constant ` = 1/σ.

Proof. By Proposition 2.7, the function f∗ is convex and continuous on X∗. Fix any

v∗ ∈ X∗. Let us first prove the Gâteaux differentiability of f∗ at v∗ by using Corollary 2.3.

Note that x̄ ∈ ∂f∗(v∗) if and only if v∗ ∈ ∂f(x̄), which holds iff

f(x̄)− 〈v∗, x̄〉 ≤ f(x)− 〈v∗, x〉 for all x ∈ X.

Equivalently, x̄ is an absolute minimizer of the function g(x) = f(x)− 〈v∗, x〉 for x ∈ X. It

follows from (2.1) that lim‖x‖→∞ g(x) =∞. Then by the strict convexity of f , the function

g has a unique absolute minimizer on X. Thus, ∂f∗(v∗) = {x̄} is a singleton. Therefore,

by Corollary 2.3, the function f is Gâteaux differentiable at v∗.

Now, we assume in addition that that ∂f(·) is strongly monotone with parameter σ > 0.

Fix any v∗i ∈ X∗ and xi ∈ X with xi ∈ ∂f∗(v∗i) for i = 1, 2. Then v∗i ∈ ∂f(xi) for i = 1, 2

and

‖x1 − x2‖ ≤
1

σ
‖v∗1 − v∗2‖.

Thus, we can easily show that the subdifferential mapping ∂f(·) : X →→ X∗ is upper semi-

continuous at v∗. It follows from Theorem 2.6 that f∗ is Fréchet differentiable, and in

addition,

‖∇F f(v∗1)−∇F f(v∗2)‖ ≤ 1

σ
‖v∗1 − v∗2‖.

8

for all v∗1, v
∗
2 ∈ X∗. This completes the proof. �

For a bounded linear mapping A : X → Y between normed spaces, we define the norm of

A as usual:

‖A‖ = sup
{
‖A(x)‖

∣∣ ‖x‖ ≤ 1
}
.

It follows from the definition that ‖A(x)‖ ≤ ‖A‖‖x‖ for all x ∈ X. The adjoint mapping

of A denoted by A∗ : Y ∗ → X∗ is defined by A∗(y∗) = y∗ ◦ A for y∗ ∈ Y ∗. It is well-known

that if A : X → Y is a bounded linear mapping, then ‖A‖ = ‖A∗‖.

Lemma 2.10 Let A : X → Y ∗ be a bounded linear mapping, where Y is a reflexive Banach

space, let ϕ : Y → R be a continuous function, and let Q be a nonempty closed convex set

in Y . If ϕ is strictly convex and strongly coercive, then the function g : X → R defined by

g(x) = sup{〈Ax, y〉 − ϕ(y) | y ∈ Q}, x ∈ X,

is well-defined and Gâteaux differentiable. If we assume in addition that ∂ϕ(·) is strongly

monotone with parameter σ > 0, then g is Fréchet differentiable. In addition, ∇F g is

Lipschitz continuous with constant ` = ‖A‖2/σ.

Proof. The function g can be represented as

g(x) = sup{〈Ax, y〉 − [ϕ(y) + δQ(y)] | y ∈ Y } = sup{〈Ax, y〉 − h(y) | y ∈ Y } = h∗(Ax),

where the function h : Y → R defined by h(y) = ϕ(y) + δQ(y) for y ∈ Y . Based on the

strong coercivity of h, we can easily show that

lim
‖y‖→∞

(〈Ax, y〉 − h(y)) = −∞.

Thus, the function g is well-defined and the “supremum” in its definition becomes “max”.

If ϕ is strictly convex and strongly coercive, then so is h. By Theorem 2.9, the function h∗

is Gâteaux differentiable. Thus, it is straightforward to see that g is Gâteaux differentiable.

Now, assume that ∂ϕ(·) is strongly monotone with parameter σ. By the subdifferential sum

rule, we can show that ∂h(·) is also strongly monotone with parameter σ. It follows from

Theorem 2.9 that the function h∗ is Fréchet differentiable and ∇Fh∗ is Lipschitz continuous

with constant 1/σ. Then g is Fréchet differentiable and ∇F g is Lipschitz continuous with

constant ` = ‖A‖2/σ. �

Let X and Y be normed spaces. Given a bounded linear mapping A : X → Y ∗, a continuous

convex function φ : Y → R, and a nonempty closed convex set Q ⊂ Y , consider the function

f(x) = sup{〈Ax, y〉 − φ(y) | y ∈ Q}, x ∈ X. (2.2)

In general, f : X → R is a nondifferentiable convex function.

Our goal now is to find a differentiable approximation of the function f given by (2.2). The

idea comes from [9] as follows. Fix a continuous function d : Y → [0,∞). Given µ > 0,

define

fµ(x) = sup{〈Ax, y〉 − φ(y)− µd(y) | y ∈ Q}, x ∈ X. (2.3)

9

Theorem 2.11 Let X be a normed space and let Y be a reflexive Banach space. Consider

the function f defined in (2.2) and the function fµ defined in (2.3).

(a) Suppose that d is strictly convex and strongly coercive, then fµ is Gâteaux differentiable.

(b) If we assume further that ∂d(·) is strongly monotone with parameter σ > 0, then fµ is

a C1,1 function. In addition, ∇fµ is Lipschitz continuous with constant

`µ =
‖A‖2

σµ
.

We also have the estimate

fµ(x) ≤ f(x) ≤ f(x) + µ sup
y∈Y

d(y) for all x ∈ X.

Proof. The conclusion follows directly from Lemma 2.10. Note that if d is strictly convex

and strongly coercive, then the function ϕ(u) = φ(u) + µd(u) for u ∈ Y is also strictly

convex and strongly coercive. If, in addition, ∂d(·) is strongly monotone with parameter

σ > 0, then ∂ϕ(·) is strongly monotone with parameter σµ. For any x ∈ X,

fµ(x) = sup{〈Ax, y〉 − φ(y)− µd(y) | y ∈ Q} ≤ sup{〈Ax, y〉 − φ(y) | y ∈ Q} = f(x).

We also have

f(x) = sup{〈Ax, y〉 − φ(y) | y ∈ Q}
= sup{〈Ax, y〉 − φ(y)− µd(y) + µd(y) | y ∈ Q}
≤ sup{〈Ax, y〉 − φ(y)− µd(y) | y ∈ Q}+ sup

y∈Q
(µd(y)) ≤ fµ(x) + µ sup

y∈Q
d(u).

The proof is now complete. �

Let us continue by providing some examples of the function d that satisfies condition (a)

or (b) in Theorem 2.11. Recall that a subset F with nonempty interior of a normed space

is called strictly convex if for any x, y ∈ F with x 6= y and for any t ∈ (0, 1), we have

tx+ (1− t)y ∈ int(F). The proof of the proposition below is straightforward.

Proposition 2.12 Let X be a normed space amd let F be a nonempty convex set in X

that contains the origin in its interior. Suppose that F is strictly convex. Consider the

Minkowski function associated with F defined by ρF (x) = inf{t > 0 | x ∈ tF} for x ∈ X.

Then the function d = (ρF)2 is continuous, strictly convex, and strongly coercive.

We say that a function d : X → R is called F−strongly convex with parameter σ > 0 if

the function d − σ/2(ρF)2 is convex. In particular, if d is B−strongly convex, where B is

the closed unit ball of X, then this definition reduces to the well-known definition of strong

convexity.

Proposition 2.13 Let X be a normed space and let d : X → R be a continuous function

that is F−strongly convex, where the set F satisfies the conditions in Proposition 2.12.

10

Then d is also strictly convex and strongly coercive. If we assume in addition that X is a

Hilbert space and d is strongly convex with parameter σ > 0, then ∂d(·) is strongly monotone

with parameter σ.

Proof. Define the function h = d − σ/2(ρF)2. Then h is a continuous convex function.

Thus, there exist w∗ ∈ X∗ and b ∈ R such that

〈w∗, x〉+ b ≤ h(x) for all x ∈ X.

Since d = h+ σ/2(ρF)2, the conclusions become straightforward.

Finally, let us consider a direct corollary of Theorem 2.11 (b).

Corollary 2.14 Let X and Y be Hilbert spaces. In the setting of Theorem 2.11, let d(y) =

1/2‖y − y0‖2 for y ∈ Y , where y0 ∈ Q and Q is bounded. The function fµ given by (2.3) is

Fréchet differentiable and its gradient is Lipschitz continuous on X with Lipschitz constant

` = ‖A‖2/µ. In addition,

fµ(x) ≤ f0(x) ≤ fµ(x) +
µ

2
[D(y0;Q)]2 for all x ∈ X,

where D(y0;Q) = sup{‖y0 − y‖ | y ∈ Q} <∞.

In particular, if ψ(y) = 〈b, y〉 for y ∈ Y , where b ∈ Y , then the function fµ has the explicit

representation

fµ(x) =
‖Ax− b‖2

2µ
+ 〈Ax− b, y0〉 −

µ

2

[
d(y0 +

Ax− b
µ

;Q)
]2

and is Fréchet differentiable on X with its gradient given by

∇fµ(x) = A∗uµ(x),

where uµ can be expressed in terms of the Euclidean projection

uµ(x) = π(y0 +
Ax− b
µ

;Q).

The gradient ∇fµ is a Lipschitz function with constant

`µ =
1

µ
‖A‖2.

Proof. The conclusion follows directly from Theorem 2.11 with the observation that d is

strongly convex with constant σ = 1; see [8] for more details. �

3 Applications to Image Reconstructions

In this section, we consider an unknown image M of size N1 × N2. After the image is

corrupted by a linear operator A and distorted by some noise ε, we observe only the image

b = A(M) + ε, and seek to recover the true image M .

11

3.1 Patching an Image

In this section, we describe an optimization problem which models the image reconstruction

problem by expressing an image as the sum of sparse representations of distinct ‘patches’

of the image; see, e.g., [15]. Given an N1 × N2 image matrix M , let P be a collection

of submatrices Pi,j of M with size n1 × n2, which cover M . We henceforth refer to these

submatrices as patches, and sometimes identify Pi,j with its index (i, j). The covering

condition ensures that every pixel of M appears in some patch, and we will use collections

only of non-overlapping patches, so that P partitions M .

R1,1

1 2
76

3 4 5

8 9 10

11 12 13 14 15

16 17 18 19 20

=
1 2

76 RT1,1

w x

zy
=

w x

zy
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 1: Left : R1,1 acts on a 4 × 5 matrix to extract the 4 × 4 patch (1, 1). Right : RT1,1
embeds a 4× 4 patch into patch (1, 1) of a zero matrix.

Define Ri,j as the function that maps the image M to patch Pi,j , that is, Ri,j(M) = Pi,j . If

M is in vectorized form, Ri,j can be expressed as an n1n2 ×N1N2 matrix with exactly one

1 in each row and zeros elsewhere. In particular, [Ri,j]ab is 1 if the bth entry of the image

M appears in the ath entry of the (vectorized) patch Pi,j , and 0 otherwise. For example, if

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 is a 3× 3 image and patch P2,2 is the 2× 2 bottom right corner, then

R2,2(M) =


0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





m11

m21

m31

m12

m22

m32

m13

m23

m33


=


m22

m32

m23

m33

 = P2,2 ∼

[
m22 m23

m32 m33

]
,

where ∼ represents reshaping a vectorized form to a matrix. It is now straightforward

to write a MATLAB code buildRij([N1 N2],[n1 n2],[s t]) to construct a matrix Ri,j
which operates on a vectorized N1 ×N2 image M to produce the vectorized n1 × n2 patch

whose upper-left index in M is (s, t).

For a collection P of patches of an image M , define TP =
∑

(i,j)∈P

RTi,jRi,j .

Lemma 3.1 For all Pi,j ∈ P, RTi,jRi,j is diagonal and TP is invertible. If the patches are

non-overlapping, then TP is the identity matrix.

12

Proof. Let Pi,j be some patch of M , both in vector form. Then [Ri,j]rc = 1 iff Mc = [Pi,j]r.

Because [Pi,j]r must contain exactly one element of M , each row of Ri,j contains exactly

1 nonzero entry. As each element of M appears at most once in Pi,j , each column of Ri,j
contains at most one nonzero element. This means that if a 6= b then columns a and b of

Ri,j cannot have a nonzero element in the same row, so [RTi,jRi,j]a,b (being the dot product

of columns a and b of Ri,j) must be zero. So RTi,jRi,j is diagonal. Along the diagonal,

[RTi,jRi,j]a,a is the dot product of the ath column of Ri,j with itself, and is thus 1 iff the ath

entry of M appears in patch Pi,j . Since each entry of M appears in at least one patch, it

follows that summing RTi,jRi,j over all patch indices (i, j) ensures TP has nonzero diagonals,

and is therefore invertible. When the patches are non-overlapping, each entry of M appears

in only one patch, so [Ri,jR
T
i,j]a,a = 1 for all a = 1, . . . , N1N2, by which we find TP to be

the identity matrix. �

We then express the image M as

M = (TP)−1

 ∑
(i,j)∈P

RTi,jRi,j(M)

 .

Because in this paper we use only non-overlapping patches, TP is the identity, thus

M =
∑

(i,j)∈P

RTi,jRi,j(M).

For any (i, j) ∈ P, let yi,j ∈ RK be a sparse representation of the patch Ri,j(M) = Pi,j
under an n1n2 ×K dictionary D, so that Pi,j = Dyi,j . We thus say

M =
∑

(i,j)∈P

RTi,jDyi,j .

To reconstruct the image with sparsely represented patches in a way which fits the observed

data, we solve the following:

min
yi,j

(i,j)∈P

∑
(i,j)∈P

‖yi,j‖1 −
∑

(i,j)∈P

‖yi,j‖+
ν

2

∥∥∥∥∥∥A
 ∑

(i,j)∈P

RTi,jDyi,j

− b
∥∥∥∥∥∥

2

, (3.1)

and immediately note that (3.1) can be expressed as

min
y

ν

2
‖Ay − b ‖2 + ‖y‖1 − ‖y‖, (3.2)

where y =
[
yT11 yT12 · · · yT

īj̄

]T
is the concatenation of all the sparse representations of

patches under D, ī and j̄ the final row and column, respectively, of the patch partition, and

finally

A = A
[
RT11D RT12D . . . RT

īj̄
D
]
.

13

Figure 2: Surface plots of ‖x‖1 (left) and ‖x‖1−‖x‖ (right) on R2. Minimizing an objective

function containing these terms drives solutions towards the axes, simulating sparsity. Note

that `1 − `2 regularization is not convex.

3.2 DCA for `1 − `2 Regularization

Use of (`1 − `2) regularization causes the objective function to no longer convex, and so we

adopt the Difference of Convex Functions Algorithm (DCA), used to minimize g− h where

g : Rn → R and h : Rn → R are both convex. The algorithm, developed by Tao and An in

[10] and [11] is as follows:

DCA Algorithm

INPUT: x1, N ∈ N

for k = 1, . . . , N do

Find yk ∈ ∂h(xk)

Find xk+1 ∈ ∂g∗(yk)

end for

OUTPUT: xN+1

Before using the DCA, we first apply Nesterov’s smoothing from Corollary 2.14. Given a

function of the form

f0(x) = max
u∈Q
{〈Ax, u〉 − ψ(u)}

where Q ⊂ Rm is a convex, closed, and bounded set, ψ is a convex map from Rm to R, and

A is an m× n matrix, for any µ > 0 we may obtain a smooth approximation fµ using

fµ(x) = max
u∈Q
{〈Ax, u〉 − ψ(u)− µ

2
‖u‖2}.

We now use this to smooth the `1 norm. Let p(x) = ‖x‖1, and note that this is equivalent

to p(x) = max
u∈Q
{〈x, u〉} when Q is the unit box, Q = {x ∈ Rn | |xi| ≤ 1 , i = 1, . . . , n}. In

the above general setting, this corresponds to A being the identity matrix and ψ the zero

14

map. Then pµ(x) is a smooth approximation to p(x) = ‖x‖1 = max
u∈Q
{〈x, u〉} and can be

expressed

pµ(x) =
1

2µ
‖x‖2 − µ

2

(
d

(
x

µ
,Q

))2

,

where d(x;Q) is the Euclidean distance from x to Q.

Now let A be a real m× n matrix and b ∈ Rm. Using the above smooth approximation for

‖x‖1 we approximate f(x) = ν
2‖Ax− b‖

2 + ‖x‖1 − ‖x‖ with

fµ(x) =
ν

2
‖Ax− b‖2 +

1

2µ
‖x‖2 − µ

2

(
d
(
µ−1x,Q

))2 − ‖x‖
=

1

2µ
‖x‖2 −

(µ
2

(
d
(
µ−1x,Q

))2 − ν

2
‖Ax− b‖2 + ‖x‖

)
=

1

2µ
‖x‖2 +

γ

2
‖x‖2 −

(µ
2

(
d
(
µ−1x,Q

))2 − ν

2
‖Ax− b‖2 +

γ

2
‖x‖2 + ‖x‖

)
.

Note this is the difference of convex functions g − h for

g(x) =

(
1 + µγ

2µ

)
‖x‖2 and h(x) =

µ

2

(
d
(
µ−1x,Q

))2 − ν

2
‖Ax− b‖2 +

γ

2
‖x‖2 + ‖x‖,

assuming that γ > 0 is sufficiently large so that γ
2‖x‖

2 − ν
2‖Ax − b‖

2 is convex. Note this

is satisfied when γ is greater than ν times the largest eigenvalue of ATA.

To use the DCA algorithm, we will need yk in the subdifferential of h at xk. Using

∇‖Ax− b‖2 = 2AT (Ax− b)

and

∇ (d (x,Q))2 = 2(x−ΠQ(x))

where ΠQ(x) is the projection of x onto Q, along with the chain rule for subdifferentials

(see [7]), we have a subgradient of h at x given by

∂wh(x) = µ−1x−ΠQ

(
µ−1x

)
− νAT (Ax− b) + γx+ ω(x),

where ω(x) =

{
x
‖x‖ x 6= 0

0 x = 0
is a subgradient of ‖ · ‖ at x. We point out that the projection

onto the unit box can be defined component-wise as [ΠQ(x)]i = max(−1,min(xi, 1)).

To find xk+1 ∈ ∂∗g(yk), we use the fact that u ∈ ∂∗g(v) iff v ∈ ∂g(u). The subdifferential

of g is simply the singleton set containing its gradient (see [7]), so v ∈ ∂g(u) iff v = 1+µγ
µ u

iff u = µ
1+µγ v.

We combine these results to implement the DCA algorithm in order to minimize a µ-

smoothing approximation to f(x) = ν
2‖Ax− b‖

2 + ‖x‖1 − ‖x‖, as outlined below.

15

Algorithm 1. DCA for smoothed `1 − `2 regularization.

INPUT: µ > 0, sufficiently large γ, starting point x

repeat

Find ω = x
‖x‖ if x 6= 0, ω = 0 otherwise

y ←− µ−1x−ΠQ

(
µ−1x

)
− νA>(Ax− b) + γx+ ω

x←− µ
1+µγ y

until convergence

OUTPUT: x

Experiments suggest that incrementally decreasing µ over the course of the algorithm in-

duces better performance.

3.3 Choosing Partitions

This section describes how to obtain t different partitions of the image, following the ap-

proach described in [15]. Given an N1 × N2 image matrix, choose a general patch size

n1×n2. We then choose a size c1× c2 of the upper- and left-most patch, P11, where ci ≤ ni
for i = 1, 2. All of the patches not on the boundary of the image will have size n1 × n2.

The left-boundary non-corner patches of M are size n1×c2, the upper-boundary non-corner

patches have size c1 × n2, and the remaining patch sizes are chosen to ensure their borders

align with those patches already defined.

Figure 3: Two partitions of an (N1 ×N2) = (4× 5) image with patch size (n1, n2) = (2, 2).

Left: The top-left corner has size (c1, c2) = (2, 2). Right: The top-left patch has size

(c1, c2) = (1, 1).

If patch Pi,j has size less than n1 × n2, the patch extraction operator Ri,j still creates a

patch of size n1×n2, in which Pi,j sits in the proper orientation, and the remaining entries

are zeros. Similarly, RTi,j will embed an n1 × n2 patch into the corresponding patch in the

image, but zero out all entries which do not lie in the smaller patch. For example, if the

general patch size is 8× 8 but the corner patch P11 is 5× 5, then R11 embeds the top left

5×5 patch into an 8×8 patch of zeros. We say P11 has ‘virtual size’ 5×5. Note that the cell

array of patch extraction matrices does not need to be constructed every time a problem

is solved. Once it has been constructed for some partition of a given size image, it can be

saved and reused. The general algorithm given in [15] is as follows: Given a dictionary D,

choose some t different patch-partitions of the image, P1, P2, . . . , Pt. For each k = 1, . . . , t,

find the solution Mk to the unconstrained problem (3.2) using partition Pk. Then use the

average of those solutions, M = 1
t

∑
Mk, as the final reconstruction.

16

3.4 Dictionaries

In this summary we use two types of dictionary. One is constructed from the discrete cosine

transform (DCT). The other is a ‘learned dictionary,’ constructed using a collection of

images as training data, and for which the learned dictionary allows sparse representations.

The i, j entry of an M ×N discrete cosine transform (DCT-II) matrix D is given by

Di,j =


√

1
N j = 1√
2
N cos

(
π
N (j − 1)(i+ 1

2)
)

j = 2, . . . , N
.

Alternatively, a ‘wavelet’ dictionary can be called using MATLAB’s wmpdictionary()

function, with argument equal to the number of atoms.

We find better results when we ‘learn’ a dictionary from a training data. Consider a training

matrix X = [x1, . . . , xL] ∈ Rn×L of L images of size n in vectorized form. We seek a

dictionary D = [d1, . . . , dK] ∈ Rn×K of K atoms of size n and a corresponding coefficient

matrix W = [w1, . . . , wL] ∈ RK×L so that xi ≈ Dwi and wi is as sparse as possible, for all

i = 1, . . . , L.

There exist several methods for learning a dictionary. One of the most popular algorithms

is the K-SV D proposed in [1] which can be modeled as

min
D,W

‖DW −X‖2F

subject to ‖di‖ = 1 for all i = 1, . . . ,K and ‖wj‖0 ≤ s for all j = 1, . . . , L,

where s is a parameter to control the sparsity. Another popular method is the Online

Dictionary Learning (OLM) proposed in [5] which solves the following problem:

min
D,W

λ

2
‖DW −X‖2F + ‖W‖1 (3.3)

subject to ‖di‖ = 1 for all i = 1, . . . ,K,

where ‖W‖1 =
∑L

i=1 ‖wi‖1 =
∑L

i=1

∑K
j=1 |wij | and λ is a trade-off parameter to balance

data fitting and sparsity level.

To promote the sparsity, our approach is to use the `1 − `2 regularization by solving the

following problem:

min
D,W

λ

2
‖DW −X‖2F + ‖W‖1 − ‖W‖2,1 (3.4)

subject to ‖di‖ ≤ 1 for all i = 1, . . . ,K,

where ‖W‖2,1 =
∑L

i=1 ‖wi‖ =
∑L

i=1

√∑K
j=1w

2
ji. This is a nonconvex problem whose

nonconvexity comes from two sources: the sparsity promotion `1 − `2 and the bi-linearity

between the dictionary D and the code W in the fitting term.

For solving this problem, we alternatively updateW andD by using the DCA and Nesterov’s

smoothing.

17

1. Sparse coding phase: In this phase, we fix a dictionary D and try to update the code

W by solving (3.4). The objective function is now a DC function with respect to W :

f(W) =
λ

2
‖DW −X‖2F + ‖W‖1 − ‖W‖2,1.

Let P (W) = ‖W‖1. Using the smoothing technique as before, we can approximate the

function P (W) by

Pµ(W) =

L∑
i=1

[
1

2µ
‖wi‖2 −

µ

2
[d(
wi
µ

;Q)]2
]

=
1

2µ
‖W‖2F −

µ

2

L∑
i=1

[d(
wi
µ

;Q)]2,

where Q = {w ∈ RK | ‖w‖∞ ≤ 1}. Recall that the ith component of the Euclidean

projection from w ∈ RK onto the box Q can be computed as

[ΠQ(w)]i = max(−1,min(1, wi)). (3.5)

To process further, we denote Q = Q×Q× . . .×Q ⊂ RK×L. For an K ×L matrix W , the

projection from W = [w1, . . . , wL] onto Q is define by

Π (W,Q) = [Π(w1;Q), . . . ,Π(wL;Q)] ∈ RK×L.

We thus have

[d(W ;Q)]2 = ‖W −Π(W,Q)‖2F =
L∑
i=1

[d(wi;Q)]2.

The function f(W) can be approximated by the DC function fµ(W) = gµ(W) − hµ(W),

where

gµ(W) =

(
1

2µ
+
γ1

2

)
‖W‖2F ,

hµ(W) =
µ

2
[d(
W

µ
;Q)]2 − λ

2
‖DW −X‖2F +

γ1

2
‖W‖2F + ‖W‖2,1,

and γ1 is chosen such that γ1
λ is greater than the spectral radius of the symmetric matrix

D>D in order to guarantee the convexity of the function hµ(W).

A subgradient Y of hµ at W is given by

Y =
W

µ
−Π

(
W

µ
;Q
)
− λD>(DW −X) + γ1W + η(W),

where η(W) is an K × L matrix whose ith column is defined via the ith column of W by

[η(W)]i =

{
wi
‖wi‖ if wi 6= 0,

0RK if wi = 0.
(3.6)

The DCA for solving the sparse coding phase can be outlined as follows.

18

Algorithm 2. DCA for sparse coding phase.

INPUT: X ∈ Rn×L, D ∈ Rn×K , µ > 0, λ > 0 sufficiently small,

γ1 > 0 sufficiently large and starting code W ∈ RK×L.

repeat

Find Π (W,Q) = [Π(w1;Q), . . . ,Π(wL;Q)] according to (3.5)

Find η(W) according to (3.6)

Y ←− W
µ −Π

(
W
µ ;Q

)
− λD>(DW −X) + γ1W + η(W)

W ←− µ

1 + µγ1
Y

until convergence

OUTPUT: W

2. Dictionary updating phase. Now we fix the sparse code W that has been found from

the previous phase and update the dictionary D by solving

min
D

‖DW −X‖2F subject to ‖di‖ ≤ 1 for all i = 1, . . . ,K.

For solving this nonconvex problem, we use the DCA by reformulating it as a DC program-

ming problem as follows

min
D

f̃(D) =
[γ2

2
‖D‖2F + IC(D)

]
−
[γ2

2
‖D‖2F − ‖DW −X‖2F

]
,

where C = {D = [d1, . . . , dK] ∈ Rn×K | ‖di‖ ≤ 1 for all i = 1, . . . ,K} is the constraint. Here

γ2 is chosen greater than the spectral radius of the matrix WW> to ensure the convexity

of the function h̃(D) = γ2
2 ‖D‖

2
F − ‖DW −X‖2F .

This function h̃ is differentiable and its gradient given by

∇h̃(D) = γ2D − [DW −X]W>.

Note that the ith component of the Euclidean projection from D onto the constraint C can

be computed by

[ΠC(D)]i =
di

max{1, ‖di‖}
, for i = 1, . . . ,K.

Thus, the DCA iterative sequence in this phase is simply defined by Dk+1 = ΠC

(
∇h(Dk)

γ2

)
.

Algorithm 3. DCA for dictionary updating phase.

INPUT: X ∈ Rn×L, W ∈ RK×L, γ2 > 0 sufficiently large,

starting dictionary D ∈ Rn×K .

repeat

Y ←− γ2D − [DW −X]W>

D ←− ΠC

(
Y
γ2

)
until convergence

OUTPUT: D

In practice, when alternatively perform Algorithm 2 and Algorithm 3 to solve (3.4), we can

use a value γ > 0 sufficiently large to play the role of both γ1 and γ2. In addition, we also

gradually decrease the value of smoothing parameter µ until a preferred µ∞ is attained.

The final scheme for `1 − `2 dictionary learning can be outlined as follows.

19

Algorithm 4. DCA for `1 − `2 dictionary learning.

INPUT: training set X ∈ Rn×L, λ > 0 sufficiently small, γ > 0 sufficiently large,

starting dictionary D0 ∈ Rn×K , starting code W 0 ∈ RK×L

µ0 > 0, σ ∈ (0, 1) and µ∞ sufficiently small.

k ←− 0

repeat

Compute W k+1 ←− Algorithm 2(X,Dk,W k, λ, γ, µk)

Compute Dk+1 ←− Algorithm 3(X,Dk,W k+1, λ, γ, µk)

Update µk+1 ←− σµk
Set k ←− k + 1

until µ < µ∞.

OUTPUT: D

3.5 Implementation

Our goal is to restore an unknown image M of size N1 × N2 from its corrupted linear

measurements of the form b = A(M) + ε. We first choose a general patch size n1 × n2 with

ni � Ni for i = 1, 2. Then we generate a dictionary of size n1n2 × K by using DCT or

learning from a training data set X of size n1n2×L with n1n2 ≤ K � L. Let P be a patch

partition associated with some choice of upper-left-most patch and let S be the number of

patches in P. For any (i, j) ∈ {(1, 1), . . . , (̄i, j̄)}, we find the extraction operator Rij and

form the matrices

R =


R11

R12

...

Rīj̄

 and RT =
[
RT11 RT12 · · · RT

īj̄

]
.

We continue by solving (3.2) to find y ∈ RKS . Then express y ∈ RKS as an K × S matrix

Y of patch representations under D, so Y = [y11 y12 · · · yīj̄] and DY is an n1n2×S matrix

whose columns are vectorized patches. Finally, reshaping DY into n1n2S × 1 vectorized

form Dy, we have RTDy =
∑

i,j R
T
i,jDyi,j is an N1 ×N2 image in vectorized form.

We now use the above scheme to solve in-painting problems, where A is the sampling

operator. In-painting is a process wherein missing information in an image is recovered,

namely when some known set of pixels of an image have been lost. Let M ∈ RN1N2 be a

vectorization of an N1 ×N2 image, Ω a subset of {1, . . . , N1N2} and A be the |Ω| ×N1N2

matrix formed by removing all row i from the identity matrix IN1N2 for all i /∈ Ω. Then we

call A a sampling operator with sampling rate SR = |Ω|
N1N2

, and A(M) is a vectorization of

the original image, containing only those pixels indexed by Ω.

The patching approach developed by Xu and Yin [15] is implemented to minimize (3.2) using

the DCA with Nesterov’s smoothing. In all settings we compare the discrete cosine trans-

form (DCT) dictionary with two different learned dictionaries: `1 regularization by solving

(3.3) with block proximal gradient (BPG) proposed in [14, 15] and `1− `2 regularization by

minimizing (3.4) with Algorithm 4.

20

DCT dictionary `1 learned dictionary by BPG `1 − `2 learned dictionary by Alg 4

Figure 4: Three different types of dictionaries

SR Rel. Error (%) PSNR

50%

corrupted image 70.72 8.458

DCT
FISTA 4.81 31.83

DCA 6.06 29.81

`1 learned
FISTA 3.45 34.699

DCA 4.11 33.168

`1 − `2 learned
FISTA 3.48 34.613

DCA 4.22 33.937

30%

corrupted image 83.77 6.987

DCT
FISTA 7.01 28.501

DCA 8.27 27.101

`1 learned
FISTA 5.21 31.113

DCA 5.89 30.048

`1 − `2 learned
FISTA 5.02 31.438

DCA 5.72 30.303

Table 1: Results for in-painting with three different dictionaries. FISTA and DCA are `1
and (`1 − `2) regularization, respectively. Best results are in bold.

For all learned dictionaries, we use a training set of 10000 grayscale patches of size 8 × 8,

chosen randomly from 100 images taken from the Berkeley Segmentation Dataset5; see [6].

The training matrix X is of size 64× 10000. The number of atoms for learned dictionaries

is set to be K = 256 and thus all learned dictionaries are of size 64× 256.

A technical step before performing the DCA-based learning algorithm is to set each column

of the training matrix X to zero mean. For the `1 regularization, we solve (3.3) with

λ = 0.1 by the BPG method using the same parameters as in [15, Algorithm 3]. For

`1 − `2 regularization, we randomly choose K columns from the training matrix X and

normalize them to form a starting dictionary D0 when solving (3.4) by Algorithm 4 with

W 0 = pinv(D)X, λ = 1, γ = 2000, σ = 0.8, µ∞ = 10−5. The obtained dictionaries are

shown in Figure 4.

5available at https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

21

Sampled image (SR=50%)

FISTA, DCT dictionary DCA, DCT dictionary

FISTA, `1 learned dictionary DCA, `1 learned dictionary

FISTA, `1 − `2 learned dictionary DCA, `1 − `2 learned dictionary

Figure 5: In-painting result on Lena512 with DCT and learned dictionaries. FISTA and

DCA are `1 and (`1 − `2) regularization, respectively.

For all tests, we use the 512 × 512 standard reference image Lena, and choose n1 × n2 =

8 × 8 patches. Before running the test, a column of all ones is added to the DCT and

22

learned dictionaries. As discussed in [15], patching artifacts which appear in the solution

are mitigated by processing the image three times, each with a different partition. The

solution is then taken to be the average of the three trials. Our partitions were determined

by choosing upper-left corner patches of size 8× 8, 5× 5, and 2× 2.

Corrupted images were defined as b = A(M)+σξ, where ξ is a matrix of noise with standard

normal distribution scaled by σ = c‖A(M)‖2
‖ξ‖2 .

In our experiments, we fix the noise level c = 1% and use ν = 1
2σ for `1 regularization with

FISTA [2] and ν = 3
20σ for `1 − `2 regularization with Algorithm 1.

k
0 50 100 150 200

ν 2
‖A

y
k
−
b‖

2
+
‖y

k
‖ 1

×108

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

FISTA, ℓ1

k
0 100 200 300 400 500 600 700 800 900

ν 2
‖A

y
k
−
b‖

2
+
‖y

k
‖ 1

−
‖y

k
‖ 2

×105

0

1

2

3

4

5

6

DCA, ℓ1 − ℓ2

Figure 6: Inpainting: objective function value vs iteration for FISTA and DCA with learned

dictionary.

We measure error of the solution M̃ relative to the true image M by relative error, RE =
‖M−M̃‖F
‖M‖F , and peak signal to noise ratio as PSNR = 20 · log10

(√
N1N2

‖M−M̃‖F

)
. See Table 1 for

a comparison of the PSNR values and relative errors of the in-paiting result with different

sampling rates and different dictionaries. Figure 5 gives a visual illustration for the case

SR = 50%. Given these results, it is evident that `1 − `2 learned dictionary obtained from

Algorithm 4 yields results very close to the one constructed by BPG method. Moreover, it

can be seen that the performance of DCA with smoothing technique is nearly comparable

to that of the FISTA on learned dictionaries.

3.6 Discussion

The fast patch dictionary method given by Xu and Yin [15] was qualitatively successful in

reconstructing corrupted images, using both `1 regularization with FISTA, and (`1 − `2)

regularization with DCA in combination with Nesterov’s smoothing. In every case, learned

dictionaries improve results compared to a DCT dictionary.

The FISTA approach converges after fewer iterations (see Figures 6), but DCA required

less time per iteration. The optimal choice of µ and γ parameters in the DCA method is

unknown, and allows for the possibility of future improvement. Similarly, implementing

FISTA without a backtracking line search is likely to induce better results, in cases where

the Lipschitz constant of the gradient can be determined. Also, it is not known which choice

of ν (used to weight data-fitting versus sparsity) leads to the best solution. Future work

23

may explore optimal parameter choice as well as characterize which problems benefit from

`1 versus (`1 − `2) regularization.

Acknowledgements. Part of this work was done during the first author’s visit to the

Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank

the VIASM and Prof. Nguyen Dong Yen for the hospitality and support.

References

[1] M. Aharon, M. Elad, A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictio-

naries for sparse representation. IEEE Trans. Signal Process. 54 (2006), 4311–4322.

[2] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse prob-

lems. SIAM J. Imaging Sci. 2 (2009), 183–202.

[3] F. H. Clarke, Nonsmooth Analysis and Optimization, John Wiley & Sons, Inc., New York,

1983.

[4] J. R. Giles, A Survey of Clarkes Subdifferential and the Differentiability of Locally Lipschitz

Functions. In: Progress in Optimization. Applied Optimization, vol 30. Springer, Boston, MA.

[5] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding. Proc.

26th Int’l Conf. Machine Learning. Montreal, Canada, 2009.

[6] D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological statistics.

Proc. 8th Int’l Conf. Computer Vision. 2 (2001), 416–423.

[7] B.S. Mordukhovich and N.M. Nam, An Easy Path to Convex Analysis and Applications, Morgan

& Claypool, 2014.

[8] N.M. Nam, N.T. An, R.B. Rector, and J. Sun, Nonsmooth algorithms and Nesterov smoothing

techniques for generalized Fermat-Torricelli problems. SIAM J. Optim. 24 (2014), 1815–1839.

[9] Y. Nesterov, Smooth minimization of non-smooth functions. Math.Program., Ser. A, 103

(2005), 127–152.

[10] P.D. Tao, L.T.H. An, Convex analysis approach to D.C. programming: Theory, algorithms and

applications. Acta Math. Vietnam. 22 (1997), 289–355.

[11] P.D. Tao, L.T.H. An, A d.c. optimization algorithm for solving the trust-region subproblem.

SIAM J. Optim., 8 (1998), 476–505.

[12] J. Xin, S. Osher, and Y. Lou, Computational aspects of L1-L2 minimization for compressive

sensing. Advances in Intelligent Systems and Computing, 359 (2015), 169–180.

[13] P. Yin, Y. Lou, Qi He, and J. Xin, Minimization of L1-L2 for compressed sensing. SIAM J. of

Sci. Comput. 37 (2015), A536–A563.

[14] Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization

with applications to nonnegative tensor factorization and completion. SIAM SIAM J. Imaging

Sci. 6(2013), 1758–1789.

[15] Y. Xu and W. Yin, A fast patch dictionary method for whole image recovery. Inverse Problems

and Imaging, 10 (2016), 563–583.

24

	Introduction and Problem Formulation
	Characterizations of Differentiability and Nesterov's Smoothing Techniques
	Applications to Image Reconstructions
	Patching an Image
	DCA for 1-2 Regularization
	Choosing Partitions
	Dictionaries
	Implementation
	Discussion

