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Abstract

We establish and prove a variation of constant formula for Caputo
fractional stochastic differential equations whose coefficients satisfy a
standard Lipschitz condition. The main ingredient in the proof is to
use Ito’s representation theorem and the known variation of constant
formula for deterministic Caputo fractional differential equations. As
a consequence, for these systems we point out the coincidence between
the notion of classical solutions introduced in [13] and mild solutions
introduced in [12].
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1 Introduction

Fractional differential equations have recently been received an increasing at-
tention due to their applications in a variety of disciplines such as mechanics,
physics, electrical engineering, control theory, etc. We refer the interested
reader to the monographs [1, 6, 11] and the references therein for more details.

∗Email: phamtheanhhn@gmail.com, Le Quy Don Technical University, 236 Hoang
Quoc Viet, Ha Noi, Viet Nam
†Email: dtson@math.ac.vn, Institute of Mathematics, Vietnam Academy of Science

and Technology, 18 Hoang Quoc Viet, Ha Noi, Viet Nam
‡Email: pthuong175@gmail.com, Le Quy Don Technical University, 236 Hoang Quoc

Viet, Ha Noi, Viet Nam

1



In contrast to the well development in the qualitative theory of deter-
ministic fractional differential equations, there have been only a few papers
contributing to the qualitative theory of stochastic differential equations in-
volving with a Caputo fractional time derivative and most of these articles
have limited to the existence and uniqueness of solutions, see [13, 7].

It is undoubtable that a variation of constant formula for determinis-
tic fractional systems, see [8], is an important tool in the qualitative the-
ory including the stability theory and the invariant manifold theory built in
[3, 4, 5]. In this paper, a stochastic version of variation of constant formula
for Caputo fractional systems whose coefficients satisfy a standard Lipschitz
condition is established. Roughly speaking, this formula indicates that a so-
lution of nonlinear system can be given as a fixed point of the corresponding
Lyapunov-Perron operator. A direct application is that an explicit formula
for solutions of inhomogeneous linear fractional stochastic differential equa-
tions is formed. Concerning more potential applications, we refer the readers
to the conclusion section.

It is also worth mentioning that the established variation of constant for-
mula in this paper also points out the coincidence between the notion of
classical solutions introduced in [13] and mild solutions introduced in [12]
for fractional stochastic differential equations without impulsive effects in a
finite-dimensional space. It is interesting to know whether this result can
be extended to systems involving impulsive effects and in an infinite dimen-
sional systems. Another question is to weaken the Lipschitz assumption on
the coefficients of the systems (cf. [2]). We leave these problems as open
questions for the further research.

The paper is structured as follows: In Section 2, we introduce briefly
about Caputo fractional stochastic differential equations and state the main
results of the paper. The first part of Section 3 is devoted to show the
result on the existence and uniqueness of mild solutions (Theorem 3.2). The
main result (Theorem 2.3) concerning a variation of constants formula for
fractional stochastic differential equations is proved in the second part of
Section 3.
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2 Preliminaries and the statement of the main

results

2.1 Fractional calculus and fractional differential equa-
tions

Let α ∈ (0, 1], [a, b] ⊂ R and x : [a, b] → Rd be a measurable function such

that
∫ b
a
‖x(τ)‖ dτ <∞. The Riemann–Liouville integral operator of order α

is defined by

(Iαa+x)(t) :=
1

Γ(α)

∫ t

a

(t− τ)α−1x(τ) dτ, where Γ(α) :=

∫ ∞
0

tα−1 exp (−t) dt,

see [6]. The Caputo fractional derivative of order α of a function x ∈ C1([a, b])
is defined by CDα

a+x(t) := (I1−α
a+ Dx)(t), where D = d

dt
is the usual derivative.

Analog to the case of integer derivative, a variation of constant formula is
used to derive an explicit solution for inhomogenous linear systems involv-
ing fractional derivatives. More concretely, consider an inhomogenous linear
fractional differential equation on a bounded interval [0, T ]

CDα
a+x(t) = Ax(t) + f(t), x(0) = η, (1)

where A ∈ Rd×d and f : [0, T ] → Rd is measurable and bounded. Then, an
explicit formula for solution of (1) is given in the following theorem and its
proof can be found in [8].

Theorem 2.1 (A variation of constant formula for Caputo fractional differ-
ential equations). The unique solution of (1) on [0, T ] is given by

x(t) = Eα(tαA)η +

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)f(τ) dτ,

where Eα(z) :=
∑∞

k=0
zk

Γ(kα+1)
, Eα,α(z) :=

∑∞
k=0

zk

Γ(kα+α)
.

2.2 Fractional stochastic differential equation and the
main results

Consider a Caputo fractional stochastic differential equation (for short Ca-
puto fsde) of order α ∈ (1

2
, 1) on a bounded interval [0, T ] of the following
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form
CDα

0+X(t) = AX(t) + b(t,X(t)) + σ(t,X(t))
dWt

dt
, (2)

where (Wt)t∈[0,∞) is a standard scalar Brownian motion on an underlying
complete filtered probability space (Ω,F ,F := {Ft}t∈[0,∞),P), A ∈ Rd×d and
b, σ : [0, T ] × Rd → Rd are measurable functions satisfying the following
conditions:

(H1) There exists L > 0 such that for all x, y ∈ Rd, t ∈ [0, T ]

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ L‖x− y‖.

(H2)
∫ T

0
‖b(τ, 0)‖2 dτ <∞, esssupτ∈[0,T ] ‖σ(τ, 0)‖ <∞.

For each t ∈ [0,∞), let Xt := L2(Ω,Ft,P) denote the space of all mean
square integrable functions f : Ω→ Rd with ‖f‖ms :=

√
E(‖f‖2). A process

ξ : [0,∞) → L2(Ω,F ,P) is said to be F-adapted if ξ(t) ∈ Xt for all t ≥ 0.
Now, we recall the notion of classical solution of Caputo fsde, see e.g. [13, p.
209] and [7].

Definition 2.2 (Classical solution of Caputo fsde). For each η ∈ X0, a
F-adapted process X is called a solution of (2) with the initial condition
X(0) = η if the following equality holds for t ∈ [0, T ]

X(t) = η + 1
Γ(α)

∫ t
0
(t− τ)α−1(AX(τ) + b(τ,X(τ))) dτ

+ 1
Γ(α)

∫ t
0
(t− τ)α−1σ(τ,X(τ)) dWτ .

(3)

It was proved in [7] that for any η ∈ X0, there exists a unique solution
which is denoted by ϕ(t, η) of (3). In the following main result of this paper,
we establish a variation of constant formula for (2) which gives a special
presentation of the solution ϕ(t, η).

Theorem 2.3 (A variation of constant formula for Caputo fsde). Let η ∈ X0

arbitrary. Then, the following statement

ϕ(t, η) = Eα(tαA)η +
∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)b(τ, ϕ(τ, η)) dτ

+
∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)σ(τ, ϕ(τ, η)) dWτ

(4)

holds for all t ∈ [0, T ].
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Remark 2.4. (i) If the noise in (2) vanishes, i.e. σ(t,X(t)) = 0, then
(4) becomes the variation of constant formula for deterministic fractional
differential equations (cf. Theorem 2.1). (ii) Note that E1(M) = E1,1(M) =
eM for M ∈ Rd×d. Letting α→ 1, (4) formally becomes

ϕ(t, η) = etAη +

∫ t

0

e(t−τ)Ab(τ, ϕ(τ, η)) dτ +

∫ t

0

e(t−τ)Aσ(τ, ϕ(τ, η)) dWτ ,

which is a variation of constant formula for solutions of stochastic differential
equation

dX(t) = (AX(t) + b(t,X(t))) dt+ σ(t,X(t)) dWt,

see [9, Theorem 3.1].

As an application of the preceding theorem, we obtain an explicit repre-
sentation of the solution of inhomogeneous linear fsde of the form

CDα
0+X(t) = AX(t) + b(t) + σ(t)

dWt

dt
, X(0) = η. (5)

Corollary 2.5. Suppose that b ∈ L2([0, T ],Rd), σ ∈ L∞([0, T ],Rd), where
T > 0. Then, the explicit solution for (5) on [0, T ] is given by

X(t) = Eα(tαA)η +

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)b(τ) dτ

+

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)σ(τ) dWτ .

3 Proof of the main results

We will fix the following notions through this section. Let Rd be endowed
with the standard Euclidean norm. For T > 0, let H2([0, T ],Rd) denote
the space of all processes ξ which are measurable, FT -adapted, where FT :=
{Ft}t∈[0,T ], and satisfies that ‖ξ‖H2 := sup0≤t≤T ‖ξ(t)‖ms < ∞. Obviously,
(H2([0, T ],Rd), ‖ · ‖H2) is a Banach space.

3.1 Existence and uniqueness of mild solutions

We are now recalling the notion of mild solutions of (2), see [12].
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Definition 3.1 (Mild solutions of Caputo fsdes). A F-adapted process Y
is called a mild solution of (2) with the initial condition Y (0) = η if the
following equality holds for t ∈ [0, T ]

Y (t) = Eα(tαA)η +
∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)b(τ, Y (τ)) dτ

+
∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)σ(τ, Y (τ)) dWτ .

(6)

Now, we establish a result on the existence and uniqueness of mild so-
lutions for equation (2). In this result, we require that the coefficients of
the system satisfy (H1) and (H2). The main ingredient of the proof is to
introduce a suitable weighted norm (cf. [7]). Note that in [12], a result of
the existence and uniqueness of mild solutions for a larger class of systems
was also given. However, the assumption of the coefficients of these systems
is stronger than (H1) and (H2).

Theorem 3.2 (Existence and uniqueness of mild solutions). Suppose that
(H1) and (H2) hold. For any η ∈ X0, there exists a unique mild solution Y
of (2) satisfying Y (0) = η, which is denoted by ψ(t, η).

Proof. Let H2
η([0, T ],Rd) := {ξ ∈ H2([0, T ],Rd) : ξ(0) = η}. Define the

corresponding Lyapunov-Perron operator Tη : H2
η([0, T ],Rd)→ H2

η([0, T ],Rd)
by

TηY (t) = Eα(tαA)η +
∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)b(τ, Y (τ)) dτ

+
∫ t

0
(t− τ)α−1Eα,α((t− τ)αA)σ(τ, Y (τ)) dWτ .

It is easy to see that operator Tη is well-defined. To complete the proof, it
is sufficient to show that Tη is contractive with respect to a suitable metric
on H2

η([0, T ],Rd). For this purpose, let H2([0, T ],Rd) be endowed with a
weighted norm ‖ · ‖γ, where γ > 0, defined as follows

‖ξ‖γ := sup
t∈[0,T ]

√
E(‖ξ(t)‖2)

E2α−1(γt2α−1)
for all ξ ∈ H2([0, T ],Rd). (7)

Obviously, two norms ‖·‖H2 and ‖·‖γ are equivalent. Thus, (H2([0, T ],Rd), ‖·
‖γ) is also a Banach space. Therefore, the set H2

η([0, T ],Rd) with the metric
induced by ‖ · ‖γ is complete. By compactness of [0, T ] and continuity of
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the function t 7→ Eα,α(tαA), there exists MT := maxt∈[0,T ] ‖Eα,α(tαA)‖ > 0.
Choose and fix a positive constant γ such that

2L2M2
T (T + 1)

Γ(2α− 1)

γ
< 1. (8)

Now, by definition of Tη, (H1), Ito’s isometry and MT we have

‖TηX(t)− TηY (t)‖2
ms ≤ 2L2M2

T

∥∥∥∥∫ t

0

(t− τ)α−1‖X(τ)− Y (τ)‖ dτ
∥∥∥∥2

ms

+2L2M2
T

∫ t

0

(t− τ)2α−2‖X(τ)− Y (τ)‖2
ms dτ.

Using Hölder inequality, we obtain that

‖TηX(t)− TηY (t)‖2
ms ≤ 2L2M2

T (T + 1)

∫ t

0

(t− τ)2α−2‖X(τ)− Y (τ)‖2
ms dτ.

Hence, by definition of ‖ · ‖γ we have

‖TηX(t)− TηY (t)‖2
ms

E2α−1(γt2α−1)

≤ 2L2M2
T (T + 1)

∫ t
0
(t− τ)2α−2E2α−1(γτ 2α−1) dτ

E2α−1(γt2α−1)
‖X − Y ‖2

γ.

Note that for all t > 0

γ

Γ (2α− 1)

∫ t

0

(t− τ)2α−2E2α−1

(
γτ 2α−1

)
dτ ≤ E2α−1

(
γt2α−1

)
,

see [7, Lemma 5]. Thus,

‖TηX − TηY ‖γ ≤

√
2L2M2

T (T + 1)
Γ(2α− 1)

γ
‖X − Y ‖γ,

which together with (8) implies that Tη is contractive on H2
η([0, T ],Rd). By

contraction mapping principle, Tη has a unique fixed point and the proof is
complete.
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3.2 Proof of Theorem 2.3

By virtue of Theorem 3.2, to prove Theorem 2.3 it is sufficient to show that

ϕ(t, η) = ψ(t, η) for all η ∈ X0, t ∈ [0, T ]. (9)

For a clearer presentation, we give here the motivation and the structure of
this proof:

Using the Ito’s representation theorem, for any function f ∈ XT there
exists a unique adapted process Ξ ∈ H2([0, T ],Rd) such that f = Ef +∫ T

0
Ξ(τ) dWτ , see e.g. [10, Theorem 4.3.3]. Then, to prove (9) it is sufficient

to show that the following statement〈
ϕ(t, η), C +

∫ T

0

Ξ(τ) dWτ

〉
=

〈
ψ(t, η), C +

∫ T

0

Ξ(τ) dWτ

〉
holds for all C ∈ Rd and Ξ ∈ H2([0, T ],Rd). To do this, we establish in

Proposition 3.5 an estimate on
∣∣∣〈ϕ(t, η)− ψ(t, η), C +

∫ T
0

Ξ(τ) dWτ

〉∣∣∣. Be-

fore going to state and prove this estimate, we need a preparatory result in
which we examine the components of the above term, i.e. we estimate∥∥∥∥E(ϕ(t, η)− ψ(t, η))(c+

∫ T

0

ξ(τ) dWτ )

∥∥∥∥ where c ∈ R, ξ ∈ H2([0, T ],R).

Define functions χξ,η,c, κξ,η,c, χ̂ξ,η,c, κ̂ξ,η,c : [0, T ]→ Rd by

χξ,η,c(t) := Eϕ(t, η)

(
c+

∫ T

0

ξ(τ) dWτ

)
, (10)

κξ,η,c(t) := Eb(t, ϕ(t, η))

(
c+

∫ T

0

ξ(τ) dWτ

)
, (11)

χ̂ξ,η,c(t) := Eψ(t, η)

(
c+

∫ T

0

ξ(τ) dWτ

)
, (12)

κ̂ξ,η,c(t) := Eb(t, ψ(t, η))

(
c+

∫ T

0

ξ(τ) dWτ

)
. (13)

Remark 3.3. In the proof of the existence and uniqueness of classical so-
lution and mild solution, we have ϕ(·, η), ψ(·, η) ∈ H2([0, T ],Rd). Thus,
χξ,η,c, κξ,η,c, χ̂ξ,η,c, κ̂ξ,η,c is measurable and bounded on [0, T ].
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Lemma 3.4. For all t ∈ [0, T ], the following statements hold:

χξ,η,c(t) = c Eα(tαA)Eη

+

∫ t

0

(t− τ)αEα,α((t− τ)αA)
(
κξ,η,c(t) + Eξ(τ)σ(τ, ϕ(τ, η))

)
dτ, (14)

χ̂ξ,η,c(τ) = c Eα(tαA)Eη

+

∫ t

0

(t− τ)αEα,α((t− τ)αA)
(
κ̂ξ,η,c(τ) + Eξ(τ)σ(τ, ψ(τ, η))

)
dτ. (15)

Proof. Since ϕ(t, η) is a solution of (2) it follows that

ϕ(t, η) = η +
1

Γ(α)

∫ t

0

(t− τ)α−1(Aϕ(τ, η) + b(τ, ϕ(τ, η))) dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1σ(τ, ϕ(τ, η)) dWτ .

Taking product of both sides of the preceding equality with c+
∫ T

0
ξ(τ) dWτ

and then taking the expectation of both sides give that

χξ,η,c(t) = cEη +
1

Γ(α)

∫ t

0

(t− τ)α−1(Aχξ,η,c(τ) + κξ,η,c(τ)) dτ

+
1

Γ(α)

〈∫ t

0

(t− τ)α−1σ(τ, ϕ(τ, η)) dWτ ,

∫ T

0

ξ(τ) dWτ

〉
.

Using Ito’s isometry, we obtain that

χξ,η,c(t) = cEη

+
1

Γ(α)

∫ t

0

(t− τ)α−1
(
Aχξ,η,c(τ) + κξ,η,c(τ) + Eξ(τ)σ(τ, ϕ(τ, η))

)
dτ.

In the other words, χξ,η,c(t) is the solution of the following fractional differ-
ential equation

CDα
0+x(t) = Ax(t) + κξ,η,c(t) + Eξ(t)σ(t, ϕ(t, η)), x(0) = c Eη.

Then, by virtue of Remark 3.3 and Theorem 2.1, the equality (14) is verified.
Next, by Definition 3.1 we have

ψ(t, η) = Eα(tαA)η +

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)b(τ, ψ(τ, η)) dτ

+

∫ t

0

(t− τ)α−1Eα,α((t− τ)αA)σ(τ, ψ(τ, η)) dWτ .
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Taking product of both sides of the above equality with c+
∫ T

0
ξ(τ) dWτ and

then taking the expectation of both sides give that

χ̂ξ,η,c(t) = c Eα(tαA)Eη +

∫ t

0

(t− τ)αEα,α((t− τ)αA)κ̂ξ,η,c(τ) dτ

+

〈∫ t

0

(t− τ)αEα,α((t− τ)αA)σ(τ, ψ(τ, η)) dWτ ,

∫ T

0

ξ(τ) dWτ

〉
.

Thus, by Ito’s isometry (15) is proved.

Proposition 3.5. Let MT := maxt∈[0,T ] ‖Eα,α(tαA)‖. Then, for any C ∈ Rd

and Ξ ∈ H2([0, T ],Rd) we have∣∣∣∣〈ϕ(t, η)− ψ(t, η), C +

∫ T

0

Ξ(τ) dWτ

〉∣∣∣∣2
≤ 2dM2

TL
2 T

2α−1

2α− 1

∥∥∥∥C +

∫ T

0

ξ(τ) dWτ

∥∥∥∥2

ms

∫ t

0

‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ

+2dM2
TL

2

∥∥∥∥C +

∫ T

0

ξ(τ) dWτ

∥∥∥∥2

ms

∫ t

0

(t− τ)2α−2‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ.

Proof. Let C = (c1, . . . , cd)
T and Ξ = (ξ1, . . . , ξd)

T, where ξi ∈ H2([0, T ],R),
ci ∈ R. Then, ∣∣∣∣〈ϕ(t, η)− ψ(t, η), C +

∫ T

0

Ξ(τ) dWτ

〉∣∣∣∣
≤

√√√√d
d∑
i=1

∣∣∣∣〈ϕi(t, η)− ψi(t, η), ci +

∫ T

0

ξi(τ) dWτ

〉∣∣∣∣2

≤

√√√√d

d∑
i=1

∥∥∥∥E(ϕ(t, η)− ψ(t, η))

(
ci +

∫ T

0

ξi(τ) dWτ

)∥∥∥∥2

=

√√√√d
d∑
i=1

‖χξi,η,ci(t)− χ̂ξi,η,ci(t)‖2. (16)

Next, we are estimating ‖χξi,η,ci(t) − χ̂ξi,η,ci(t)‖. In light of Lemma 3.4, we
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arrive at

‖χξi,η,ci(t)− χ̂ξi,η,ci(t)‖ ≤ MT

∫ t

0

(t− τ)α−1‖κξi,η,ci(τ)− κ̂ξi,η,ci(τ)‖ dτ

+MTL

∫ t

0

(t− τ)α−1‖ξi(τ)‖ms‖ϕ(τ, η)− ψ(τ, η)‖ms dτ.

Consequently, applying Hölder inequality yields that

‖χξi,η,ci(t)− χ̂ξi,η,ci(t)‖

≤ MT

(∫ t

0

(t− τ)2α−2 dτ

) 1
2
(∫ t

0

‖κξi,η,ci(τ)− κ̂ξi,η,ci(τ)‖2 dτ

) 1
2

+MTL

(∫ t

0

‖ξi(τ)‖2
ms dτ

) 1
2
(∫ t

0

(t− τ)2α−2‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ

) 1
2

≤ MT

√
T 2α−1

2α− 1

(∫ t

0

‖κξi,η,ci(τ)− κ̂ξi,η,ci(τ)‖2 dτ

) 1
2

+MTL

(∫ t

0

‖ξi(τ)‖2
ms dτ

) 1
2
(∫ t

0

(t− τ)2α−2‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ

) 1
2

.

On the other hand, by definition of κ and κ̂ we have for all τ ∈ [0, T ]

‖κξi,η,ci(τ)− κ̂ξi,η,ci(τ)‖2

=
d∑
j=1

∣∣∣∣〈bj(τ, ϕ(τ, η))− bj(τ, ψ(τ, η)),

(
ci +

∫ T

0

ξi(τ) dWτ

)〉∣∣∣∣2

≤ L2‖ϕ(τ, η)− ψ(τ, η)‖2
ms

∥∥∥∥ci +

∫ T

0

ξi(τ) dWτ

∥∥∥∥2

ms

,

where we use (H1) to obtain the preceding inequality. Thus,

‖χξi,η,ci − χ̂ξi,η,ci‖2

≤ 2M2
TL

2 T
2α−1

2α− 1

∥∥∥∥ci +

∫ T

0

ξi(τ) dWτ

∥∥∥∥2

ms

∫ t

0

‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ

+2M2
TL

2

∫ t

0

‖ξi(τ)‖2
ms dτ

∫ t

0

(t− τ)2α−2‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ,
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which together with (16) implies that∣∣∣∣〈ϕ(t, η)− ψ(t, η), C +

∫ T

0

Ξ(τ) dWτ

〉∣∣∣∣2
≤ 2dM2

TL
2 T

2α−1

2α− 1

∥∥∥∥C +

∫ T

0

ξ(τ) dWτ

∥∥∥∥2

ms

∫ t

0

‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ

+2dM2
TL

2

∫ t

0

‖ξ(τ)‖2
ms dτ

∫ t

0

(t− τ)2α−2‖ϕ(τ, η)− ψ(τ, η)‖2
ms dτ.

Furthermore, by Ito’s isometry∥∥∥∥C +

∫ T

0

ξ(τ) dWτ

∥∥∥∥2

ms

= ‖C‖2 +

∫ T

0

‖ξ(τ)‖2
ms dτ ≥

∫ t

0

‖ξ(τ)‖2
ms dτ,

which completes the proof.

Proof of Theorem 2.3. Let T ∗ := inf{t ∈ [0, T ] : ϕ(t, η) 6= ψ(t, η)}. Then, it
is sufficient to show that T ∗ = T . Suppose the contrary, i.e. T ∗ < T . Choose
and fix an arbitrary δ > 0 satisfing the following inequality

2dM2
TL

2 T
2α−1

2α− 1
δ + 2dM2

TL
2 δ

2α−1

2α− 1
< 1. (17)

To lead a contradiction, we show that ϕ(t, η) = ψ(t, η) for all t ∈ [T ∗, T ∗+δ].
For this purpose, choose and fix an arbitrary t ∈ [T ∗, T ∗ + δ]. Using Ito’s
representation theorem, there exists a unique Ct ∈ Rd and ξ∗t ∈ H2([0, t],Rd)
such that ϕ(t, η) − ψ(t, η) = Ct +

∫ t
0
ξ∗t (τ) dWτ . We extend ξt to the whole

interval [0,T] by letting ξ∗t (τ) = 0 for all τ ∈ (t, T ]. For such a ξ∗t , we have∥∥∥∥Ct +

∫ T

0

ξ∗t (τ) dWτ

∥∥∥∥2

ms

= ‖ϕ(t, η)− ψ(t, η)‖2
ms.

Thus, using Proposition 3.5 for C = Ct,Ξ = ξ∗t we obtain that

‖ϕ(t, η)− ψ(t, η)‖2
ms ≤ 2dM2

TL
2 T

2α−1

2α− 1

∫ t

T ∗
‖ϕ(τ, η)− ψ(τ, η)‖2

ms dτ

+2dM2
TL

2

∫ t

T ∗
(t− τ)2α−2‖ϕ(τ, η)− ψ(τ, η)‖2

ms dτ.
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Consequently,

sup
t∈[T ∗,T ∗+δ]

‖ϕ(t, η)− ψ(t, η)‖2
ms

≤ 2dM2
TL

2 T
2α−1

2α− 1
δ sup
t∈[T ∗,T ∗+δ]

‖ϕ(t, η)− ψ(t, η)‖2
ms

+2dM2
TL

2 δ
2α−1

2α− 1
sup

t∈[T ∗,T ∗+δ]

‖ϕ(t, η)− ψ(t, η)‖2
ms.

By a choice of δ as in (17), we have supt∈[T ∗,T ∗+δ] ‖ϕ(t, η) − ψ(t, η)‖ms = 0.
This leads to a contradiction and the proof is complete.

4 Conclusion

In this paper, a variation of constant formula for stochastic fractional differ-
ential equations of order α ∈ (1

2
, 1) is established. This formula is a natural

extension of the one for fractional differential equations and stochastic differ-
ential equations. In the forthcoming paper, we apply this formula to achieve
a linearized stability theory for stochastic fractional differential equations.
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