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Abstract In this paper, we consider the problem of designing reduced-order
linear functional interval observers for nonlinear uncertain time-delay systems
with external unknown disturbances. Given bounds on the uncertainties, we
design two reduced-order linear functional state observers in order to compute
two estimates, an upper one and a lower one, which bound the unmeasured
linear functions of state variables. Conditions for the existence of a pair of
reduced-order linear functional observers are presented, and they are trans-
lated into a linear programming (LP) problem in which the observers’ matrices
can be effectively computed. Finally, the effectiveness of the proposed design
method is supported by four examples and simulation results.

Keywords Reduced-order observers, interval observers, uncertain models,
biological systems

1 Introduction

The control of many practical systems such as life sciences, physics and tech-
nology, economics, chemistry and biology has recently attracted much interest
(see, for example, [6,16,25,26,39,47,49] and the references therein). However,
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the lack of information of state variables of the systems has limited the ap-
plication of control theory to these systems. In this case, the estimation of
actual states and output feedback control law are very necessary. It is well-
known that a large amount of additional information can be obtained through
available measurement with the help of state observers. These observers are
designed to reconstruct the unmeasured states from the measured ones un-
der a priori knowledge of the method. During this last decades, the problem
of designing state observers for dynamical systems has aroused considerable
attention in the literature. In particular, state observers have important ap-
plications in realisation of state-feedback control, system supervision, fault
diagnosis of dynamic processes, and general control and diagnosis issues from
available information (see, for example, [7,21,27,45,46,48]). There are vari-
ous state observer design methods and observer structures available in the
literature for linear systems (see, for example, [9,19,20,43] and the references
therein) and for nonlinear systems (see, for example, [8,15,18,22,23,28,41,50],
and the references therein).

In the literature, when dealing with the problem of state estimation for
dynamical systems consisting of ‘uncertain’ facts such as uncertain biologi-
cal dynamical system [15], the problem of designing interval observers which
derive bounds for the solutions of a differential system at any time instant
is much attracted (see, for example, [2,13,24,30,33,42], and the references
therein). In particular, in [13], the design of interval observers relies on the
positivity notion was reported without mentioning time-delays on the system.
In [30], the authors proved that for detectable linear systems there always
exists an interval observer which can be constructed via an adequate time-
varying change of variable. In [42], the authors provided a different approach
for stable uncertain linear positive systems. In [33], based on the decompo-
sition of the nonlinear part of the system as a difference of two monotone
functions, the design of interval observers for nonlinear uncertain system was
reported. In [24] the problem of positive state-bounding observers for positive
linear continuous-time systems with both interval uncertainties and time delay
was considered, while the authors of [2] provided conditions for the existence
of upper and lower estimates for the instantaneous states of the systems and
established the asymptotic convergence of the interval error. It was found
that the interval observers had many practical applications, such as for con-
trol design [12], for fault detection and isolation (see, for example, [4,5,38]),
state estimation in biological systems (see, for example, [15,32,36]), interval
observers in automotive domain (see, for example, [11,14]), namely, the prob-
lem of air-to-fuel ratio interval estimation and control is consided in [11] and
a car positioning problem is solved in [14].

Due to the fact that the interval observers have an enlarged dimension
with respect to the system dimension (two times bigger than the system)
since the upper and lower estimate of the state interval are generated by
an observer (see, for example, [31]), the problem of reduction of an interval
observer dimension of time-delay systems has been addressed (see, [10]). On
the other hand, in practice, many control processes require only the availability
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of some linear functions of the system states for the purpose of monitoring and
stabilizing independantly of disturbances, failures and attacks. Therefore linear
functional observers which estimate linear functions of the state vector without
estimating all of the individual states have attracted alot of research attentions
(see, for example, [9,43,44]). Although there have been abundant outstanding
results on linear functional observers for time-delay systems, to the best of our
knowledge, little attention has been paid to the problem of designing interval
observers for linear functions of state variables, which motivates the present
study.

In this paper, we address a new problem of designing interval observers for
linear functions of the state vector of nonlinear uncertain time-delay systems
with external unknown disturbances. The main contributions of this study are
highlighted in the following: (1) We first introduce a pair of reduced-order
linear functional observers which constructs interval observers for linear func-
tions of the state vector of the considered system; (2) we then derive new
conditions for the existence of such reduced-order linear functional observers;
(3) by using these conditions and some auxiliary lemmas, we then propose a
computational approach based on linear programming (LP) for the determi-
nation of the unknown observer matrices; (4) the effectiveness of the proposed
design method is supported by four examples and simulation results.

This paper is organized as follows. In section 2, we provide the problem
statement and preliminaries. In section 3, we present the main results and
some remarks. In section 4, we provide four examples to demonstrate the
effectiveness of our proposed design method. Finally, a conclusion is drawn in
Section 5.

Notation: In denotes the n × n identity matrix, 0m,n denotes the m × n

zero matrix. Rn
+ denotes the nonnegative orthant of the n-dimensional real

space R
n. For a real matrix M , MT denotes the transpose, M ≥ 0 is called a

nonnegative matrix if all of its components are nonnegative (i.e. mij ≥ 0 for

all i, j). For vectors x =
[
x1 x2 . . . xn

]T
∈ R

n, y =
[
y1 y2 . . . yn

]T
∈ R

n,

|x| =
[
|x1| |x2| . . . |xn|

]T
, ||x|| is the Euclidean norm of vector x. x < y

(x ≤ y) means that xi < yi (xi ≤ yi), ∀i = 1, 2, . . . , n. 1n denotes the vector

in R
n with all entries equal one, i.e.,

(
1 1 . . . 1

)

︸ ︷︷ ︸

n

T
. We denote by diag(λ) the

diagonal matrix whose entries are formed by the components of the vector λ.
Note that λ=diag(λ)1n. Bs denotes the set of all vectors v ∈ R

s with the
property ||v|| < ∞. Cs

τ = C([−τ, 0],Rs) denotes the set of continuous maps
from [−τ, 0] into Rs; Cs

τ+ = {ϕ ∈ Cs
τ : ϕ(ζ) ∈ R

s
+, ζ ∈ ([−τ, 0]}. Given a matrix

M ∈ R
m×n, define M+ = max(0,M),M− =M+−M and |M | =M++M−.
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2 Problem statement and preliminaries

Consider the following nonlinear system with time-delays

ẋ(t) = Ax(t) +

q
∑

i=1

Aix(t− τi) +Bu(t) + f(t, ψ(t)) + d(t), t ≥ 0, (1)

x(θ) = φ(θ) ∈ R
n, ∀θ ∈ [−τmax, 0], τmax = max

1≤i≤q
τi, (2)

y(t) = Cx(t) +

q
∑

i=1

Cix(t− ρi), ∀t ≥ ρmax, ρmax = max
1≤i≤q

ρi, (3)

ψ(t) = y(t) + ω(t), (4)

where x(t) ∈ R
n is the plan state vector, u(t) ∈ R

m is the control input vector,
y(t) ∈ R

p is the plan output with y(t) being defined as (C+
∑q

i=1 Ci)x(t), ∀t ∈
[−τmax+ ρmax, ρmax], ψ(t) is the measurement for feedback control, ω(t) ∈ R

p

is the unknown disturbance in the output satisfying ||ω|| ≤ Ω where Ω is
constant and known, φ(θ) is a continuous initial function, matrices A, Ai,
B, C, Ci (i = 1, 2, . . . , q) are constant and of appropriate dimensions. The
time delays τi ≥ 0, ρi ≥ 0, i = 1, 2, . . . , q, are assumed to be known con-
stant. The nonlinearity f(t, ψ(t)) ∈ R+ × R

p is assumed to be measured
with respect to t and Lipschitz continuous with respect to ψ(t), not well
known, functionally bounded, i.e. there exist known maps f−(t, ψ(t)) and
f+(t, ψ(t)) (bounded below by f−(t, ψ(t)) and above by f+(t, ψ(t))) such that
f−(t, ψ(t)) ≤ f(t, ψ(t)) ≤ f+(t, ψ(t)) for all (t, ·) ∈ R+ × R

p. d(t) ∈ R
n is the

external disturbance satisfying d−(t) ≤ d(t) ≤ d+(t) for all t ≥ 0, where
d−(t) ∈ R

n and d+(t) ∈ R
n are two known bounds.

The following definitions and lemmas will be used in this paper.

Definition 1 The nonlinear time-delay system of the form

ẋ(t) = Ax(t) +

q
∑

i=1

Aix(t− τi) + g(u(t), ψ(t), d(t)), t ≥ 0, (5)

x(θ) = φ(θ), ∀θ ∈ [−τmax, 0], (6)

y(t) = Cx(t) +

q
∑

i=1

Cix(t− ρi), ∀t ≥ ρmax, ρmax = max
1≤i≤q

ρi, (7)

ψ(t) = y(t) + ω(t) (8)

is said to be positive if, for any initial condition φ(θ) ∈ R
n
+, ∀θ ∈ [−τ, 0], τ =

max{τmax, ρmax}, any input u(t) ∈ R
m
+ , ∀t ≥ 0, y(t) ∈ R

p and d(t) ∈ R
n, the

corresponding trajectory x(t) ∈ R
n
+ for all t ≥ 0.

Definition 2 [29] A square real matrix M is called a Metzler matrix if its
off-diagonal elements are nonnegative, i.e. mij ≥ 0, i 6= j.
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Lemma 1 [1,13] For a given Metzler matrix A, the following conditions are
equivalent.

(i) The matrix A is Hurwitz stable.
(ii) The matrix A is nonsingular and A−1 < 0.
(iii) There exists a vector λ > 0 such that Aλ < 0.

Let φ(θ) ∈ R
n
+, ∀θ ∈ [−τ, 0] and u(t) ∈ R

m
+ , ∀t ≥ 0. Then from [17] and

[44], we obtain the following condition which ensures the positivity of system
(5)-(8).

Lemma 2 System (5)-(8) is positive if and only if A is a Metzler matrix, Ai

(i = 1, 2, . . . , q) are nonnegative matrices and g(u(t), ψ(t), d(t)) ≥ 0 for all
t ≥ 0.

3 Main results

Let z(t) = Fx(t) ∈ R
r, 1 ≤ r ≤ n, be defined as a linear function of the state

vector, where F ≥ 0 is any given r × n matrix. Our objective in this paper
is to design two reduced-order linear functional observers in order to compute
two estimates, an upper one ẑ+(t) and a lower one ẑ−(t), which bound the
unmeasured linear function z(t) = Fx(t), i.e. ẑ−(t) ≤ z(t) ≤ ẑ+(t) for all
t ≥ 0 and the estimated error e(t) = ẑ+(t)− ẑ−(t) is bounded. To achieve the
objective, we consider the following reduced-order linear functional observers:

˙̂z+(t) = Nẑ+(t) +

q
∑

i=1

Niẑ
+(t− τi)+Jψ(t) + |J |1pΩ + Ff+(t, ψ(t))

+FBu(t) + Fd+(t), t ≥ 0, (9)

ẑ+(θ) = φ+(θ) ∈ R
r, ∀θ ∈ [−τ, 0], (10)

˙̂z−(t) = Nẑ−(t) +

q
∑

i=1

Niẑ
−(t− τi)+Jψ(t)− |J |1pΩ + Ff−(t, ψ(t))

+FBu(t) + Fd−(t), t ≥ 0, (11)

ẑ−(θ) = φ−(θ) ∈ R
r, ∀θ ∈ [−τ, 0], (12)

where ẑ+(t) ∈ R
r, ẑ−(t) ∈ R

r, φ+(θ) and φ−(θ) are continuous initial func-
tions. Matrices N ∈ R

r×r, Ni ∈ R
r×r and J ∈ R

r×p are unknown observer
parameters.

From now on we assume that z(t) = Fx(t) ∈ Br, 1 ≤ r ≤ n, where x(t) is
the state of the system (1)-(3).

Definition 3 For system (1)-(3), let f−(t, ψ(t)) ≤ f(t, ψ(t)) ≤ f+(t, ψ(t))
for all (t, ·) ∈ R+ × R

p and d−(t) ≤ d(t) ≤ d+(t) for all t ≥ 0 for some
known f−(t, ψ(t)) ∈ R

n, f+(t, ψ(t)) ∈ R
n, d−(t) ∈ R

n and d+(t) ∈ R
n. Then

the system (9) and (11) are called a reduced-order linear functional interval



6 D.C. Huong, M.V. Thuan

observer for (1)-(4) if for any initial conditions, φ+(θ), φ−(θ) ∈ R
r, θ ∈ [−τ, 0],

the solutions of equations (1), (9) and (11) exist, ẑ−(t), ẑ+(t) ∈ Br and

ẑ−(t) ≤ z(t) ≤ ẑ+(t) (13)

for all t ≥ 0 provided that the relation φ−(θ) ≤ Fφ(θ) ≤ φ+(θ) holds.

Let us next define the upper error e+(t), the lower error e−(t) and the
total error e(t) as

e+(t) = ẑ+(t)− z(t), t ≥ 0,

e+(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0],

e−(t) = z(t)− ẑ−(t), t ≥ 0,

e−(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0],

e(t) = e+(t) + e−(t) = ẑ+(t)− ẑ−(t), t ≥ 0,

e(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0],

The following theorem provides conditions which guarantee the existence
of a reduced-order linear functional interval observer for (1)-(4).

Theorem 1 Assume that there exist a vector λ ∈ R
r
+, a Metzler matrix N ∈

R
r×r, nonnegative matrices Ni ∈ R

r×r
+ , two fixed positive vectors b1 and b2

satisfying the following:

(N +

q
∑

i=1

Ni)λ < 0, (14)

NF − FA+JC = 0, (15)

NiF − FAi = 0, i = 1, 2, . . . , q, (16)

JCi = 0, i = 1, 2, . . . , q, (17)

F (f+(t, ψ(t)) − f−(t, ψ(t))) ≤ b1, F (d
+(t)− d−(t)) ≤ b2. (18)

Then,

ẑ−(t) ≤ z(t) ≤ ẑ+(t), ∀t ≥ 0 (19)

and

e(t) ≤ −(N +

q
∑

i=1

Ni)
−1(b1 + b2+2|J |1pΩ), ∀t ≥ 0. (20)

Moreover, −(N +
∑q

i=1Ni)
−1(b1 + b2+2|J |1pΩ) is the smallest bound of the

estimated error.
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Proof Regarding (1), (9) and (11), the derivatives of e+(t) and e−(t) are given
by

ė+(t) = ˙̂z+(t)− F ẋ(t),

= Ne+(t) +

q
∑

i=1

Nie
+(t− τi) + (NF − FA+JC)x(t)

+

q
∑

i=1

JCix(t− ρi) +

q
∑

i=1

(NiF − FAi)x(t − τi)

+F (f+(t, ψ(t)) − f(t, ψ(t))) + F (d+(t)− d(t))

+Jω(t) + |J |1pΩ, t ≥ 0, (21)

e+(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0], (22)

and

ė−(t) = F ẋ(t)− ˙̂z−(t),

= Ne−(t) +

q
∑

i=1

Nie
−(t− τi) + (FA−NF−JC)x(t)

−

q
∑

i=1

JCix(t − ρi) +

q
∑

i=1

(FAi −NiF )x(t− τi)

+F (f(t, ψ(t))− f−(t, ψ(t))) + F (d(t)− d−(t))

−Jω(t) + |J |1pΩ, t ≥ 0, (23)

e−(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0], (24)

It is clear from (21) and (23) that if conditions (15)-(16) of Theorem 1 are
satisfied, then we obtain the following:

ė+(t) = Ne+(t) +

q
∑

i=1

Nie
+(t− τi) + F (f+(t, ψ(t))− f(t, ψ(t)))

+F (d+(t)− d(t))+Jω(t) + |J |1pΩ, t ≥ 0, (25)

e+(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0], (26)

ė−(t) = Ne−(t) +

q
∑

i=1

Nie
−(t− τi) + F (f(t, ψ(t))− f−(t, ψ(t)))

+F (d(t)− d−(t))−Jω(t) + |J |1pΩ, t ≥ 0, (27)

e−(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0], (28)

ė(t) = Ne(t) +

q
∑

i=1

Nie(t− τi) + F (f+(t, ψ(t))− f−(t, ψ(t)))

+F (d+(t)− d−(t))+2|J |1pΩ, t ≥ 0, (29)

e(θ) = 0 ∈ R
r
+, ∀θ ∈ [−τ, 0]. (30)
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Since N is Metzler, Ni ≥ 0, F ≥ 0, d−(t) ≤ d(t) ≤ d+(t) for all t ≥ 0,
f−(t, ψ(t)) ≤ f(t, ψ(t)) ≤ f+(t, ψ(t)) for all (t, ·) ∈ R+ × R

p, ||ω|| ≤ Ω and
|J | = J+ + J−, J+ = max(0, J), J− = J+ − J , systems (25)-(26), (27)-
(28) and (29)-(30) are positive. Hence, we obtain (19) and e(t) ≥ 0 for all
t ≥ 0. Let us next prove that the errors e+(t) and e−(t) are bounded. We
will present the proof for e+(t) (the proof for e−(t) is the same). Denote
∆̄(t) = F (f+(t, ψ(t))−f(t, ψ(t)))+F (d+(t)−d(t))+Jω(t) + |J |1pΩ. By using
assumption (18) and ||ω|| ≤ Ω, we have ∆̄(t) ∈ Br. Since the matrix N is
Metzler and the matrices Ni, (i = 1, 2, . . . , q) are non-negative, it follows from
Lemma 3 in [10] that there exist some p1, p2 ∈ R

r
+ (p1 > 0 and p2 > 0) such

that

pT1 (N +

q
∑

i=1

Ni) = −pT2 .

Let us consider for equation (25) the Lyapunov functional V : Cr
τ+ → R+

defined as

V (ϕ) = pT1 ϕ(0) +

q
∑

i=1

∫ 0

−τi

pT1Niϕ(ζ)dζ.

Clearly, for any ϕ ∈ Cr
τ+ the functional V is positive definite and radially

unbounded, its derivative for e+(t) takes the form

V̇ = pT1

[

(N +

q
∑

i=1

Ni)e
+(t) + ∆̄(t)

]

≤ −pT2 e
+(t) + pT1 ∆̄(t).

Therefore, for ∆̄(t) = 0, the system is globally asymptotically stable, and since
∆̄(t) ∈ Br, we have e+(t) ∈ Br (for further details on the proof, the reader
can refer to [37]). The boundedness of ẑ−(t), ẑ+(t) is implied by boundedness
of z(t), e+(t) and e−(t).

Now, we prove (20). Let us first express N = N + N0, where N is Met-
zler matrix and N0 is nonnegative matrix. We now denote ϕ(t, e(t), e(t −
τ1), . . . , e(t − τq), ν(t)) =

∑q

i=0Nie(t − τi) + ν(t), where τ0 = 0 and ν(t) =
F (f+(t, ψ(t))− f−(t, ψ(t)))+F (d+(t)− d−(t))+2|J |1pΩ. Then equation (29)
can be rewritten as follows

ė(t) = N e(t) + ϕ(t, e(t), e(t− τ1), . . . , e(t− τq), ν(t)). (31)

It follows from (18) that 0 ≤ ν(t) ≤ ν̄, where ν̄ = b1 + b2+2|J |1pΩ. Since N
is Metzler matrix, Ni ≥ 0, i = 0, 1, . . . , q and N +

∑q

i=0Ni = N +
∑q

i=1Ni,
from (14) and Lemma 1, we see that matrix N +

∑q

i=0Ni is invertible and
(N +

∑q

i=0Ni)
−1 < 0. Hence, from Lemma 3 in the work of [35], we have

µ(N +
∑q

i=0Ni) < 0, where µ(N +
∑q

i=0Ni) stands for the spectral abscissa
of matrix N +

∑q

i=0Ni. Denote

ℓ = (N +

q
∑

i=1

Ni)
−1(b1 + b2+2|J |1pΩ). (32)
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It is easy to see that

ℓ = (N +

q
∑

i=0

Ni)
−1ν̄. (33)

Therefore, by using Theorem 1 in the work of [35], we have that the box
B(0, ℓ) = {x ∈ R

r : |x| ≤ ℓ}, where ℓ defined as in (32) is the smallest box
which bounds reachable sets of system (29)-(30), that is, ℓ is the smallest
bound of estimated error e(t). The proof is complete.

Remark 1 It is worth noting that for each bound of the uncertainty in the
system, the method [15] only gives a bound of the estimated error. In this
paper, our method (Theorem 1) gives the smallest bound of the estimated
error with respect to each bound of the uncertainty in the system.

Remark 2 From Theorem 1, the design of a pair of reduced-order linear func-
tional observers now rest with determining unknown observer parameters
N ∈ R

r×r, Ni ∈ R
r×r such that conditions (14)-(16) of Theorem 1 hold.

For this, we represent equations (15)-(17) into the following form

χX = Y, (34)

where

χ =
[
N N1 N2 . . . Nq J

]
, X =

[
X1 X2

X3 X4

]

∈ R
[(q+1)r+p]×(2q+1)n, (35)

X1 = block-diag
(
F, F, . . . , F

)
∈ R

(q+1)r×(q+1)n, X2 = 0(q+1)r,qn, (36)

X3 =
[
C 0 . . . 0

]
∈ R

p×(q+1)n, X4 =
[
C1 C2 . . . Cq

]
∈ R

p×qn (37)

Y =
[
FA FA1 FA2 . . . FAq 0 . . . 0

]
∈ R

r×(2q+1)n. (38)

Since X and Y are two known constant matrices, a solution for χ always
exists if and only if [3], [40]

rank

[
X

Y

]

= rank(X). (39)

Under condition (39), a general solution for χ is given by

χ = Y X+ + Z
(
I(q+1)r+p −XX+

)
, (40)

where X+ ∈ R
(2q+1)n×[(q+1)r+p] is the Moor-Penrose-inverse of X and Z ∈

R
r×[(q+1)r+p] is an arbitrary matrix to be determined. Moreover, matrices N ,

Ni (i = 1, 2, . . . , q) and J can now be extracted from (40) and are expressed
as

N = ΦeN + ZΨeN , (41)

Ni = ΦeNi
+ ZΨeNi

, (42)

J = ΦeJ + ZΨeJ , (43)
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where

Φ = Y X+, Ψ = I(q+1)r+p −XX+ (44)

and eN , eNi
∈ R

[(q+1)r+p]×r, eJ ∈ R
[(q+1)r+p]×p are the following

eN =














Ir
0
0
...
0
0
0














, eN1
=














0
Ir
0
0
0
...
0














, eNi
=














0
0

(i+1)−th
︷︸︸︷

Ir
0
...
0














, i = 2, . . . , q − 2,

eNq−1
=


















0
0
0
...
0

q−th
︷︸︸︷

Ir
0
0


















, eNq
=


















0
0
0
...
0
0

(q+1)−th
︷︸︸︷

Ir
0


















, eJ =
















0
0
0
...
0
0
0
Ip
















. (45)

Now, in order to implement reduced-order linear functional observers (9)-
(10) and (11)-(12), we will gather conditions (14)-(16) to formulate an LP-
based problem for checking the design parameters. By using (41)-(42), con-
dition (14) can be represented as

(eTN +

q
∑

i=1

eTNi
)ΦTλ+ (eTN +

q
∑

i=1

eTNi
)ΨTΓ1r < 0. (46)

Based the above discussion we obtain the following theorem which provides
a computational approach which is based on LP for the determination of the
parameters N , Ni (i = 1, 2, . . . , q) of linear functional observers.

Theorem 2 If the following LP problem with the variables λ ∈ R
r and Γ ∈

R
[(q+1)r+p]×r is feasible:

{
λ > 0,
(eTN +

∑q

i=1 e
T
Ni
)ΦTλ+ (eTN +

∑q

i=1 e
T
Ni
)ΨTΓ1r < 0,

(47)

then the observer gains N , Ni (i = 1, 2, . . . , q) are obtained as in (41)-(42)
where Z = (diag(λ))−1Γ T .
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We now propose an effective algorithm to obtain the observer parameters
for the pair of reduced-order linear functional observers (9)-(10) and (11)-(12).

Algorithm 1

Step 1: For given matrices A, Ai (i = 1, 2, . . . , q), obtain matrices X and Y

from (35)-(38). Check the existence condition (39).
Step 2: Compute the matrices Φ and Ψ from (44).
Step 3: Solve the LP problem (47) with respect to Γ and λ.
Step 4: Compute the matrix Z = (diag(λ))−1Γ T where (λ, Γ ) is a solution
obtained in Step 3.
Step 5: Substitute Z into (41)-(43) to obtain observer gains N , Ni (i =
1, 2, . . . , q) and J .

Remark 3 For the case where Ai = 0, Ci = 0, i = 1, 2, . . . , q, i.e. system (1)-
(4) has no time delay, the following result is an extension of the work [15] to
the design of reduced-order linear functional interval observers. Note that in
[15], only full-order Luenberger-type interval observers for nonlinear systems
without inputs, sensor noise as well as external disturbance were considered.
Now, we have the following reduced-order linear functional interval observers
[ẑ−(t), ẑ+(t)]:

˙̂z+(t) = Nẑ+(t) + Ff+(t, ψ(t)) + FBu(t) + Fd+(t)

+Jψ(t) + |J |1pΩ, t ≥ 0, (48)

ẑ+(0) = ẑ+0 ∈ R
r, (49)

˙̂z−(t) = Nẑ−(t) + Ff−(t, ψ(t)) + FBu(t) + Fd−(t)

+Jψ(t)− |J |1pΩ, t ≥ 0, (50)

ẑ−(0) = ẑ−0 ∈ R
r, (51)

where ẑ+(t) ∈ R
r, ẑ−(t) ∈ R

r, matrices N ∈ R
r×r and J ∈ R

r×p are unknown
observer parameters. We can obtain conditions to ensure that [ẑ−(t), ẑ+(t)] is
an interval observer of the linear function z(t) = Fx(t). The conditions are as
given below







N is Metzler and Hurwitz,
NF − FA+JC = 0,
F (f+(t, ψ(t))− f−(t, ψ(t))) ≤ b1, F (d

+(t)− d−(t)) ≤ b2.

(52)

Hence, N and J can be determined if the following LP problem with the
variables λ ∈ R

r and Γ ∈ R
r×r is feasible:

{
λ > 0,
(eTN )ΦTλ+ (eTN )ΨTΓ1r < 0.

(53)
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4 Examples

4.1 Example 1 (A numerical example).

Consider a fifth-order time-delay system of the form (1)-(4), where

A =









−4 2 1 3 2
1 −6 1 4 0
0 0 −9 0 0
0 0 1 −4 0
2 0 0 1 −7









, A1 =









0.1 0.1 0.2 0.4 0.2
0.3 0.2 0.1 0.1 0.1
0 0 0.5 0 0
0 0 0.2 0 0
0 0.2 0.1 0.3 0.1









,

A2 =









0.1 0.2 0.1 0.4 0.1
0 0.2 0.1 0.2 0.3
0 0 0.3 0 0
0 0 0 0.2 0
0.1 0.2 0.4 0.3 0.5









, C =

[
1 0 1 0 0
0 1 0 0 0

]

,

C1 =

[
1 0 1 0 0
0 0 0 0 0

]

, C2 =

[
0 0 0 0 0
0 0 0 1 0

]

,

B =









1
2
3
4
5









, d(t) =









d1(t)
d2(t)
d3(t)
d4(t)
d5(t)









=









1
1+t

+ 0.1
2

1+t
+ 0.2

1
t+1 + 1 + | sin(0.1t)|

| sin(0.05t)|+ 1
1

t+1 + 0.3









,

f(t, ψ(t)) =










0
0

a1(t)(y1(t)+ω1(t))
b1+(y2(t)+ω2(t))
a2(t)(y2(t)+ω2(t))
b2+(y1(t)+ω1(t))

−c(t)(y2(t) + ω2(t))










, F =

[
0 0 1 0 0
0 0 0 1 0

]

.

Assume that known bounds Ff−(t, ψ(t)), Ff+(t, ψ(t)), Fd−(t), Fd+(t) are
as

Ff+(t, ψ(t)) =





a
+

1
(t)(y1(t)+ω1(t))

b1+(y2(t)+ω2(t))
a
+

2
(t)(y2(t)+ω2(t))

b2+(y1(t)+ω1(t))



 , Ff−(t, ψ(t)) =





a
−

1
(t)(y1(t)+ω1(t))

b1+(y2(t)+ω2(t))
a
−

2
(t)(y2(t)+ω2(t))

b2+(y1(t)+ω1(t))



 ,

where a1(t) = | sin(0.1t)|+ 1, a2(t) = | sin(0.1t)|+ 0.1, c(t) = | sin(0.05t)| and
a−1 (t) ≤ a1(t) ≤ a+1 (t), a

−
2 (t) ≤ a2(t) ≤ a+2 (t),

Fd−(t) =
[

1
t+1 + 0.9 + | sin(0.1t)| | sin(0.5t)|+ 0.6

]T
,

Fd+(t) =
[

1
t+1 + 1.1 + | sin(0.1t)| | sin(0.5t)|+ 1.5

]T
, ∀t ≥ 0.

A random measurement disturbance is chosen with ||ω|| ≤ 1
2= Ω. We aim to

use the Algorithm 1 to compute two estimates, an upper one and a lower
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one, which bound z1(t) = x3(t) and z2(t) = x4(t). According to Step 1 of
Algorithm 1, we obtain matrices X and Y from equations (35)-(38). Since

rank

[
X

Y

]

= 8 = rank
[
X

]
,

condition (39) is satisfied. By setting a constraint
[
0.1
0.2

]

≤ λ ≤

[
2
3

]

,

the LP problem (47) is feasible with

λ =

[
1.9649
2.3513

]

and Γ T =

[
−4.1888 0 0 0 0 0 −4.1888 0
−4.1888 0 0 0 0 0 −4.1888 0

]

. (54)

Now, taking (54) into account for Step 4 and Step 5 of Algorithm 1, the
observer gains are obtained as

N =

[
−9 0
1 −4

]

, N1 =

[
0.5 0
0.2 0

]

, N2 =

[
0.3 0
0 0.2

]

,

J = 02,2, b1 =

[
1
1

]

, b2 =

[
0.2
0.9

]

.

With N , N1, N2, b1 and b2 have been obtained, it is not hard to see that
the conditions of Theorem 1 hold. Hence, we obtain a pair of second-order

linear functional observers to reconstruct z(t) =

[
z1(t)
z2(t)

]

=

[
x3(t)
x4(t)

]

with

ℓ = −(N +N1 +N2)−1(b1 + b2+2|J |12Ω) =

[
0.1463
0.5462

]

is the smallest bound

of the estimated error e(t) = ẑ+(t)− ẑ−(t). For simulation, let us consider the
input u(t) = e0.1t, 0 ≤ t ≤ 30, τ1 = 0.7s, τ2 = 0.8s, ρ1 = 0.5s, ρ2 = 0.2s
and the initial conditions are x1(θ) = 1, x2(θ) = 2, x3(θ) = 3, x4(θ) = 4,
x5(θ) = 5, ẑ+1 (θ) = 4, ẑ−1 (θ) = −2, ẑ+2 (θ) = 5, ẑ−2 (θ) = −3 for θ ∈ [−0.8, 0].
Figure 1 shows the responses of z1(t) = x3(t), ẑ

−
1 (t) and ẑ

+
1 (t), while Figure 2

shows the responses of z2(t) = x4(t), ẑ
−
2 (t) and ẑ+2 (t).

4.2 Example 2 (A practical example).

Consider the following population structured into three stages:






ẋ1(t) = −α1x1(t)−m1x1(t) + r(t, x3(t)) + d1(t),
ẋ2(t) = α1x1(t− τ)− α2x2(t)−m2x2(t) + u(t) + d2(t),
ẋ3(t) = α2x2(t− τ)−m3x3(t)− c(t)x3(t) + 2u(t) + d3(t),
y(t) = x3(t),
ψ(t) = y(t) + ω(t)

(55)

with the initial conditions x1(θ) = x2(θ) = x3(θ) = 0 for all θ ∈ [−τ, 0]. In
the above model x1(t), x2(t), x3(t) are larvae, juveniles, adults, respectively.
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−

2
(t) and ẑ
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The positive coefficients αi and mi represent the growth and mortality rates,
respectively. The term c(t) represents a harvesting effort on the adult popu-
lation. In model (55), we assume that only measurement available observation
with a noise concerns the adults stock, i.e. y(t) = x3(t), ψ(t) = y(t) + ω(t)
where ω(t) is the unknown disturbance in the output and the births in class
x1(t) are generated only by the adults class x3(t) with a reproduction law of
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Beverton-Holt type [34]:

r(t, x3(t)) =
a(t)x3(t)

b+ x3(t)
, a(t) > 0, b > 0. (56)

The parameter τ > 0 exists due to the delay in the increment of larvae and

juveniles. The vector d(t) =
[
d1(t) d2(t) d3(t)

]T
is the external disturbance

and u(t) is the control input vector, y(t) is the plan output vector. Note that,
when τ = 0, d(t) ≡ 0, u(t) ≡ 0 and ω(t) ≡ 0, the model (55) is reduced
to the one considered in [15]. Denoting β1 = α1 + m1, β2 = α2 + m2 and
β3 = m3. Then (55) can be expressed into the form (1)-(4), where q = 1,

τ1 = τ , d(t) =





d1(t)
d2(t)
d3(t)



, A =





−β1 0 0
0 −β2 0
0 0 −β3



, A1 =





0 0 0
α1 0 0
0 α2 0



, B =





0
1
2



,

f(t, ψ(t)) =





a(t)(y(t)+ω(t))
b+(y(t)+ω(t))

0
−c(t)(y(t) + ω(t))



, C =
[
0 0 1

]
, C1 = 01,3.

Let us now design two reduced-order linear functional observers in order
to compute two estimates, an upper one and a lower one, which bound the

unmeasured linear function z(t) = Fx(t), where F =

[
1 0 0
0 1 0

]

. For this, we

use the data given in [41] for α1, α2, m1, m2, a
+(t), a−(t), b as α1 = 0.3,

α2 = 0.3, m1 = 0, m2 = 0, m3 = 0.3, a+(t) = 0.4, a−(t) = 0.2, b = 1 and let

c(t) = | cos(0.5t)|, d(t) =
[

1
t+1 + 1 + | sin(0.1t)| | sin(0.5t)|+ 1 | sin(0.5t)|

]T

and a random measurement disturbance is chosen with ||ω|| ≤ 1= Ω. Then
known bounds Ff−(t, ψ(t)), Ff+(t, ψ(t)) are as

Ff+(t, ψ(t)) =

[
a+(t)(y(t)+ω(t))
b+(y(t)+ω(t))

0

]

, Ff−(t, ψ(t)) =

[
a−(t)(y(t)+ω(t))
b+(y(t)+ω(t))

0

]

, ∀t ≥ 0.

Assume that known bounds Fd−(t), Fd+(t) are as

Fd−(t) =
[

1
t+1 + 0.995 + | sin(0.1t)| | sin(0.5t)|+ 0.95

]T
,

Fd+(t) =
[

1
t+1 + 1.005 + | sin(0.1t)| | sin(0.5t)|+ 1.01

]T
∀t ≥ 0.

According to Step 1 of Algorithm 1, we obtain matrices X and Y from equa-
tions (35)-(38). Since

rank

[
X

Y

]

= 5 = rank
[
X

]
,

condition (39) is satisfied. By setting a constraint

[
0.01
0.02

]

≤ λ ≤

[
2.1
3.7

]

,
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the LP problem (47) is feasible with

λ =

[
1.7748
1.3135

]

and Γ T = 02,5. (57)

Now, taking (62) into account for Step 4 and Step 5 of Algorithm 1, the
observer gains are obtained as

N =

[
−0.3 0
0 −0.3

]

, N1 =

[
0 0
0.3 0

]

, J = 02,1, b1 =

[
0.2
0

]

, b2 =

[
0.01
0.06

]

.

With N , N1, b1 and b2 have been obtained, it is not hard to see that the
conditions of Theorem 1 hold. Hence, we obtain a pair of second-order linear

functional observers to reconstruct z(t) =

[
z1(t)
z2(t)

]

=

[
x1(t)
x2(t)

]

with ℓ = −(N+

N1)
−1(b1+ b2+2|J |11Ω) =

[
0.7
0.9

]

is the smallest bound of the estimated error

e(t) = ẑ+(t) − ẑ−(t). In order to obtain simulation results, let us consider
the input u(t) = e0.1t, 0 ≤ t ≤ 30, τ = 0.7s and the initial conditions are
x1(θ) = 1, x2(θ) = 2, x3(θ) = 3, ẑ+1 (θ) = 4, ẑ−1 (θ) = −2, ẑ+2 (θ) = 2.5,
ẑ−2 (θ) = 1.5 for θ ∈ [−0.7, 0]. Figure 3 shows the responses of z1(t) = x1(t),
ẑ−1 (t) and ẑ+1 (t), while Figure 4 shows the responses of z2(t) = x2(t), ẑ

−
2 (t)

and ẑ+2 (t).
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4.3 Example 3

Let us now consider a particular case of the population structured into three
stages (55), where time-delay τ = 0, the unknown disturbances ω(t) ≡ 0,
d(t) ≡ 0 and the control input vector u(t) ≡ 0, for all t ≥ 0. For this case, we
can express (55) into the following form

ẋ(t) = Ax(t) + φ(t, y(t)), t ≥ 0, (58)

y(t) = Cx(t), (59)

where

A =





−β1 0 0
α1 −β2 0
0 α2 −β3



 , C =
[
0 0 1

]
and φ(t, y(t)) =





a(t)y(t)
b+y(t)

0
−c(t)y(t)



 .

The authors of the work [15] proposed full-order Luenberger-type interval

observers for the state vector x(t) =
[
x1(t) x2(t) x3(t)

]T
. Given bounds on

the uncertainties in the model, they provided bounds on the estimation of the
variables. However, they did not consider the problem of obtaining the smallest
bounds for the estimation of the variables. To demonstrate the advantages
and the generalization of our method, we now apply the result presented in
the Remark 3 of this paper to design reduced-order linear functional interval
observers for the model (58)-(59). For this, we first consider the case where

F =

[
1 0 0
0 1 0

]

, i.e. we aim to design interval observers for x1(t) and x2(t). We
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then consider the case where F = I3, i.e. we aim to design interval observers
for the state vector x(t). Note that, the bound of estimated error obtained in
this example is the smallest.

Let us consider the following data: α1 = 0.3, α2 = 0.3, m1 = 0, m2 = 0,
m3 = 0.3, β1 = α1+m1, β2 = α2+m2 and β3 = m3, a

+(t) = 0.4, a−(t) = 0.2,
b = 1 and let c(t) = 0.05| cos(0.5t)|.

For the case where F =

[
1 0 0
0 1 0

]

, by setting a constraint

[
0.01
0.02

]

≤ λ ≤

[
2.1
3.1

]

,

the LP problem (53) is feasible with

λ =

[
1.6973
1.3253

]

and Γ T = 02,3. (60)

Now, taking (60) into account for Step 4 and Step 5 of Algorithm 1 (in case
q = 0), the observer gains are obtained as

N =

[
−0.3 0
0.3 −0.3

]

, J = 02,1, b1 =

[
0.2
0

]

.

With N and b1 have been obtained, it is not hard to see that the conditions of
(52) hold. Hence, we obtain a pair of second-order linear functional observers

to reconstruct z(t) =

[
z1(t)
z2(t)

]

=

[
x1(t)
x2(t)

]

with ℓ = −N−1b1 =

[
0.6667
0.6667

]

is the

smallest bound of the estimated error e(t).
Now, for the case where F = I3, by setting a constraint





0.01
0.02
0.03



 ≤ λ ≤





2.1
3.1
4.1



 ,

the LP problem (53) is feasible with

λ =





2.0527
1.7144
1.0006



 and Γ T = 03,3. (61)

Now, taking (61) into account for Step 4 and Step 5 of Algorithm 1 (in case
q = 0), the observer gains are obtained as

N =





−0.3 0 0
0.3 −0.3 0
0 0.3 −0.3



 , J = 03,1, b1 =





a+ − a−

0
(c+ − c−)xmax

3



 =





0.2
0

0.015



 .

With N and b1 have been obtained, it is not hard to see that the conditions
of (52) hold. Hence, we obtain a pair of third-order linear functional observers
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to reconstruct z(t) =





z1(t)
z2(t)
z3(t)



 =





x1(t)
x2(t)
x3(t)



 with ℓ = −N−1b1 =





0.6667
0.6667
0.7167



 is

the smallest bound of the estimated error e(t).
For simulation, we consider the initial conditions x1(0) = 0.1, x2(0) = 0.2,

x3(0) = 0.3, ẑ+1 (0) = 0.3, ẑ−1 (0) = 0, ẑ+2 (0) = 0.5, ẑ−2 (0) = 0.1, ẑ+3 (0) = 0.6,
ẑ−3 (0) = 0.2. Figure 5 shows the responses of z1(t) = x1(t), ẑ

−
1 (t) and ẑ+1 (t),

Figure 6 shows the responses of z2(t) = x2(t), ẑ
−
2 (t) and ẑ+2 (t) and Figure 7

shows the responses of z3(t) = x3(t), ẑ
−
3 (t) and ẑ+3 (t).
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Fig. 5 Responses of z1(t) = x1(t), ẑ
−
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(t) and ẑ

+
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(t)

4.4 Example 4

Consider a third-order time-delay system of the form (1)-(4), where

A =





−0.5 0.1 0.01
0 −2 0
0 0 −3



 , A1 =





0 0 0
0.2 0 0
0 0.4 0



 , C =
[
1 0 1

]
,

C1 =
[
0 0 0

]
, F =

[
1 0 0
0 1 0

]

, BT =
[
0 1 2

]
,

known bounds Ff−(t, ψ(t)), Ff+(t, ψ(t)), Fd−(t) and Fd+(t) are assumed to

satisfy F (f+(t, ψ(t)) − f−(t, ψ(t))) ≤ b1 =

[
0.2
0

]

, F (d+(t) − d−(t)) ≤ b2 =
[
0.01
0.06

]

and a random measurement disturbance is chosen with ||ω|| ≤ 1= Ω.
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According to Step 1 of Algorithm 1, we obtain matrices X and Y from
equations (35)-(38). Since

rank

[
X

Y

]

= 5 = rank
[
X

]
,
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condition (39) is satisfied. By setting a constraint
[
0.02
0.05

]

≤ λ ≤

[
2.5
3.6

]

,

the LP problem (47) is feasible with

λ =

[
1.8614
3.5595

]

and Γ T =

[
−6.3308 0 0 0 −6.3308
−6.3308 0 0 0 −6.3308

]

. (62)

Now, taking (62) into account for Step 4 and Step 5 of Algorithm 1, the
observer gains are obtained as

N =

[
−0.51 0.1

0 −2

]

, N1 =

[
0 0
0.2 0

]

, J =

[
0.01
0

]

.

With N , N1, J have been obtained and b1 and b2 are given above, it is not
hard to see that the conditions of Theorem 1 hold. Hence, we obtain a pair

of second-order linear functional observers to reconstruct z(t) =

[
z1(t)
z2(t)

]

=
[
x1(t)
x2(t)

]

with ℓ = −(N +N1)
−1(b1+ b2+2|J |11Ω) =

[
0.466
0.0766

]

is the smallest

bound of the estimated error e(t) = ẑ+(t)− ẑ−(t).

5 Conclusion

In this paper, a pair of reduced-order linear functional observers for a class of
nonlinear uncertain time-delay systems with external unknown disturbances
has been proposed. This pair of reduced-order linear functional observers de-
termines upper bound and lower bound of linear functions of the state vector.
Conditions for the existence of such obervers and a method based on LP has
been provided for determining observer matrices. The effectiveness of the pro-
posed design method is supported by four examples and simulation results.
Further work is required to discuss the control laws in terms of computa-
tional complexity, physical constraints or limitations in implementation. Also,
extending the results of this paper to include unknown time-varying delays
would prove to be an interesting problem for future research.
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