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Besov-Morrey spaces associated to Hermite
operators and applications to fractional Hermite
equations
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Abstract

The purpose of this paper is to establish the molecular decomposition of the homogeneous Besov-Morrey spaces
associated to the Hermite operator H = —A + |x|*> on the Euclidean space R”. Particularly, we obtain some
estimates for the operator H on the Hermite-Besov-Morrey spaces and the regularity results to the fractional
Hermite equations:

(—A+x*)u=f,
and
(—A+ x>+ D) u=f.

Our results generalize some results of Anh and Thinh, [1].
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1. Introduction

In this article, we want to study the Besov and Triebel-Lizorkin spaces associated to the Hermite operator H = —A + |x|? on
R", n > 1. It is known that the classical theory of the Besov and Triebel-Lizorkin spaces plays a crucial role not only in the theory
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of function spaces, but aslo in the theory of partial differential equations and harmonic analysis, see e.g., [3, 5, 6, 7, 8, 10, 11],
and the references therein.

Recently, the theory of the Besov and Triebel-Lizorkin spaces associated to the operators has been developed by many authors
when one observed that the classical Besov and Triebel-Lizorkin spaces are not always the most suitable to investigate a number
of operators, see [1, 4,9, 14, 6, 7, 15], and their references. For example, Petrusev and Xu, [9] studied the characterization of
the inhomogeneous Besov and Triebel-Lizorkin spaces in terms of Littlewood-Paley decomposition in the context of Hermite
expansions that the frame elements have almost exponential localization. Note that these frame elements can be viewed as an
analogue of the ¢@-transform of Frazier and Jawerth, [3]. Another approach introduced by Anh and Thinh, [1] is of defining
the Besov and Triebel-Lizorkin spaces in terms of the heat kernels via square functions. Their approach adapted to the study
of the theory of both homogeneous and inhomogeneous Besov and Triebel-Lizorkin spaces. This allows them to extend the
range of indices 1 < p,g < o of the homogeneous Besov space BMl‘f;,]IH (resp. Triebel-Lizorkin spaces FMg"fIH) 00 < p,q < oo,
compare to the results in [4].

One of the most interesting studys of the theory of Besov spaces is the Besov-Morrey spaces, introduced first by Kozono
and Yamazaki [5] in order to investigate time-local solutions of the Navier-Stokes equations with the initial data in the spaces
of this type. As a matter of fact, the Besov-Morrey spaces share several features of Besov and Morrey spaces. They represent
the local oscillations and singularities of functions more precisely than the classical Besov spaces. Thus, they are behaved
better in many aspects, particularly under the action of singular integrals and pseudo-differential operators. In addition,
Mazzucato [7, 8] established the wavelet decompositions to characterize the homogeneous and inhomogeneous Besov-Morrey
spaces. For more results on the Besov-Morrey spaces, we refer the reader to [5, 6, 7, 8, 10, 11, 13, 15] and the references therein.

Inspired by the above results, we would like to generalize the theory of the homogeneous Besov spaces associated to the

Hermite operator BM;‘,‘;{]? to the one of the homogeneous Besov-Morrey spaces associated to the Hermite operator BM;‘;EI, in

this paper. To study BM,‘{%, we use the results in [1], specifically, the estimates on the heat kernels via the square functions.
o,H

Beside, we also establish the molecular decompositions for BM7 7 ...
the fractional Hermite equations:

As applications, we obtain the regularity of solutions to

H'u = f,
and
(H+D)’u=f.

Then, we organize this paper as follows: Section 2 contains some preliminary results and definitions of functional spaces.
Section 3 is devoted to the study of the molecular decomposition for the Hermite-Besov-Morrey space. Finally, we investigate
the regularity of solutions on Hermite-Besov-Morrey spaces to the fractional Hermite equations in Section 4.

Throughout this paper, we always use C and ¢ to denote positive constants that are independent of the main parameters involved
but whose values may differ from line to line. We write A < B if there is a universal constant C such that A < CB; and A ~ B if
A < Band B S A. We also use the following notations:

N={0,1,2,..},Ny ={1,2,3,...}
7Z-={-1,-2,..},Z, ={0,-1,-2,...}

aNb=min{a,b},aV b= max{a,b}.

Finally, int[a] is the integer part of a.

2. Preliminaries

2.1 Dyadic cube
The set of all dyadic cubes & in R" is defined by

9 = {ﬁ [mjzk,(m]‘Jr 1)2]‘) Tmy,my,...,Myk € Z} .

=]
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For a dyadic cube Q := H [mj (mj+ 1)2"), for some mj,my, ...,my, k € Z we denote by £(Q) and x¢ the length and the
j=
center of the dyadic cube Q. In this case, £(Q) = 2* and xg = ((m; + 1/2)2");;1.

Moreover, for every v € Z, we set
2y ={0€2:4(Q)=2"}.

2.2 Morrey space
Let us first recall the definition of the Morrey spaces.

Definition 2.1. For every 0 < p < r < eo, the Morrey space Mj, is defined by

1_1
=L F et (B <l = sup spR" G2 | £l sy <= b
P xeR1R>0 (0,

Next, we point out some known results about the Morrey norms.

Proposition 2.2. Let 0 < p < r < o, Then, we have

1_1
||fHM,’, ~sup [Q]" " » ||fHLP(Q)- 2.1
o€y

17l = 1 £l yges - ¥0 > 0. 2.2)
17

dt 1/q
/ F (- / 1Pl @) sro<q<p, 2.3)

Proof. (2.1) and (2.2) just follow from the definition of the Morrey spaces. While, (2.3) can be obtained by using Minkowski
integral inequality, see also (2.20) in [4]. O

Next, for any 6 > 0, we denote by Mg the Hardy-Littlewood maximal function:
1/6
Mg f(x) = sup \B| /\f )|%dy , x€eRY

XEB
where the supremum is taken over all balls B C R” containing x.

Then, we have a version of the Fefferman-Stein vector-valued maximal inequality for the Morrey spaces, see Proposition 2.1,
[12].

Proposition 2.3. Let 0 < g < oo, 0 < p <r <o, and 0 < 8 <min{p,q}. Then, we have

1/q 1/q
(Z |M9fk|q) (Z fk|q>
kez kez

M, M,
Remark 2.4. As a consequence of Proposition 2.3, the Hardy-Littlewood maximal operator My is bounded on Mj,.

Next, let us put

1 lfp/r | 1/p
a={  sup ( ; ) Y lo! sl )
JEDL(J)=2Y | | QeP,,0CJ

We borrow a result of Wang [15, p.779] involving the characterization of A, in the Morrey norms.
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Lemma 2.5. Let 0 < p <r < oo, and v € Z. Assume that the sequence {sg : Q € Dy} satisfy

< oo,
M,

Y 1o Isolxe
0Dy

Then, we have

NAv.
M

Y. oI Isolxe

€D,

2.3 Kernel estimates on Hermite operators

For any k > 0 and for ¢ > 0, we denote the kernel associated to (¢v/H)¥e™ VE by Pri(x,y). We recall here the results of
Lemma 2.1 and Propisition 2.2 in [1].

Proposition 2.6. For k € N, there exist C > 0 and § > 0 so that

t
I palo )| S C————— forxyeR.
(r+b-y)
2. Forany |h| <t, we have
[\ ? tt n
|Px(x+h,y) — pri(x,y)] SC(T) ———% Jorx,yeR
<t+|x—y|)

Proposition 2.7. For everyy € R”, we have p;;(-,y) € .7.

2.4 Calderon reproducing formulas
In this part, we recall the following Calderdn reproducing formula in [1]. It is useful to study the homogeneous Besov-Morrey
spaces.

Proposition 2.8. Let mi,my € N and f € #'. Then we have

1 r dt

_ my ,—tvVH my —tvH . /

f= =y _1)!/0\/]1-]1) e (tvVH)"™e f—t in.",
0

where m = my +my, and .”' is the dual space of the Schwartz functions . as usual.

3. Besov-Morrey Spaces associated to the Hermite operators

It is convenient for us to introduce first the homogeneous Besov-Morrey spaces corresponding to the Hermite operator H.

Definition 3.1. Let @ € R, 0 < p,q < o0, p < r < oo, and for every positive integer m > n+ max{o,0} +int {n (eio — 1)} +1,

a,H,m

v as follows:

with 6) = min{1, p, ¢}. Then, we define the homogeneous Hermite-Besov-Morrey space BM

_ 1/q
n B - 7 dt
B = 7€ W= ([ (Bl ) ) <
X P
0

t

Remark 3.2. If r = p, then the space BMZ‘%’” is exactly the space BMg‘l’qu in [1].

We will show that BMg;g;’” is independent of the choice of m when m is large enough. Precisely, we have the following
result.
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Theorem 3.3. Let o € R, 0 < p,q < oo, and p < r < oo, Let my,my be the positive integers such that
1
my,my > n+max{o,0} +int [n <9 - 1)] +1,
o

with 8y = min{1, p,q}. Then, the spaces BM,‘f_qu_I,’ml and BM;’,‘;QH'F;’"Z coincide with equivalent norms.
As a consequence of Theorem 3.3, we can define the Besov space BM% as any space BM% " for any positive integer

pas par
m > n+max{a,0} +int [n (eio - 1)} +1.

We now recall the definition of the molecules associated to the Hermite operator in [1].

Definition 3.4. Let 0 < r < e, € R, and N,M € N. A function u is said to be an (H,M,N, o, r) molecule if there exist a
function b from the domain (v/H)™ and a dyadic cube Q € 2 so that

i) u=(VHMb,
i | (V)b < ()M (1 " ')Z Qx)Q'
Briefly, we denote u = my, for every dyadic cube Q € 2.

—n—N
) , fork=0,....2M.

Next, we have some elementary estimates.

Lemma 3.5. Let N € Ny andt,a > 0. For any x,z € R", then we have

. =y \ "N =y ey =TT
i [ (1220 14220 dySt(f) ) . ift<a
t a t a
Ril
o=y \ " lz—y[\ " e—z\ "N
ii)/(1+ ; ) <1+ ) dy§t”(1+ ; ) . ift>a.
a
RVL

Proof. We split its proof and refer to Lemma 3.6, [1]. O

Next, we have a result of the molecular decomposition for BngEI;’”.

Theorem 3.6. Let x € R, 0 < p,qg < oo, p <r < oo, and 6y = min{l, p,q}.

i) For every M,N € N, and m > n+ max{a,0} +int [n (eio - 1)} +1,iffe BM;‘E,”", then there exist a sequence of

(H,M,N, ct,r) molecules {mg}oc 9, vez and a sequence of coefficients {sg}oc, vez so that
f= Z Z somg, in.S".
vEZ QED,

Moreover, we have

1
q
<ZA€) S I gy G.1)

veZL

ii) Conversely, if
f= Z Z somg, in S,

vEZ QED,

where {mg}ocq, vez is a sequence of (H,M,N, o, r) molecules and {sg}oca, vez is a sequence of coefficients verifying

q
(2A3> < oo, then f € BMg”qIﬁH;’", and

VEZ
1
q
(11l gpgotin S (Z/ﬂ’) 7 (3.2)
P veZ

provided that N,M € N such that n

Y < 6o, M > max{ei0 —o,m}, withm > max{a,0} +N +n.
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Proof. We first prove i). For every f € BMO‘ b s it follows from Proposition 2.8 that

v / (VRPN Ry T i,
0

. 1
with ¢y = — 2 MENT (i + M N — 1)1
Thus,
2v+1
dt
f = cmann Z ((VE)MHY —f\ﬁ(t\ﬁ)m _tff
VvEZ
o
2v+1 d
B - t
= N Z Z /(t\/ﬁ)M+Ne +VH {(t\/ﬁ)me t\/ﬁf-XQ} ad
VGZQE—@L’ v t

For any v € Z and Q € Z,, we set

sg = 27v@n/n) sup ‘(t\/]ﬁ)me—“/ﬁf(y) . and mg = HM/?by, (3.3)
(nr)EQx[2v,2vH)
with
2v+l
bQ ™ (t\/ﬁ)Ne_r\/ﬁ [(l\/ﬁ)me‘_t\/ﬁf.XQ} ?
SQ

2V

Obviously, we have

=Y Y somg, ins"

VEZ QED,

Thus, it remains to show that my is an (H,M, N, o, r) molecule.
Indeed, for k =0,...,2M, and for any x € R", we have from Proposition 2.6.

v+l

‘Hk/zbg(x)‘ _ i / thk(t\/ﬁ)NJrkeft\/ﬁ {(t\/ﬁ)meftmf.)@} ?
Y
2v

v+l

1 _ m o dt
<o [0 [Ipaten|avBreE )]y
2 0

2\’+l
1 N dt
< — sup (t\/ﬂiﬂ)meft‘/ﬁf(z)’ / thk/—HNdy—. 3.4
50 (z1)eox 2,2+ 2 J (t+]x—y[) t
On the other hand, it is not difficult to verify that
/tNdy <C(nN)(1+—= e —xol ™" vt € [27,2"T) (3.5)
(t+ x =yt = 2 ’ ’ : :
Q

A combination of (3.3), (3.4) and (3.5) yields

-N
‘Hk/ZbQ(x)‘ < 2v((x+M7k7n/r) <1 + |x sz> )
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This implies that mg is an (H,M,N, o, r) molecule.
Next, we prove (3.1). We observe that w(x, ) = H"/ 2-1VHf (x) is a solution of the equation
- (Ax_,, + |x|2) w=0, with Ac,w=wy +Aw.
So, w is a subharmonic function. Thanks to Lemma 5.2 in [2], for every 8 € (0,0) we obtain

1/6

1 0
sup [ Ve f()| 5 | = [ e i) dyar |
(v.N€Q 10| i

2

where O = Q x [2,2"*1) is a cube in R"*!,
Note that |Q| ~ 2"|Q| and 1 ~ 2", for any (y,t) € Q. Hence, it follows from the last inequality that

%2\74—1 1/9
. 1 m o 6 dt
sup (VB < | [ [ |ovEreFro) o
()€ %2" %Q
%zv+l ]/9
_ 0 dt
< / (M (‘(t\/ﬁ)me MﬁfD (x)] =1 (3.6)
39w
iy
for any x € Q. From (3.3) and (3.6), we get
%2"+1 1/6
—v(a—n/r m,— 0 di
soliotx) £27 @ | [ [t (| VB ) @] T | 20w
39w
P
Or,
%zwrl . 1/6
— r —V m _— dt
Y, 101 ol 27| [ [vte (VB VEA) ]
0<%, -
i
Thanks to Lemma 2.5, we have
%2v+1 1/9
0
A, <2 / [Mg (‘(r\/ﬁ)me*f“ﬁf‘)} ?
39w
4 M
14

Next, using Minkowski integral inequality (see (2.3)) yields

9 1/6
v+1
82

ez [ (ovire i)

3
72

0 dt
My T
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At the moment, for a fixed 8 € (0, 6), then Mg is a bounded operator on Mj,, likewise

92l+1 1/9
4, <2 / H W)™ 7nffH
My, T
32\;
i %2v+1 1/0
6
< T ( g
~ M,/ t
e
1/q

A
I-N‘ \oo\\
/'\

where the last inequality is obtained by using Holder’s inequality.

Therefore,
. 1/q
l/q %QH—I .
—a m —tvVH di
Yar) s|Y [ (refevEreEr )<
VEZ VvEZ 3 ML t
12
By noting that Z x 3w 9ov+1) < 2, we obtain
VEZ
22v+1 oo
VA ! di VA
y < ((VH)"e ™! fH )<2/< ((VH)"e ™! fH )
M, t M,
VvEZ
42 0
which implies
o 1/q
I s [ (e evare ey EATY
= v ~ M;, P - BM;(,'EI}W'
0

This puts an end to the proof of i) Theorem 3.6.

In order to prove ii), we need the following auxiliary lemmas.
Lemma 3.7. Let N >0, and let 1),v € Z be such that v < 1. Let { fo} gc 9, be a sequence of functions satisfying
_ —n—-N
o) S (14+27Mx—xg[) ™

n
Then, for any 6 € (—— ) and for a sequence of numbers {sg}ocz,, we have

n+N
(n=v)n
Y. lsollfox)| 277 My ( ) |SQ|XQ> (x)-
= €D,
Proof. We refer to [3, p.147] for the proof of this lemma. O

Next, we recall [1, Lemma 3.6] here for a convenience.

Lemma 3.8. Under the assumptions as in ii) of Theorem 3.6, we have

o m—N—n _ —n—N
ovEreEnol| 10l (5)" (14 E5E) T v

2V 2v

v\ M _ —n—N
‘(m/ﬁ)me*f\/ﬁmg(x)‘g\g|%*% (i) <1+|xth|) >0
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We are now ready to give the proof of ii) Theorem 3.6. At the beginning, we write

ok+1 q
dt
171 e = X [ L X solVE)"eEmg| | =
par keZ S VEZQEDy M,
q
SY (27X X bl sup|evE)e g .
kez vSkQeD,  re[2k k) My (3.7)
q
2y (20 8 kol s [vEe g
kEZ v<k Q€ D, 2k 2k+1) My,
=0hL+D.
Thus, Theorem 3.6 is done if we can demonstrate that
L,LS ) AL (3.8)

veZ

We first prove (3.8) for /. Keep in mind that v > k+ 1 in this case.
Since 6y >

n n n n

dM > — —o,m}, h 1 ber 8 € (——, 6 hthat M > — —o. B ti
oy an max{ B m}, we can choose a real number (n—I—N o) such tha 9 y noting
that 2" > 251 > ¢, Lemma 3.8 deduces

sup | (tVE) eV Fmg )| S 101 F 20N (1427 x —xg) .
te[zk’2k+1)
Thus,
m —tvVH < @ _ 15 (k—v)(m—N—n) V|, —n—N
Y lsol sup  |(VEH)"eEmo(x)| < ) |02 Isol (14+27"|x —xgl)
<D, te[2k 2k+1) <D,
<220k =N=n) 101 F o] (142 x—xo|) "N (3.9)
€9,

Now, we apply Lemma 3.7 with n = v and fp(x) = (1+27" |xfo|)_"_N to get

_1 y —n—N _1 n
Y 10l T Isol (1427 x—xol) " " SMe | Y 10 Flsolxg | (x), for 6 € (——.,6). (3.10)
QE@‘, Qe_@v I’l+N

Inserting (3.10) into (3.9) yields

Z Iso| sup

(t\/ﬁ)me—t\/ﬁmg(x)’ S Zvaz(k—v)(m—N—n)Me < Z |Q|_L|SQ|XQ> (X)

Q€D te[2k 2k+1) Q€D
Then,
q

I S Z sza Zzavz(kfv)(mfon)Me ( Z Q|l/r|stQ>

kezZ | v>k <Dy M,

q
_ Z Zz(k—v)(m—N—n—(x)Me ( Z |Q|—1/r|SQ|xQ>
keZ ||v>k €D, M;',

q
@3.11)

S Z Zz(k—v)(m—N—n—a)

keZ |v>k

M ( > IQ‘”’ISQIZQ>

€D,

M,
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Again the fact that Mg is bounded on M, deduces

HMG < ) IQI’/’SQXQ>

<D,

<

~

~A,. (3.12)
M,

Y 101" Isolxe

<D,

A combination of (3.11) and (3.12) deduces

q
I < Z [Z Z(kV)(mNna)Av] )

keZ | v>k
Apllying Young’s inequality yields

gq—1

1
—v)im=N-n-« 1 —v)(m—N—-n—o. 4
Z 2(k7v)(m7N7n7a)Av < (Z 2W> (Z ZWA3> .

v>k v>k v>k
. (k=v)(m—N—-n—at)q . .
Sincem > N+n+a, Z 2 2q-1) is then bounded by a constant not depending on k,v. Thus,
v>k
(k—v)(m—N—-n—a)gq (k—=v)(m—N—-—n—0o)gq
LY Y?2 2 A=Y )2 2 ATS Y Al
keZv>k VvEZL \ k<v VEZL

It remains to show that estimate (3.8) holds for />. Actually, the proof for I; is most likely to the one for /;, with only one
different point that we use Lemma 3.8 for v <k, i.e:

—n—N
sup (Ve ()] 5 @I r2i 4 (14 By T
t€[2k72k+1 ) 2y

Proceed similarly to the proof (from (3.9) to (3.12)) above, we obtain

q
12 S Z Z 2(V—k)(M+(X)Av
keZ [v<k

By noting that M 4 « > 0, aplly Young’s inequality yields the result.
This puts an end to the proof of Theorem 3.6. O

Next, we provide the proof of Theorem 3.3.

Proof of Theorem 3.3. Let us take N = int [n (9% — 1)} +1, and M > max {m] NOR GE — a}. Because m and m; play the
o

same role, it then suffices to prove that BM,‘f_;]{H’ml — BM,‘f_;]iH”"Z.

In fact, for f € BMg‘fr’ml, thanks to i) of Theorem 3.6, there exist a sequence of (H,M,N,a,r) molecules {mQ Qe

Dy,v E Z}, and a sequence of coefficients {sQ Qe D,,ve Z} so that
/= Z Z somg, in.?’,
vEZQED,
and

1/q
<2A3> S

VEZ

1/q
In other words, (Z Ag) is finite.

veZ
By ii) of Theorem 3.6, we obtain f & BMZ‘E;’"Z. Furthermore, f fulfills

1/q
< q
I gpgeirn (ZAV> .

veZL

Or, we get the result. O
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4. Regularity on Besov-Morrey spaces for fractional Hermite equations

In this part, we study the regularity results of solutions of the two fractional Hermite equations:
H'u=f, and I+H)*=f, onR",

for any s > 0, and for f € BMK%.

To solve the indicated equations, it is necessary to investigate the operators H ™ and (I +H) ¥, named by Riesz potential of
the Hermite operator and Bessel potential of Hermite operator respectively.

In fact, by following Proposition 2.5 in [1], we can define the operators H* : ./ — %" and (I+H) ¥ : &' — .’ by

setting

(H™f,9) = (f,H¢), and (I+H)"f,¢)=(f,(I+H)9),

for any f € ./, and for ¢ € 7. Note that (-, -) is the pair between a linear function in .’ and a function in .. And . is the
dual space of the Schwartz space . as usual.
Moreover, we have for any ¢ € .7,

—S 4 1 Oosft]HI ﬂ

H ¢_F(s)/0 t’e (pt €Y, 4.1
—Sp 1 oc’sfl —tH g

(I+H) (D——F(S)/O te'e ¢t €. 4.2)

Then, our regularity results are as follows:

Theorem 4.1. Let 0 € R, 0< g < o0, 0< p<r<oo, and f € BMg”qﬂ?,. Assume that u is a solution of equation H’u = f, Then,
there exists a constant C > 0 such that

HMHBM;‘ZVVH < CHfHBM‘;;H,Ir

Theorem4.2. Letx € R, 0<g<o0,0<p<r<ooand f € BMZ‘EI,. Assume that u is a solution of equation (H+1)°u = f.
Then, there exists a constant C > O such that

H”t”BMD‘erS‘IHI < C”fH

oH -
120 BMPJI«,’

Theorem 4.1 and Theorem4.2 are just a consequence of the theorem below.
Theorem 4.3. Let ¢ € R, 0 < p < r < oo, and 0 < g < oo, For any s > 0, the operator H™* (resp. (I+H)™*) is bounded from
BMOC,H to BM(X+25,H

P P

Proof of Theorem 4.3. Before giving the proof, we emphasize that our approach is not similar to the one in [1]. Here, we
give a direct proof, based on the estimates for the Hermite operator H™* (resp. ({ +H)*) instead of proving that H *mg is a
(H,M,N,o +2s,r) molecular, see Theorem 5.1, [1].

For any f € BM;‘:E[,, thanks to 1) of Theorem 3.6, there exist a sequence {mQ Q€ D, ve Z} of (H,M,N, o, r) molecules

and a sequence of coefficients {sQ Q€ P,,ve Z}, such that

f= Z Z somyg,

VEZ QEDy

and
£ V ~ B) I(X:]I.H‘m/ I

with M, N € N, such that n

N < 60,M>max{9£—a—2s,m’},andm’ > n+max{a+2s,2s} +int {n (eio— 1)} +1. It
n o

. . /
is of course that we want to choose m’ large enough in order to be sure that BMg‘fr”” = BMg”qﬂ?, due to Theorem 3.3.
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To prove that H™* is a bounded operator from BMZ‘;EI, to BM[‘};Z,“VH, it suffices to show that

1E 7 f (g0 S 1 AV 4.3)

VEZ
It follows from Theorem 3.3 that

4 dt

M, ) ot

e A e O

oo , q
= / (ta (t\/ﬁ)m 72‘Y€71\/ﬁf‘ ) g
0 M;) t

21<+1
1 [ (o ]E T sotiye g
kEZ S VEZ QED,

Y Y lsol sup ‘(t\/ﬁ)m,*z“'f'ﬁmg‘

v>kQ€D, 2k 2k+1)

Y Y lsol sup

v<k Q€9 te[2k 2k+1)

M,
q

5 Z 271{0!

kEZ

4 Z 271{0{

kEZ

M,
q
(t\/ﬁ)’",fzsef“/ﬁmQ’

M,

Obviously the last inequality is just a version of (3.7), in that m is replaced by m’ — 2s. Note that m' —2s > n+max{a,0} +
int [n (0% — l)} + 1. Therefore, (4.3) follows by apllying ii) of Theorem 3.6 to m = m’ —2s. Or, we get the conclusion.

Similarly, we can establish the boundedness of the Bessel potential (/ + H)~* from BM,‘f_qu_’Ir to BM,‘;"’(;?,S’H. Then, we leave the

proof to the reader. O

Remark 4.4. We emphasize that our proofs in this paper, can be applied to study the homogeneous and inhomogeneous
Hermite-Triebel-Lizorkin-Morrey spaces. The ones will appear in our forthcoming papers.

Acknowledgement

The final work of this paper was done when the second author and the third author visited Vietnam Institute for Advanced
Study in Mathematics (VIASM). We would like to thank VIASM for their supports.

References
I B. T. Anh, D. X. Thinh. Besov and Triebel-Lizorkin Spaces Associated to Hermite Operators. J. Fourier. Anal. Appl 21
(2015) 405-448.

(21 p. Auscher, B. Ben Ali. Maximal inequalities and Riesz transform estimates on L? spaces for Schrédinger operators with
non-negative potentials. Annales de I’Institut Fourier. 57(6) (2007) 1975-2013.

[31 M. Frazier, B. Jawerth. A discrete transform and decomposition of distribution spaces. J. Funct. Anal. 93 (10990) 34—170.

41" G. Kerkyacharian, P. Petrushev. Heat Kernel based decomposition of spaces of distributions in the framework of Dirichlet
spaces. Trans. Amer. Math. Soc. 367 (1) (2015) 121-189.

[51 H. Kozono, M. Yamazaki. Semilinear heat equations and the Navier-Stokes equation with distributions in the new function
spaces as initial data. Comm. Partial Differential Equations 19 (5-6) (1994) 959-1014.

6] C. C. Lin, Q. Yang. Semigroup characterization of Besov type Morrey spaces and well-posedness of generalized
Navier—Stokes equations. J. Differential Equations 254 (2013) 804—-846.

[71" Anna L. Mazzucato. Besov-Morrey spaces: Function space theory and applications to non-linear PDE. Trans. Amer. Math.
Soc. 355 (2003) 1297-1364.

81 Anna L. Mazzucato. Decomposition of Besov-Morrey spaces, Proceedings of the Conference on Harmonic Analysis.
Contemp. Math. 320, Amer. Math. Soc., Providence, RI, (2003) 279-294.

B1 P, Petrushev, Y. Xu. Decomposition of spaces of distributions induced by Hermite expansion. J. Fourier Anal. Appl. 14(3)
(2008) 372-414.



[10]

[11]

[12]

[13]

[14]

[15]

Besov-Morrey spaces associated to Hermite operators and applications to fractional Hermite equations — 13/13

Y. Sawano, H. Tanaka. Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces. Math. Z. 257 (4)
(2007) 871—905.

Y. Sawano, H. Tanaka.Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces for nondoubling measures. Math. Nachr.
282 (12). (2009) 1788-1810.

Y. Sawano. Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces on domains. Math. Nachr. 283(10) (2010) 1456—
1487.

L. Tang, J. Xu. Some properties of Morrey type Besov-Triebel spaces. Math. Nachr. 278 (2005) 904—917.

B. H. Qui, D. X. Thinh, L. Yan. Calderén reproducing formulas and new Besov spaces associated with operators. Adv.
Math. 229 (4) (2012) 2449—2502.

H. Wang. Decomposition for Morrey type Besov-Triebel spaces. Math. Nachr. 282 (5) (2009) 774-787.



	Introduction
	Preliminaries
	Dyadic cube
	Morrey space
	Kernel estimates on Hermite operators
	 Calderón reproducing formulas

	Besov-Morrey Spaces associated to the Hermite operators
	Regularity on Besov-Morrey spaces for fractional Hermite equations
	References

