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equations
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Abstract
The purpose of this paper is to establish the molecular decomposition of the homogeneous Besov-Morrey spaces
associated to the Hermite operator H = −∆+ |x|2 on the Euclidean space Rn. Particularly, we obtain some
estimates for the operator H on the Hermite-Besov-Morrey spaces and the regularity results to the fractional
Hermite equations:

(−∆+ |x|2)su = f ,

and

(−∆+ |x|2 + I)su = f .

Our results generalize some results of Anh and Thinh, [1].
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1. Introduction
In this article, we want to study the Besov and Triebel-Lizorkin spaces associated to the Hermite operator H=−∆+ |x|2 on

Rn, n≥ 1. It is known that the classical theory of the Besov and Triebel-Lizorkin spaces plays a crucial role not only in the theory
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of function spaces, but aslo in the theory of partial differential equations and harmonic analysis, see e.g., [3, 5, 6, 7, 8, 10, 11],
and the references therein.
Recently, the theory of the Besov and Triebel-Lizorkin spaces associated to the operators has been developed by many authors
when one observed that the classical Besov and Triebel-Lizorkin spaces are not always the most suitable to investigate a number
of operators, see [1, 4, 9, 14, 6, 7, 15], and their references. For example, Petrusev and Xu, [9] studied the characterization of
the inhomogeneous Besov and Triebel-Lizorkin spaces in terms of Littlewood-Paley decomposition in the context of Hermite
expansions that the frame elements have almost exponential localization. Note that these frame elements can be viewed as an
analogue of the ϕ-transform of Frazier and Jawerth, [3]. Another approach introduced by Anh and Thinh, [1] is of defining
the Besov and Triebel-Lizorkin spaces in terms of the heat kernels via square functions. Their approach adapted to the study
of the theory of both homogeneous and inhomogeneous Besov and Triebel-Lizorkin spaces. This allows them to extend the
range of indices 1≤ p,q≤∞ of the homogeneous Besov space BMα,H

p,q (resp. Triebel-Lizorkin spaces FMα,H
p,q ) to 0 < p,q≤∞,

compare to the results in [4].

One of the most interesting studys of the theory of Besov spaces is the Besov-Morrey spaces, introduced first by Kozono
and Yamazaki [5] in order to investigate time-local solutions of the Navier-Stokes equations with the initial data in the spaces
of this type. As a matter of fact, the Besov-Morrey spaces share several features of Besov and Morrey spaces. They represent
the local oscillations and singularities of functions more precisely than the classical Besov spaces. Thus, they are behaved
better in many aspects, particularly under the action of singular integrals and pseudo-differential operators. In addition,
Mazzucato [7, 8] established the wavelet decompositions to characterize the homogeneous and inhomogeneous Besov-Morrey
spaces. For more results on the Besov-Morrey spaces, we refer the reader to [5, 6, 7, 8, 10, 11, 13, 15] and the references therein.

Inspired by the above results, we would like to generalize the theory of the homogeneous Besov spaces associated to the
Hermite operator BMα,H

p,q to the one of the homogeneous Besov-Morrey spaces associated to the Hermite operator BMα,H
p,q,r in

this paper. To study BMα,H
p,q,r, we use the results in [1], specifically, the estimates on the heat kernels via the square functions.

Beside, we also establish the molecular decompositions for BMα,H
p,q,r. As applications, we obtain the regularity of solutions to

the fractional Hermite equations:

Hsu = f ,

and

(H+ I)su = f .

Then, we organize this paper as follows: Section 2 contains some preliminary results and definitions of functional spaces.
Section 3 is devoted to the study of the molecular decomposition for the Hermite-Besov-Morrey space. Finally, we investigate
the regularity of solutions on Hermite-Besov-Morrey spaces to the fractional Hermite equations in Section 4.
Throughout this paper, we always use C and c to denote positive constants that are independent of the main parameters involved
but whose values may differ from line to line. We write A . B if there is a universal constant C such that A≤CB; and A∼ B if
A . B and B . A. We also use the following notations:

N= {0,1,2, ...},N+ = {1,2,3, ...}

Z− = {−1,−2, ...},Z−0 = {0,−1,−2, ...}

a∧b = min{a,b},a∨b = max{a,b}.

Finally, int[a] is the integer part of a.

2. Preliminaries
2.1 Dyadic cube

The set of all dyadic cubes D in Rn is defined by

D =

{
n

∏
j=1

[
m j2k,(m j +1)2k

)
: m1,m2, ...,mn,k ∈ Z

}
.



Besov-Morrey spaces associated to Hermite operators and applications to fractional Hermite equations — 3/13

For a dyadic cube Q :=
n

∏
j=1

[
m j2k,(m j +1)2k

)
, for some m1,m2, ...,mn,k ∈ Z we denote by `(Q) and xQ the length and the

center of the dyadic cube Q. In this case, `(Q) = 2k and xQ =
(
(m j +1/2)2k

)n
j=1.

Moreover, for every ν ∈ Z, we set

Dν = {Q ∈D : `(Q) = 2ν} .

2.2 Morrey space
Let us first recall the definition of the Morrey spaces.

Definition 2.1. For every 0 < p≤ r < ∞, the Morrey space Mr
p is defined by

Mr
p ≡

{
f ∈ Lp

loc(R
n) : ‖ f‖Mr

p
= sup

x0∈Rn
sup
R>0

Rn
(

1
r−

1
p

)
‖ f‖Lp(B(x0,R)) < ∞

}
.

Next, we point out some known results about the Morrey norms.

Proposition 2.2. Let 0 < p≤ r < ∞. Then, we have

‖ f‖Mr
p ∼ sup

Q∈D
|Q|

1
r−

1
p ‖ f‖Lp(Q). (2.1)

‖ f θ‖Mr
p = ‖ f‖θ

Mrθ
pθ

, ∀θ > 0. (2.2)

∥∥∥∥∥∥
(ˆ b

a
|F(·, t)|q dt

t

)1/q
∥∥∥∥∥∥

Mr
p

≤

(ˆ b

a
‖F(·, t)‖q

Mr
p

dt
t

)1/q

, for 0 < q≤ p. (2.3)

Proof. (2.1) and (2.2) just follow from the definition of the Morrey spaces. While, (2.3) can be obtained by using Minkowski
integral inequality, see also (2.20) in [4].

Next, for any θ > 0, we denote by Mθ the Hardy-Littlewood maximal function:

Mθ f (x) = sup
x∈B

 1
|B|

ˆ

B

| f (y)|θ dy

1/θ

, x ∈ Rn,

where the supremum is taken over all balls B⊂ Rn containing x.
Then, we have a version of the Fefferman-Stein vector-valued maximal inequality for the Morrey spaces, see Proposition 2.1,
[12].

Proposition 2.3. Let 0 < q≤ ∞, 0 < p≤ r < ∞, and 0 < θ < min{p,q}. Then, we have∥∥∥∥∥∥
(

∑
k∈Z
|Mθ fk|q

)1/q
∥∥∥∥∥∥

Mr
p

.

∥∥∥∥∥∥
(

∑
k∈Z
| fk|q

)1/q
∥∥∥∥∥∥

Mr
p

.

Remark 2.4. As a consequence of Proposition 2.3, the Hardy-Littlewood maximal operator Mθ is bounded on Mr
p.

Next, let us put

Av =

(
sup

J∈D ,`(J)>2v

(
1
|J|

)1−p/r

∑
Q∈Dv,Q⊂J

|Q|1−p/r|sQ|p
)1/p

.

We borrow a result of Wang [15, p.779] involving the characterization of Av in the Morrey norms.
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Lemma 2.5. Let 0 < p≤ r < ∞, and ν ∈ Z. Assume that the sequence {sQ : Q ∈Dν} satisfy∥∥∥∥∥ ∑
Q∈Dν

|Q|−1/r|sQ|χQ

∥∥∥∥∥
Mr

p

< ∞.

Then, we have∥∥∥∥∥ ∑
Q∈Dv

|Q|−1/r|sQ|χQ

∥∥∥∥∥
Mr

p

∼ Aν .

2.3 Kernel estimates on Hermite operators
For any k ≥ 0 and for t > 0, we denote the kernel associated to (t

√
H)ke−t

√
H by pt,k(x,y). We recall here the results of

Lemma 2.1 and Propisition 2.2 in [1].

Proposition 2.6. For k ∈ N, there exist C > 0 and δ > 0 so that

1. |pt,k(x,y)| ≤C
tk(

t + |x− y|
)n+k , for x,y ∈ Rn.

2. For any |h|< t, we have

|pt,k(x+h,y)− pt,k(x,y)| ≤C
( |h|

t

)δ tk(
t + |x− y|

)n+k , for x,y ∈ Rn.

Proposition 2.7. For every y ∈ Rn, we have pt,k(·,y) ∈S .

2.4 Calderón reproducing formulas
In this part, we recall the following Calderón reproducing formula in [1]. It is useful to study the homogeneous Besov-Morrey

spaces.

Proposition 2.8. Let m1,m2 ∈ N+ and f ∈S ′. Then we have

f =− 1
2m−1(m−1)!

∞̂

0

(t
√
H)m1e−t

√
H(t
√
H)m2e−t

√
H f

dt
t

in S ′,

where m = m1 +m2, and S ′ is the dual space of the Schwartz functions S as usual.

3. Besov-Morrey Spaces associated to the Hermite operators
It is convenient for us to introduce first the homogeneous Besov-Morrey spaces corresponding to the Hermite operator H.

Definition 3.1. Let α ∈ R, 0 < p,q≤ ∞, p≤ r ≤ ∞, and for every positive integer m > n+max{α,0}+ int
[
n
(

1
θ0
−1
)]

+1,

with θ0 = min{1, p,q}. Then, we define the homogeneous Hermite-Besov-Morrey space BMα,H,m
p,q,r as follows:

BMα,H,m
p,q,r :=

 f ∈S ′ : ‖ f‖BMα,H,m
p,q,r

=

 ∞̂

0

(
t−α

∥∥∥(t√H)me−t
√
H f
∥∥∥

Mr
p

)q dt
t

1/q

< ∞

 .

Remark 3.2. If r = p, then the space BMα,H,m
p,q,r is exactly the space BMα,H,m

p,q in [1].

We will show that BMα,H,m
p,q,r is independent of the choice of m when m is large enough. Precisely, we have the following

result.
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Theorem 3.3. Let α ∈ R, 0 < p,q≤ ∞, and p≤ r ≤ ∞. Let m1,m2 be the positive integers such that

m1,m2 > n+max{α,0}+ int
[

n
(

1
θ0
−1
)]

+1,

with θ0 = min{1, p,q}. Then, the spaces BMα,H,m1
p,q,r and BMα,H,m2

p,q,r coincide with equivalent norms.

As a consequence of Theorem 3.3, we can define the Besov space BMα,H
p,q,r as any space BMα,H,m

p,q,r , for any positive integer

m > n+max{α,0}+ int
[
n
(

1
θ0
−1
)]

+1.

We now recall the definition of the molecules associated to the Hermite operator in [1].

Definition 3.4. Let 0 < r ≤ ∞,α ∈ R, and N,M ∈ N+. A function u is said to be an (H,M,N,α,r) molecule if there exist a
function b from the domain (

√
H)M and a dyadic cube Q ∈D so that

i) u = (
√
H)Mb,

ii)
∣∣∣(√H)kb(x)

∣∣∣≤ `(Q)M−k|Q|α/n−1/r
(

1+
|x− xQ|
`(Q)

)−n−N

, for k = 0, ...,2M.

Briefly, we denote u = mQ, for every dyadic cube Q ∈D .

Next, we have some elementary estimates.

Lemma 3.5. Let N ∈ N+ and t,a > 0. For any x,z ∈ Rn, then we have

i)
ˆ

Rn

(
1+
|x− y|

t

)−n−N(
1+
|z− y|

a

)−n−N

dy . tn
(a

t

)n
(

1+
|x− z|

a

)−n−N

, if t ≤ a.

ii)
ˆ

Rn

(
1+
|x− y|

t

)−n−N(
1+
|z− y|

a

)−n−N

dy . tn
(

1+
|x− z|

t

)−n−N

, if t ≥ a.

Proof. We split its proof and refer to Lemma 3.6, [1].

Next, we have a result of the molecular decomposition for BMα,H,m
p,q,r .

Theorem 3.6. Let α ∈ R, 0 < p,q≤ ∞, p≤ r ≤ ∞, and θ0 = min{1, p,q}.

i) For every M,N ∈ N+ and m > n+max{α,0}+ int
[
n
(

1
θ0
−1
)]

+ 1, if f ∈ BMα,H,m
p,q,r , then there exist a sequence of

(H,M,N,α,r) molecules {mQ}Q∈Dv,v∈Z and a sequence of coefficients {sQ}Q∈Dv,v∈Z so that

f = ∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′.

Moreover, we have(
∑
v∈Z

Aq
v

) 1
q

. ‖ f‖BMα,H,m
p,q,r

. (3.1)

ii) Conversely, if

f = ∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′,

where {mQ}Q∈Dv,v∈Z is a sequence of (H,M,N,α,r) molecules and {sQ}Q∈Dv,v∈Z is a sequence of coefficients verifying(
∑
v∈Z

Aq
v

) 1
q

< ∞, then f ∈ BMα,H,m
p,q,r , and

‖ f‖BMα,H,m
p,q,r

.

(
∑
v∈Z

Aq
v

) 1
q

, (3.2)

provided that N,M ∈ N+ such that
n

n+N
< θ0, M > max{ n

θ0
−α,m}, with m > max{α,0}+N +n.
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Proof. We first prove i). For every f ∈ BMα,H,m
p,q,r , it follows from Proposition 2.8 that

f = cm,M,N

∞̂

0

(t
√
H)M+Ne−t

√
H(t
√
H)me−t

√
H f

dt
t
, in S ′,

with cm,M,N =− 1
2m+M+N−1(m+M+N−1)!

.

Thus,

f = cm,M,N ∑
v∈Z

2v+1ˆ

2v

(t
√
H)M+Ne−t

√
H(t
√
H)me−t

√
H f

dt
t

= cm,M,N ∑
v∈Z

∑
Q∈Dv

2v+1ˆ

2v

(t
√
H)M+Ne−t

√
H
[
(t
√
H)me−t

√
H f .χQ

] dt
t
.

For any v ∈ Z and Q ∈Dv, we set

sQ = 2−v(α−n/r) sup
(y,t)∈Q×[2v,2v+1)

∣∣∣(t√H)me−t
√
H f (y)

∣∣∣ , and mQ =HM/2bQ, (3.3)

with

bQ =
1
sQ

2v+1ˆ

2v

tM(t
√
H)Ne−t

√
H
[
(t
√
H)me−t

√
H f .χQ

] dt
t
.

Obviously, we have

f = ∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′.

Thus, it remains to show that mQ is an (H,M,N,α,r) molecule.
Indeed, for k = 0, ...,2M, and for any x ∈ Rn, we have from Proposition 2.6.

∣∣∣Hk/2bQ(x)
∣∣∣=
∣∣∣∣∣∣∣

1
sQ

2v+1ˆ

2v

tM−k(t
√
H)N+ke−t

√
H
[
(t
√
H)me−t

√
H f .χQ

] dt
t

∣∣∣∣∣∣∣
≤ 1

sQ

2v+1ˆ

2v

tM−k
ˆ

Q

|pt,N+k(x,y)|
∣∣∣(t√H)me−t

√
H f (y)

∣∣∣dy
dt
t

.
1
sQ

sup
(z,t)∈Q×[2v,2v+1)

∣∣∣(t√H)me−t
√
H f (z)

∣∣∣ 2v+1ˆ

2v

tM−k
ˆ

Q

tN

(t + |x− y|)n+N dy
dt
t
. (3.4)

On the other hand, it is not difficult to verify that

ˆ

Q

tN

(t + |x− y|)n+N dy≤C(n,N)

(
1+
|x− xQ|

2v

)−n−N

, ∀t ∈ [2v,2v+1). (3.5)

A combination of (3.3), (3.4) and (3.5) yields∣∣∣Hk/2bQ(x)
∣∣∣. 2v(α+M−k−n/r)

(
1+
|x− xQ|

2v

)−n−N

.
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This implies that mQ is an (H,M,N,α,r) molecule.

Next, we prove (3.1). We observe that w(x, t)≡Hm/2e−t
√
H f (x) is a solution of the equation

−
(
∆x,t + |x|2

)
w = 0, with ∆x,tw = wtt +∆w.

So, w is a subharmonic function. Thanks to Lemma 5.2 in [2], for every θ ∈ (0,∞) we obtain

sup
(y,t)∈Q̃

∣∣∣Hm/2e−t
√
H f (y)

∣∣∣.
 1

|Q̃|

ˆ

3
2 Q̃

∣∣∣Hm/2e−t
√
H f (y)

∣∣∣θ dydt


1/θ

,

where Q̃ = Q× [2v,2v+1) is a cube in Rn+1.
Note that |Q̃| ∼ 2v|Q| and t ∼ 2v, for any (y, t) ∈ Q̃. Hence, it follows from the last inequality that

sup
(y,t)∈Q̃

∣∣∣(t√H)me−t
√
H f (y)

∣∣∣.
 1
|Q|

9
8 2v+1ˆ

3
4 2v

ˆ

3
2 Q

∣∣∣(t√H)me−t
√
H f (y)

∣∣∣θ dy
dt
t


1/θ

.


9
8 2v+1ˆ

3
4 2v

[
Mθ

(∣∣∣(t√H)me−t
√
H f
∣∣∣)(x)]θ dt

t


1/θ

, (3.6)

for any x ∈ Q. From (3.3) and (3.6), we get

|sQ|χQ(x). 2−v(α−n/r)


9
8 2v+1ˆ

3
4 2v

[
Mθ

(∣∣∣(t√H)me−t
√
H f
∣∣∣)(x)]θ dt

t


1/θ

χQ(x).

Or,

∑
Q∈Dv

|Q|−1/r|sQ|χQ(x). 2−vα


9
8 2v+1ˆ

3
4 2v

[
Mθ

(∣∣∣(t√H)me−t
√
H f
∣∣∣)(x)]θ dt

t


1/θ

.

Thanks to Lemma 2.5, we have

Av . 2−vα

∥∥∥∥∥∥∥∥∥


9
8 2v+1ˆ

3
4 2v

[
Mθ

(∣∣∣(t√H)me−t
√
H f
∣∣∣)]θ dt

t


1/θ
∥∥∥∥∥∥∥∥∥

Mr
p

.

Next, using Minkowski integral inequality (see (2.3)) yields

Av . 2−vα


9
8 2v+1ˆ

3
4 2v

∥∥∥Mθ

(∣∣∣(t√H)me−t
√
H f
∣∣∣)∥∥∥θ

Mr
p

dt
t


1/θ

.
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At the moment, for a fixed θ ∈ (0,θ0), then Mθ is a bounded operator on Mr
p, likewise

Av . 2−vα


9
8 2v+1ˆ

3
4 2v

∥∥∥(t√H)me−t
√
H f
∥∥∥θ

Mr
p

dt
t


1/θ

.


9
8 2v+1ˆ

3
4 2v

(
t−α

∥∥∥(t√H)me−t
√
H f
∥∥∥

Mr
p

)θ dt
t


1/θ

.


9
8 2v+1ˆ

3
4 2v

(
t−α

∥∥∥(t√H)me−t
√
H f
∥∥∥

Mr
p

)q dt
t


1/q

,

where the last inequality is obtained by using Hölder’s inequality.
Therefore,

(
∑
v∈Z

Aq
v

)1/q

.

∑
v∈Z

9
8 2v+1ˆ

3
4 2v

(
t−α

∥∥∥(t√H)me−t
√
H f
∥∥∥

Mr
p

)q dt
t


1/q

.

By noting that ∑
v∈Z

χ( 3
4 2v, 9

8 2v+1) ≤ 2, we obtain

∑
v∈Z

9
8 2v+1ˆ

3
4 2v

(
t−α

∥∥∥(t√H)me−t
√
H f
∥∥∥

Mr
p

)q dt
t
≤ 2

∞̂

0

(
t−α

∥∥∥(t√H)me−t
√
H f
∥∥∥

Mr
p

)q dt
t
,

which implies(
∑
v∈Z

Aq
v

)1/q

.

 ∞̂

0

(
t−α

∥∥∥(t√H)me−t
√
H f
∥∥∥

Mr
p

)q dt
t

1/q

= ‖ f‖BMα,H,m
p,q,r

.

This puts an end to the proof of i) Theorem 3.6.

In order to prove ii), we need the following auxiliary lemmas.

Lemma 3.7. Let N > 0, and let η ,v ∈ Z be such that v≤ η . Let { fQ}Q∈Dv be a sequence of functions satisfying

| fQ(x)|.
(
1+2−η |x− xQ|

)−n−N
.

Then, for any θ ∈ (
n

n+N
,∞) and for a sequence of numbers {sQ}Q∈Dv , we have

∑
Q∈Dv

|sQ|| fQ(x)|. 2
(η−v)n

θ Mθ

(
∑

Q∈Dv

|sQ|χQ

)
(x).

Proof. We refer to [3, p.147] for the proof of this lemma.

Next, we recall [1, Lemma 3.6] here for a convenience.

Lemma 3.8. Under the assumptions as in ii) of Theorem 3.6, we have∣∣∣(t√H)me−t
√
HmQ(x)

∣∣∣. |Q| αn − 1
r

( t
2v

)m−N−n
(

1+
|x− xQ|

2v

)−n−N

, ∀t < 2v,

∣∣∣(t√H)me−t
√
HmQ(x)

∣∣∣. |Q| αn − 1
r

(
2v

t

)M(
1+
|x− xQ|

t

)−n−N

, ∀t ≥ 2v.
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We are now ready to give the proof of ii) Theorem 3.6. At the beginning, we write

‖ f‖q
BMα,H,m

p,q,r
= ∑

k∈Z

2k+1ˆ

2k

t−α

∥∥∥∥∥∑
v∈Z

∑
Q∈Dv

sQ(t
√
H)me−t

√
HmQ

∥∥∥∥∥
Mr

p

q
dt
t

. ∑
k∈Z

2−kα

∥∥∥∥∥∑
v>k

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

∣∣∣(t√H)me−t
√
HmQ

∣∣∣∥∥∥∥∥
Mr

p

q

+ ∑
k∈Z

2−kα

∥∥∥∥∥∑
v≤k

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

∣∣∣(t√H)me−t
√
HmQ

∣∣∣∥∥∥∥∥
Mr

p

q

:= I1 + I2.

(3.7)

Thus, Theorem 3.6 is done if we can demonstrate that

I1, I2 . ∑
v∈Z

Aq
v . (3.8)

We first prove (3.8) for I1. Keep in mind that v≥ k+1 in this case.
Since θ0 >

n
n+N

and M > max{ n
θ0
−α,m}, we can choose a real number θ ∈ (

n
n+N

,θ0) such that M >
n
θ
−α . By noting

that 2v ≥ 2k+1 > t, Lemma 3.8 deduces

sup
t∈[2k,2k+1)

∣∣∣(t√H)me−t
√
HmQ(x)

∣∣∣. |Q| αn − 1
r 2(k−v)(m−N−n) (1+2−v|x− xQ|

)−n−N
.

Thus,

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

∣∣∣(t√H)me−t
√
HmQ(x)

∣∣∣. ∑
Q∈Dv

|Q|
α
n −

1
r 2(k−v)(m−N−n)|sQ|

(
1+2−v|x− xQ|

)−n−N

. 2vα 2(k−v)(m−N−n)
∑

Q∈Dv

|Q|−
1
r |sQ|

(
1+2−v|x− xQ|

)−n−N
. (3.9)

Now, we apply Lemma 3.7 with η = v and fQ(x) = (1+2−v|x− xQ|)−n−N to get

∑
Q∈Dv

|Q|−
1
r |sQ|

(
1+2−v|x− xQ|

)−n−N
.Mθ

(
∑

Q∈Dv

|Q|−
1
r |sQ|χQ

)
(x), for θ ∈ (

n
n+N

,θ0). (3.10)

Inserting (3.10) into (3.9) yields

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

∣∣∣(t√H)me−t
√
HmQ(x)

∣∣∣. 2vα 2(k−v)(m−N−n)Mθ

(
∑

Q∈Dv

|Q|−
1
r |sQ|χQ

)
(x).

Then,

I1 . ∑
k∈Z

2−kα

∥∥∥∥∥∑
v>k

2αv2(k−v)(m−N−n)Mθ

(
∑

Q∈Dv

|Q|−1/r|sQ|χQ

)∥∥∥∥∥
Mr

p

q

= ∑
k∈Z

∥∥∥∥∥∑
v>k

2(k−v)(m−N−n−α)Mθ

(
∑

Q∈Dv

|Q|−1/r|sQ|χQ

)∥∥∥∥∥
q

Mr
p

. ∑
k∈Z

∑
v>k

2(k−v)(m−N−n−α)

∥∥∥∥∥Mθ

(
∑

Q∈Dv

|Q|−1/r|sQ|χQ

)∥∥∥∥∥
Mr

p

q

. (3.11)
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Again the fact that Mθ is bounded on Mr
p deduces∥∥∥∥∥Mθ

(
∑

Q∈Dv

|Q|−1/r|sQ|χQ

)∥∥∥∥∥
Mr

p

.

∥∥∥∥∥ ∑
Q∈Dv

|Q|−1/r|sQ|χQ

∥∥∥∥∥
Mr

p

∼ Av. (3.12)

A combination of (3.11) and (3.12) deduces

I1 . ∑
k∈Z

[
∑
v>k

2(k−v)(m−N−n−α)Av

]q

.

Apllying Young’s inequality yields

∑
v>k

2(k−v)(m−N−n−α)Av ≤

(
∑
v>k

2
(k−v)(m−N−n−α)q

2(q−1)

) q−1
q
(

∑
v>k

2
(k−v)(m−N−n−α)q

2 Aq
v

) 1
q

.

Since m > N +n+α , ∑
v>k

2
(k−v)(m−N−n−α)q

2(q−1) is then bounded by a constant not depending on k,v. Thus,

I1 . ∑
k∈Z

∑
v>k

2
(k− v)(m−N−n−α)q

2 Aq
v = ∑

v∈Z

∑
k<v

2
(k− v)(m−N−n−α)q

2

Aq
v . ∑

v∈Z
Aq

v .

It remains to show that estimate (3.8) holds for I2. Actually, the proof for I2 is most likely to the one for I1, with only one
different point that we use Lemma 3.8 for v≤ k, i.e:

sup
t∈[2k,2k+1)

∣∣∣(t√H)me−t
√
HmQ(x)

∣∣∣. |Q| αn − 1
r 2(v−k)M

(
1+
|x− xQ|

2v

)−n−N

.

Proceed similarly to the proof (from (3.9) to (3.12)) above, we obtain

I2 . ∑
k∈Z

[
∑
v≤k

2(v−k)(M+α)Av

]q

.

By noting that M+α > 0, aplly Young’s inequality yields the result.
This puts an end to the proof of Theorem 3.6.

Next, we provide the proof of Theorem 3.3.

Proof of Theorem 3.3. Let us take N = int
[
n
(

1
θ0
−1
)]

+1, and M > max
{

m1,m2,
n
θ0
−α

}
. Because m1 and m2 play the

same role, it then suffices to prove that BMα,H,m1
p,q ↪→ BMα,H,m2

p,q .

In fact, for f ∈ BMα,H,m1
p,q,r , thanks to i) of Theorem 3.6, there exist a sequence of (H,M,N,α,r) molecules

{
mQ : Q ∈

Dv,v ∈ Z
}

, and a sequence of coefficients
{

sQ : Q ∈Dv,v ∈ Z
}

so that

f = ∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′,

and (
∑
v∈Z

Aq
v

)1/q

. ‖ f‖
BMα,H,m1

p,q,r
.

In other words,

(
∑
v∈Z

Aq
v

)1/q

is finite.

By ii) of Theorem 3.6, we obtain f ∈ BMα,H,m2
p,q,r . Furthermore, f fulfills

‖ f‖
BMα,H,m2

p,q,r
.

(
∑
v∈Z

Aq
v

)1/q

.

Or, we get the result.
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4. Regularity on Besov-Morrey spaces for fractional Hermite equations
In this part, we study the regularity results of solutions of the two fractional Hermite equations:

Hsu = f , and (I +H)s = f , on Rn,

for any s > 0, and for f ∈ BMα,H
p,q,r.

To solve the indicated equations, it is necessary to investigate the operators H−s and (I+H)−s, named by Riesz potential of
the Hermite operator and Bessel potential of Hermite operator respectively.

In fact, by following Proposition 2.5 in [1], we can define the operators H−s : S ′→S ′ and (I +H)−s : S ′→S ′ by
setting

〈H−s f ,φ〉= 〈 f ,H−s
φ〉, and 〈(I +H)−s f ,φ〉= 〈 f ,(I +H)−s

φ〉,

for any f ∈S ′, and for φ ∈S . Note that 〈·, ·〉 is the pair between a linear function in S ′ and a function in S . And S ′ is the
dual space of the Schwartz space S as usual.
Moreover, we have for any φ ∈S ,

H−s
φ =

1
Γ(s)

ˆ
∞

0
tse−tH

φ
dt
t
∈S , (4.1)

(I +H)−s
φ =

1
Γ(s)

ˆ
∞

0
tse−te−tH

φ
dt
t
∈S . (4.2)

Then, our regularity results are as follows:

Theorem 4.1. Let α ∈R, 0 < q≤ ∞, 0 < p≤ r ≤ ∞, and f ∈ BMα,H
p,q,r. Assume that u is a solution of equation Hsu = f , Then,

there exists a constant C > 0 such that

‖u‖BMα+s,H
p,q,r

≤C‖ f‖BMα,H
p,q,r

.

Theorem 4.2. Let α ∈ R, 0 < q≤ ∞, 0 < p≤ r ≤ ∞, and f ∈ BMα,H
p,q,r. Assume that u is a solution of equation (H+ I)su = f .

Then, there exists a constant C > 0 such that

‖u‖BMα+2s,H
p,q,r

≤C‖ f‖BMα,H
p,q,r

.

Theorem 4.1 and Theorem4.2 are just a consequence of the theorem below.

Theorem 4.3. Let α ∈ R, 0 < p≤ r < ∞, and 0 < q≤ ∞. For any s > 0, the operator H−s (resp. (I +H)−s) is bounded from
BMα,H

p,q,r to BMα+2s,H
p,q,r .

Proof of Theorem 4.3. Before giving the proof, we emphasize that our approach is not similar to the one in [1]. Here, we
give a direct proof, based on the estimates for the Hermite operator H−s (resp. (I +H)−s) instead of proving that H−smQ is a
(H,M,N,α +2s,r) molecular, see Theorem 5.1, [1].

For any f ∈ BMα,H
p,q,r, thanks to i) of Theorem 3.6, there exist a sequence

{
mQ : Q ∈Dv,v ∈ Z

}
of (H,M,N,α,r) molecules

and a sequence of coefficients
{

sQ : Q ∈Dv,v ∈ Z
}

, such that

f = ∑
ν∈Z

∑
Q∈Dν

sQmQ,

and

∑
ν∈Z

Aq
ν . ‖ f‖q

BMα,H,m′
p,q,r

,

with M,N ∈ N+, such that
n

n+N
< θ0, M > max

{ n
θ0
−α−2s,m′

}
, and m′ > n+max{α +2s,2s}+ int

[
n
(

1
θ0
−1
)]

+1. It

is of course that we want to choose m′ large enough in order to be sure that BMα,H,m′
p,q,r = BMα,H

p,q,r due to Theorem 3.3.
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To prove that H−s is a bounded operator from BMα,H
p,q,r to BMα+2s,H

p,q,r , it suffices to show that∥∥H−s f
∥∥q

BMα+2s,H
p,q,r

. ∑
ν∈Z

Aq
ν . (4.3)

It follows from Theorem 3.3 that∥∥H−s f
∥∥q

BMα+2s,H
p,q,r

∼
∥∥H−s f

∥∥q

BMα+2s,H,m′
p,q,r

=

ˆ
∞

0

(
t−(α+2s)

∥∥∥(t√H)m′e−t
√

HH−s f
∥∥∥

Mr
p

)q dt
t

=

ˆ
∞

0

(
t−α

∥∥∥(t√H)m′−2se−t
√

H f
∥∥∥

Mr
p

)q dt
t

= ∑
k∈Z

2k+1ˆ

2k

t−α

∥∥∥∥∥∑
v∈Z

∑
Q∈Dv

sQ(t
√

H)m′−2se−t
√

HmQ

∥∥∥∥∥
Mr

p

q
dt
t

. ∑
k∈Z

2−kα

∥∥∥∥∥∑
v>k

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

∣∣∣(t√H)m′−2se−t
√

HmQ

∣∣∣∥∥∥∥∥
Mr

p

q

+ ∑
k∈Z

2−kα

∥∥∥∥∥∑
v≤k

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

∣∣∣(t√H)m′−2se−t
√

HmQ

∣∣∣∥∥∥∥∥
Mr

p

q

.

Obviously the last inequality is just a version of (3.7), in that m is replaced by m′−2s. Note that m′−2s > n+max{α,0}+
int
[
n
(

1
θ0
−1
)]

+1. Therefore, (4.3) follows by apllying ii) of Theorem 3.6 to m = m′−2s. Or, we get the conclusion.

Similarly, we can establish the boundedness of the Bessel potential (I +H)−s from BMα,H
p,q,r to BMα+2s,H

p,q,r . Then, we leave the
proof to the reader.

Remark 4.4. We emphasize that our proofs in this paper, can be applied to study the homogeneous and inhomogeneous
Hermite-Triebel-Lizorkin-Morrey spaces. The ones will appear in our forthcoming papers.
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