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Abstract

The aim of this article is to establish molecular decomposition of homogeneous and inhomogeneous
Triebel-Lizorkin-Morrey spaces associated to the Hermite operator H = —A +|z|? on the Euclidean
space R™. As applications of the molecular decomposition theory, we show the Triebel-Lizorkin-
Morrey boundedness of Riesz potential, Bessel potential and spectral multipliers associated to the
operator H. These results generalize the corresponding results in [B. T. Anh, D. X. Thinh. Besov
and Triebel-Lizorkin Spaces Associated to Hermite Operators. J. Fourier. Anal. Appl 21 (2015)
405-448].
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1. Introduction

The classical Triebel-Lizorkin spaces, which contain a number of key function spaces, including
Sobolev spaces, Bessel-potential spaces, Hardy spaces and BMO spaces, plays an important role in
the theory of function spaces because of its wide applications in the theory of partial differential
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equations and harmonic analysis. For example, classical Triebel-Lizorkin spaces can be used in
some priori estimates of elliptic differential operators or in constructions of time-local solutions of
Navier-Stokes non-linear equations since they measure the oscillatory properties of a distribution
more accurately than Sobolev spaces do, while still possessing the same smoothness and scaling
properties. It is well-known that the classical Triebel-Lizorkin spaces can be characterized via
Laplace operator A or its square root on R™. Recently, the theory of Triebel-Lizorkin spaces
associated to operators has been studied intensively by many authors, see for instance [, [7, [14]
and the references therein, since the classical Triebel-Lizorkin spaces (associated to Laplacian) are
no longer appropriate for the study of boundedness of a number of operators arising in the theory
of partial differential equations and harmonic analysis.

On the other hand, the classical Morrey spaces, which are natural generalizations of LP(R™),
were first introduced by Morrey in [6] to investigate the local behavior of solutions to second-order
elliptic partial differential equations. Let us recall here the definition of Morrey spaces.

Definition 1.1. (Morrey spaces) For r and p satisfying 0 < p < r < oo, the Morrey space My is
defined by
My = {1 € L, g, = s sup B0,y < o0 -
zo€ER”™ R>0
Comparing to LP(R™), Morrey spaces generally describe the local regularity more precisely than
LP(R™) spaces do and thus can provide subtle improvements in regularity in elliptic boundary value
problems and non-linear evolution equations.

In recent years, there have been a number of authors extending the theory of Triebel-Lizorkin
spaces to the setting Triebel-Lizorkin-Morrey (TLM in abbreviation) by using Morrey spaces in
place of LP(R™) in the definition of Triebel-Lizorkin spaces, as they realized that TLM spaces share
a lot of key properties of Triebel-Lizorkin spaces, and represent local oscillations and singularities
of functions better than Triebel-Lizorkin spaces do. In 2005, L. Tang and J. Xu ([13]) introduced
the inhomogeneous TLM spaces and studied lifting properties, Fourier multiplier theorem and the
discrete characterization of inhomogeneous TLM spaces. In 2008, Y. Sawano ([9]) characterized the
inhomogeneous TLM spaces in terms of wavelet. After that, in 2009, H. Wang ([15]) established
the decomposition of homogeneous TLM in terms of molecules. For more results on TLM spaces,
we refer the interested reader to [5, [8, 9l 10, 111 12, 13], 15, 16]. More recently, in 2015, B. T. Anh
and D. X. Thinh ([I]) developed the theory of both homogeneous and inhomogeneous Besov and
Triebel-Lizorkin spaces associated to Hermite operators (harmonic oscillator) H on R"™, which is
defined by

H=—-A+|z|%

Motivated by all of the above-mentioned facts, in this paper we aim to develop the molecular de-
composition theory for homogeneous and inhomogeneous Hermite-Triebel-Lizorkin-Morrey (HTLM
in abbreviation) spaces associated to the Hermite operator H mentioned above. Let us now intro-
duce the definitions of homogeneous and inhomogeneous HTLM spaces associated to the Hermite
operator H via the semigroup characterization.

Definition 1.2. (Homogeneous HTLM spaces) Let a € R,0 < p, g < co,p < 1 < 0o we define the

o, H a,H,m o . . .
homogeneous HTLM space FM,-,. as any space FM > for any positive integer m satisfying

1
m > n + max{«, 0} + int [n <0 — 1)] +1,
0

where
e 0y = min{l,p,q},

1/q
dt
(t\/ﬁ)me_t‘/ﬁf’) ! - < 0

M

oo
o FMpyim =0 f €8 [f [ pppsm = / (t_a
0



Definition 1.3. (Inhomogeneous HTLM spaces) Let a€Rand 0 < p <7 < 00,0 < q < o0,
we define the inhomogeneous HTLM space IFMp .- as any space IFM: gﬂrm(ﬂ,'y) for any m €
Nyym>a+nand 0< <1 <ywithy—-p38>1,

where

T

v dt
aHm,_ . — —tVH
PMEE = {1 €8 W e = [, 1 e
1/q
dt
H( ta]txf)m’tff\) ) <o
M3

Noticing that these spaces are independent of the choice of m, 8,7 (see Theorem and Theorem
and thus are well defined. Then we study the HTLM boundedness of Riesz potential, Bessel
potential and spectral multipliers associated to the Hermite operator H, using the molecular decom-
position theorey developed. The identification between HTLM spaces and Hermite-Sobolev-Morrey
spaces is also investigated.

Remark 1.4. The Hermite-Triebel-Lizorkin spaces in [1] are special cases of our spaces.

It should be pointed out that our approach in this paper for investigating HTLM spaces associ-
ated to Hermite operators is to adapt the technique of maximal functions introduced by Fefferman-
Stein and Peetre, which has been recently developed further in [I], whereas usual approachs for
these types of function spaces are based on Littlewood-Paley decompositions. As a result of this
distinct approach, it is possible to extend the theory of the inhomogeneous HTLM spaces to the
setting where p and ¢ are below the endpoint 1.

We organize this paper as follows. In Section 2, we recall some notions and known results
concerning Hardy-Littlewood maximal functions, Morrey spaces, kernel estimates on Hermite op-
erators and the Calderén reproducing formulas. In Section 3 and 4, we aim to develop the molecular
decomposition theory of homogeneous and inhomogeneous HTLM spaces. We then apply the the-
ory of these compositions to establishing the boundedness of singular integrals associated to H in
Section 5. In the last section, we prove the identification between HTLM spaces and Hermite-
Sobolev-Morrey spaces. The main results in this paper generalize the corresponding results in
.

Throughout the paper, the letters C' and ¢ are always used to denote positive constants that
are independent of the main parameters and whose values may vary from line to line.

Let us denote A < B if there is a positive constant C' so that A < CB and
A~ Bif A< Band B < A

For a € R, we denote the integer part of a by int(a).

In addtion, the following notions are also used in the paper.

a A'b=min{a,b},a Vb= max{a,b}
N=1{0,1,2,..},N; = {1,2,3,..}
" ={-1,-2,.},Zy ={0,—1,-2, ..},

2. Preliminaries

2.1. Preliminary results
Firstly, let us recall the set of all dyadic cubes D in R"

D= H [ijk7 (mj + 1)2k) Pmy, Mo, ...,My, k €7
j=1
For a dyadic cube @ := [[}_, [ijk, (mj+ 1)2'“), we denote by ¢(Q)) and x¢ the length and the
center of the dyadic cube @ respectively. It is clear that £(Q) = 2* and rQ = ((mj + 1/2)2’“)?:1



For v € Z, we set
D,={Q €D :4Q)=2"}.
For 6 > 0, the Hardy-Littlewood maximal function My is defined by

1/6
1 n
oS (@) = sup | oz / Fw)ldy|  zer,
B

Box

where the supremum is taken over all balls B C R” containing x. When 6 = 1 we just write M.
Let us recall the concept of a molecule associated to the Hermite operator H in [I].

Definition 2.1. Let 0 < r < oo, € R, and N,M € N,. A function u is said to be an
(H, M, N, a,r) molecule associated to H if there exist a function b from the domain (vH)™ and a
dyadic cube @@ € D such that

—n—N
i) [V o) < o@ Hap i (1 ) T o k=0,
We will denote u by mg. If a function mg satisfies (i) and (ii) for £ = M, ...,2M only then we
say that mq is an (H, M, N, o, r)-zero level molecule.

In the next sections, we will need the following lemmas.

Lemma 2.2. [/, p.147] Let N > 0,n,v € Z and v < 1. For any sequence of functions {fg}qen,

satisfying
_ —n—N
[fo(@)| S (1+27"z —zql) "

9

then for any 6 > and any sequence of numbers {sq}qep,, we have

n
n+ N

— 6
> Isqllfela) S 20y [ Y [sqlxe | ().
QED, QED,
Lemma 2.3. [, Lemma 3.6] Let o € R,0 < p,q < 00,p < r < oo. Suppose that M, N > 0 and

m > max{a,0} + N + n.

Then for any sequence of (H, M, N, «, ) molecules {mQ :Q €D,,veE Z}, one has

m—N—n
1. ‘(t\/ﬁ)me_t‘/ﬁmcz(x)‘ < |Q[e/n=1/r (;) (1+27z —2o) ™™ N foralit < 2v.
QU M |$ - xQ| —n—N
2. ’(t\/ﬁ)me_t‘/ﬁmQ(x)‘ < |QJe/m=r (t) (1 + t) for all 2V < t.

Lemma 2.4. [, Lemma 3.6, p. 425-426] Let x,z € R", N € N} and t,a > 0. Then we have

a—y\ TN (L by Y aye (=N
1./ 1+ — 1+ — dySt”(7> 14+ — if t <a.
t a t a
R’n
o —y\ " e —y\ 7Y o — 2]\ T
2./ 1+ — 1+ —= dy§t” 1+ — ift > a.
t a t
Rn



2.2. Morrey space
We recall here some important estimates involving Morrey spaces which are often used in the
following sections.

Lemma 2.5. We have following statements

1. For 0 <p <71 < 00, we have
1£lIngy ~ sup [QY" 7| f || o). (2.1)
QeD
2. For0 <p<r<oo andf >0, we have
170 Iy, S ||f||§4;g- (2.2)

3. (Minkowski’s inequality) For 0 < p <r < oo and 0 < q¢ < p, we have

b 1/q b 1/q
dt dt
AT < e
(/ B 1) t) N</ 1P G0y, t) -
My,

Proof. By virtue of Remark 1.2 in [15], we include part 1. Next, we use part 1 to get part 2 and
part 3 immediately. O

The next lemma is the Feffereman-Stein vector-valued maximal inequality which plays a key
role in this paper. The proof of this lemma can be found in [I3, Lemma 2.5].

Lemma 2.6. Let 0 <p <r <o00,0<qg< 00 and0 <80 <pAq. Then for any sequence of function

{fv}tvez, we have / /
1 1
H(%Mafv!q) qHMgﬁH(éw) qHM;. (2.3)

In view of (1.7) in [I5, p.776] and (2.3) in [I5, p.779] respectively, one has the following two
lemmas.

Lemma 2.7. Let r and p satisfying 0 < p < r < 00,0 < q < 00,v € Z, and a sequence
{sq : Q € Dy} such that

1/q
_ q
>3 (IsellQl™"xq) < o0,
vEZ QEDy
M;
Then, we have
1/q
_ q
> Y (Isallol™xq)
UEZQGDU
Mg

p/q 1/p

~ sup <|J1|>1p/r/ > D (ISQHQI*I/TXQ)Q dw

JeP 7 |vez Qep,.Qcy

Lemma 2.8. Let r and p satisfying 0 < p < r < oo,v € Z, and a sequence {sq : Q € Dy} such
that

> QI sqlxg| < e

QeD, v
Then, we have
1 p)r 1/p
S0 o~ | sw () X @ sl
Gep, " Jepu()z2e \|J| Qehrocy



2.3. Kernel estimates on Hermite operators

Let us denote by S and S’ the space of Schwartz functions and the space of tempered distribu-
tions on R respectively. We recall that the space of Schwartz functions S consists of all functions
¢ € C°(R") so that for all multi-indices o and 3, we have

I9lla,s = sup 2*87¢(z)| < cc. (2.4)
TERM
For k > 0 and t > 0, we denote the kernel associated to (t\/ﬁ)ke*t‘/ﬁ by pii(z,y). When
k = 0, we drop the subscript k to write p;(z,y). One has the following results (see [1]).
Proposition 2.9. For all k € N,t > 0 and y € R" we have p; (-, y) € S.

Lemma 2.10. For k € N, there exist C > 0 and § > 0 so that
t

n+1°
(t +lz — yl)

tk
n+k’
(t+ |z~ yl)

h
3. 1f bl < ¢ then sl + hoy) — pusta )] < (21

1. pi(z,y) <C

2. pt,k(x7y) C

tk

n+k’
(t + e - y!)

2.4. Calderon reproducing formulas

Here we recall two Calderén reproducing formulas in [I], which play an important role in our
study of the molecular decomposition theory of homogenous and inhomogeneous HTLM spaces in
the sequent.

Proposition 2.11. (Homogeneous Calderén reproducing formula) Let mi,mo € Nt and f € S'.
Then we have

i dt
f=- o1 '/t\r )™ H(t\/ﬁ)’me_t\/ﬁf? in S,

0
where m = mq + mao.

Proposition 2.12. (Inhomogeneous Calderdén reproducing formula) Let mi,mo € NT and f € S'.
Then we have

m—1 12 m—1
f= gy [ VAR By 2 e s,
0

where m = mq + mao.

3. Homogeneous HTLM spaces

We obtain the following main results on molecular decompositions of the spaces FM;; ,]IHIrm.

Theorem 3.1. Let a € R,0 < p <71 < 00,0 < g <00 and 0y = min{l,p,q}. Suppose M, N € N,
and

1
m > n + max{«, 0} + int [n <¢9 — 1)] + 1.
0



p?q?r ’

Z} and a sequence of coefficients {SQ :Q € Dy,veE Z} so that

f:Z Z somg i S'.

'UEZ QEDU

For each f € FM%m then there exists a sequence of (H, M, N, a,r) molecules {mQ :Q € Dy,v e

Moreover,

p/q 1/p

1 1-p/r iy q p -
sup & (171) /Z > (el xe)!| drp S gz

JeD vEZ QEDY,QCJ

Proof. For f € FM®H™ in the light of Proposition we deduce that

p7q7r ’

f = Cm7M7N/(t\/ﬁ)M+N8t\/ﬁ(t\/ﬁ)met\/ﬁfit,
0

where
1

Em,M,N = - omEMAN-T( 4 M 4+ N — 1)

and the convergence is in the space of distributions S’. So we have

2v+1
—cnatn Y [ Ve B pyEyme
VEZ u
2'U+1
dt
= CmMNZ Z / (tVH)M+N e VH {(t\F)m *tffx ] -
vEZ QEDy 5
For each v € Z and Q € D,, we set
sq = 27 vlan/m) sup (t\/ﬁ)me*t‘/ﬁf(y)‘ (3.1)

(y,t)€Qx[2v,2vF1)

and mqg = HM/ QbQ, where

gu+1
bo=— [ MaVE)YeVE [(t\F) e VEfx }dt
SQ t
Sv
Then we obtain
f= Z Z sQmg in S
VEZ QED,
For k =0, ...,2M, by Lemma [2.10] for = € R", we have
2v+1
‘Hk/2bQ($)|: i / M~ k(t\ﬁ)z\uk —tVH [(t\ﬁ)m ftff }dt
sQ 5 t
2’U+1
5;@ / M- k/|PtN+kCUy |) tVH) e 7tff( )‘ it

'U

2v+1

m_—tV/H M—k tN dt
B )| [ [ G
v Q

< 2v(oz+Mfk7n/r) 1+ ‘w — I'Q‘ N
~ 2’[) °

S

1
— sup
SQ (yt)e@x[2v,2vF1)




It follows from these estimates that mg is a multiple of an (H, M, N, o, ) molecule.
In view of Lemma we can now conclude that

1/q

>3 (Isalla ™ xe)'| || S W lheagggo

vEZ QED,
M;

Indeed, it follow from the fact u(x,t) = H™/ 2-tVHf (z) is a solution of the equation
(—uy — A+ |z[*)u =

that u is subharmonic. Due to Lemma 5.2 in [2], it is clear to see that

1/6
sup [V f(y)| < / /e V)| deae |
(y:)eQ |Q|
where Q = Q x [2¢,2"T1) is a cube in R"™ and r > 0.
Observing |Q| ~ 2¥|Q| and ¢t ~ 2¥ whenever (y,t) € Q gives us
92v+1 1/9
sp_[572e R )| < | / [ e ,
(y t)EQ 521) 3Q
for any = € Q.
Therefore, by Minkowski’s inequality, we obtain
%2v+1 , d 1/9
—-1/r —va 1 m/2 — t
QI salxale) S 2 xol@y [ || [ ([ Ere)) ]|
3 %21}
%2u+1 1/6
_ 0 dt
Sxol || [ (0 ) @
e
Then, we have
_1r a
> (10 Isqlxo(@))
QEDy
i %2v+1 1/67 q
0 dt
slm || [ (e ) T @] X e
39v QEDy
- 4 -
i %2v+1 1/9_ q
_ 0 di
slmo || [ (e )T | @
39v
- 4 -

(3.2)

Combining the last estimate above with the Fefferman-Stein vector-valued maximal inequality

([2.3), we deduce that



1/q

>3 (Isell@l " xe)"

vEZ QEDy,
Mp
95ut1 1707\ 9y V4
8
0 dt
< M <fa m_—tvH D at
SRS || [ (o |evErme i)
VEZ 390
\ 4 M”
P
( 99u+1 /0y /4
’ 0 dt
P [ (e favEmeEg) S
VEZ %2“
Mp
Eventually, it follows from Hoélder’s inequality that
1/q
—1/r q
> (IsellRl™ xe
VEZ QED,
Mj
r 99u+1 1/q
’ adt
< e | (/Hyme VR | )
SIS [ (oo fevEme i)
veL 39v
L 4 M;;
[ oo 'l/q
_ _ a dt
< / (¢ evEDmetEs )" = |1 lpngg -
LO - M;

The follwing can be regarded as the converse to Theorem

Theorem 3.2. Let a« € R,0< ¢ < 00,0 <p<r<oo and Oy =min{l,p,q}. If

fzz Z somg n S,

VEZ QEDU

where {mQ :Q € Dy,v e Z} is a sequence of (H, M, N, a,r) molecules and {SQ :Q € Dy,v e Z}

s a sequence of coefficients satisfying

p/q 1/p

1-p/r
sup (E;) /Z > <‘3QHQ\_1/TXQ)q dx < o0,

JED vEZ QEDY,QCT

then f € FMggH,,m and

p/q 1/p

1-p/r iy q
1 lengg g S sup < ) / (|3QHQ| XQ) dz
J

VEZ QeDv,QCJ

provided that

m > max{a,0} + N +n, M > max{n/0y —a,m}, N >n(1/6p —1).



Proof. Observe that

qu+t1 ; 1/q
q _ —x m ft\/ﬁ ql

1 = || [ (672 evEme g )"

vEZ v
M (3.3)
_ a1 1/q
< Z Z 27" sup  sgl ‘(t\/]ﬁ)me_t\/ﬁmd

vel, erv t€[2“,2“+1)
L My

Let us now choose any 0 € (0,6p) such that M > n/0 —a and N > n(1/6 —1).
n , we then apply Lemmas

Hence, due to 6 > 2| and to deduce

> 2 swp sol |VE) eV Emg| xa(@) SMy | D 1@ Isqlxa| ()
QeD, t6[2”,2”+1) QED,

n+ N

Combining the above estimate with (3.3)) gives us

qy 1/q

q < —1/r
g S DMy | D IR sqlxe

" vEZ QED’U
M3

In the light of the Fefferman-Stein vector-valued maximal inequality (2.3]), we then obtain the
desired estimates

r a7 1/q
q —1/r

||f||FM;¢’,(@1H{:rm S Z Z |Q| ’SQ|XQ
UEZ QeDv
L M
r 1/q

_ q
SIS D (|5QHQ| WXQ)
VEZ QED,
L M
Finally, applying Lemma [2.7] completes the proof of the theorem. O

The next result shows the equivalence of the spaces FMg‘;ﬂ:m.

Theorem 3.3. Leta € R, 0 < p < o0, 0<qg< o0 andp <r < oo. Then the spaces FM;"’EI;,W

and FM?”E;”Z coincide with equivalent norms, provided that mi and mg are positive integers such
that

1
my,mg > n + max{a, 0} + int [n (9 - 1)] +1,
0
where 6y = min{1,p, q}.

Proof. Let us take positive integers N = int [n (% - 1)} + 1 and M > max {my, ma,n/0y — a}.

For any f € FM;‘;EI;,ml, in view of Theorem m there exist a sequence of (H, M, N,a,r)-
molecules

{mQ:QEDU,UEZ}
and a sequence of coefficients
{SQ 1 Q € Dy,v GZ}

10



such that

f:Z Z somg in S’

vEZ QEDy
and
1/q
_ q
> > (Isellel™ xe) < lhgggzsions
VEZ QED, ’
M;
Then it follows from Theorem that f € FM: (]IHIer and
1/q
_ q
[ lppgzme S| |22 D2 (IsellQI™xq) S 1 g -
7 VEZ QED, ’
M

In other words, we obtain

FM??’£ﬂ7m1 C FMg;éHLm2
and
I ||FM‘;;§W2 S ||FMaHm1

By a similar argument, it is easy to see that
a,H,mao a,H,m
FM, C FMp ™

and

I HFM;‘,';EI*W S ||FMaHm2

4. Inhomogeneous HTLM spaces

The main goal of this section is to establish molecular decompositions for inhomogeneous HTLM

spaces IFMp; gﬂr(ﬁ, 7).

Let us first introduce the definition of inhomogeneous HTLM type spaces IFMZ‘;E,;’”(ﬂ ,7y) via
the semigroup characterization.

Definition 4.1. Let « € R, m € Nyja+n <mand 0 < p < r < 00,0 < g < o0 and let
0< B <1<~y withy— > 1. The inhomogeneous HTLM spaces IFMggﬂrm(ﬁ, ) are defined to
be the set of all functions f € S’ such that

< 00.

Psq,T
-
My

g dr\ M
ooy =, 1Sl Lol ([ e revmmenmppd)

Theorem 4.2. Leta e RO<p<a+np<r<occand0<qg<ooandlet0< <1<y with
y—pB>1. For M eNy andm>a+n, if f € IFMS‘;HITm(ﬁ,v) then there exist:

e a sequence of (H, M, 1, o, ) molecules {mq}qep, ez

e a sequence of (H, M, 1,c, 1) zero level molecules {mq}gep,,

e a sequence of coefficients {sqQ}gep -
v,vELG

11



such that

f= Z Z somg in S'.

vezy QEDy
Moreover,

p/q 1/p

1 1-p/r " q
() |22 et | e S e

Jep vez; QEDL.QC

Proof. In the light of Proposition [2.12], we can write

om+M—1 m+M—1

1/2
f:——) /0 (t\/ﬁ)Me—Wﬁ(t\/ﬁ)me—Wﬁf%Jr >

1 k,—VH (i q
(m+ M —1), 2 —(VH)ke VEF (in ).

k!

For each v € Z~ and Q € D, we set

Q _ 2—V(C!—n/r) Sup |(t\/ﬁ)me_t\/ﬁf(y)|
(1 HEQx[221,27)
and mqg = HM/2bQ7 where

v

2
bg = 1 tMe_t‘/ﬁ[(t\/ﬁ)me_t‘/ﬁf.XQ]@.

SQ 21/71 t
For ) € Dy we set
sq = suple VHf(y)|
yeQ
and
m+M-—1
— Z 2k(\/ﬁ)ke—(l—m)\/ﬁ(e—m\/ﬁf‘xQ)7
5Q 1o

where 79 = (1 + 3)/2.
Using the argument used in the proof of Theorem yields that mq is an (H, M, 1,«,r)
molecule for Q) € D,,v € Z~ and

p/q 1/p

sup <‘1J|>1p/r/ > Y (ISQHQI*I/TXQ)(] dw

JeD vEZ~ QED,,QC]

< / (2 (VBT g ) dt)l/q.

We now claim that mq is an (H, M,1, o, r) zero level molecule for @ € Dy. Indeed, for k =
0,..., M, in view of Lemma [2.10] it is clear that

1 1 . e
B ma(x)] £ 5 /Q Tl )y S (14 o —ag)

which shows that mg is an (H, M, 1, o, r) zero level molecule for Q € Dy.

Let I be an interval in (0, 00) such that [I| =1/2,79 € I C (5,7). Then we can find 1 <n < 2
so that nI C (8,~). We now follow the reasoning used in Theorem [3.1| to deduce that \e*t‘/ﬁ fI?is
subharmonic.
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Therefore, for @Q € Dy,0 < § < min{l,p,q} and x € Q,

1/6
_VH 1 —tvH 0

so| < suple fly §< / e flz dzdt)

el < swple ™ w15  iarieam [, [ Je

([ @)

which, together with |Q| = 1, implies that

S (10 salxote))" 5 [ua( [T ) ) "

QeDy

The above estimate, combining with Lemma, yields that

p/q 1/p
1\ P 1 q
(7)) [| X (saller )| e
Jeb 7 |@epo.cy
1/6
s|pa( [l )
- B ¢ M
By the inequality (2.2)) in Lemma it is clear to see that
1/p
N1/ 1 , p/a
sup (M) / > (!8QIIQ\‘ /TXQ) dx
Jeb Y |@epoacy
0 dt 1/60
ftf
HM</ ’ ’ > T/G

Finally, using the M;ég— boundedness of M, we can then conclude that

1\ -#/r . p/q 1/p
Teb <ur> / > (el xe)'|  dx
7 | QED0,QCJ
H/ e ‘9 dt||'/? << dt>1/9
Mo ~\Js sz t

p 1/9
( / e B8y, t) / e VE gy 2

where we used Minkowski’s inequality and the inequality (2.2)) in the second estimate and the third
estimate respectively. This completes the proof. ]

Theorem 4.3. Let ;25 <p <r <oo, ;25 <¢g<oo,a € R andm > a+n. Assume that

f= Z Z somq in S,

veELy QeD,
where
. {mQ}QEDV,VEZ_ is a sequence of (H, M, 1, a, 1) molecules,

o {mqg}toen, is a sequence of (H, M,1,«,r) zero level molecules,

13



° {SQ}QGDV,VEZO_ s a sequence of coefficients

such that

p/q 1/p

1-p/r
sup <|;|> /Z > (!8@\|Q!‘””><Q>q dz o <oo.

D
Je veZy QEDLQCT

Then f € IFM2Em(3 ) and

p7q’/r

p/q 1/p

1 1-p/r 1/r q
I heesagzrcany < 2004 (757) / > Y (selle )| arp

JeD vezy QEDy.QC

whenever M > max{n — a,m} and f <1 <~ withy— > 1.
Proof. The proof of Theorem [£.3] is similar to that of Theorem [3.2] and we omit details here. [
The following result is a direct consequence of Theorem [4.2] and Theorem [4.3]

Theorem 4.4. Let a € R, 15 < p,g <00, 0 < f1 <1<y withy —f1 >1and 0 < Bz <

1 < 72 with v9 — B2 > 1. Then the spaces IFMg‘;f;ml (B1,71) and IFMIO,‘CIIHI,,m2 (B2,72) coincide with

equivalent norms, provided that mi, mo € Ny with my, me > a + n.
As a result of Theorem |4 . we can define the Triebel-Lizorkin-Morrey space IFMqu with
a € R and 77 < p,g¢ < oo as the space IFM%Em (3 ~) for any m € Ny,m > a +n and

p.q,T
0<pf<l<ywithy—pg>1.

For « € Rym € N and 1 < p,q < oo, we define the (inhomogenenous) HTLM type spaces
IFM®Em as follows

p,q,r

p,q,r

1 dt\ /4
IFMeEm . {f €8¢ || fllypngerm =l fllngy + H (/ (ta(t\/ﬁ)metmf)q>
P,q 0 t

<oo}.
Mj

It turns out that the spaces IFM;‘;;}?I”” and IFM;’,‘;qH coincide.

Theorem 4.5. Leta e R, m e Ny ,m > a+n and 1 < p,q < oco. Then the spaces IFM;‘(]]HITm and

IFMZ;HIT coincide with equivalent norms.

Proof. The proof of Theorem [4.5 is similar to that of Theorem [£.2] Here we just give a sketch of
the proof.
Firstly, we prove that if f € IFM®™ then f has a decomposition as in Theorem H To this

p?q?r
end, by a minor modification of the proof of Proposition in [I], one can write

A M —tVH it TN ko2VE i g
f= G rar=y f, Ve VB VTS e
: k=0

For each v € Z~ and Q € D,, we set

so =277 ap VE)me VAR
(y,t)EQx[2v—1;2v)

and mg = (VH)Mbg, where

v

1 /2 dt
bg = / tMe_t\/ﬁ[(t\/ﬁ)me_t‘/ﬁf.XQ]—.
5Q Jor—1 t
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For Q € Dy, we set

sQ = ( /Q |e“ﬁf<y>|f°dy)l/p

and
m+M—-1
2
> Ve e ).
) k=0
Certainly,
=2 ) seme
VELy QeDy
In addition, it is easy to see that
1/p
1 1-p/r B -
ow ()X sy | =[]
Jepa()=1 \|| QeDo.QC ) M

At this stage, by applying Lemma and Hoélder’s inequality, we can claim that mg are (H, M, 1, o, 1)
zero level molecules for @ € Dy. The remaining of the proof is then similar to that of Theorem
so we omit details. O

5. Some applications

5.1. Boundedness of Hermite-Riesz and Hermite-Bessel potential on HTLM spaces
In view of Proposition 2.9} for k € N and f € S, we define

(Nﬁ)k V(@) = (fiper(z, ),

where (-;-) is the pair between a linear function in S’ and a function in S.
In the light of [I, Proposition 2.5], it is easy to obtain the following lemma.

Lemma 5.1. Assume that ¢ € S. Then we have the following statements:
1. H=? € S, for all ¢ > 0.
k
2. (t\/ﬁ) eVE S forallkeN,t>0.

Moreover, by adapting the argument used in [I, Proposition 2.5], it can be verified that for
¢ €S,

1 o° dt
H—O’¢ — / tge_thb—
L'(v) Jo t

Definition 5.2. For ¢ > 0, thanks to Lemma one can define Hermite-Riesz potential H™7 :
S’ — S’ by

(H™7f,¢) = (f,H 79),
for all f €S and ¢ € S.

Let us denote by K;(z,y) the kernel of the semigroup e *. By applying the estimates in Lemma
2.4 of [1], one easily obtains the following lemma.

Lemma 5.3. For k € N, there exists ¢, C > 0 such that for all x,y € R™, we have

ot exp( \a:ty|2)’ 0<t<1;

R K (x,y)| <
. y)\_{ e
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Theorem 5.4. Let « e R, 0 <p <r < o0 and 0 < g < oco. Then, for s > 0, the operator H™° is

H +s,H
bounded from IFM, . to TFNM* 5.

Proof. Take a sequence of (H,4M, N, a,r) molecules {mQ :Q € Dy,v € Z}, with M,N € N

and M > s+ n/2+ N/2. Then we shall claim that H™*(mgq) is an (H,2M, N, a + 2s,7) molecule
associated to the cube Q. To this end, assume that mg = H2M bg. Then it is clear to see that
H™*mg = HMyQ, where yg = H*SHMI)Q. We will prove that

—n—N
(VE sglo)] < Cr@HQpe/mr (14 Esal)

for k =0,...,4M. Indeed, we can write

1 & dt
— Hfs]H[Mb - = 5 7tHHMb e
Yo () Q F(S)/O e ()

which implies that

(VE)ryo(x) = /oo tse_tH(\/ﬁyMJrka(gj)%

T(s) Jo

_ L + se—tH 2M+k T @
ti eV () ]

+ I‘(ls) /jo tse_tH(\/ﬁ)QMJrka(x)%.

Therefore, we deduce that

Y dt
(VB ugle) < 55 [ [ BV (e T
1 s —H VH)2M+k dt
i L [PV bQ(x)‘ =
=11 + 5.
Notice that, by Lemma [5.3
2
r—=y
Ki(z,y) < nja P <—C| : | > (5.1)
and that, by Lemma 2.5 in [3],
C x —yl?
Kt,k(xay) < WQXP (—C‘ ty‘ > ) (52)

where K, ;(z,y) is the kernel of (tH)*e ™ for k € N.
We are now ready to estimate I; and I». By applying (5.1)), we have

e VP o) = [ [ i) (VER () dy

R

< L _ |‘T_y|2 \/72M+kb d
S| e (e |(VH) Q(y)ldy,
Rn

which, together with Definition [2.1] gives

‘e—tH(\/ﬁ)2M+ka(x)‘

</1 1+ |l’—y| 7n7N|Q‘a/nfl/r2v(2Mfk) 1+ ‘y—fL'Q‘ 7n7Ndy
~ tn/2 \/E X )

R
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Applying Lemma [2.4] to the above estimate yields

‘eftH(\/ﬁ)QM+ka(x)’

< ﬁ n|Q|a/n—1/r2v(2M—k) 1+ ‘xi‘rQ‘ N

which implies that

< gun||a/n—1/rou(2M—k) ’af—l'Q’ e sfn/th
I < 2°7|Q) 2 1+ 2

—n—N
rT—x
S ’Q‘(a—i-Qs)/n—l/er(QM—k) (1 + | > Q|> )
For the term I, we apply (5.2) to obtain
’HMe_tH(\/ﬁ )*bo () ‘ =t M ‘(tH)Me_tH(\/ﬁ)ka(x)

<t-M/)KtM 2, 0) (VE) by dy

M / e (e (VB o ),

which combined with Definition gives

[ e~ (V) b ()|

< t_M/ 1 1 + ’x — y’ N |Q|Oé/n—1/7”21)(4M—k‘) 1 + |y B xQ’ N d
~ tn/2 \/i 721} Y.
R

We then apply Lemma to the above estimate, noticing that ¢ > 4Y, to have

—n—N
‘Hme—tH(\/ﬁ)ka(l,)’ < t—M|Q|a/n—1/r2v(M—k) <1 + E \/;Q|>

(n+N)/2 —n—N
t -
S <4U> th’Q|a/nfl/r20(4M7k) <1 ’37 2U$Q’> ’

which finally implies, due to M > s+ n/2 + N/2, that

00

a/n—1/rov(dM—k—N—n) |5C - xQ| N 5+M_Mdt

I2 S |Q| 2 1+ T t 2 7
4’U

—n—-N
S ’Q|a/nfl/r2v(4Mfkafn)21}(2s+n+N72M) <1 + "T ;va’> "

—n—N
< |Q|(a+25)/n—1/r2v(2M—k) (1 + E 2f@|> ‘

Therefore, we proved that H™*(mg) is an (H,2M, N, 4 2s,r) molecule associated to the cube Q.
By the suitable choice of M, N and using Theorem [3.1] and Theorem [3.2] we then deduce the

boundedness of H™* from IFM: (IIHIT to IFMngiH immediately. This completes the proof. O

By adapting the same arguments used in [I, Proposition 2.5], it can be verified that for ¢ € S,

1 & dt
T H) %= —— o —t —tH  “¥ S.
(I+H) ¢ F(’Y)/g e e Mo ; €
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Definition 5.5. For s > 0, we define Hermite-Bessel potential (I +H)™®: S’ — S’ by setting

(I+H)"°f,0) = (f, [+ H)"¢),
for all f €S and ¢ € S.

Similarly, we can show the boundedness of the Hermite-Bessel potential (I + H)™*® on inhomo-
geneous HTLM. More precisely, we have the following result.

Theorem 5.6. Let s > 0,0 € R, 25 < p <1 < 00,5 < ¢ < oco. Then (I +H)™* maps

. o H a+2s,H
continuously from IFMWM mnto IFMp’qm .

Proof. The proof of Theorem is analogous to that of Theorem [5.4] so we omit the details. [

5.2. Boundedness of spectral multipliers
In this subsection, we consider the spectral multipliers of Laplace type for the Hermite operators
in the following form

m(H) = /O ~ o) He M, (5.3)

where ¢ € L*(R).
By employing the same arguments as those in [I, Proposition 2.5], one can easily verify that
m(H)¢ € S when ¢ € S. Hence, for f € S’ m(H)f can be viewed as a functional in S’ by setting

(m(H)f, ¢) = (f, m(H)e).

As an application of the molecular decomposition theory developed in Section 3, we show bound-

edness of the spectral multiplier m(H) on FM?,’(]]H,IT‘

Theorem 5.7. Let a € R,0 < p <7 < o0 and 0 < g < co. Then the spectral multiplier m(H) is

H
bounded on FMp7 " .

Proof. The proof of this theorem is similar to that of Theorem [5.41 We just give a sketch of the
proof here.

With the same notions as in the proof of the Theorem it suffices to prove that for any
(H,4M, N, o, ) molecule mg = H*™bg, we have m(H)mg is an (H,2M, N, «,7) molecule associ-
ated to the same dyadic cube @ € D, for some v € Z.

To this end, let us first write m(H)mg = HMyg, where

o0
Yo = /O o(t)He MHM by dt.

Then, for £ =0,...,4M, we have

4v 00
VH)ryo = | o)e BHMF 2 podr + | () HM e E(VH) b dt.
0 4qv

At this stage, we estimate
41/
(VB sgla) < [ ot MBI g )

+ / OO () HM et (VH)*bg (z)|dt

v

< /0 e~ HHM AR/ 21 (2)|dt + A ) HM e~ H(VH) b () |dt
=1+ I

Finally, by repeating the same arguments as in the proof of Theorem 5.1, we deduce that

—n—N
R (T

which completes the proof of Theorem [5.7] O
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6. Identification between HTLM spaces and Hermite Sobolev spaces

Let s ¢ R and 1 < p < co. We define the homogeneous Sobolev space WS’IEI associated to the
Hermite operator H by

{£ €S Ifllwry = I(VED* ey < o0}

For 5 € Ry, we consider the following square function

_ dt n
Gas = ([ lovmpe ) g
One can easily check that Ggp is bounded on L?(R™), using the spectral theory. In addition, the
M boundedness of G g will be verified below.
Lemma 6.1. For f >0 and 1 <p <r < 00, the square function Ggu is bounded on Mj,.

Proof. The proof of this lemma is standard. We just give a sketch of the proof here.
Put m = int(B) + 1. For f € L*(R"), let us write

(tVH) e VEf = (¢vH) ("8 (tv/H) e VE f

“rm ) (1) evmre ey
S (1) () et

Plugging (ii) of Lemma 2.1 into the expression above and by a straightforward calculation we can
conclude that

B8
(t+ |z —ypntr

P, y) S

Analogously, we can prove that for |h| < ¢,
B
(t+ |z =yt

h
ata + 1) - st 5 ()

In the light of the last two estimates, it is well-known from Calderén -Zygmund theory of vector
valued singular integrals that the operator Ggp is bounded on M. O

We are now in a position to prove the identification between HTLM spaces and Hermite Sobolev
spaces.

Theorem 6.2. Let s € R and 1 < p < oo. Then the spaces Wg’]& and FM;:IS{T coincide with
equivalent norms.

Proof. Assume first that f € Wi’;ﬁ Then for m > max{s,0} and in view of Lemma one has
00 dt\ /2
HfHFMSH = H </ t—28|(t\/ﬁ)me—t\/ﬁf|2) ‘
P,2,7 0 t My,
oo dt\ "2
H(/ t\/7m s ft\ﬁ(HS/Qf)IQ >
0

00 1/2
([ 1Gnnalo/r )
0
S NVED*Flngg = 1w,

M3

M
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Conversely, now assume that f € FMp 9.~ By Proposition we can write

H/2 f(z) = cm/n /OOO(t\/ﬁ)me_t‘/ﬁ(t\/ﬁ)me_t\/ﬁHS/zf(x)Cit.

Therefore,

/ /2 (2)g () da
.

- m/ / " VEm e VAVE) e VR f(2)g(2) P da
nJ0

t

= cm/ /OO t_s(t\/ﬁ)me_t‘/ﬁf(w)(t\/ﬁ)m”e_t\/ﬁg(x)ﬂdm.
nJo

t

Finally, for g € S and m > max{s, 0}, it follows from Hoélder’s inequality for Morrey spaces and
from Lemma [6.1] that

H*? f(z)g(z)dx
Rn

<[ ([ e —”ﬁﬂmﬁ‘f)m( /Ooo!(t\/]ﬁ)mﬂe—tx/ﬁg(m)’z‘?)lﬂ .

H( [t (V)R (o )\th>1/2 </ooo|(t\/ﬁ)m+56_t\/ﬁg(x)|2ﬁ>l/2

M3 t M)
S I lengzs, |Gmssiagllgy
S 1 lengzz 9l
which combined with the fact that S is dense in M;i implies that
572 fllnt; S 1 ez
This completes our proof. O

Similarly, we can obtain the identification between HTLM and Morrey-Sobolev spaces for in-
homogeneous version.

Let s € R and 1 < p < oco. We define the inhomogeneous Sobolev space IW’S”%I associated to
the Hermite operator H by 7

{£ e8I lwey = I+ H) 2], < o0}

Theorem 6.3. Let s € R and 1 < p < oco. Then the spaces IW?EH and IFM;:IS{T coincide with
equivalent norms.

Proof. The proof can be processed using the same arguments as those of Theorem [6.2]and we would
like to leave it to the interested reader. O
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