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Abstract

The aim of this article is to establish molecular decomposition of homogeneous and inhomogeneous
Triebel-Lizorkin-Morrey spaces associated to the Hermite operator H ≡ −∆+ |x|2 on the Euclidean
space Rn. As applications of the molecular decomposition theory, we show the Triebel-Lizorkin-
Morrey boundedness of Riesz potential, Bessel potential and spectral multipliers associated to the
operator H. These results generalize the corresponding results in [B. T. Anh, D. X. Thinh. Besov
and Triebel-Lizorkin Spaces Associated to Hermite Operators. J. Fourier. Anal. Appl 21 (2015)
405–448].
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1. Introduction

The classical Triebel-Lizorkin spaces, which contain a number of key function spaces, including
Sobolev spaces, Bessel-potential spaces, Hardy spaces and BMO spaces, plays an important role in
the theory of function spaces because of its wide applications in the theory of partial differential
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equations and harmonic analysis. For example, classical Triebel-Lizorkin spaces can be used in
some priori estimates of elliptic differential operators or in constructions of time-local solutions of
Navier-Stokes non-linear equations since they measure the oscillatory properties of a distribution
more accurately than Sobolev spaces do, while still possessing the same smoothness and scaling
properties. It is well-known that the classical Triebel-Lizorkin spaces can be characterized via
Laplace operator ∆ or its square root on Rn. Recently, the theory of Triebel-Lizorkin spaces
associated to operators has been studied intensively by many authors, see for instance [1, 7, 14]
and the references therein, since the classical Triebel-Lizorkin spaces (associated to Laplacian) are
no longer appropriate for the study of boundedness of a number of operators arising in the theory
of partial differential equations and harmonic analysis.

On the other hand, the classical Morrey spaces, which are natural generalizations of Lp(Rn),
were first introduced by Morrey in [6] to investigate the local behavior of solutions to second-order
elliptic partial differential equations. Let us recall here the definition of Morrey spaces.

Definition 1.1. (Morrey spaces) For r and p satisfying 0 < p ≤ r < ∞, the Morrey space Mr
p is

defined by

Mr
p ≡

{
f ∈ Lploc : ‖f‖Mr

p
= sup

x0∈Rn
sup
R>0

Rn/r−n/p‖f‖Lp(B(x0,R)) <∞
}
.

Comparing to Lp(Rn), Morrey spaces generally describe the local regularity more precisely than
Lp(Rn) spaces do and thus can provide subtle improvements in regularity in elliptic boundary value
problems and non-linear evolution equations.

In recent years, there have been a number of authors extending the theory of Triebel-Lizorkin
spaces to the setting Triebel-Lizorkin-Morrey (TLM in abbreviation) by using Morrey spaces in
place of Lp(Rn) in the definition of Triebel-Lizorkin spaces, as they realized that TLM spaces share
a lot of key properties of Triebel-Lizorkin spaces, and represent local oscillations and singularities
of functions better than Triebel-Lizorkin spaces do. In 2005, L. Tang and J. Xu ([13]) introduced
the inhomogeneous TLM spaces and studied lifting properties, Fourier multiplier theorem and the
discrete characterization of inhomogeneous TLM spaces. In 2008, Y. Sawano ([9]) characterized the
inhomogeneous TLM spaces in terms of wavelet. After that, in 2009, H. Wang ([15]) established
the decomposition of homogeneous TLM in terms of molecules. For more results on TLM spaces,
we refer the interested reader to [5, 8, 9, 10, 11, 12, 13, 15, 16]. More recently, in 2015, B. T. Anh
and D. X. Thinh ([1]) developed the theory of both homogeneous and inhomogeneous Besov and
Triebel-Lizorkin spaces associated to Hermite operators (harmonic oscillator) H on Rn, which is
defined by

H = −∆ + |x|2.

Motivated by all of the above-mentioned facts, in this paper we aim to develop the molecular de-
composition theory for homogeneous and inhomogeneous Hermite-Triebel-Lizorkin-Morrey (HTLM
in abbreviation) spaces associated to the Hermite operator H mentioned above. Let us now intro-
duce the definitions of homogeneous and inhomogeneous HTLM spaces associated to the Hermite
operator H via the semigroup characterization.

Definition 1.2. (Homogeneous HTLM spaces) Let α ∈ R, 0 < p, q ≤ ∞, p ≤ r ≤ ∞ we define the
homogeneous HTLM space FMα,H

p,q,r as any space FMα,H,m
p,q,r for any positive integer m satisfying

m > n+ max{α, 0}+ int

[
n

(
1

θ0
− 1

)]
+ 1,

where

• θ0 = min{1, p, q},

• FMα,H,m
p,q,r :=

f ∈ S′ : ‖f‖
FMα,H,m

p,q,r
=

∥∥∥∥∥∥∥
 ∞̂

0

(
t−α

∣∣∣(t√H)me−t
√
Hf
∣∣∣)q dt

t

1/q
∥∥∥∥∥∥∥
Mr
p

<∞

 .
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Definition 1.3. (Inhomogeneous HTLM spaces) Let α ∈ R and 0 < p ≤ r ≤ ∞, 0 < q ≤ ∞,
we define the inhomogeneous HTLM space IFMα,H

p,q,r as any space IFMα,H,m
p,q,r (β, γ) for any m ∈

N+,m > α+ n and 0 < β < 1 < γ with γ − β > 1,
where

FMα,H,m
p,q,r :=

{
f ∈ S′ : ‖f‖

IFMα,H,m
p,q,r (β,γ)

=

ˆ γ

β
‖e−t

√
Hf‖Mr

p

dt

t

+

∥∥∥∥(ˆ 1

0
(t−α|(t

√
H)me−t

√
Hf |)q dt

t

)1/q ∥∥∥∥
Mr
p

<∞

}
.

Noticing that these spaces are independent of the choice of m,β, γ (see Theorem 3.3 and Theorem
4.4) and thus are well defined. Then we study the HTLM boundedness of Riesz potential, Bessel
potential and spectral multipliers associated to the Hermite operator H, using the molecular decom-
position theorey developed. The identification between HTLM spaces and Hermite-Sobolev-Morrey
spaces is also investigated.

Remark 1.4. The Hermite-Triebel-Lizorkin spaces in [1] are special cases of our spaces.

It should be pointed out that our approach in this paper for investigating HTLM spaces associ-
ated to Hermite operators is to adapt the technique of maximal functions introduced by Fefferman-
Stein and Peetre, which has been recently developed further in [1], whereas usual approachs for
these types of function spaces are based on Littlewood-Paley decompositions. As a result of this
distinct approach, it is possible to extend the theory of the inhomogeneous HTLM spaces to the
setting where p and q are below the endpoint 1.

We organize this paper as follows. In Section 2, we recall some notions and known results
concerning Hardy-Littlewood maximal functions, Morrey spaces, kernel estimates on Hermite op-
erators and the Calderón reproducing formulas. In Section 3 and 4, we aim to develop the molecular
decomposition theory of homogeneous and inhomogeneous HTLM spaces. We then apply the the-
ory of these compositions to establishing the boundedness of singular integrals associated to H in
Section 5. In the last section, we prove the identification between HTLM spaces and Hermite-
Sobolev-Morrey spaces. The main results in this paper generalize the corresponding results in
[1].

Throughout the paper, the letters C and c are always used to denote positive constants that
are independent of the main parameters and whose values may vary from line to line.
Let us denote A . B if there is a positive constant C so that A ≤ CB and
A ∼ B if A . B and B . A.
For a ∈ R, we denote the integer part of a by int(a).
In addtion, the following notions are also used in the paper.

a ∧ b = min{a, b}, a ∨ b = max{a, b}

N = {0, 1, 2, ...},N+ = {1, 2, 3, ...}

Z− = {−1,−2, ...},Z−0 = {0,−1,−2, ...}.

2. Preliminaries

2.1. Preliminary results

Firstly, let us recall the set of all dyadic cubes D in Rn

D =


n∏
j=1

[
mj2

k, (mj + 1)2k
)

: m1,m2, ...,mn, k ∈ Z

 .

For a dyadic cube Q :=
∏n
j=1

[
mj2

k, (mj +1)2k
)

, we denote by `(Q) and xQ the length and the

center of the dyadic cube Q respectively. It is clear that `(Q) = 2k and xQ =
(
(mj + 1/2)2k

)n
j=1

.
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For v ∈ Z, we set
Dv = {Q ∈ D : `(Q) = 2v} .

For θ > 0, the Hardy-Littlewood maximal function Mθ is defined by

Mθf(x) = sup
B3x

 1

|B|

ˆ

B

|f(y)|θdy

1/θ

, x ∈ Rn,

where the supremum is taken over all balls B ⊂ Rn containing x. When θ = 1 we just write M.
Let us recall the concept of a molecule associated to the Hermite operator H in [1].

Definition 2.1. Let 0 < r ≤ ∞, α ∈ R, and N,M ∈ N+. A function u is said to be an
(H,M,N, α, r) molecule associated to H if there exist a function b from the domain (

√
H)M and a

dyadic cube Q ∈ D such that

(i) u = (
√
H)Mb;

(ii)
∣∣∣(√H)kb(x)

∣∣∣ ≤ `(Q)M−k|Q|α/n−1/r
(

1 +
|x− xQ|
`(Q)

)−n−N
for all k = 0, ..., 2M.

We will denote u by mQ. If a function mQ satisfies (i) and (ii) for k = M, ..., 2M only then we
say that mQ is an (H,M,N, α, r)-zero level molecule.

In the next sections, we will need the following lemmas.

Lemma 2.2. [4, p.147] Let N > 0, η, v ∈ Z and v ≤ η. For any sequence of functions {fQ}Q∈Dv
satisfying

|fQ(x)| .
(
1 + 2−η|x− xQ|

)−n−N
,

then for any θ >
n

n+N
and any sequence of numbers {sQ}Q∈Dv , we have

∑
Q∈Dv

|sQ||fQ(x)| . 2(η−v)n/θMθ

∑
Q∈Dv

|sQ|χQ

 (x).

Lemma 2.3. [1, Lemma 3.6] Let α ∈ R, 0 < p, q ≤ ∞, p ≤ r ≤ ∞. Suppose that M,N > 0 and

m > max{α, 0}+N + n.

Then for any sequence of (H,M,N, α, r) molecules
{
mQ : Q ∈ Dv, v ∈ Z

}
, one has

1.
∣∣∣(t√H)me−t

√
HmQ(x)

∣∣∣ . |Q|α/n−1/r ( t

2v

)m−N−n
(1 + 2−v|x− xQ|)−n−N for all t ≤ 2v.

2.
∣∣∣(t√H)me−t

√
HmQ(x)

∣∣∣ . |Q|α/n−1/r (2v

t

)M (
1 +
|x− xQ|

t

)−n−N
for all 2v ≤ t.

Lemma 2.4. [1, Lemma 3.6, p. 425-426] Let x, z ∈ Rn, N ∈ N+ and t, a > 0. Then we have

1.

ˆ

Rn

(
1 +
|x− y|
t

)−n−N (
1 +
|z − y|
a

)−n−N
dy . tn

(a
t

)n(
1 +
|x− z|
a

)−n−N
if t ≤ a.

2.

ˆ

Rn

(
1 +
|x− y|
t

)−n−N (
1 +
|z − y|
a

)−n−N
dy . tn

(
1 +
|x− z|
t

)−n−N
if t ≥ a.
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2.2. Morrey space

We recall here some important estimates involving Morrey spaces which are often used in the
following sections.

Lemma 2.5. We have following statements

1. For 0 < p ≤ r <∞, we have

‖f‖Mr
p
∼ sup

Q∈D
|Q|1/r−1/p‖f‖Lp(Q). (2.1)

2. For 0 < p ≤ r <∞ and θ > 0, we have

‖fθ‖Mr
p
. ‖f‖θ

Mrθ
pθ
. (2.2)

3. (Minkowski’s inequality) For 0 < p ≤ r <∞ and 0 < q ≤ p, we have∥∥∥∥∥
(ˆ b

a
|F (·, t)|q dt

t

)1/q
∥∥∥∥∥
Mr
p

.

(ˆ b

a
‖F (·, t)‖qMr

p

dt

t

)1/q

.

Proof. By virtue of Remark 1.2 in [15], we include part 1. Next, we use part 1 to get part 2 and
part 3 immediately.

The next lemma is the Feffereman-Stein vector-valued maximal inequality which plays a key
role in this paper. The proof of this lemma can be found in [13, Lemma 2.5].

Lemma 2.6. Let 0 < p ≤ r ≤ ∞, 0 < q ≤ ∞ and 0 < θ < p∧ q. Then for any sequence of function
{fv}v∈Z, we have ∥∥∥(∑

v∈Z
|Mθfv|q

)1/q∥∥∥
Mr
p

.
∥∥∥(∑

v∈Z
|fv|q

)1/q∥∥∥
Mr
p

. (2.3)

In view of (1.7) in [15, p.776] and (2.3) in [15, p.779] respectively, one has the following two
lemmas.

Lemma 2.7. Let r and p satisfying 0 < p ≤ r < ∞, 0 < q ≤ ∞, v ∈ Z, and a sequence
{sQ : Q ∈ Dv} such that ∥∥∥∥∥∥∥

∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q1/q
∥∥∥∥∥∥∥
Mr
p

<∞.

Then, we have∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q1/q
∥∥∥∥∥∥∥
Mr
p

∼ sup
J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

.

Lemma 2.8. Let r and p satisfying 0 < p ≤ r < ∞, v ∈ Z, and a sequence {sQ : Q ∈ Dv} such
that ∥∥∥∥∥∥

∑
Q∈Dv

|Q|−1/r|sQ|χQ

∥∥∥∥∥∥
Mr
p

<∞.

Then, we have∥∥∥∥∥∥
∑
Q∈Dv

|Q|−1/r|sQ|χQ

∥∥∥∥∥∥
Mr
p

∼

 sup
J∈D,`(J)>2v

(
1

|J |

)1−p/r ∑
Q∈Dv ,Q⊂J

|Q|1−p/r|sQ|p
1/p

.
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2.3. Kernel estimates on Hermite operators

Let us denote by S and S′ the space of Schwartz functions and the space of tempered distribu-
tions on Rn respectively. We recall that the space of Schwartz functions S consists of all functions
φ ∈ C∞(Rn) so that for all multi-indices α and β, we have

‖φ‖α,β = sup
x∈Rn

|xα∂βφ(x)| <∞. (2.4)

For k ≥ 0 and t > 0, we denote the kernel associated to (t
√
H)ke−t

√
H by pt,k(x, y). When

k = 0, we drop the subscript k to write pt(x, y). One has the following results (see [1]).

Proposition 2.9. For all k ∈ N, t > 0 and y ∈ Rn we have pt,k(·, y) ∈ S.

Lemma 2.10. For k ∈ N, there exist C > 0 and δ > 0 so that

1. pt(x, y) ≤ C t(
t+ |x− y|

)n+1 .

2. pt,k(x, y) ≤ C tk(
t+ |x− y|

)n+k .
3. If |h| < t then |pt,k(x+ h, y)− pt,k(x, y)| ≤ C

( |h|
t

)δ tk(
t+ |x− y|

)n+k .
2.4. Calderón reproducing formulas

Here we recall two Calderón reproducing formulas in [1], which play an important role in our
study of the molecular decomposition theory of homogenous and inhomogeneous HTLM spaces in
the sequent.

Proposition 2.11. (Homogeneous Calderón reproducing formula) Let m1,m2 ∈ N+ and f ∈ S′.
Then we have

f = − 1

2m−1(m− 1)!

∞̂

0

(t
√
H)m1e−t

√
H(t
√
H)m2e−t

√
Hf

dt

t
in S′,

where m = m1 +m2.

Proposition 2.12. (Inhomogeneous Calderón reproducing formula) Let m1,m2 ∈ N+ and f ∈ S′.
Then we have

f = − 2m−1

(m− 1)!

1/2ˆ

0

(t
√
H)m1e−t

√
H(t
√
H)m2e−t

√
Hf

dt

t
+

m−1∑
k=0

1

k!
Hk/2e−

√
Hf in S′,

where m = m1 +m2.

3. Homogeneous HTLM spaces

We obtain the following main results on molecular decompositions of the spaces FMα,H,m
p,q,r .

Theorem 3.1. Let α ∈ R, 0 < p ≤ r ≤ ∞, 0 < q ≤ ∞ and θ0 = min{1, p, q}. Suppose M,N ∈ N+

and

m > n+ max{α, 0}+ int

[
n

(
1

θ0
− 1

)]
+ 1.
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For each f ∈ FMα,H,m
p,q,r , then there exists a sequence of (H,M,N, α, r) molecules

{
mQ : Q ∈ Dv, v ∈

Z
}

and a sequence of coefficients
{
sQ : Q ∈ Dv, v ∈ Z

}
so that

f =
∑
v∈Z

∑
Q∈Dv

sQmQ in S′.

Moreover,

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

. ‖f‖
FMα,H,m

p,q
.

Proof. For f ∈ FMα,H,m
p,q,r , in the light of Proposition 2.11 we deduce that

f = cm,M,N

∞̂

0

(t
√
H)M+Ne−t

√
H(t
√
H)me−t

√
Hf

dt

t
,

where

cm,M,N = − 1

2m+M+N−1(m+M +N − 1)!

and the convergence is in the space of distributions S′. So we have

f = cm,M,N

∑
v∈Z

2v+1ˆ

2v

(t
√
H)M+Ne−t

√
H(t
√
H)me−t

√
Hf

dt

t

= cm,M,N

∑
v∈Z

∑
Q∈Dv

2v+1ˆ

2v

(t
√
H)M+Ne−t

√
H
[
(t
√
H)me−t

√
Hf.χQ

] dt
t
.

For each v ∈ Z and Q ∈ Dv, we set

sQ = 2−v(α−n/r) sup
(y,t)∈Q×[2v ,2v+1)

∣∣∣(t√H)me−t
√
Hf(y)

∣∣∣ (3.1)

and mQ = HM/2bQ, where

bQ =
1

sQ

2v+1ˆ

2v

tM (t
√
H)Ne−t

√
H
[
(t
√
H)me−t

√
Hf.χQ

] dt
t
.

Then we obtain
f =

∑
v∈Z

∑
Q∈Dv

sQmQ in S′.

For k = 0, ..., 2M, by Lemma 2.10, for x ∈ Rn, we have

|Hk/2bQ(x)| =

∣∣∣∣∣∣∣
1

sQ

2v+1ˆ

2v

tM−k(t
√
H)N+ke−t

√
H
[
(t
√
H)me−t

√
Hf.χQ

] dt
t

∣∣∣∣∣∣∣
.

1

sQ

2v+1ˆ

2v

tM−k
ˆ

Q

|pt,N+k(x, y)|
∣∣∣(t√H)me−t

√
Hf(y)

∣∣∣ dydt
t

.
1

sQ
sup

(y,t)∈Q×[2v ,2v+1)

∣∣∣(t√H)me−t
√
Hf(y)

∣∣∣ 2v+1ˆ

2v

tM−k
ˆ

Q

tN

(t+ |x− y|)n+N
dy
dt

t

. 2v(α+M−k−n/r)
(

1 +
|x− xQ|

2v

)−n−N
.
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It follows from these estimates that mQ is a multiple of an (H,M,N, α, r) molecule.
In view of Lemma 2.7, we can now conclude that∥∥∥∥∥∥∥

∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q1/q
∥∥∥∥∥∥∥
Mr
p

. ‖f‖
FMα,H,m

p,q
.

Indeed, it follow from the fact u(x, t) ≡ Hm/2e−t
√
Hf(x) is a solution of the equation

(−utt −∆ + |x|2)u = 0

that u is subharmonic. Due to Lemma 5.2 in [2], it is clear to see that

sup
(y,t)∈Q̃

∣∣∣Hm/2e−t
√
Hf(y)

∣∣∣ .
 1

|Q̃|

ˆ

3
2
Q̃

∣∣∣Hm/2e−t
√
Hf(z)

∣∣∣θ dzdt


1/θ

,

where Q̃ = Q× [2v, 2v+1) is a cube in Rn+1 and r > 0.
Observing |Q̃| ∼ 2v|Q| and t ∼ 2v whenever (y, t) ∈ Q̃ gives us

sup
(y,t)∈Q̃

∣∣∣Hm/2e−t
√
Hf(y)

∣∣∣ .
 1

|Q|

9
8
2v+1ˆ

3
4
2v

ˆ
3
2
Q

∣∣∣Hm/2e−t
√
Hf(z)

∣∣∣θ dz dt
t


1/θ

, (3.2)

for any x ∈ Q.
Therefore, by Minkowski’s inequality, we obtain

|Q|−1/r|sQ|χQ(x) . 2−vαχQ(x)
1

|Q|

ˆ
3
2
Q




9
8
2v+1ˆ

3
4
2v

(∣∣∣Hm/2e−t
√
Hf(z)

∣∣∣)θ dt
t


1/θ
 dz

. χQ(x)Mθ




9
8
2v+1ˆ

3
4
2v

(
t−α

∣∣∣Hm/2e−t
√
Hf
∣∣∣)θ dt

t


1/θ
 (x).

Then, we have∑
Q∈Dv

(
|Q|−1/r|sQ|χQ(x)

)q

.

Mθ




9
8
2v+1ˆ

3
4
2v

(
t−α

∣∣∣Hm/2e−t
√
Hf
∣∣∣)θ dt

t


1/θ
 (x)


q ∑
Q∈Dv

χQ(x)

.

Mθ




9
8
2v+1ˆ

3
4
2v

(
t−α

∣∣∣Hm/2e−t
√
Hf
∣∣∣)θ dt

t


1/θ
 (x)


q

.

Combining the last estimate above with the Fefferman-Stein vector-valued maximal inequality
(2.3), we deduce that
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∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q
1/q
∥∥∥∥∥∥∥
Mr
p

.

∥∥∥∥∥∥∥∥∥

∑
v∈Z

Mθ




9
8
2v+1ˆ

3
4
2v

(
t−α

∣∣∣(t√H)me−t
√
Hf
∣∣∣)θ dt

t


1/θ


q

1/q
∥∥∥∥∥∥∥∥∥
Mr
p

.

∥∥∥∥∥∥∥∥∥

∑
v∈Z


9
8
2v+1ˆ

3
4
2v

(
t−α

∣∣∣(t√H)me−t
√
Hf
∣∣∣)θ dt

t


q/θ


1/q
∥∥∥∥∥∥∥∥∥
Mr
p

.

Eventually, it follows from Hölder’s inequality that∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q
1/q
∥∥∥∥∥∥∥
Mr
p

.

∥∥∥∥∥∥∥∥
∑
v∈Z

9
8
2v+1ˆ

3
4
2v

(
t−α

∣∣∣(t√H)me−t
√
Hf
∣∣∣)q dt

t


1/q
∥∥∥∥∥∥∥∥
Mr
p

.

∥∥∥∥∥∥∥
 ∞̂

0

(
t−α

∣∣∣(t√H)me−t
√
Hf
∣∣∣)q dt

t

1/q
∥∥∥∥∥∥∥
Mr
p

≡ ‖f‖
FMα,H,m

p,q,r
.

The follwing can be regarded as the converse to Theorem 3.1.

Theorem 3.2. Let α ∈ R, 0 < q ≤ ∞, 0 < p ≤ r ≤ ∞ and θ0 = min{1, p, q}. If

f =
∑
v∈Z

∑
Q∈Dv

sQmQ in S′,

where
{
mQ : Q ∈ Dv, v ∈ Z

}
is a sequence of (H,M,N, α, r) molecules and

{
sQ : Q ∈ Dv, v ∈ Z

}
is a sequence of coefficients satisfying

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

<∞,

then f ∈ FMα,H,m
p,q,r and

‖f‖
FMα,H,m

p,q,r
. sup

J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

provided that

m > max{α, 0}+N + n,M > max{n/θ0 − α,m}, N > n(1/θ0 − 1).

9



Proof. Observe that

‖f‖q
FMα,H,m

p,q,r
=

∥∥∥∥∥∥∥∥
∑
v∈Z

2v+1ˆ

2v

(
t−α

∣∣∣(t√H)me−t
√
Hf
∣∣∣)q dt

t


1/q
∥∥∥∥∥∥∥∥
Mr
p

.

∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

2−vα sup
t∈[2v ,2v+1)

|sQ|
∣∣∣(t√H)me−t

√
HmQ

∣∣∣
q1/q

∥∥∥∥∥∥∥
Mr
p

.

(3.3)

Let us now choose any θ ∈ (0, θ0) such that M > n/θ − α and N > n(1/θ − 1).

Hence, due to θ >
n

n+N
, we then apply Lemmas 2.2 and 2.3 to deduce

∑
Q∈Dv

2−vα sup
t∈[2v ,2v+1)

|sQ|
∣∣∣(t√H)me−t

√
HmQ

∣∣∣χQ(x) . Mθ

 ∑
Q∈Dv

|Q|−1/r|sQ|χQ

 (x).

Combining the above estimate with (3.3) gives us

‖f‖q
FMα,H,m

p,q,r
.

∥∥∥∥∥∥∥
∑
v∈Z

Mθ

 ∑
Q∈Dv

|Q|−1/r|sQ|χQ

q
1/q
∥∥∥∥∥∥∥
Mr
p

.

In the light of the Fefferman-Stein vector-valued maximal inequality (2.3), we then obtain the
desired estimates

‖f‖q
FMα,H,m

p,q,r
.

∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

|Q|−1/r|sQ|χQ

q1/q
∥∥∥∥∥∥∥
Mr
p

.

∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q1/q
∥∥∥∥∥∥∥
Mr
p

.

Finally, applying Lemma 2.7 completes the proof of the theorem.

The next result shows the equivalence of the spaces FMα,H,m
p,q,r .

Theorem 3.3. Let α ∈ R, 0 < p < ∞, 0 < q ≤ ∞ and p ≤ r ≤ ∞. Then the spaces FMα,H,m1
p,q,r

and FMα,H,m2
p,q,r coincide with equivalent norms, provided that m1 and m2 are positive integers such

that

m1,m2 > n+ max{α, 0}+ int

[
n

(
1

θ0
− 1

)]
+ 1,

where θ0 = min{1, p, q}.

Proof. Let us take positive integers N = int
[
n
(

1
θ0
− 1
)]

+ 1 and M > max {m1,m2, n/θ0 − α} .
For any f ∈ FMα,H,m1

p,q,r , in view of Theorem 3.1, there exist a sequence of (H,M,N, α, r)-
molecules {

mQ : Q ∈ Dv, v ∈ Z
}

and a sequence of coefficients {
sQ : Q ∈ Dv, v ∈ Z

}
10



such that

f =
∑
v∈Z

∑
Q∈Dv

sQmQ in S′

and ∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q1/q
∥∥∥∥∥∥∥
Mr
p

. ‖f‖
FM

α,H,m1
p,q

.

Then it follows from Theorem 3.2 that f ∈ FMα,H,m2
p,q,r and

‖f‖
FM

α,H,m2
p,q

.

∥∥∥∥∥∥∥
∑
v∈Z

∑
Q∈Dv

(
|sQ||Q|−1/rχQ

)q1/q
∥∥∥∥∥∥∥
Mr
p

. ‖f‖
FM

α,H,m1
p,q

.

In other words, we obtain

FMα,H,m1
p,q ⊂ FMα,H,m2

p,q

and
‖ · ‖

FM
α,H,m2
p,q

. ‖ · ‖
FM

α,H,m1
p,q

.

By a similar argument, it is easy to see that

FMα,H,m2
p,q ⊂ FMα,H,m1

p,q

and
‖ · ‖

FM
α,H,m1
p,q

. ‖ · ‖
FM

α,H,m2
p,q

.

4. Inhomogeneous HTLM spaces

The main goal of this section is to establish molecular decompositions for inhomogeneous HTLM
spaces IFMα,H

p,q,r(β, γ).

Let us first introduce the definition of inhomogeneous HTLM type spaces IFMα,H,m
p,q,r (β, γ) via

the semigroup characterization.

Definition 4.1. Let α ∈ R, m ∈ N+, α + n < m and 0 < p ≤ r ≤ ∞, 0 < q ≤ ∞ and let
0 < β < 1 < γ with γ − β > 1. The inhomogeneous HTLM spaces IFMα,H,m

p,q,r (β, γ) are defined to
be the set of all functions f ∈ S′ such that

‖f‖
IFMα,H,m

p,q,r (β,γ)
=

ˆ γ

β
‖e−t

√
Lf‖Mr

p

dt

t
+

∥∥∥∥(ˆ 1

0
(t−α|(t

√
H)me−t

√
Hf |)q dt

t

)1/q ∥∥∥∥
Mr
p

<∞.

Theorem 4.2. Let α ∈ R, 0 < p < α + n, p ≤ r ≤ ∞ and 0 < q ≤ ∞ and let 0 < β < 1 < γ with
γ − β > 1. For M ∈ N+ and m > α+ n, if f ∈ IFMα,H,m

p,q,r (β, γ) then there exist:

• a sequence of (H,M, 1, α, r) molecules {mQ}Q∈Dν,ν∈Z− ,

• a sequence of (H,M, 1, α, r) zero level molecules {mQ}Q∈D0 ,

• a sequence of coefficients {sQ}Q∈D
ν,ν∈Z−0

11



such that

f =
∑
ν∈Z−0

∑
Q∈Dν

sQmQ in S′.

Moreover,

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z−0

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

. ‖f‖
IFMα,H,m

p,q,r (β,γ)
.

Proof. In the light of Proposition 2.12, we can write

f = − 2m+M−1

(m+M − 1)!

ˆ 1/2

0
(t
√
H)Me−t

√
H(t
√
H)me−t

√
Hf

dt

t
+
m+M−1∑
k=0

1

k!
(
√
H)ke−

√
Hf (in S′).

For each ν ∈ Z− and Q ∈ Dν , we set

sQ = 2−ν(α−n/r) sup
(y,t)∈Q×[2ν−1,2ν)

|(t
√
H)me−t

√
Hf(y)|

and mQ = HM/2bQ, where

bQ =
1

sQ

ˆ 2ν

2ν−1

tMe−t
√
H[(t
√
H)me−t

√
Hf.χQ]

dt

t
.

For Q ∈ D0 we set

sQ = sup
y∈Q
|e−τ0

√
Hf(y)|

and

mQ =
1

sQ

m+M−1∑
k=0

2k(
√
H)ke−(1−τ0)

√
H(e−τ0

√
Hf.χQ),

where τ0 = (1 + β)/2.
Using the argument used in the proof of Theorem 3.1 yields that mQ is an (H,M, 1, α, r)

molecule for Q ∈ Dν , ν ∈ Z− and

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z−

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

.

(ˆ 1

0
(t−α‖(t

√
H)me−t

√
Hf‖Mr

p
)q
dt

t

)1/q

.

We now claim that mQ is an (H,M, 1, α, r) zero level molecule for Q ∈ D0. Indeed, for k =
0, ...,M , in view of Lemma 2.10, it is clear that

|Hk/2mQ(x)| . 1

sQ

ˆ
Q

1

(1 + |x− y|)n+1
|e−τ0

√
Hf(y)|dy . (1 + |x− xQ|)−n−1,

which shows that mQ is an (H,M, 1, α, r) zero level molecule for Q ∈ D0.

Let I be an interval in (0,∞) such that |I| = 1/2, τ0 ∈ I ⊂ (β, γ). Then we can find 1 < η < 2

so that ηI ⊂ (β, γ). We now follow the reasoning used in Theorem 3.1 to deduce that |e−t
√
Hf |2 is

subharmonic.
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Therefore, for Q ∈ D0, 0 < θ < min{1, p, q} and x ∈ Q,

|sQ| ≤ sup
Q×I
|e−
√
Hf(y)| .

(
1

η|Q| × η|I|

ˆ
ηI

ˆ
ηQ
|e−t

√
Hf(z)|θdzdt

)1/θ

.

[
M
(ˆ γ

β
|e−t

√
Hf |θ dt

t

)
(x)

]1/θ
,

which, together with |Q| = 1, implies that

∑
Q∈D0

(
|Q|−1/r|sQ|χQ(x)

)q
.

[
M
(ˆ γ

β
|e−t

√
Hf |θ dt

t

)
(x)

]q/θ
.

The above estimate, combining with Lemma 2.7, yields that

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

 ∑
Q∈D0,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

.

∥∥∥∥[M( ˆ γ

β

∣∣∣e−t√Hf ∣∣∣θ dt
t

)]1/θ∥∥∥∥
Mr
p

.

By the inequality (2.2) in Lemma 2.5, it is clear to see that

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

 ∑
Q∈D0,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

.

∥∥∥∥M(ˆ γ

β

∣∣∣e−t√Hf ∣∣∣θ dt
t

)∥∥∥∥1/θ
M
r/θ
p/θ

.

Finally, using the M
r/θ
p/θ− boundedness of M, we can then conclude that

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

 ∑
Q∈D0,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

.

∥∥∥∥ˆ γ

β

∣∣∣e−t√Hf ∣∣∣θ dt
t

∥∥∥∥1/θ
M
r/θ
p/θ

.

(ˆ γ

β

∥∥∥∥ ∣∣∣e−t√Hf ∣∣∣θ ∥∥∥∥
M
r/θ
p/θ

dt

t

)1/θ

.

( ˆ γ

β
‖e−t

√
Hf‖θMr

p

dt

t

)1/θ

.
ˆ γ

β
‖e−t

√
Hf‖Mr

p

dt

t
,

where we used Minkowski’s inequality and the inequality (2.2) in the second estimate and the third
estimate respectively. This completes the proof.

Theorem 4.3. Let n
n+1 < p ≤ r ≤ ∞, n

n+1 < q ≤ ∞, α ∈ R and m > α+ n. Assume that

f =
∑
ν∈Z−0

∑
Q∈Dν

sQmQ in S′,

where

• {mQ}Q∈Dν,ν∈Z− is a sequence of (H,M, 1, α, r) molecules,

• {mQ}Q∈D0 is a sequence of (H,M, 1, α, r) zero level molecules,
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• {sQ}Q∈D
ν,ν∈Z−0

is a sequence of coefficients

such that

sup
J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z−0

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

<∞.

Then f ∈ IFMα,H,m
p,q,r (β, γ) and

‖f‖
IFMα,H,m

p,q,r (β,γ)
. sup

J∈D


(

1

|J |

)1−p/r ˆ

J

∑
v∈Z−0

∑
Q∈Dv ,Q⊂J

(
|sQ||Q|−1/rχQ

)qp/q dx


1/p

,

whenever M > max{n− α,m} and β < 1 < γ with γ − β > 1.

Proof. The proof of Theorem 4.3 is similar to that of Theorem 3.2 and we omit details here.

The following result is a direct consequence of Theorem 4.2 and Theorem 4.3.

Theorem 4.4. Let α ∈ R, n
n+1 < p, q ≤ ∞, 0 < β1 < 1 < γ1 with γ1 − β1 > 1 and 0 < β2 <

1 < γ2 with γ2 − β2 > 1. Then the spaces IFMα,H,m1
p,q,r (β1, γ1) and IFMα,H,m2

p,q,r (β2, γ2) coincide with
equivalent norms, provided that m1,m2 ∈ N+ with m1,m2 > α+ n.

As a result of Theorem 4.4, we can define the Triebel-Lizorkin-Morrey space IFMα,H
p,q,r with

α ∈ R and n
n+1 < p, q ≤ ∞ as the space IFMα,H,m

p,q,r (β, γ) for any m ∈ N+,m > α + n and
0 < β < 1 < γ with γ − β > 1.

For α ∈ R,m ∈ N and 1 ≤ p, q ≤ ∞, we define the (inhomogenenous) HTLM type spaces
IFMα,H,m

p,q,r as follows

IFMα,H,m
p,q,r :=

{
f ∈ S′ : ‖f‖

IFMα,H,m
p,q

= ‖e−
√
Hf‖Mr

p
+

∥∥∥∥(ˆ 1

0
(t−α(t

√
H)me−t

√
Hf)q

dt

t

)1/q∥∥∥∥
Mr
p

<∞
}
.

It turns out that the spaces IFMα,H,m
p,q and IFMα,H

p,q coincide.

Theorem 4.5. Let α ∈ R, m ∈ N+,m > α+ n and 1 ≤ p, q ≤ ∞. Then the spaces IFMα,H,m
p,q,r and

IFMα,H
p,q,r coincide with equivalent norms.

Proof. The proof of Theorem 4.5 is similar to that of Theorem 4.2. Here we just give a sketch of
the proof.

Firstly, we prove that if f ∈ IFMα,H,m
p,q,r then f has a decomposition as in Theorem 4.2. To this

end, by a minor modification of the proof of Proposition 2.12 in [1], one can write

f = − 2m+M−1

(m+M − 1)!

ˆ 1

0
(t
√
H)Me−t

√
H(t
√
H)me−t

√
Hf

dt

t
+
m+M−1∑
k=0

1

k!
(
√
H)ke−2

√
Hf in S′.

For each ν ∈ Z− and Q ∈ Dν , we set

sQ = 2−ν(α−n/r) sup
(y,t)∈Q×[2ν−1;2ν)

|(t
√
H)me−t

√
Hf(y)|

and mQ = (
√
H)MbQ, where

bQ =
1

sQ

ˆ 2ν

2ν−1

tMe−t
√
H[(t
√
H)me−t

√
Hf.χQ]

dt

t
.
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For Q ∈ D0, we set

sQ =

(ˆ
Q
|e−
√
Hf(y)|pdy

)1/p

and

mQ =
1

sQ

m+M−1∑
k=0

2k

k!
(
√
H)ke−

√
H(e
√
Hf.χQ).

Certainly,

f =
∑
ν∈Z−0

∑
Q∈Dν

sQmQ.

In addition, it is easy to see that sup
J∈D,`(J)>1

(
1

|J |

)1−p/r ∑
Q∈D0,Q⊂J

|Q|1−p/r|sQ|p
1/p

=
∥∥∥e−√Hf∥∥∥

Mr
p

.

At this stage, by applying Lemma 2.10 and Hölder’s inequality, we can claim thatmQ are (H,M, 1, α, r)
zero level molecules for Q ∈ D0. The remaining of the proof is then similar to that of Theorem 4.2,
so we omit details.

5. Some applications

5.1. Boundedness of Hermite-Riesz and Hermite-Bessel potential on HTLM spaces

In view of Proposition 2.9, for k ∈ N and f ∈ S, we define(
t
√
H
)k
e−t
√
Hf(x) = 〈f ; pt,k(x, ·)〉 ,

where 〈·; ·〉 is the pair between a linear function in S′ and a function in S.
In the light of [1, Proposition 2.5], it is easy to obtain the following lemma.

Lemma 5.1. Assume that φ ∈ S. Then we have the following statements:

1. H−σ ∈ S, for all σ > 0.

2.
(
t
√
H
)k
e−t
√
H ∈ S, for all k ∈ N, t > 0.

Moreover, by adapting the argument used in [1, Proposition 2.5], it can be verified that for
φ ∈ S,

H−σφ =
1

Γ(γ)

ˆ ∞
0

tσe−tHφ
dt

t
∈ S.

Definition 5.2. For σ > 0, thanks to Lemma 5.1, one can define Hermite-Riesz potential H−σ :
S′ → S′ by

〈H−σf, φ〉 = 〈f,H−σφ〉,

for all f ∈ S′ and φ ∈ S.

Let us denote by Kt(x, y) the kernel of the semigroup e−tH. By applying the estimates in Lemma
2.4 of [1], one easily obtains the following lemma.

Lemma 5.3. For k ∈ N, there exists c, C > 0 such that for all x, y ∈ Rn, we have

|∂kxKt(x, y)| ≤

{
Ct−

k+1
2 exp

(
−c |x−y|

2

t

)
, 0 < t ≤ 1;

e−te−|x−y|
2
, t > 1.
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Theorem 5.4. Let α ∈ R, 0 < p ≤ r < ∞ and 0 < q ≤ ∞. Then, for s > 0, the operator H−s is
bounded from IFMα,H

p,q,r to IFMα+s,H
p,q,r .

Proof. Take a sequence of (H, 4M,N,α, r) molecules
{
mQ : Q ∈ Dv, v ∈ Z

}
, with M,N ∈ N

and M > s+ n/2 +N/2. Then we shall claim that H−s(mQ) is an (H, 2M,N,α + 2s, r) molecule
associated to the cube Q. To this end, assume that mQ = H2MbQ. Then it is clear to see that
H−smQ = HMyQ, where yQ = H−sHMbQ. We will prove that

|(
√
H)kyQ(x)| ≤ C`(Q)2M−k|Q|α/n−1/r

(
1 +
|x− xQ|
`(Q)

)−n−N
,

for k = 0, ..., 4M. Indeed, we can write

yQ(x) = H−sHMbQ =
1

Γ(s)

ˆ ∞
0

tse−tHHMbQ(x)
dt

t
,

which implies that

(
√
H)kyQ(x) =

1

Γ(s)

ˆ ∞
0

tse−tH(
√
H)2M+kbQ(x)

dt

t

=
1

Γ(s)

ˆ 4v

0
tse−tH(

√
H)2M+kbQ(x)

dt

t

+
1

Γ(s)

ˆ ∞
4v

tse−tH(
√
H)2M+kbQ(x)

dt

t
.

Therefore, we deduce that

|(
√
H)kyQ(x)| ≤ 1

Γ(s)

ˆ 4v

0

∣∣∣tse−tH(
√
H)2M+kbQ(x)

∣∣∣ dt
t

+
1

Γ(s)

ˆ ∞
4v

∣∣∣tse−tH(
√
H)2M+kbQ(x)

∣∣∣ dt
t

:= I1 + I2.

Notice that, by Lemma 5.3,

Kt(x, y) ≤ C

tn/2
exp

(
−c |x− y|

2

t

)
(5.1)

and that, by Lemma 2.5 in [3],

Kt,k(x, y) ≤ C

tn/2
exp

(
−c |x− y|

2

t

)
, (5.2)

where Kt,k(x, y) is the kernel of (tH)ke−tH for k ∈ N.
We are now ready to estimate I1 and I2. By applying (5.1), we have

∣∣∣e−tH(
√
H)2M+kbQ(x)

∣∣∣ =

ˆ

Rn

∣∣∣Kt(x, y)(
√
H)2M+kbQ(y)

∣∣∣ dy
.
ˆ

Rn

1

tn/2
exp

(
−c |x− y|

2

t

)
|(
√
H)2M+kbQ(y)|dy,

which, together with Definition 2.1, gives∣∣∣e−tH(
√
H)2M+kbQ(x)

∣∣∣
.
ˆ

Rn

1

tn/2

(
1 +
|x− y|√

t

)−n−N
|Q|α/n−1/r2v(2M−k)

(
1 +
|y − xQ|

2v

)−n−N
dy.
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Applying Lemma 2.4 to the above estimate yields∣∣∣e−tH(
√
H)2M+kbQ(x)

∣∣∣
.

(
2v√
t

)n
|Q|α/n−1/r2v(2M−k)

(
1 +
|x− xQ|

2v

)−n−N
,

which implies that

I1 . 2vn|Q|α/n−1/r2v(2M−k)
(

1 +
|x− xQ|

2v

)−n−N 4vˆ

0

ts−n/2
dt

t

. |Q|(α+2s)/n−1/r2v(2M−k)
(

1 +
|x− xQ|

2v

)−n−N
.

For the term I2, we apply (5.2) to obtain∣∣∣HMe−tH(
√
H)kbQ(x)

∣∣∣ = t−M
∣∣∣(tH)Me−tH(

√
H)kbQ(x)

∣∣∣
. t−M

ˆ

Rn

∣∣∣Kt,M (x, y)(
√
H)kbQ(y)

∣∣∣ dy
. t−M

ˆ

Rn

1

tn/2
exp

(
−c |x− y|

2

t

)
|(
√
H)kbQ(y)|dy,

which combined with Definition 2.1 gives∣∣∣HMe−tH(
√
H)kbQ(x)

∣∣∣
. t−M

ˆ

Rn

1

tn/2

(
1 +
|x− y|√

t

)−n−N
|Q|α/n−1/r2v(4M−k)

(
1 +
|y − xQ|

2v

)−n−N
dy.

We then apply Lemma 2.4 to the above estimate, noticing that t ≥ 4v, to have∣∣∣Hme−tH(
√
H)kbQ(x)

∣∣∣ . t−M |Q|α/n−1/r2v(M−k)
(

1 +
|x− xQ|√

t

)−n−N
.

(
t

4v

)(n+N)/2

t−M |Q|α/n−1/r2v(4M−k)
(

1 +
|x− xQ|

2v

)−n−N
,

which finally implies, due to M > s+ n/2 +N/2, that

I2 . |Q|α/n−1/r2v(4M−k−N−n)
(

1 +
|x− xQ|

2v

)−n−N ∞̂

4v

ts+
n+N

2
−M dt

t

. |Q|α/n−1/r2v(4M−k−N−n)2v(2s+n+N−2M)

(
1 +
|x− xQ|

2v

)−n−N
. |Q|(α+2s)/n−1/r2v(2M−k)

(
1 +
|x− xQ|

2v

)−n−N
.

Therefore, we proved that H−s(mQ) is an (H, 2M,N,α+ 2s, r) molecule associated to the cube Q.
By the suitable choice of M,N and using Theorem 3.1 and Theorem 3.2, we then deduce the

boundedness of H−s from IFMα,H
p,q,r to IFMα+s,H

p,q,r immediately. This completes the proof.

By adapting the same arguments used in [1, Proposition 2.5], it can be verified that for φ ∈ S,

(I + H)−σφ =
1

Γ(γ)

ˆ ∞
0

tσe−te−tHφ
dt

t
∈ S.
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Definition 5.5. For s > 0, we define Hermite-Bessel potential (I + H)−s : S′ → S′ by setting

〈(I + H)−sf, φ〉 = 〈f, (I + H)−sφ〉,

for all f ∈ S′ and φ ∈ S.

Similarly, we can show the boundedness of the Hermite-Bessel potential (I + H)−s on inhomo-
geneous HTLM. More precisely, we have the following result.

Theorem 5.6. Let s > 0, α ∈ R, n
n+1 < p ≤ r < ∞, n

n+1 < q ≤ ∞. Then (I + H)−s maps

continuously from IFMα,H
p,q,r into IFMα+2s,H

p,q,r .

Proof. The proof of Theorem 5.6 is analogous to that of Theorem 5.4, so we omit the details.

5.2. Boundedness of spectral multipliers

In this subsection, we consider the spectral multipliers of Laplace type for the Hermite operators
in the following form

m(H) =

ˆ ∞
0

φ(t)HetHdt, (5.3)

where φ ∈ L∞(R).
By employing the same arguments as those in [1, Proposition 2.5], one can easily verify that
m(H)φ ∈ S when φ ∈ S. Hence, for f ∈ S′,m(H)f can be viewed as a functional in S′ by setting

〈m(H)f, φ〉 = 〈f,m(H)φ〉.

As an application of the molecular decomposition theory developed in Section 3, we show bound-
edness of the spectral multiplier m(H) on FMα,H

p,q,r.

Theorem 5.7. Let α ∈ R, 0 < p ≤ r < ∞ and 0 < q ≤ ∞. Then the spectral multiplier m(H) is
bounded on FMα,H

p,q,r.

Proof. The proof of this theorem is similar to that of Theorem 5.4. We just give a sketch of the
proof here.

With the same notions as in the proof of the Theorem 5.4, it suffices to prove that for any
(H, 4M,N,α, r) molecule mQ = H2MbQ, we have m(H)mQ is an (H, 2M,N,α, r) molecule associ-
ated to the same dyadic cube Q ∈ Dν for some ν ∈ Z.

To this end, let us first write m(H)mQ = HMyQ, where

yQ =

ˆ ∞
0

φ(t)He−tHHMbQdt.

Then, for k = 0, ..., 4M , we have

(
√
H)kyQ =

ˆ 4ν

0
φ(t)e−tHHM+k/2+1bQdt+

ˆ ∞
4ν

φ(t)HM+1e−tH(
√
H)kbQdt.

At this stage, we estimate

|(
√
H)kyQ(x)| ≤

ˆ 4ν

0
|φ(t)e−tHHM+k/2+1bQ(x)|dt

+

ˆ ∞
4ν
|φ(t)HM+1e−tH(

√
H)kbQ(x)|dt

≤
ˆ 4ν

0
|e−tHHM+k/2+1bQ(x)|dt+

ˆ ∞
4ν
|HM+1e−tH(

√
H)kbQ(x)|dt

= I1 + I2.

Finally, by repeating the same arguments as in the proof of Theorem 5.1, we deduce that

I1 + I2 . |Q|α/n−1/p2ν(2M−k)
(

1 +
|x− xQ|

2ν

)−n−N
,

which completes the proof of Theorem 5.7.
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6. Identification between HTLM spaces and Hermite Sobolev spaces

Let s ∈ R and 1 < p < ∞. We define the homogeneous Sobolev space Wp,r
s,H associated to the

Hermite operator H by {
f ∈ S′ : ‖f‖Wp,r

s,H
:= ‖(

√
H)s‖Mr

p
<∞

}
.

For β ∈ R+, we consider the following square function

Gβ,Hf =

( ˆ ∞
0
|(t
√
H)βe−t

√
Hf |2dt

t

)1/2

, f ∈ L2(Rn).

One can easily check that Gβ,H is bounded on L2(Rn), using the spectral theory. In addition, the
Mr

p boundedness of Gβ,H will be verified below.

Lemma 6.1. For β > 0 and 1 < p ≤ r <∞, the square function Gβ,H is bounded on Mr
p.

Proof. The proof of this lemma is standard. We just give a sketch of the proof here.
Put m = int(β) + 1. For f ∈ L2(Rn), let us write

(t
√
H)βe−t

√
Hf = (t

√
H)−(m−β)(t

√
H)me−t

√
Hf

=
1

Γ(m− β)

ˆ ∞
0

(
s

t

)m−β
(t
√
H)me−(t+s)

√
Hf

ds

s

=
1

Γ(m− β)

ˆ ∞
0

(
s

t

)m−β( t

t+ s

)m
[(t+ s)

√
H]me−(t+s)

√
Hf

ds

s
.

Plugging (ii) of Lemma 2.1 into the expression above and by a straightforward calculation we can
conclude that

pt,β(x, y) .
tβ

(t+ |x− y|)n+β
.

Analogously, we can prove that for |h| < t,

|pt,β(x+ h, y)− pt,β(x, y)| .
(
|h|
t

)
tβ

(t+ |x− y|)n+β
.

In the light of the last two estimates, it is well-known from Calderón -Zygmund theory of vector
valued singular integrals that the operator Gβ,H is bounded on Mr

p.

We are now in a position to prove the identification between HTLM spaces and Hermite Sobolev
spaces.

Theorem 6.2. Let s ∈ R and 1 < p < ∞. Then the spaces Wp,r
s,H and FMs,H

p,2,r coincide with
equivalent norms.

Proof. Assume first that f ∈Wp,r
s,H. Then for m > max{s, 0} and in view of Lemma 6.1, one has

‖f‖
FMs,H

p,2,r
=

∥∥∥∥(ˆ ∞
0

t−2s|(t
√
H)me−t

√
Hf |2dt

t

)1/2∥∥∥∥
Mr
p∥∥∥∥( ˆ ∞

0
|(t
√
H)m−se−t

√
H(Hs/2f)|2dt

t

)1/2∥∥∥∥
Mr
p∥∥∥∥( ˆ ∞

0
|Gm−s,H [(

√
H)sf ]|2dt

t

)1/2∥∥∥∥
Mr
p

. ‖(
√
H)sf‖Mr

p
= ‖f‖Wp

s,H
.
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Conversely, now assume that f ∈ FMs,H
p,2,r. By Proposition 2.11, we can write

Hs/2f(x) = cm

ˆ
Rn

ˆ ∞
0

(t
√
H)me−t

√
H(t
√
H)me−t

√
HHs/2f(x)

dt

t
.

Therefore,

ˆ
Rn

Hs/2f(x)g(x)dx

= cm

ˆ
Rn

ˆ ∞
0

(t
√
H)me−t

√
H(t
√
H)me−t

√
HHs/2f(x)g(x)

dt

t
dx

= cm

ˆ
Rn

ˆ ∞
0

t−s(t
√
H)me−t

√
Hf(x)(t

√
H)m+se−t

√
Hg(x)

dt

t
dx.

Finally, for g ∈ S and m > max{s, 0}, it follows from Hölder’s inequality for Morrey spaces and
from Lemma 6.1 thatˆ

Rn
Hs/2f(x)g(x)dx

.
ˆ
Rn

(ˆ ∞
0
|t−s(t

√
H)me−t

√
Hf(x)|2dt

t

)1/2( ˆ ∞
0
|(t
√
H)m+se−t

√
Hg(x)|2dt

t

)1/2

dx

.

∥∥∥∥(ˆ ∞
0
|t−s(t

√
H)me−t

√
Hf(x)|2dt

t

)1/2∥∥∥∥
Mr
p

∥∥∥∥( ˆ ∞
0
|(t
√
H)m+se−t

√
Hg(x)|2dt

t

)1/2∥∥∥∥
Mr′
p′

. ‖f‖
FMs,H

p,2,r
‖Gm+s,Hg‖Mr′

p′

. ‖f‖
FMs,H

p,2,r
‖g‖

Mr′
p′
,

which combined with the fact that S is dense in Mr′
p′ implies that

‖Hs/2f‖Mr
p
. ‖f‖

FMs,H
p,2,r

.

This completes our proof.

Similarly, we can obtain the identification between HTLM and Morrey-Sobolev spaces for in-
homogeneous version.

Let s ∈ R and 1 < p < ∞. We define the inhomogeneous Sobolev space IWp,r
s,H associated to

the Hermite operator H by{
f ∈ S′ : ‖f‖IWp,r

s,H
:= ‖(I + H)s/2f‖p <∞

}
.

Theorem 6.3. Let s ∈ R and 1 < p < ∞. Then the spaces IWp,r
s,H and IFMs,H

p,2,r coincide with
equivalent norms.

Proof. The proof can be processed using the same arguments as those of Theorem 6.2 and we would
like to leave it to the interested reader.
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