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ABSTRACT. Inspired by a recent sharp Sobolev trace inequality of order four on the balls
Bn+1 found by A.G. Ache and S-Y.A. Chang [Duke Math. J. 166 (2017) 2719–2748],
we propose a different approach to reprove Ache–Chang’s trace inequality. To further
illustrate this approach, we reprove the classical Sobolev trace inequality of order two on
Bn+1 and provide sharp Sobolev trace inequalities of orders six and eight on Bn+1. To
obtain all these inequalities up to order eight, and possibly more, we first establish higher
order sharp Sobolev trace inequalities on Rn+1

+ , then directly transferring them to the ball
via a conformal change. As the limiting case of the Sobolev trace inequality, a Lebedev–
Milin type inequality of order up to eight is also considered.

1. INTRODUCTION

The motivation of writing this paper traces back to a recent work due to Ache and
Chang [AC15] concerning the sharp Sobolev trace inequality of order four on the unit
ball Bn+1 in Rn+1. As indicated in [AC15], by the order of all inequalities mentioned
in the present paper, we refer to the order of the operator involved in the derivation of
these inequalities. In the next few paragraphs, we briefly recall the theory of Sobolev trace
inequalities to understand why this finding is significant.

Of importance in analysis and conformal geometry are Sobolev and Sobolev trace in-
equalities either on Euclidean spaces or on Euclidean balls. These inequalities, in brief,
provide compact embeddings between important functional spaces. For the classical Sobolev
inequality (of order two), its version on Rn is given as follows

Γ(n+2
2 )

Γ(n−22 )
ω2/n
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(∫
Rn

|u|
2n
n−2 dz

)n−2
n

6
∫
Rn

|∇u|2dz (1.1)

for any smooth function u with compact support. Here, and throughout this paper, ωn is
the volume of the unit sphere Sn, the boundary of the unit ball Bn+1, in Rn+1, which is
2π(n+1)/2/Γ((n + 1)/2), which is also 2nπn/2Γ(n/2)/Γ(n). It is well-known that the
inequality (1.1) is crucial in the resolution of the Yamabe problem on closed manifolds.
Not limited to the Yamabe problem, Inequality (1.1) is the fundamental tool and have a
significant role in various problems in analysis and geometry. Since the vast subject of
Sobolev inequalities can be easily found in the literature, we do not mention it here.

Inspired by the sharp Sobolev inequality (1.1) on Rn, the following sharp Sobolev trace
inequality on Rn+1

+ is well-known
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Here in (1.2) we denote by (x, y) ∈ Rn ×R a point in Rn+1 and by (x, y) ∈ Rn+1
+ we

mean y > 0. To study (1.2), it is routine to study the quotient

Q(U) =

∫
Rn+1

+
|∇U |2dxdy( ∫

Rn |U(x, 0)|
2n
n−1 dx

)(n−1)/n
and its Sobolev quotient

Q(Rn+1
+ ) = inf

{
Q(U) : U ∈ C∞0 (Rn+1

+ ), U 6≡ 0
}
. (1.3)

It turns out that Q(Rn+1
+ ) =

(
Γ(n+1

2 )/Γ(n−12 )
)
ω
1/n
n .

The existence of optimizers for (1.3) was first studied by Lions [Lio85] by using the
concentration-compactness principle. Later on, Escobar classified all optimizers forQ(Rn+1

+ )

and computed explicitly the sharp constant Q(Rn+1
+ ); see [Esc88, Theorem 1]. To ob-

tain such results, Escobar exploits the conformally equivalent property between Rn+1
+ and

Bn+1 to transfer the trace inequality (1.2) on Rn+1
+ to a suitable trace inequality on Bn+1,

namely, the inequality (1.4) in Theorem 1.1 below. Then he studied the similar Sobolev
quotient

Q(Bn+1) = inf
v∈C1(B1)

{∫
Bn+1 |∇v|2dz + ((n− 1)/2)

∫
Sn |v|

2dω( ∫
Sn |v|

2n
n−1 dω

)(n−1)/n
}

and proved that
Q(Rn+1

+ ) = Q(Bn+1).

Finally, he showed that an optimizer for Q(Bn+1) exists and by Obata’s method he was
able to classify all optimizers.

In [Bec93], Beckner took a completely different approach based on spherical harmonics
and the dual-spectral form of the Hardy–Littlewood–Sobolev inequality on Sn, which was
used earlier in [Bec92], to reprove (1.4); see [Bec93, Theorem 4]. Combining Beckner
and Escobar’ result, the following sharp Sobolev trace inequality of order two is already
known.

Theorem 1.1 (Sobolev trace inequality of order two). Let f ∈ C∞(Sn) with n > 1,
suppose that v is a smooth extension of f to the unit ball Bn+1. Then we have the following
sharp trace inequality
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6
∫
Bn+1

|∇v|2dz + an

∫
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|f |2dω, (1.4)

where an = Γ((n + 1)/2)/Γ((n − 1)/2) = (n − 1)/2. Moreover, equality in (1.4) holds
if, and only if, v is a harmonic extension of a function of the form

fz0(ξ) = c|1− 〈z0, ξ〉|−(n−1)/2,

where c > 0 is a constant, ξ ∈ Sn, and z0 is some fixed point in the interior of Bn+1.

We note that using his approach, Beckner also obtained a sharp form of the Sobolev
inequality on Sn, namely
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4

∫
Sn
|f |2dω. (1.5)

As for (1.1), Inequality (1.5) also has some role in the study of the Yamabe problem on Sn.

Apparently, for all inequalities (1.1)–(1.4) mentioned above, the operators involved are
either the Laplacian or the conformal Laplacian, both are of order two. In recent years,
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a number of works are devoted to understanding higher order operators such as the poly-
Laplacian, the Paneitz operator, the GJMS operators. For example, the following Sobolev
inequality for higher order fractional derivatives in Rn

Γ(n+2s
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6
∫
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|(−∆)s/2u|2dz (1.6)

was explicitly stated in [CT04], for before that, but in an implicitly formin terms of frac-
tional integrals, in [Lie83]. Similarly, there is a sharp higher order Sobolev inequality on
Sn for a class of pseudo-differential operators P2γ defined for γ ∈ (0, n/2) as follows
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see [Bec93, Theorem 6]. Here the operator P2γ is formally given by

P2γ =
Γ(B + 1/2 + γ)

Γ(B + 1/2− γ)

with

B =

√
−∆̃ +

(n− 1

2

)2
.

Here, and as always, ∆̃ denotes the Laplacian on Sn with respect to the standard metric
gSn . In a special case when γ = 2, we know that
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which, by (1.7), implies that
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with n > 4. From (1.8), it is natural to ask with n being greater than four whether or not
there is higher order Sobolev trace inequality on Bn+1.

A recent result due to Ache and Chang provides an affirmative answer to the above
question. To be more precise and in terms of our notation convention, the following theo-
rem, among other things, indicating a fourth-order Sobolev trace inequality on Bn+1, was
proved in [AC15, Theorem A].

Theorem 1.2 (Sobolev trace inequality of order four). Let f ∈ C∞(Sn) with n > 3
and suppose v is a smooth extension of f to the unit ball Bn+1, which also satisfies the
Neumann boundary condition

∂νv
∣∣
Sn = −n− 3

2
f. (1.9)

Then we have the sharp trace inequality
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where bn = (n+1)(n−3)/2 and ∇̃ denotes spherical gradient on Sn. Moreover, equality
in (1.10) holds if, and only if, v is a biharmonic extension of a function of the form

fz0(ξ) = c|1− 〈z0, ξ〉|−(n−3)/2,

where c > 0 is a constant, ξ ∈ Sn, z0 is some point in the interior of Bn+1, and v fulfills
the boundary condition (1.9).

To prove (1.10), Ache and Chang use a nontraditional way in the sense that they first
derive a similar inequality for some metric g∗ on Bn+1, which is in the conformal class
of the Euclidean metric, then they derive (1.10) by making use of the conformal covariant
properties of the four-order Paneitz operator with respect to g∗ and the bilaplacian operator
with respect to the Euclidean metric.

The aim of the present paper is twofold. First we revisit Escobar’s approach based on
the conformally convariant property of (1.2) to provide new proofs for (1.4) and (1.10). We
note that although (1.4) is already known by Beckner’s fundamental paper, however, the
proof given by Beckner is based on spherical harmonics. Our approach for (1.4) is based
on Escobar’s. However, unlike Escobar’s method which transforms the trace inequality
(1.2) to the trace inequality (1.4), our method is in the opposite direction. To be more
precise, we show that we can obtain (1.4) from (1.2) after a suitable change of functions. In
other words, the inequalities (1.4) and (1.2) are dual by the conformal equivalence between
Rn+1

+ and Bn+1; see Section 3.

It turns out that we can do more with Escobar’s idea. By exploiting further the conformal
equivalence between Rn+1

+ and Bn+1, we are successful in providing a new proof for
(1.10); see Section 4. As noticed above, we prove (1.10) by following a similar way
that Escobar did, however, in an opposite direction. To this purpose, we make use of the
following higher order Sobolev trace inequality in Rn+1

+

2
Γ(n+3

2 )

Γ(n−32 )
ω3/n
n

(∫
Rn

|U(x, 0)|
2n
n−3 dx

)n−3
n

6
∫
Rn+1

+

|∆U(x, y)|2dxdy (1.11)

for functions U having ∂yU(x, 0) = 0. Furthermore, equality in (1.11) holds if, and only
if, U is a biharmonic extension of a function of the form

c
(
1 + |ξ − z0|2

)−(n−3)/2
,

where c is a constant, ξ ∈ Rn, z0 ∈ Rn, and U also fulfills the boundary condition
∂yU(x, 0) = 0. We believe that (1.11) is already known but we are unable to find a
reference for it until recently J. Case nicely informed us that (1.11) can be derived from a
general result in [Cas15b]. Therefore, we shall discuss Case’s general result and provide
a new proof for (1.11) in Appendix B. In the last part of Section 4, we also demonstrate
that by using Beckner type trace inequality in Theorem 3.3, we can also recover (1.10).
Compared to Escobar’s approach, the analysis in Beckner’s approach is less involved.

We note that Neumann’s boundary condition for functions satisfied by (1.11) comes
from similar boundary conditions for functions satisfied by (1.10). Without restricting to
the upper half-space Rn+1

+ , the following trace inequality is known

2cαω
(2α−1)/n
n

(∫
Rn

|U(x, 0)|
2n

n+1−2α dx
)n+1−2α

n

6
∫
Rn+1

U(x, y)(−∆)αU(x, y)dxdy

(1.12)
with

cα =
√
π

Γ(α)Γ(n−12 + α)

Γ(n+1
2 − α)Γ(α− 1

2 )
; (1.13)

see [EL12]. We note that c1 and c2 are exactly the sharp constants in (1.2) and in (1.11)
respectively. We note that the extra coefficient 2 on the left hand side of (1.12) appears
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because the integral on the right hand side is over Rn+1. It is our hope that there are dual
trace inequalities of order six and this is the content of the second part of the paper.

To derive a suitable trace inequality of order six on Rn+1
+ , we revisit (1.12) when α = 3

and by a simple calculation, we expect that the following equality should hold

8

3

Γ(n+5
2 )

Γ(n−52 )
ω5/n
n

(∫
Rn

|U(x, 0)|
2n
n−5 dx

)n−5
n

6
∫
Rn+1

+

|∇∆U |2(x, y)dxdy (1.14)

for suitable function U sufficiently smooth up to the boundary and decaying fast enough
at infinity. Inspired by [CC14], we look for trace inequalities of order six for functions
U satisfying certain Neumann’s boundary conditions. We shall prove the following trace
inequality on the half space.

Theorem 1.3 (Sobolev trace inequality of order six on Rn+1
+ ). Let U ∈ W 3,2(Rn+1

+ ) be
satisfied the Neumann boundary condition

∂yU(x, 0) = 0, ∂2yU(x, 0) = λ∆xU(x, 0). (1.15)λ

Then we have the sharp trace inequality

(3λ2 − 2λ+ 3)
Γ(n+5

2 )
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2n
n−5 dx

)n−5
n

6
∫
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+

|∇∆U(x, y)|2dxdy.

(1.16)λ

Moreover, equality in (1.16)λ holds if, and only if, U is a triharmonic extension of a func-
tion of the form

c
(
1 + |x− x0|2

)−(n−5)/2
,

where c > 0 is a constant, x ∈ Rn, x0 is some fixed point in Rn, and U fulfills the
boundary condition (1.15)λ.

It is easy to see that 3λ2 − 2λ + 3 > 8/3 with equality if λ = 1/3. Hence the sharp
constant in (1.16)λ is usually greater than that of (1.14). We are aware that in the literature
the Neumann boundary condition of the form (1.15)λ has already been used, for example,
in a work by Chang and Yang [CY17]. Once we can establish (1.16)λ, we hope that we
can establish a similar trace inequality on Bn+1 by using the natural conformal mapping
between Rn+1

+ and Bn+1. By way of establishing the following trace inequality on Bn+1,
we shall prove that this is indeed the case.

Theorem 1.4 (Sobolev trace inequality of order six). Let f ∈ C∞(Sn) with n > 5 and
suppose v is a smooth extension of f in the unit ball Bn+1, which also satisfies the bound-
ary conditions

∂νv
∣∣
Sn = −n− 5

2
f, ∂2νv

∣∣
Sn =

1

3
∆̃f +

(n− 5)(n− 6)

6
f. (1.17)

Then the following inequality holds

8
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∫
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∫
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(∆̃f)2dω + c(2)n

∫
Sn
|∇̃f |2dω + c(3)n

∫
Sn
|f |2dω

(1.18)
with 

c(1)n =8(n+ 3)/9,

c(2)n =4(n3 + n2 − 21n− 9)/9,

c(3)n =(n− 5)(n− 3)(n+ 3)(n2 + 4n− 9)/18.

(1.19)
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Moreover, equality in (1.18) holds if, and only if, v is a triharmonic extension of a function
of the form

fz0(ξ) = c|1− 〈z0, ξ〉|−(n−5)/2,
where c > 0 is a constant, ξ ∈ Sn, z0 is some fixed point in the interior of Bn+1, and v
fulfills the boundary condition (1.17).

As we shall see in the proof of Theorem 1.4 that the boundary condition (1.17) comes
from the boundary condition (1.15)1/3 and the sharp constant of (1.16)1/3 is exactly the
sharp constant of (1.16)1/3, which is (8/3)(Γ(n+5

2 )/Γ(n−52 ))ω
5/n
n . Since the analysis in

Beckner’s approach is much less involved compared with Escobar’s approach, to prove
(1.18), we revisit Beckner’s approach to prove a Beckner type trace inequalities of order
six; see Theorems 5.2. Then we use it to prove (1.18) as demonstrated in Subsection 5.4.

As can be easily seen, Beckner’s approach has several advantages when proving func-
tional inequalities on balls and on spheres. This paper just provides another example to
highlight its merits. Another example, recently announced by Xiong [Xio18], concerns a
derivation of the sharp Moser–Trudinger–Onofri inequalities from the fractional Sobolev
inequalities. The work of Xiong generalizes a similar result for spheres of lower dimen-
sions recently obtained by Chang and Wang in [CW17]. We note that Xiong also used
spherical harmonics instead of using Branson’s dimensional continuation argument which
becomes increasing delicate when the dimension is large as hightlighted in [CW17, Re-
mark 2].

After completing this paper, it has just come to our attention that, recently in a pa-
per continuing his work on the boundary operators associated to the Paneitz operator
in [Cas15b], Jeffrey Case and his co-author also obtained some sharp Sobolev trace in-
equalities involving the interior W 3,2-seminorm, including an analogue of the Lebedev–
Milin inequality on several standard models of manifolds of dimension six; see [CL18].
Following [Cas15b], their approach is based on energy inequalities related to conformally
covariant boundary operators associated to the sixth-order GJMS operator found in their
paper. Therefore, it is completely different from ours.

The rest of the paper consists of four sections. Section 2 is devoted to preliminaries.
Sections 3 and 4 are devoted to proofs of (1.4) and (1.10) based on Escobar’s approach.
Beckner type trace inequalities with or without a weight are also proved in theses sections;
see Theorems 3.2, 3.3, 4.1, and 5.2. We also consider the limiting cases, known as the
Lebedev–Milin inequality, in these sections as well; see Theorems 3.4 and 4.2. Section 5 is
devoted to a proof of (1.18) based on Beckner’s approach; see Theorem 5.2. A Lebedev–
Milin type inequality of order six is also considered in this section; see Theorem 5.3.
Finally, in Section 6, we state sharp Sobolev trace inequalities of order eight on Rn+1

+ and
Bn+1 and Lebedev–Milin inequality of order eight without proofs; see Theorems 6.1, 6.4,
and 6.3.
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We should point out that throughout out the paper, there are arguments and computa-
tions more or less known to experts in this field. However, we aim to include them for the
reader’s convenience while trying to maintain the paper in a reasonable length.

As a final comment before closing this section, it is worth emphasizing that in order to
avoid any possible mistake, most of computation in the proof of Proposition 5.1, in Sub-
sections 5.3 and 5.4, and especially in Section 6 was done by using a scientific computer
software. This allows us to carry out a similar research for higher order Sobolev trace
inequalities, for example, Sobolev trace inequality of order ten on Bn+1, if there is strong
motivation to work.

2. PRELIMINARIES

First we need some notations and convention used throughout the paper. We often write
X = (x, y) ∈ Rn+1 and denote Bn+1 = {X ∈ Rn+1 : |X| < 1}. By Rn+1

+ we mean
the set {(x, y) ∈ Rn+1 : y > 0}. We shall also denote by δ Kronecker’s symbol and
therefore Einstein’s summation convention will be used often.

Now we discuss the conformal equivalence between Bn+1 and Rn+1
+ . To see why these

sets are conformally equivalent, we work on Rn+2. Therefore, a point (x, y) ∈ Rn+1 will
be identified with the point (x, y, 0) in Rn+2. Furthermore, any point in Rn+2 will be
denoted by (x, y, z) with y, z,∈ R or by (X, z) with z ∈ R.

Consider the stereographic projection S : Rn+1 → Sn+1 ⊂ Rn+2 given by

S(x, y) =
( 2x

1 + |x|2 + y2
,

2y

1 + |x|2 + y2
,
|x|2 + y2 − 1

1 + |x|2 + y2

)
.

The inverse of S, denoted by S−1, is

S−1(x, y, z) =
( x

1− z
,

y

1− z

)
.

We also denote by R a quarter-turn of Sn+1 in the plan containing the last two coordinate
axes Oy and Oz in Rn+2, that maps (0, 1, 0) to (0, 0,−1). Clearly, such a map R is given
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by
R(x, y, z) = (x, z,−y).

Then we define B : Rn+1
+ → Bn+1 by

B = S−1 ◦R ◦ S
∣∣
Bn+1 .

It is not hard to verify that the mapping B is well-defined and conformal. Furthermore, it
is immediate to see that

B(x, y) =

(
2x

(1 + y)2 + |x|2
,
|x|2 + y2 − 1

(1 + y)2 + |x|2

)
.

We note that the mapping B takes a similar form to the mapping F−1 in [Esc88, p. 691].
Clearly, the Jacobian matrix of B, denoted by DB, is given by

DB(x, y) =
2[

(1 + y)2 + |x|2
]2

×



· · · −2x1(1 + y)

...
[
(1 + y)2 + |x|2

]
δij − 2xixj

...
...

· · · −2xn(1 + y)

2x1(1 + y) · · · 2xn(1 + y) (1 + y)2 − |x|2


.

Hence in short we can rewrite

DB(x, y) =
2[

(1 + y)2 + |x|2
]2

[
(1 + y)2 + |x|2

]
In − 2x⊗ x −2x(1 + y)

2xt(1 + y) (1 + y)2 − |x|2

.
(2.1)

We can easily verify that

DB ·DBt =
( 2

(1 + y)2 + |x|2
)2
In+1, (2.2)

where DBt denotes the transpose of DB. From this and throughout this paper, if we
denote

Φ(X) =
2

(1 + y)2 + |x|2
,

then it is not hard to verify that the Jacobian of B is given by

JB(X) = Φ(X)n+1.

For simplicity, we shall also use the same letter S to denote the stereographic projection
from Rn to Sn. Clearly, in this new perspective, S is given by

S(x) =
( 2x

1 + |x|2
,−1− |x|2

1 + |x|2
)
.

Note that S(x) = B(x, 0) and therefore the Jacobian of S is

JS(x) =
( 2

1 + |x|2
)n
.

We have the following simple observation.
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Lemma 2.1. Let a ∈ R, then we have

∇Φ(X)a = −aΦ(X)a+1(x, 1 + y)

and
∆Φ(X)a = −a(n− 1− 2a)Φ(X)a+1.

Proof. This is elementary and follows from direct verification. �

For simplicity, let us emphasize that we sometime write the composition f ◦g evaluated
at a point p, that is (f ◦ g)(p), by f(g) if no confusion occurs.

Lemma 2.2. We have the following identity

Φ−2∆(F ◦B) = (∆F )(B)− (n− 1)
( n∑
j=1

(∂jF )(B)xj − (∂n+1F )(B)(1 + y)
)
.

In other words, we have

Φ−2∆(F ◦B) = (∆F )(B) + (n− 1)〈∇F (B), (−x, 1 + y)〉.

Proof. For simplicity and from now on, we set

M = (1 + y)2 + |x|2.

Under this convention, the Jacobian matrix of B given in (2.1) is simply

DB(x, y) =

 2

M
In −

2x

M
⊗ 2x

M
−4x(1 + y)

M2

4xt(1 + y)

M2
− 2

M
+

4(1 + y)2

M2

 .

Using this matrix, we can easily calculate ∇(F ◦ B). Indeed, for i = 1, 2, ..., n, we have
that

∂i(F ◦B) =

n∑
j=1

(∂jF )(B)
(2δji
M
− 4xixj

M2

)
+ (∂n+1F )(B)

4xi(1 + y)

M2
(2.3)

and that

∂n+1(F ◦B) = −
n∑
j=1

(∂jF )(B)
4xj(1 + y)

M2
+(∂n+1F )(B)

(
− 2

M
+

4(1 + y)2

M2

)
. (2.4)

Using our preceding calculation, it is easy to calculate ∆(F ◦ B). Indeed, for each 1 6
i 6 n, from (2.3) we have

∂2i (F ◦B) =

n∑
l=1

n∑
j=1

(∂jlF )(B)
(2δji
M
− 4xixj

M2

)(2δli
M
− 4xixl

M2

)
+

n∑
j=1

(∂jF )(B)
(−8xiδi,j

M2
− 4xj
M2

+
16x2ixj
M3

)
+

n∑
j=1

(∂j,n+1F )(B)
(2δji
M
− 4xixj

M2

)4xi(1 + y)

M2

+ 16(∂2n+1F )(B)
x2i (1 + y)2

M4

+ 4(∂n+1F )(B)
(1 + y

M2
− 4x2i (1 + y)

M3

)
.
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Hence

n∑
i=1

∂2i (F ◦B) =

n∑
j,l=1

(∂jlF )(B)

(
4δl,j
M2

− 16(1 + y)2xjxl
M4

)

+

n∑
j=1

(∂jF )(B)

(
−4(n+ 2)xj

M2
+

16|x|2xj
M3

)

+ 8

n∑
j=1

(∂j,n+1F )(B)
(1 + y)2 − |x|2

M4
xj(1 + y)

+ 16(∂2n+1F )(B)
|x|2(1 + y)2

M4

+ 4(∂n+1F )(B)
( n

M2
− 4|x|2

M3

)
(1 + y)

=I1 + I2 + I3 + I4 + I5.

We also have from (2.4) the following

∂2n+1(F ◦B) =

n∑
j,l=1

(∂jlF )(B)
16xjxl(1 + y)2

M4
−

n∑
j=1

(∂jF )(B)
(4xj
M2
− 16xj(1 + y)2

M3

)
− 8

n∑
j=1

(∂j,n+1F )(B)
(1 + y)2 − |x|2

M4
xj(1 + y)

+ 4(∂2n+1F )(B)
((1 + y)2 − |x|2)2

M4

+ 4(∂n+1F )(B)
(3|x|2 − (1 + y)2)(1 + y)

M3

=II1 + II2 + II3 + II4 + II5.

Observe that 

I1 + II1 =

n∑
i=1

(∂iiF )(B),

I2 + II2 =− 4(n− 1)

M2

n∑
j=1

(∂jF )(B),

I3 + II3 =0,

I4 + II4 =(∂2n+1F )(B),

I5 + II5 =
4(n− 1)

M2
(1 + y)(∂n+1F )(B).

From this we obtain the desired identities. �

Corollary 2.3. There holds

〈∇(F ◦B), (x, 1 + y)〉 = Φ〈∇F (B), (−x, 1 + y)〉

and

∆(F ◦B)(X) = (∆F )(B(X))Φ2 + (n− 1)〈∇(F ◦B)(X), (x, 1 + y)〉Φ,

where X = (x, y) ∈ Rn+1.
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Proof. In view of (2.3) and (2.4) we obtain

〈∇(F ◦B), (x, 1 + y)〉

=

n∑
i=1

n∑
j=1

(∂jF )(B)
(2δi,j
M
− 4xixj

M2

)
xi +

4(1 + y)

M2
(∂n+1F )(B)|x|2

− 4(1 + y)2

M2

n∑
j=1

(∂jF )(B)xj + 2(1 + y)(∂n+1F )(B)
(1 + y)2 − |x|2

M2

=− 2

M

n∑
j=1

(∂jF )(B)xj +
2

M
(∂n+1F )(B)(1 + y).

From this and Lemma 2.2 we have the desired result. �

The main purpose of this section is to prove Proposition 2.6 below. Let us first consider
the case k = 1 in Proposition 2.6. Let F : Bn+1 → R be arbitrary, we define f1 : Rn →
R, in terms of F , via the following rule

f1(X) = (F ◦B)(X)Φ(X)
n−1
2 .

The next result provides a relation between ∆f1 and (∆F )(B).

Proposition 2.4. There holds

∆f1 = (∆F )(B)Φ
n+3
2 . (2.5)

Proof. This fact is a consequence of the preceding corollary. In fact, it follows from Corol-
lary 2.3 that

∆f1 =∆
(
F (B)

)
Φ
n−1
2 + 2∇

(
F (B)

)
∇Φ

n−1
2 + F (B(X))∆Φ

n−1
2

=(∆F )(B)Φ
n+3
2 + (n− 1)〈∇(F (B)), (x, 1 + y)〉Φ

n+1
2 + 2∇

(
F (B)

)
∇Φ

n−1
2

=(∆F )(B)Φ
n+3
2

as claimed. �

To generalize (2.5) for higher order derivatives, we first mimic the proof of Lemma 2.2
in [Han07] to obtain another useful identity.

Lemma 2.5. There holds

∆(Φ−m−1∆mu) = Φ−m∆m+1(Φ−1u)

for any non-negative integer m.

Proof. Given any non-negative number a, it is easy to verify that
∇
( |x|2 + (1 + y)2

2

)a
= a

( |x|2 + (1 + y)2

2

)a−1
(x, 1 + y),

∆
( |x|2 + (1 + y)2

2

)a
= a(2a+ n− 1)

( |x|2 + (1 + y)2

2

)a−1
.

Clearly, the case m = 0 is trivial. To consider the case m > 0, we first observe

∆
( |x|2 + (1 + y)2

2
u
)

= (n+ 1)u+ 2(x, 1 + y)∇u+
|x|2 + (1 + y)2

2
∆u.

By induction on k we get

∆k
( |x|2 + (1 + y)2

2
u
)

= ak∆k−1u+ bk(x, 1 + y)∇∆k−1u+
|x|2 + (1 + y)2

2
∆ku
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with ak = k(2k + n− 1) and bk = 2k. Indeed,

∆k+1
( |x|2 + (1 + y)2

2
u
)

=∆
(
ak∆k−1u+ bk(x, 1 + y)∇∆k−1u+

|x|2 + (1 + y)2

2
∆ku

)
=ak∆ku+ 2bk∆ku+ bk(x, 1 + y)∇∆ku

+ (n+ 1)∆ku+ 2(x, 1 + y)∇∆ku+
|x|2 + (1 + y)2

2
∆k+1u

=
(
ak + 2bk + n+ 1

)
∆ku+ (bk + 2)(x, 1 + y)∇∆ku+

|x|2 + (1 + y)2

2
∆k+1u

=ak+1∆ku+ bk+1(x, 1 + y)∇∆ku+
|x|2 + (1 + y)2

2
∆k+1u.

Using this formula, we deduce that

∆
(( |x|2 + (1 + y)2

2

)m+1

∆mu
)

=(m+ 1)(2m+ n+ 1)
( |x|2 + (1 + y)2

2

)m
∆mu

+ 2m
( |x|2 + (1 + y)2

2

)m−1
(x, 1 + y)∇∆ku

+
( |x|2 + (1 + y)2

2

)m+1

∆m+1u

=
( |x|2 + (1 + y)2

2

)m
∆m+1

( |x|2 + (1 + y)2

2
u
)
.

Thus, for any non-negative integer m, we have just shown that

∆(Φ−m−1∆mu) = Φ−m∆m+1(Φ−1u)

as claimed. �

We are now in position to generalize Proposition 2.4. We prove the following theorem.

Proposition 2.6. For any integer 1 6 k < n/2, define

fk = F ◦B Φ
n+1−2k

2 .

Then we have the following identity

∆kfk = (∆kF ) ◦B Φ
n+1+2k

2 . (2.6)

Proof. We prove (2.6) by induction. Thanks to (2.5), the statement holds for k = 1.
Assume by induction that (2.6) holds up to some k < bn/2c − 1, that is

(∆kF ) ◦B = Φ−
n+1+2k

2 ∆k
(
F ◦B Φ

n+1−2k
2

)
. (2.7)

To compute ∆k+1fk+1, it suffices to compute (∆k+1F ) ◦B. Indeed, by Corollary 2.3, we
have

(∆k+1F ) ◦B =(∆(∆kF )) ◦B

=∆((∆kF ) ◦B)Φ−2 − (n− 1)〈∇((∆kF ) ◦B), (x, 1 + y)〉Φ−1

=IΦ−2 − (n− 1)IIΦ−1.

To simplify notation, we denote

u = F ◦B Φ
n+1−2k

2 .

Then the induction assumption (2.7) becomes

(∆kF ) ◦B = Φ−
n+1+2k

2 ∆ku. (2.8)
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We now compute I . Clearly, by (2.8), we have

I =∆(Φ−
n−1
2 Φ−k−1∆ku)

=∆(Φ−
n−1
2 )Φ−k−1∆ku+ Φ−

n−1
2 ∆(Φ−k−1∆ku)

+ 2〈∇Φ−
n−1
2 ,∇(Φ−k−1∆ku)〉

=∆(Φ−
n−1
2 )Φ−k−1∆ku+ Φ−

n−1
2 ∆(Φ−k−1∆ku)

+ 2〈∇Φ−
n−1
2 ,∇Φ−k−1〉∆ku+ 2Φ−k−1〈∇Φ−

n−1
2 ,∇∆ku〉.

Using Lemma 2.1, we can easily check that

∇Φ−
n−1
2 =

n− 1

2
Φ−

n−3
2 (x, 1 + y), ∇Φ−k−1 = (k + 1)Φ−k(x, 1 + y),

and
∆(Φ−

n−1
2 ) = (n− 1)2Φ−

n−3
2 .

Therefore, these identities and Lemma 2.5 yield

I =(n− 1)2Φ−
n−1+2k

2 ∆ku+ Φ−
n−1+2k

2 ∆k+1(Φ−1u)

+ 2(n− 1)(k + 1)Φ−
n−1+2k

2 ∆ku+ (n− 1)Φ−
n−1+2k

2 〈(x, 1 + y),∇∆ku〉

=Φ−
n−1+2k

2 ∆k+1(Φ−1u) + (n− 1)(n+ 1 + 2k)Φ−
n−1+2k

2 ∆ku

+ (n− 1)Φ−
n−1+2k

2 〈∇∆ku, (x, 1 + y)〉.

On the other hand, by (2.8) and Lemma 2.1, we also have

II =〈∇((∆kF ) ◦B), (x, 1 + y)〉

=〈∇(Φ−
n+1+2k

2 ∆ku), (x, 1 + y)〉

=(n+ 1 + 2k)Φ−
n+1+2k

2 ∆ku+ Φ−
n+1+2k

2 〈∇∆ku, (x, 1 + y)〉.

Consequently, we get

(∆k+1F ) ◦B =IΦ−2 − (n− 1)IIΦ−1

=Φ−
n+3+2k

2 ∆k+1(Φ−1u)

=Φ−
n+1+2(k+1)

2 ∆k+1
(
F ◦BΦ

n+1−2(k+1)
2 u

)
as wanted, which, by induction, completes the proof. �

3. SOBOLEV TRACE INEQUALITY OF ORDER TWO

The main purpose of this section is to provide a new proof of the Sobolev trace inequal-
ity of order two on spheres. As we shall soon see later, our argument depends on the sharp
Sobolev trace inequality (1.2) on Rn+1

+ , that is

Γ(n+1
2 )

Γ(n−12 )
ω1/n
n

(∫
Rn

|U(x, 0)|
2n
n−1 dx

)n−1
n

6
∫
Rn+1

+

|∇U |2dxdy.

3.1. Sharp Sobolev trace inequality of order two on Bn+1: Proof of Theorem 1.1.
This subsection is devoted to a proof of Theorem 1.1. The proof consisting of four steps is
divided into two parts. In the first three steps, we prove (1.4) for any harmonic extension.
Then in the last part, we prove (1.4) for any smooth extension.
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Step 1. Given f ∈ C∞(Sn) and suppose that u is a harmonic extension of f to Bn+1.
Then, in terms of u, we define the function U on Rn+1

+ by

U(x, y) = (u ◦B)(x, y)
( 2

(1 + y)2 + |x|2
)n−1

2

.

Thanks to (2.5) and the harmonicity of u, we have the relation

(∆U)(x, y) = ∆(u ◦B)(x, y)
( 2

(1 + y)2 + |x|2
)n+1

2

= 0

on Rn+1
+ . Hence U is a harmonic extension of f to the upper halfspace Rn+1

+ . Thus, we
can apply the Sobolev trace inequality (1.2) on Rn+1

+ for U . The idea is to transform this
trace inequality on Rn+1

+ to an equivalent trace inequality on Bn+1. To this purpose, we
have to express

∫
Rn |U(x, 0)|

2n
n−1 dx and

∫
Rn+1

+
|∇U |2dxdy in terms of u and this is the

content of the next two steps.

Step 2. First we calculate
∫
Rn |U(x, 0)|

2n
n−1 dx. Clearly,

|U(x, 0)|
2n
n−1 = |u(S(x))|

2n
n−1 JS(x) = |f(S(x))|

2n
n−1 JS(x). (3.1)

From this we deduce that∫
Rn

|U(x, 0)|
2n
n−1 dx =

∫
Sn
|f |

2n
n−1 dω.

Step 3. Now we calculate
∫
Rn+1

+
|∇U |2dxdy. Without writing the variable X , it follows

from Corollary 2.3 that

∇U =
[
DBt · (∇u)(B)− n− 1

2
u(B)(x, 1 + y)Φ

]
Φ
n−1
2 ,

where DB is the Jacobian matrix of B given in (2.1), that is

DB(x, y) =

(
ΦIn − Φ2x⊗ x −Φ2x(1 + y)

Φ2xt(1 + y) −Φ + Φ2(1 + y)2

)
.

Thanks to (2.2), we know that

〈DBt · (∇u)(B), DBt · (∇u)(B)〉 = (∇u)(B)tDB ·DBt · (∇u)(B) = |∇u(B)|2.
Furthermore, in view of Corollary 2.3, we easily get

〈DBt · (∇u)(B), (x, 1 + y)〉 =〈∇(u ◦B), (x, 1 + y)〉
=− Φ〈∇u(B), (x,−1− y)〉
=− 〈∇u(B), B − en+1〉,

where en+1 = (0, . . . , 0, 1). Here we have just used the elementary fact

Φ(x,−1− y) = B(x, y)− en+1. (3.2)

From these facts, we arrive at

|∇U |2 =

|∇u(B)|2Φ2 + (n− 1)u(B)〈∇u(B), B − en+1〉Φ

+
(n− 1

2

)2
u(B)2|(x, 1 + y)|2Φ2

Φn−1.

Notice by (3.2) that
|B(x, y)− en+1|2 = 2Φ.

Therefore, we can rewrite |∇U |2 as follows

|∇U |2 =
(
|∇u(B)|2 + (n− 1)

〈∇(u(B)2), B − en+1〉
|B − en+1|2

+
(n− 1)2u(B)2

|B − en+1|2
)

Φn+1. (3.3)
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Keep in mind that the Jacobian of B is Φn+1. Hence from (3.3) a simple change of vari-
ables leads us to∫

Rn+1
+

|∇U |2dxdy =

∫
Bn+1

|∇u|2dz + (n− 1)

∫
Bn+1

〈∇(u2), z − en+1〉
|z − en+1|2

dz

+ (n− 1)2
∫
Bn+1

u2

|z − en+1|2
dz.

Keep in mind that

∇ · z − en+1

|z − en+1|2
=

n− 1

|z − en+1|2

in Rn+1. Hence, integrating by parts yields∫
Bn+1

〈∇(u2), z − en+1〉
|z − en+1|2

dz = −(n−1)

∫
Bn+1

u2

|z − en+1|2
dz+

∫
Sn
u2
〈ω − en+1, ω〉
|ω − en+1|2

dω,

where ω = x/|x|. From this we obtain∫
Rn+1

+

|∇U |2dxdy =

∫
Bn+1

|∇u|2dz + (n− 1)

∫
Sn
u2
〈ω − en+1, ω〉
|ω − en+1|2

dω.

However, it is easy to see that

〈ω − en+1, ω〉 = 1− 〈ω, en+1〉 =
1

2
|ω − en+1|2.

Thus, we have just shown that∫
Rn+1

+

|∇U |2dxdy =

∫
Bn+1

|∇u|2dz +
n− 1

2

∫
Sn
|f |2dω. (3.4)

Combining (3.1), (3.4), and the sharp Sobolev trace inequality (1.2) for U gives

Γ(n+1
2 )

Γ(n−12 )
ω1/n
n

(∫
Sn
|f |

2n
n−1 dω

)n−1
n

6
∫
Bn+1

|∇u|2dz +
n− 1

2

∫
Sn
|f |2dω

provided u is a harmonic extension of f to Bn. This completes Step 3.

Step 4. In this step, we prove (1.4). Indeed, given f ∈ C∞(Sn) it is well-known that the
minimizing problem

inf
w

{∫
Bn+1

|∇w|2dx : w
∣∣
Sn = f

}
(3.5)

is attained by some harmonic extension u of f in Bn+1. Therefore, we can repeat from
Step 1 to Step 3 to get the following estimate

Γ(n+1
2 )

Γ(n−12 )
ω1/n
n

(∫
Sn
|f |

2n
n−1 dω

)n−1
n

6
∫
Bn+1

|∇u|2dz +
n− 1

2

∫
Sn
|f |2dω. (3.6)

Since u is a minimizer of (3.5), any smooth extension v of f to Bn enjoys the estimate∫
Bn+1

|∇u|2dx 6
∫
Bn+1

|∇v|2dx.

The desired inequality follows from the preceding estimate and (3.6). The assertion for
which equality in (1.4) is attained is well-known.
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3.2. A weighted Beckner inequality of order two on Bn+1. This subsection is devoted
to a weighted Beckner inequality; see Theorem 3.2 below. Let f ∈ C∞(Sn) and b ∈ (0, 1).
Let also u be a smooth extension of f in Bn+1 such that

∆u(z)− 2b

1− |z|2
〈∇u(z), z〉 = 0 (3.7)

for z ∈ Bn+1. Suppose that the function f has the following spherical harmonic decom-
position

f(ω) =

∞∑
k=0

Yk(ω),

where ω = x/|x| and Yk is a spherical harmonic of order k > 0. From this we decompose
u to get

u(z) =

∞∑
k=0

fk(r)Yk(ω).

Recall that ∆ = ∆r + (1/r2)∆̃ with ∆r = ∂2r + (n/r)∂r in Rn+1 and ∆̃Yk = −ckYk
with ck = k(n+ k − 1). For simplicity, let us denote by Lk the following operator

Lk : f(r) 7→ f ′′(r) +
n

r
f ′(r)− ck

r2
.

Now, on one hand, we know that

∆
(
fk(r)Yk(ω)

)
=∆r

(
fk(r)Yk(ω)

)
+ (1/r2)∆̃

(
fk(r)Yk(ω)

)
=
(
Lkfk(r)− 2br

1− r2
f ′k

)
Yk(ω).

On the other hand, for each 1 6 i 6 n+ 1, there holds

∂i
(
fk(r)Yk(ω)

)
= f ′k(r)∂i(r)Yk(ω) + fk(r)(∂jYk)(ω)∂i(

xj
r

)

leading to

〈fk(r)Yk(ω), z〉 = rf ′k(r)Yk(ω) + fk(r)(∂jYk)(ω)
(δij
r
xi −

x2ixj
r3

)
= rf ′k(r)Yk(ω).

(Note that the Einstein convention was used in the previous equation.) Hence, it follows
from (3.7) that the coefficients fk satisfy

f ′′k (r) +
(n
r
− 2br

1− r2
)
f ′k(r)− ck

r2
fk(r) = 0 (3.8)

for any r ∈ [0, 1) and definitely fk(1) = 1. Recall that in the preceding decomposition,
we know that ck = k(n + k − 1) for all k > 0. Hence f0 ≡ 1. Given b ∈ (0, 1), our aim
is to understand

lim
r↗1

(1− r2

2

)b
f ′k(r)

for k > 1. In the following result, we describe this limit.

Proposition 3.1. For k > 1 and b ∈ (−1, 1), let αk and βk be solutions of

αk + βk =
n+ 2k − 1 + 2b

2
, αkβk =

bk

2
.

Define

A(b, k) = 2−b
Γ(b+ 1)

Γ(1− b)
Γ(βk + 1− b)Γ(αk + 1− b)

Γ(αk + 1)Γ(βk + 1)
k (3.9)

if k > 1 and A(b, 0) = 0. Then we have

lim
r↗1

(1− r2

2

)b
f ′k(r) = A(b, k).
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For clarity, we put the proof of Proposition 3.1 in Appendix A. Using integration by
parts and the equation (3.7) satisfied by u, we obtain∫

Bn+1

|∇u|2
(1− |z|2

2

)b
dz

=−
∫
Bn+1

u∂i
[(1− |z|2

2

)b
∂iu
]
dz +

∫
Sn

[
u
(1− |z|2

2

)b
〈∇u, ω〉

]∣∣∣
|z|=1

dω

=

∫
Sn

[
u
(1− r2

2

)b∑
k>1

f ′k(r)Yk(ω)
]∣∣∣
r=1

dω.

Hence, applying Proposition 3.1 gives∫
Bn+1

|∇u|2
(1− |z|2

2

)b
dz =

∞∑
k=1

A(b, k)

∫
Sn
|Yk|2dω. (3.10)

In the sequel, we shall choose b = 1− s for s ∈ (0, 1). Now we define the function F on
Rn by

F (x) = f(S(x))JS(x)
n−s
2n . (3.11)

Then we have ∫
Sn
|f |

2n
n−s dω =

∫
Rn

|F |
2n
n−s dx

and by Lemma 8 in [JN14], we have the following interesting identity

‖(−∆)s/2F‖2L2(Rn) =

∞∑
k=0

Γ(k + n/2 + s)

Γ(k + n/2− s)

∫
Sn
|Yk|2(ω)dω. (3.12)

We now use the fractional Sobolev inequality (1.6) applied to F and (3.10) to get

Γ(n+s2 )

Γ(n−s2 )
ωs/nn

(∫
Sn
|f |

2n
n−s dω

)n−s
n

6
∞∑
k=0

Γ(k + n/2 + s/2)

Γ(k + n/2− s/2)

∫
Sn
|Yk|2(ω)dω

=

∫
Bn+1

|∇u|2
(1− |z|2

2

)1−s
dz

+

∞∑
k=0

(
Γ(k + n/2 + s/2)

Γ(k + n/2− s/2)
−A(1− s, k)

)∫
Sn
|Yk|2(ω)dω.

(3.13)

Clearly, equality in (3.13) occurs if, and only if, equality in the fractional Sobolev in-
equality (1.6) occurs. Our next result is as follows.

Theorem 3.2. Let n > 1 and 0 < s < min{2, n}. Let f ∈ C∞(Sn) and v be a smooth
extension of f to the unit ball Bn+1. Suppose that f has a decomposition on spherical
harmonics as f =

∑∞
k=0 Yk(ω). Then the following inequality holds

Γ(n+s2 )

Γ(n−s2 )
ωs/nn

(∫
Sn
|f |

2n
n−s dω

)n−s
n

6
∫
Bn+1

|∇v|2
(1− |z|2

2

)1−s
dz

+

∞∑
k=0

(Γ(k + n/2 + s/2)

Γ(k + n/2− s/2)
−A(1− s, k)

)∫
Sn
|Yk|2dω,

(3.14)

whereA(1−s, k) is given in (3.9). Moreover, equality holds if, and only if, v is an extension
of a function of the form

c|1− 〈z0, ξ〉|−(n−s)/2,
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in the spirit of (3.7), where c > 0 is a constant, ξ ∈ Sn, and z0 is some fixed point in the
interior of Bn+1.

Proof. Let f ∈ C∞(Sn), it is well known that the problem

inf

{∫
Bn+1

|∇u|2
(1− |z|2

2

)1−s
dz : u

∣∣
Sn = f

}
is attained by some function u such that

∆u(z)− 2(1− s)
1− |z|2

〈∇u(z), z〉 = 0

in Bn+1 and u ≡ f on Sn. The inequality (3.14) is then followed from (3.13) and the fact
that ∫

Bn+1

|∇u|2
(1− |z|2

2

)1−s
dz 6

∫
Bn+1

|∇v|2
(1− |z|2

2

)1−s
dz

since u is a minimizer. Let us now determine the equality case in (3.14). To this purpose,
we need to find all functions f . Indeed, the equality case comes from the fact that the
equality in the fractional Sobolev inequality (1.6) applied to F occurs. In this scenario,
there exist some positive constants c, µ, some x0 ∈ Rn such that

F (x) = c
(
µ+ |x− x0|2

)−(n−s)/2
for all x ∈ Rn. To find the corresponding f , we make use of (3.11) to get

f(ξ) = JS(S−1(ξ))−(n−s)/(2n)F (S−1(ξ))

for ξ ∈ Sn+1. Therefore, the function f is simply the lifting of the optimizer for the
fractional Sobolev inequality in Rn via the stereographic projection S. If we denote ξ =
(ξ1, ..., ξn+1), then S−1(ξ) = (ξ1, ..., ξn)/(1 − ξn+1), which then gives JS(S−1(ξ)) =
(1− ξn+1)n. From this we obtain

f(ξ) =c
[
(1− ξn+1)

(
µ+ |x0|2 + 1− 2

〈(
x0,−1

)
,

ξ

1− ξn+1

〉)]−(n−s)/2
=c
[
µ+ |x0|2 + 1−

〈(
x0, µ+ |x0|2 − 1

)
, ξ
〉]−(n−s)/2

for ξ ∈ Sn+1. Observe that |µ+ |x0|2−1|/(µ+ |x0|2 + 1) < 1. Thus, we have just shown
that f takes the form

c
(
1− 〈z0, ξ〉

)−(n−s)/2
,

for some constant c > 0 and for some fixed point z0 in the interior of Bn+1. From this we
have the conclusion. �

We note that the weighted Sobolev trace inequality (3.14) shares some similarities with
the weighted trace inequality obtained by Case in [Cas15a, Theorem 1.1] and the weighted
trace inequality obtained by Jin and Xiong in [JX13, Theorem 1.1]. While the weighted
trace inequality of Case involves the interior L2-norm of the extension v, the weighted
trace inequality of Jin and Xiong only requires a boundary L2-norm of f . In our inequality
(3.14), a term involving

∫
Sn |Yk|

2dω appears, which, more or less, involves a boundary
L2-norm of f in an implicit way.

It is also worth noticing that because our trace inequality (3.14) is sharp, this suggests
that the sharp constant of the boundary term in [JX13, Theorem 1.1] is never achieved for
the case of balls. It could be interesting to know that if a similar weighted trace inequality
in the spirit of Case is actually available.
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As an application of Theorem 3.2, let us consider the case n > 2 and s = 1. Recall that∫
Sn
|f |2dω =

∞∑
k=0

∫
Sn
|Yk|2dω.

Hence, in the present scenario, Inequality (3.14) becomes the usual trace inequality (1.4).
We also note that if u is a harmonic extension of f , then fk solves Lkfk = 0. From this
and fk(1) = 1 we obtain fk(r) = rk. Consequently, we get

〈∇u, ω〉 =

∞∑
k=0

kYk(ω).

Thus, ∫
Bn+1

|∇u|2dz =

∫
Sn
u〈∇u, ω〉dz =

∞∑
k=0

k

∫
Sn
|Yk|2dω;

see [Bec93, page 232]. Therefore, we can mimic the argument in (3.13) to get the following
result.

Theorem 3.3. Let n > 1 and 0 < s < n. Let f ∈ C∞(Sn) and v be a harmonic extension
of f to the unit ball Bn+1. Suppose that f has a decomposition on spherical harmonics as
f =

∑∞
k=0 Yk(ω). Then the following inequality holds

Γ(n+s2 )

Γ(n−s2 )
ωs/nn

(∫
Sn
|f |

2n
n−s dω

)n−s
n

6
∫
Bn+1

|∇v|2dz +

∞∑
k=0

(Γ(k + n/2 + s/2)

Γ(k + n/2− s/2)
− k
)∫

Sn
|Yk|2dω.

(3.15)

Moreover, equality holds if, and only if, v is a harmonic extension of a function of the form

c|1− 〈z0, ξ〉|−(n−s)/2,

where c > 0 is a constant, ξ ∈ Sn, and z0 is some fixed point in the interior of Bn+1.

Apparently, Inequality (3.15) includes [Bec93] as a special case because when s = 1
our inequality (3.15) becomes Beckner’s inequality. In the final part of this section, we
treat the limiting case n = 1.

3.3. A classical Ledebev–Milin inequality of order two on B2. Let us now consider the
limiting case of Theorem 3.3, namely, n = 1 and 0 < s < 1. Suppose that f ∈ C∞(S1)
with

∫
S1 fdω = 0 and let v be a smooth extension of f in B2. As before, we decompose f

in terms of spherical harmonics to get

f =

∞∑
k=1

Yk(ω)

Clearly, the function 1 + ((1 − s)/2)v is also a smooth extension of 1 + ((1 − s)/2)f in
B2 and ω1 = 2π. Therefore, we can apply Theorem 3.2 to get

Γ( 1+s
2 )

Γ( 1−s
2 )

(2π)s
(∫

S1

(
1 +

1− s
2

f
) 2

1−s
dω
)1−s

6
(1− s)2

4

∫
B2

|∇v|2
(1− |z|2

2

)1−s
dz +

Γ( 1+s
2 )

Γ( 1−s
2 )

2π

+
(1− s)2

4

∞∑
k=1

(Γ(k + 1/2 + s/2)

Γ(k + 1/2− s/2)
−A(1− s, k)

)∫
S1
|Yk|2dω.
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Dividing both sides by (1− s)2 and making use of Γ( 3−s
2 ) = (1/2)(1− s)Γ( 1−s

2 ) to get

Γ( 1+s
2 )

Γ( 3−s
2 )

1

1− s

[( 1

2π

∫
S1

(
1 +

1− s
2

f
) 2

1−s
dω
)1−s

− 1
]

6
1

4π

∫
B2

|∇v|2
(1− |z|2

2

)1−s
dz

+
1

4π

∞∑
k=1

(Γ(k + 1/2 + s/2)

Γ(k + 1/2− s/2)
−A(1− s, k)

)∫
S1
|Yk|2dω.

Note that

lim
s→1/2

Γ(k + 1/2 + s/2)

Γ(k + 1/2− s/2)
−A(1− s, k) = 0,

for any k > 1. Hence “formally” letting s↗ 1 and applying the l’Hôpital rule, we obtain

log
( 1

2π

∫
S1
efdω

)
6

1

4π

∫
B2

|∇v|2dx.

for any function f with
∫
S1 fdω = 0. For general function f , we apply the previous

inequality for f − (1/(2π))
∫
S1 fdω to get the classical Lebedev–Milin inequality; see

[LM51], see also [OPS88, Inequality (4’)].

Theorem 3.4 (Lebedev–Milin inequality of order two). Let f ∈ C∞(S1) and suppose that
v is a smooth extension of f to the unit ball B2. Then we have the following sharp trace
inequality

log
( 1

2π

∫
S1
efdω

)
6

1

4π

∫
B2

|∇v|2dx+
1

2π

∫
S1
fdω. (3.16)

Moreover, equality in (3.16) holds if, and only if, v is a harmonic extension of a function
of the form

c− log |1− 〈z0, ξ〉|,
where c > 0 is a constant, ξ ∈ S1, and z0 is some fixed point in the interior of B2.

We note that we can also apply Theorem 3.3 to obtain (3.16) whose proof is left for
interested reader.

4. SOBOLEV TRACE INEQUALITY OF ORDER FOUR: PROOF OF THEOREM 1.2

The main purpose of this section is to provide a new proof of the Sobolev trace inequal-
ity of four two on Sn based on Escobar’s approach. As in the preceding section, the key
ingredient in this approach is the sharp Sobolev trace inequality

2
Γ(n+3

2 )

Γ(n−32 )
ω3/n
n

(∫
Rn

|U(x, 0)|
2n
n−3 dx

)n−3
n

6
∫
Rn+1

+

|∆U(x, y)|2dxdy.

for any function U satisfying the boundary condition ∂yU(x, y)
∣∣
y=0

= 0; see (1.11).

4.1. Sharp Sobolev trace inequality of order four on Bn+1: Proof of Theorem 1.2.
This subsection is devoted to a proof of Theorem 1.2. For clarity, we divide the proof into
several steps.

Step 1. To proceed the proof, we let f ∈ C∞(Sn) and consider u a biharmonic extension
of f to Bn satisfying u ∈ Vf with

Vf =
{
w : w

∣∣
Sn = f,

∂

∂ν
w
∣∣
Sn = −n− 3

2
f
}
. (4.1)

Let U be function defined on Rn+1
+ by

U = u(B)Φ
n−3
2 .
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As always, u(B) is being understood as u ◦B. Thanks to the bi-harmonicity of u, we can
apply Proposition 2.6 for k = 2 to get

∆2U = (∆2u)(B)Φ
n+5
2 = 0.

Thus, we have just proved that U is a biharmonic extension of f to the upper halfspace
Rn+1

+ . Recall that the Jacobian matrix of B is given by

DB(x, y) =

(
ΦIn − Φ2x⊗ x −Φ2x(1 + y)

Φ2xt(1 + y) −Φ + Φ2(1 + y)2

)
.

Hence

∂yU =


n∑
j=1

(∂ju)(B)
(
− Φ2xj(1 + y)

)
+

(∂n+1u)(B)
(
− Φ + Φ2(1 + y)2

)
Φ

n−3
2 − n− 3

2
u(B)(1 + y)Φ

n−1
2 .

(4.2)

In particular, there holds

∂yU(x, 0) =−
[
B(x, 0) · ∇u(B(x, 0)) +

n− 3

2
u(B(x, 0))

]( 2

1 + |x|2
)n−1

2

.

Notice that B(x, 0) is normal to Sn, thus B(x, 0) · ∇u(B(x, 0)) becomes ∂νu(B(x, 0)).
Thus the Neumann boundary condition (1.9) becomes

∂yU(x, 0) = 0,

thanks to u(B(x, 0)) = f(B(x, 0)). From this, we can apply the Sobolev trace inequal-
ity (1.11) for U . Our aim is to transform this trace inequality on Rn+1

+ to the desired
trace inequality on Bn+1. To this purpose, we need to compute

∫
Rn |U(x, 0)|

2n
n−3 dx and∫

Rn+1
+
|∆U(x, y)|2dxdy as shown in the rest of our argument.

Step 2. First we compute
∫
Rn |U(x, 0)|

2n
n−3 dx in terms of u. Still using the stereographic

projection S we deduce that

|U(x, 0)|
2n
n−3 = |u(S(x))|

2n
n−3 JS(x) = |f(S(x))|

2n
n−3 JS(x).

From this we deduce that ∫
Rn

|U(x, 0)|
2n
n−3 dx =

∫
Sn
|f |

2n
n−3 dω. (4.3)

Step 3. We now compute ∆U(x, y) in terms of u. Clearly,

∆U = ∆(u ◦B)Φ
n−3
2 + 2

〈
∇(u ◦B),∇Φ

n−3
2

〉
+ u(B)∆Φ

n−3
2 .

By Lemma 2.1, there holds

∇Φ
n−3
2 = −n− 3

2
(x, 1 + y)Φ

n−1
2 , ∆Φ

n−3
2 = −(n− 3)Φ

n−1
2 .

In view of Lemma 2.2, we easily get

∇(u ◦B) = −Φ〈∇u(B), (x,−1− y)〉
and

∆(u ◦B) = Φ2∆u(B)− (n− 1)Φ2〈∇u(B), (x,−1− y)〉.
Thus, we have just compute

∆U =
[
∆u(B)− (n− 1)〈∇u(B), (x,−1− y)〉

]
Φ
n+1
2

+ (n− 3)〈∇u(B), (x,−1− y)〉Φ
n+1
2 − (n− 3)u(B)Φ

n−1
2

=∆u(B)Φ
n+1
2 − 2〈∇u(B), (x,−1− y)〉Φ

n+1
2 − (n− 3)u(B)Φ

n−1
2 .

(4.4)
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Making use of (3.2), we can further write ∆U as follows

∆U =
[
∆u(B)− 4

〈∇u(B), B − en+1〉
|B(x, y)− en+1|2

− 2(n− 3)
u(B)

|B(x, y)− en+1|2
]
Φ
n+1
2 .

From this, integrating over Rn+1
+ leads us to∫

Rn+1
+

|∆U |2dxdy =

∫
Bn+1

|∆u|2dz + 16

∫
Bn+1

〈∇u, z − en+1〉2

|z − en+1|4
dz

+ 4(n− 3)2
∫
Bn+1

u2

|z − en+1|4
dz

− 8

∫
Bn+1

∆u
〈
∇u, z − en+1

|z − en+1|2
〉
dz

− 4(n− 3)

∫
Bn+1

u∆u

|z − en+1|2
dz

+ 16(n− 3)

∫
Bn+1

u
〈
∇u, z − en+1

|z − en+1|4
〉
dz.

(4.5)

We now compute the last three terms on the right hand side of (4.5). First we compute the
term involving ∆u 〈∇u, (z−en+1)/|z−en+1|2〉. Recall that ω = x/|x|. Using integration
by parts, we first have∫

Bn+1

∆u
〈
∇u, z − en+1

|z − en+1|2
〉
dz

=−
∫
Bn+1

〈
∇u,∇

〈
∇u, z − en+1

|z − en+1|2
〉〉
dz +

∫
Sn

∂u

∂ν

〈
∇u, ω − en+1

|ω − en+1|2
〉
dω

=−
∫
Bn+1

〈
∇u,
∇
〈
∇u, z − en+1

〉
|z − en+1|2

〉
dz + 2

∫
Bn+1

〈∇u, z − en+1〉2

|z − en+1|4
dz

+

∫
Sn

∂u

∂ν
∇u · ω − en+1

|ω − en+1|2
dω,

where we have used∇|z− en+1|2 = 2(z− en+1) once to get the middle term on the right
most hand side of the preceding computation. It remains to compute the first term on the
right most hand side. For simplicity, we use the Einstein convention with indexes running
from 1 to n+ 1. It is not hard to verify that

∂iu ∂i(〈∇u, z − en+1〉) =∂iu ∂i
(
∂ju (z − en+1)j

)
=∂iu

[
(∂i∂

ju) (z − en+1)j + (∂ju) ∂i
(
(z − en+1)j

)]
=

1

2
∂j
(
|∇u|2

)
(z − en+1)j + (∂iu)(∂iu).

Thus, 〈
∇u,
∇
〈
∇u, z − en+1

〉
|z − en+1|2

〉
=
|∇u|2 + 1

2

〈
∇(|∇u|2), z − en+1

〉
|z − en+1|2

which helps us to write∫
Bn+1

∆u
〈
∇u, z − en+1

|z − en+1|2
〉
dz

=−
∫
Bn+1

|∇u|2

|z − en+1|2
dz + 2

∫
Bn+1

〈∇u, z − en+1〉2

|z − en+1|4
dz

− 1

2

∫
Bn+1

〈
∇(|∇u|2),

z − en+1

|z − en+1|2
〉
dz +

∫
Sn

∂u

∂ν

〈
∇u, ω − en+1

|ω − en+1|2
〉
dω
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and by applying integration by parts we arrive at

∫
Bn+1

∆u
〈
∇u, z − en+1

|z − en+1|2
〉
dz

=
n− 3

2

∫
Bn+1

|∇u|2

|z − en+1|2
dz + 2

∫
Bn+1

〈∇u, z − en+1〉2

|z − en+1|4
dz

− 1

2

∫
Sn
|∇u|2 〈ω − en+1, ω〉

|ω − en+1|2
dω +

∫
Sn

∂u

∂ν

〈
∇u, ω − en+1

|ω − en+1|2
〉
dω.

(4.6)

Now we compute the term involving u〈∇u, (z − en+1)/|z − en+1|4〉 . We again apply
integration by parts to get

∫
Bn+1

u
〈
∇u, z − en+1

|z − en+1|4
〉
dz

=
1

2

∫
Bn+1

〈
∇u2, z − en+1

|z − en+1|4
〉
dz

=− n− 3

2

∫
Bn+1

u2

|z − en+1|4
+

1

2

∫
Sn
u2
〈ω − en+1, ω〉
|ω − en+1|4

dω.

(4.7)

Finally, the term involving u∆u/|z − en+1|2 can be computed similarly to get

∫
Bn+1

u∆u

|z − en+1|2
dz =

∫
Sn

∂u

∂ν

u

|ω − en+1|2
dω −

∫
Bn+1

〈
∇u,∇ u

|z − en+1|2
〉
dz

=−
∫
Bn+1

|∇u|2

|z − en+1|2
dz + 2

∫
Bn+1

〈
u∇u, z − en+1

|z − en+1|4
〉
dz

+

∫
Sn

∂u

∂ν

u

|ω − en+1|2
dω

=−
∫
Bn+1

|∇u|2

|z − en+1|2
dz − (n− 3)

∫
Bn+1

u2

|z − en+1|4

+

∫
Sn
u2
〈ω − en+1, ω〉
|ω − en+1|4

dω +

∫
Sn

∂u

∂ν

u

|ω − en+1|2
dω,

(4.8)

where we have used (4.7) once. Plugging (4.6), (4.7), (4.8) into (4.5) and using

(ω − en+1) · ω = 1− ωn+1, |ω − en+1|2 = 2(1− ωn+1)

to get

∫
Rn+1

+

|∆U |2dxdy =

∫
Bn+1

|∆u|2dz + 2

∫
Sn
|∇u|2dω − 4

∫
Sn

∂u

∂ν

〈
∇u, ω − en+1

1− ωn+1

〉
dω

− 2(n− 3)

∫
Sn

∂u

∂ν

u

1− ωn+1
dω + (n− 3)

∫
Sn

u2

1− ωn+1
dω.
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Using the decomposition ∇u(ω) = ω∂νu(ω) + ∇̃u(ω), the assumptions ∂νu = −((n −
3)/2)f and u = f on Sn, and the fact that 〈∇̃u, ω〉 = 0, we further have∫

Rn+1
+

|∆U |2dxdy =

∫
Bn+1

|∆u|2dz + 2

∫
Sn
|∇̃f |2dω − 2

∫
Sn

(∂u
∂ν

)2
dω

− 4

∫
Sn

∂u

∂ν

〈
∇̃u, ω − en+1

1− ωn+1

〉
dω − 2(n− 3)

∫
Sn

∂u

∂ν

u

1− ωn+1
dω

+ (n− 3)

∫
Sn

u2

1− ωn+1
dω

=

∫
Bn+1

|∆u|2dz + 2

∫
Sn
|∇̃f |2dω − (n− 3)2

2

∫
Sn
f2dω

+ (n− 3)

∫
Sn

〈
∇̃f2, ω − en+1

1− ωn+1

〉
dω

+ (n− 3)(n− 2)

∫
Sn

f2

1− ωn+1
dω.

(4.9)

Note that ∇̃f2 · ω = 0, hence∫
Sn

〈
∇̃f2, ω − en+1

1− ωn+1

〉
dω =

∫
Sn

〈
∇̃f2, ω − en+1

1− ωn+1
− 〈ω − en+1, ω〉

1− ωn+1
ω
〉
dω

=

∫
Sn

〈
∇̃f2, ωωn+1 − en+1

1− ωn+1

〉
dω

=

∫
Sn

〈
∇̃f2, ∇̃

(
log(1− ωn+1)

)〉
dω

= −
∫
Sn
f2∆̃ (log(1− ωn+1)) dω,

(4.10)

here ∆̃ denotes the spherical Laplacian on Sn. An easy computation yields

∆̃
(

log(1− ωn+1)
)

=∆
(

log
(
1− xn+1

|x|
))∣∣∣
|x|=1

=
n|x|xn+1 − |x|2 − (n− 1)x2n+1

|x|2(|x| − xn+1)2

∣∣∣
|x|=1

=(n− 1)
ωn+1

1− ωn+1
− 1

1− ωn+1
.

The previous equality together with (4.10) and (4.9) implies∫
Rn+1

+

|∆U |2dxdy =

∫
Bn+1

|∆u|2dz + 2

∫
Sn
|∇̃f |2dω + bn

∫
Sn
f2dω, (4.11)

where bn = (n+ 1)(n− 3)/2. Thus, combining (4.3) and (4.11) gives

2
Γ(n+3

2 )

Γ(n−32 )
ω3/n
n

(∫
Sn
|f |

2n
n−3 dω

)n−3
n

6
∫
Bn+1

|∆u|2dz + 2

∫
Sn
|∇̃f |2dω + bn

∫
Sn
|f |2dω

provided u is a biharmonic extension of f to Bn, belonging to the set Vf .

Step 4. In the final step, we prove Inequality (1.10). Indeed, given f ∈ C∞(Sn) it is
well-known that the minimizing problem

inf
w∈Vf

∫
Bn+1

|∆w|2dx, (4.12)
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where Vf is given in (4.1), is attained by some bi-harmonic function u on Bn+1. In addi-
tion, u ≡ f and ∂νu = −((n − 3)/2)f on Sn. Therefore, we can repeat from Step 1 to
Step 3 to get the following estimate

2
Γ(n+3

2 )

Γ(n−32 )
ω3/n
n

(∫
Sn
|f |

2n
n−3 dω

)n−3
n

6
∫
Bn+1

|∆u|2dz + 2

∫
Sn
|∇̃f |2dω + bn

∫
Sn
|f |2dω.

(4.13)

Since u is a minimizer of (4.12), any smooth extension v belonging to the set Vf enjoys
the estimate ∫

Bn+1

|∆u|2dx 6
∫
Bn+1

|∆v|2dx.

The desired inequality follows from the preceding estimate and (4.13). The assertion for
which equality in (1.10) is attained is already known; see [AC15, page 2739].

4.2. A Beckner type inequality of order four on Bn+1. This subsection is devoted to
a Beckner type trace inequality of order four in a same fashion of Beckner’s inequality
in Theorem 3.3. We do not treat the case with weights in the present paper and leave it
for future papers. Let f ∈ C∞(Sn) and let u be a biharmonic extension of f to Bn+1

satisfying certain boundary conditions as in (1.9), namely

∂νu = −n− 3

2
f (4.14)

on Sn. As in the previous section, we shall work with spherical harmonics. To this purpose,
we decompose

f(ω) =

∞∑
k=0

Yk(ω),

where ω = x/|x|. From this we decompose u to get

u(z) =

∞∑
k=0

fk(r)Yk(ω).

Hence, it follows from (4.14) that the coefficients fk satisfy

L2
kfk = 0

for any r ∈ [0, 1) and definitely fk(1) = 1. Solving the above differential equation gives

fk(r) = c1(k)rk + c2(k)rk+2

for some constants c1(k) and c2(k) to be determined. In fact, these constants can be
computed explicitly by using the boundary conditions in (4.14). Indeed, the condition
u = f on Sn implies that

c1(k) + c2(k) = 1

for all k > 1. Now the condition ∂νu = −((n− 3)/2)f on Sn tells us that

kc1(k) + (k + 2)c2(k) = −n− 3

2
.

From these facts, we compute to get

c1(k) =
n+ 1 + 2k

4
, c2(k) = −n− 3 + 2k

4
.

Now we use integration by parts to get∫
Bn+1

(∆u)2dz =

∫
Bn+1

u∆2udz +

∫
Sn

∆u〈∇u, ω〉
∣∣
|z|=1

dω −
∫
Sn
u〈∇∆u, ω〉

∣∣
|z|=1

dω

=− n− 3

2

∫
Sn
f∆udω −

∫
Sn
u〈∇∆u, ω〉

∣∣
|z|=1

dω.
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Recall that

u(z) =

∞∑
k=0

[
c1(k)rk + c2(k)rk+2

]
Yk(ω),

which implies that

∆u(z) = 2

∞∑
k=0

(n+ 1 + 2k)c2(k)rkYk(ω).

Hence

〈∇∆u, ω〉
∣∣
|z|=1

= 2

∞∑
k=0

k(n+ 1 + 2k)c2(k)Yk(ω).

We are now in position to get∫
Bn+1

(∆u)2dz =
1

4

∞∑
k=0

∫
Sn

(n+ 1 + 2k)(n− 3 + 2k)2|Yk|2dω. (4.15)

Now let 0 < s < n/3. We define the function F on Rn by

F (x) = f(S(x))JS(x)
n−3s
2n .

Then we have ∫
Sn
|f |

2n
n−3s dω =

∫
Rn

|F |
2n
n−3s dx

and as in (3.12) we still have∫
Rn

F (x)(−∆)3s/2F (x)dx =

∞∑
k=0

Γ(k + n/2 + 3s/2)

Γ(k + n/2− 3s/2)

∫
Sn
|Yk|2dω.

We now use the fractional Sobolev inequality (1.6) to get

Γ(n+3s
2 )

Γ(n−3s2 )
ω3s/n
n

(∫
Rn

|F |
2n
n−3s dx

)n−3s
n

6
∫
Rn

F (x)(−∆)3s/2F (x)dx. (4.16)

Combining (4.16) and (4.15) gives

2
Γ(n+3s

2 )

Γ(n−3s2 )
ω3s/n
n

(∫
Sn
|f |

2n
n−3s dω

)n−3s
n

62

∞∑
k=0

Γ(k + n/2 + 3s/2)

Γ(k + n/2− 3s/2)

∫
Sn
|Yk|2dω

=

∫
Bn+1

(∆u)2dz +

∞∑
k=0

2
Γ(k + n/2 + 3s/2)

Γ(k + n/2− 3s/2)

− (n+ 1 + 2k)(n− 3 + 2k)2

4

∫
Sn
|Yk|2dω.

(4.17)

Clearly, equality in (4.17) occurs if, and only if, equality in the fractional Sobolev in-
equality (4.16) occurs. We are now in position to state our next result.

Theorem 4.1. Let n > 3 and 0 < s < n/3. Let f ∈ C∞(Sn) and v be a smooth extension
of f to the unit ball Bn+1 satisfying the boundary condition

∂v

∂ν
= −n− 3

2
f



HIGHER ORDER SOBOLEV TRACE INEQUALITIES ON BALLS REVISITED 27

on Sn. Suppose that f has a decomposition on spherical harmonics as f =
∑∞
k=0 Yk(ω).

Then the following inequality holds

2
Γ(n+3s

2 )

Γ(n−3s2 )
ω3s/n
n

(∫
Sn
|f |

2n
n−3s dω

)n−3s
n

6
∫
Bn+1

(∆v)2dz

+

∞∑
k=0

(
2

Γ(k + n/2 + 3s/2)

Γ(k + n/2− 3s/2)
− (n+ 1 + 2k)(n− 3 + 2k)2

4

)∫
Sn
|Yk|2dω.

(4.18)

Moreover, equality in (4.18) holds if, and only if, v is a biharmonic extension of a function
of the form

c|1− 〈z0, ξ〉|−(n−3s)/2,
where c > 0 is a constant, ξ ∈ Sn, and z0 is some fixed point in the interior of Bn+1, and
v fulfills the above boundary condition.

Thanks to (4.17), the proof of Theorem 4.1 follows the same lines as in Step 4 of the
previous subsection; hence we omit the details. The equality case in (4.18) can be obtained
by following the argument used in the proof of Theorem 3.2.

As an application of Theorem 4.1, let us consider the case n > 4 and s = 1. In this
case, we easily re-obtain Inequality (1.10), namely,

2
Γ(n+3

2 )

Γ(n−32 )
ω3/n
n

(∫
Sn
|f |

2n
n−3 dω

)n−3
n

6
∫
Bn+1

|∆v|2dz + 2

∫
Sn
|∇̃f |2dω + bn

∫
Sn
|f |2dω

with bn = (n+ 1)(n− 3)/2. This is because by the identity ∆̃Yk = −k(n+ k− 1)Yk we
obtain

∆̃f = −
∞∑
k=0

k(n− 1 + k)Yk(ω), (4.19)

which leads to

2

∫
Sn
|∇̃f |2dω+

(n− 3)(n+ 1)

2

∫
Sn
|f |2dω

=

∞∑
k=0

[
2k(n− 1 + k) +

(n− 3)(n+ 1)

4

] ∫
Sn
|Yk|2(ω)dω

and

2
Γ(k + n/2 + 3/2)

Γ(k + n/2− 3/2)
− (n+ 1 + 2k)(n− 3 + 2k)2

4
= 2k(n− 1 + k) +

(n− 3)(n+ 1)

4
.

Clearly, Inequality (4.18) provide us a Beckner type trace inequality of order four. Fur-
thermore, the analysis in obtaining (1.10) from (4.18) is less involved and this suggests us
to adopt this approach to prove the Sobolev trace inequality of order six on Sn in the next
section.

4.3. A Ledebev–Milin type inequality of order four on B4. In the last part of this sec-
tion, we treat the limiting case n = 3. Our aim is to derive a Ledebev–Milin type inequality
of order four similar to the one obtained in [AC15, Theorem B]. To this purpose, we follow
the strategy used to obtain Theorem 3.4.

Suppose that f ∈ C∞(S3) with
∫
S3 fdω = 0 and let v be a smooth extension of f in

B4. As before, we decompose f in terms of spherical harmonics to get

f =

∞∑
k=1

Yk(ω)



28 Q. A. NGÔ, V. H. NGUYEN, AND Q. H. PHAN

Note that the function 1 + 3
2 (1 − s)v is also a smooth extension of 1 + 3

2 (1 − s)f in B4

and ω3 = 2π2. Therefore, we can apply Theorem 4.1 to get

2

3

Γ( 3+3s
2 )

Γ( 3−3s
2 )

[( 1

2π2

∫
S3

(
1 +

3(1− s)
2

f
) 2

1−s
dω
)1−s

− 1
]

6
3(1− s)2

8π2

∫
B4

(∆v)2dz

+
3(1− s)2

8π2

∞∑
k=1

(
2

Γ(k + 3+3s
2 )

Γ(k + 3−3s
2 )
− 2(k + 2)k2

)∫
S3
|Yk|2dω.

Dividing both sides by (1− s)2 and making use of Γ( 5−3s
2 ) = (3/2)(1− s)Γ( 3−3s

2 ) to get

Γ( 3+3s
2 )

Γ( 5−3s
2 )

1

1− s

[( 1

2π2

∫
S3

(
1 +

3(1− s)
2

f
) 2

1−s
dω
)1−s

− 1
]

6
3

8π2

∫
B4

(∆v)2dz

+
3

8π2

∞∑
k=1

(
2

Γ(k + 3+3s
2 )

Γ(k + 3−3s
2 )
− 2(k + 2)k2

)∫
S3
|Yk|2dω.

Note that

lim
s→1

(
2

Γ(k + 3+3s
2 )

Γ(k + 3−3s
2 )
− 2(k + 2)k2

)
= 2k(k + 2)

for any k > 1 and
∫
S3 |∇̃f |

2dω =
∑∞
k=0 k(k + 2)

∫
Sn |Yk|

2(ω)dω. Hence letting s ↗ 1,
we obtain

2 log
( 1

2π2

∫
S3
e3fdω

)
6

3

8π2

∫
B4

|∇v|2dx+
3

4π2

∫
S3
|∇̃f |2dω

for any smooth function f with
∫
S3 fdω = 0. For general function f , we apply the previous

inequality for f − (1/(2π2))
∫
S3 fdω to get the following theorem.

Theorem 4.2 (Lebedev–Milin inequality of order four; see [AC15]). Let f ∈ C∞(S3) and
suppose that u is a smooth extension of f to the unit ball B4. If v satisfies the Neumann
boudanry condition

∂v

∂ν
= 0

on S3, then we have the following sharp trace inequality

log

(
1

2π2

∫
S3
e3fdω

)
6

3

16π2

∫
B4

(∆v)2dx+
3

8π2

∫
S3
|∇̃f |2dω+

3

2π2

∫
S3
fdω. (4.20)

Moreover, equality in (4.20) holds if, and only if, v is a biharmonic extension of a function
of the form

c− log |1− 〈z0, ξ〉|,
where c > 0 is a constant, ξ ∈ S3, z0 is some fixed point in the interior of B4, and v fulfills
the boundary condition ∂νv = 0.

Clearly, Inequality (4.20) can be rewritten as follows

2 log
( 1

2π2

∫
S3
e3(f−f)dω

)
6

3

8π2

∫
B4

|∇v|2dx+
3

4π2

∫
S3
|∇̃f |2dω

where f is the average of f which is (1/(2π2))
∫
S3 fdω.
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5. SOBOLEV TRACE INEQUALITY OF ORDER SIX

5.1. Sobolev trace inequality of order six on Rn+1
+ : Proof of Theorem 1.3. This sub-

section is devoted to a proof of Theorem 1.3. To proceed, we first have the following
observation.

Proposition 5.1. Any function U ∈W 3,2(Rn+1
+ ) satisfying

∆3U(x, y) = 0 (5.1)

on the upper half space Rn+1
+ and the boundary conditions

∂yU(x, 0) = 0, ∂2yU(x, 0) = λ∆xU(x, 0) (5.2)

enjoys the following identity∫
Rn+1

+

|∇∆U(x, y)|2dxdy = (3λ2 − 2λ+ 3)

∫
Rn

U(x, 0)(−∆)5/2U(x, 0)dx.

Proof. By taking the Fourier transform in the x variable on (5.1) we arrive at

0 =∆̂3U(ξ, y) =
(
− |ξ|2 Id +

∂2

∂y2

)3
Û(ξ, y)

=− |ξ|6Û(ξ, y) + 3|ξ|4Ûyy(ξ, y)− 3|ξ|2Ûyyyy(ξ, y) + Ûyyyyyy(ξ, y).

(5.3)

Thus, we obtain an ordinary differential equation of order six for each value of ξ. Again
from the form of (5.3) we now consider the ODE

φ(6) − 3φ(4) + 3φ′′ − φ = 0 (5.4)

with φ ∈ W 3,2([0,+∞)). It is an easy computation to verify that any solution φ to (5.4)
satisfying the initial conditions φ(0) = 1, φ′(0) = 0, and φ′′(0) = −λ must be of the form

φ(y) =
[
1− C2 − (2C2 + C3 − 1)y −

(
2C2 + 2C3 + C4 −

−λ+ 1

2

)
y2
]
e−y

+ (C1 + C2y + C3y
2)ey

for some constants C1, C2, and C3. If, in addition, we assume that φ is bounded, then we
find that C1 = C2 = C3 = 0, which then implies that

φ(y) =
(

1 + y +
−λ+ 1

2
y2
)
e−y.

Hence we have just shown that there is a unique bounded solution φ to (5.4) satisfying
φ(0) = 1, φ′(0) = 0, and φ′′(0) = −λ. Furthermore, by direct computation, we get∫ +∞

0

[(
− φ+ φ′′

)2
+
(
− φ′ + φ(3)

)2]
dy = 3λ2 − 2λ+ 3.

Now from (5.3), it is easy to verify that

Û(ξ, y) = û(ξ)φ(|ξ|y)

with ∂yÛ(ξ, y) = |ξ|û(ξ)φ′(|ξ|y) and ∂2yÛ(ξ, y) = |ξ|2û(ξ)φ′′(|ξ|y). This is because by
taking the Fourier transform the boundary ∂yU(x, 0) = 0 becomes ∂yÛ(ξ, 0) = 0 and the
boundary ∂2yU(x, 0) = λ∆xU(x, 0) becomes ∂2yÛ(ξ, 0) = −λ|ξ|2Û(ξ, 0).

We now compute
∫
Rn+1

+
|∇∆U(x, y)|2dxdy. We notice that

|∇∆U(x, y)|2 =
∣∣∇x[∆xU(x, y) + ∂2yU(x, y)

]∣∣2 + (∂y
[
∆xU(x, y) + ∂2yU(x, y)

)2
.
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Thus, by the Plancherel theorem, we obtain∫
Rn+1

+

|∇∆U(x, y)|2dxdy =
1

(2π)n

∫ +∞

0

∫
Rn

|ξ|2
(
− |ξ|2Û(ξ, y) + ∂2yÛ(ξ, y)

)2
dydξ

+
1

(2π)n

∫ +∞

0

∫
Rn

(∂y
[
− |ξ|2Û(ξ, y) + ∂2yÛ(ξ, y)

])2
dydξ

=
1

(2π)n

∫ +∞

0

∫
Rn

|ξ|6û(ξ)2
(
− φ(|ξ|y) + φ′′(|ξ|y)

)2
dydξ

+
1

(2π)n

∫ +∞

0

∫
Rn

|ξ|6û(ξ)2
(
− φ′(|ξ|y) + φ(3)(|ξ|y)

)2
dξ

=
3λ2 + 2λ+ 3

(2π)n

∫
Rn

|ξ|5û(ξ)2dydξ

=(3λ2 + 2λ+ 3)

∫
Rn

U(x, 0)(−∆)5/2U(x, 0)dx.

The proof is complete. �

We now use Proposition 5.1 to prove Theorem 1.3, namely, the following inequality
holds

(3λ2 − 2λ+ 3)
Γ(n+5

2 )

Γ(n−52 )
ω5/n
n

(∫
Rn

|U(x, 0)|
2n
n−5 dx

)n−5
n

6
∫
Rn+1

+

|∇∆U(x, y)|2dxdy

for any function U satisfying the boundary conditions in (5.2). Indeed, let us consider the
following minimizing problem

inf
w

∫
Rn+1

+

|∇∆w|2dx, (5.5)

over allw satisfying (5.2). It is well-known that that Problem (5.5) is attained by a function
W in Rn+1

+ , which satisfies all assumptions in Proposition 5.1. Therefore, we obtain from
Proposition 5.1 the identity∫

Rn+1
+

|∇∆W (x, y)|2dxdy = (3λ2 − 2λ+ 3)

∫
Rn

W (x, 0)(−∆)5/2W (x, 0)dx.

Making use of the fractional Sobolev inequality (1.6) to get∫
Rn

W (x, 0)(−∆)5/2W (x, 0)dx >
Γ(n+5

2 )

Γ(n−52 )
ω5/n
n

(∫
Rn

|W (x, 0)|
2n
n−5 dx

)n−5
n

. (5.6)

Hence we have just shown that

(3λ2 − 2λ+ 3)
Γ(n+5

2 )

Γ(n−52 )
ω5/n
n

(∫
Rn

|W (x, 0)|
2n
n−5 dx

)n−5
n

6
∫
Rn+1

+

|∇∆W (x, y)|2dxdy,

which yields the desired inequality sinceW is the optimizer for the problem (5.5). Clearly,
equality in (1.16)λ holds if, and only if, equality in (5.6) occurs, which implies that U must
be a triharmonic extension of a function of the form

c
(
µ+ |ξ − z0|2

)−(n−5)/2
,

where c and µ are positive constants, ξ ∈ Rn, z0 ∈ Rn, and U also fulfills the boundary
condition (1.15)λ.
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5.2. Neumann boundary condition for extensions. As in the Sobolev trace inequality of
order four established in Theorem 1.2, to obtain a correct Sobolev trace inequality of order
six, we need to take care of Neumann boundary conditions. The way to find correct bound-
ary conditions is to look at the Sobolev trace inequality of order six on Rn. Following this
strategy, let us recall from (1.16)1/3 the trace inequality

8

3

Γ(n+5
2 )

Γ(n−52 )
ω5/n
n

(∫
Rn

|V (x, 0)|
2n
n−5 dω

)n−5
n

6
∫
Rn+1

+

|∇∆V (x, y)|2dxdy

satisfied by any function V satisfying the following Neumann boundary conditions

∂yV (x, 0) = 0, ∂2yV (x, 0) =
1

3
∆xV (x, 0). (5.7)

It is worth noticing that the boundary condition (5.7) is slightly different from that of
[CY17, Theorem 3.3]. This is because following the calculation in [CY17], it would be
∂2yV (x, 0) = (1/5)∆xV (x, 0).

As in the proof of Theorem 1.2, given f ∈ C∞(Sn), we consider the minimizing
problem

inf
w∈Wf

∫
Bn+1

|∇∆w|2dx, (5.8)

where

Wf =
{
w : w

∣∣
Sn = f, ∂νw|Sn = −n− 5

2
f, ∂2νw|Sn =

1

3
∆̃f +

(n− 5)(n− 6)

6
f
}
.

(5.9)
It is well-known that that Problem (5.8) is attained by a function v in Bn+1. In other words,
v is a smooth extension of f on Bn+1 satisfying

∆3v = 0 in Bn+1,

∂νv = −n− 5

2
f on Sn,

∂2νv =
1

3
∆̃f +

(n− 5)(n− 6)

6
f on Sn.

(5.10)

We shall soon see that our choice for the boundary conditions in (5.9) is correct. Keep
following the idea used in the proof of Theorem 1.2, we define

V (x, y) = (v ◦B)(x, y)Φ
n−5
2

Applying Proposition 2.6 for k = 3 gives

∆3V (x, y) = (∆3v)(B(x, y))Φ
n+7
2 .

By a similar computation leading us to (4.2), we deduce that

∂yV (x, 0) = −
[
(∂νv)(B(x, 0)) +

n− 5

2
v(B(x, 0))

]( 2

1 + |x|2
)n−3

2

.

Consequently, the first boundary condition in (1.17), namely

∂νv
∣∣
Sn = −n− 5

2
f

is equivalent to the following boundary condition

∂yV (x, 0) = 0,
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which is coincident with part of (5.7). Next we compute the second order derivative ∂2yV .
Indeed,

∂2yV (x, y) =∂2y(v ◦B)Φ
n−5
2 + 2∂y(v ◦B)∂yΦ

n−5
2 + (v ◦B)∂2yΦ

n−5
2

=
[
∂2i,jv(B)∂yB

i∂yB
j + ∂kv(B)∂2yB

k
]
Φ
n−5
2

− (n− 5)∂iv(B)∂yB
i(1 + y)Φ

n−3
2

+
(n− 5)(n− 3)

4
v(B)(1 + y)2Φ

n−1
2 − n− 5

2
v(B)Φ

n−3
2 .

Keep in mind that ∂yBi(x, 0) = −(2/(1 + |x|2))Bi(x, 0) for all 1 6 i 6 n+ 1, that

∂2yB
i(x, 0) = − 2

1 + |x|2
Bi(x, 0) +

8

(1 + |x|2)2
Bi(x, 0)

for i = 1, 2, . . . , n, and that

∂2yB
n+1(x, 0) =

4

(1 + |x|2)2
+

8

(1 + |x|2)2
Bn+1(x, 0)

=
2

1 + |x|2
− 2

1 + |x|2
Bn+1(x, 0) +

8

(1 + |x|2)2
Bn+1(x, 0).

Then we can verify

∂2i,jv(B)∂yB
i∂yB

j + ∂kv(B)∂2yB
k =
[
∂2νv(B) + 2∂νv(B)

]( 2

1 + |x|2
)2

+
[
∂n+1v(B)− ∂νv(B)

] 2

1 + |x|2

and

∂iv(B)∂yB
i(1 + y) = −∂νv(B)

2

1 + |x|2

at (x, 0). Hence, with the fact that
[
∂νv(B)−∂n+1v(B)

]
(1+|x|2)/2 = 〈∇v(B), (x,−1)〉

at (x, 0), we obtain

∂2yV (x, 0) =



∂2νv(B(x, 0)) + (n− 3)∂νv(B(x, 0))

− 〈∇v(B(x, 0)), (x,−1)〉

+
(n− 5)(n− 3)

4
v(B(x, 0))

− n− 5

4
v(B(x, 0))(1 + |x|2)


( 2

1 + |x|2
)n−1

2

.

We now compute ∆V (x, y) in terms of v. Clearly,

∆V = ∆(v ◦B)Φ
n−5
2 + 2∇(v ◦B) · ∇Φ

n−5
2 + v(B)∆Φ

n−5
2 .

Again by Lemma 2.1, there holds

∇Φ
n−5
2 = −n− 5

2
(x, 1 + y)Φ

n−3
2 , ∆Φ

n−5
2 = −2(n− 5)Φ

n−3
2 .

Thus, as in (4.4), we have just computed

∆V =
[
∆v(B)− (n− 1)〈∇v(B), (x,−1− y)〉

]
Φ
n−1
2

+ (n− 5)〈∇v(B), (x,−1− y)〉Φ
n−1
2 − 2(n− 5)v(B)Φ

n−3
2

=∆v(B)Φ
n−1
2 − 4〈∇v(B), (x,−1− y)〉Φ

n−1
2 − 2(n− 5)v(B)Φ

n−3
2 .

(5.11)
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In particular, we obtain from (5.11) the following

1

4
∆V (x, 0) =


1

4
∆v(B(x, 0))− 〈∇v(B(x, 0)), (x,−1)〉

− n− 5

4
v(B(x, 0))(1 + |x|2)

( 2

1 + |x|2
)n−1

2

.

Thus

∂2yV (x, 0) =
1

4
∆V (x, 0)−


1

4
∆v(B(x, 0))− ∂2νv(B(x, 0))

− (n− 3)∂νv(B(x, 0))

− (n− 5)(n− 3)

4
v(B(x, 0))


( 2

1 + |x|2
)n−1

2

.

Note that ∆ is the Euclidean Laplacian in Rn+1, therefore we obtain

∆v(B(x, 0)) = ∂2νv(B(x, 0)) + n∂νv(B(x, 0)) + ∆̃v(B(x, 0)).

Hence, if v satisfies the boundary condition (1.17), namely

∂νv
∣∣
Sn= −n− 5

2
f, ∂2νv

∣∣
Sn=

1

3
∆̃f +

(n− 5)(n− 6)

6
f,

and because B(x, 0) ∈ Sn, then we immediately have

∆v(B(x, 0)) = 4∂2νv(B(x, 0))− (n− 3)(n− 5)v(B(x, 0)).

We now plug in the preceding formula for ∆v into the formula for ∂2yV to get

∂2yV (x, 0) =
1

4
∆V (x, 0) =

1

4
∆xV (x, 0) +

1

4
∂2yV (x, 0),

which, again, is coincident with the remaining part of (5.7).

From this finding and in view of (5.10), to obtain Sobolev trace inequality of order
six, we could apply the trace inequality (1.16)1/3 for V . In other words, the desired trace
inequality on Bn+1 could be obtained from the transformed trace inequality on Rn+1

+ as
before. However, it does seem to us that the analysis of this approach is rather involved.
Inspired by the second approach based on spherical harmonics for proving the trace in-
equality of order four on Sn, we adopt this approach to prove the trace inequality of order
six on Sn and this is the content of the next subsection.

5.3. Sharp Beckner type inequality of order six on Bn+1. Let f ∈ C∞(Sn) and let u
be a triharmonic extension of f in Bn+1 satisfying certain boundary conditions as in (1.9),
namely

∂νu = −n− 5

2
f, ∂2νu =

1

3
∆̃f +

(n− 5)(n− 6)

6
f, (5.12)

on Sn. As in the previous section, we shall work with the spherical harmonic decomposi-
tion

f(ω) =

∞∑
k=0

Yk(ω),

where ω = x/|x|. As always we decompose u to get

u(z) =

∞∑
k=0

fk(r)Yk(ω).

Hence, it follows from (5.12) that the coefficients fk satisfy

L3
kfk = 0

for any r ∈ [0, 1) and definitely fk(1) = 1. Solving the above differential equation gives

fk(r) = c1(k)rk + c2(k)rk+2 + c3(k)rk+4
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for some constants ci(k) with i = 1, 2, 3 to be determined. In fact, these constants can be
computed explicitly by using the boundary conditions in (5.12) as we shall do. Indeed, the
condition u = f on Sn implies that

c1(k) + c2(k) + c3(k) = 1

for all k > 1. Now the condition ∂νu = −((n− 5)/2)f on Sn tells us that

kc1(k) + (k + 2)c2(k) + (k + 4)c3(k) = −n− 5

2

while the condition ∂2νu = (1/3)∆̃f + ((n− 5)(n− 6)/6)f on Sn gives

k(k − 1)c1(k) + (k + 2)(k + 1)c2(k) + (k + 4)(k + 3)c3(k)

= −k(n− 1 + k)

3
+

(n− 5)(n− 6)

6
.

Putting these facts together, we compute to get

c1(k) =
(n+ 1 + 2k)(n+ 3 + 2k)

48
,

c2(k) =− (n− 5 + 2k)(n+ 3 + 2k)

24
,

c3(k) =
(n− 5 + 2k)(n− 3 + 2k)

48
.

Now we use integration by parts and the triharmonicity of u to get∫
Bn+1

|∇∆u|2dz =−
∫
Bn+1

∆u∆2udz +

∫
Sn

∆u∂ν(∆u)

=−
∫
Bn+1

u∆3udz −
∫
Sn

∆2u∂νu

+

∫
Sn
u∂ν(∆2u) +

∫
Sn

∆u∂ν(∆u)

=−
∫
Sn

∆2u∂νu+

∫
Sn
u∂ν(∆2u) +

∫
Sn

∆u∂ν(∆u).

Recall that

u(z) =
∞∑
k=0

[
c1(k)rk + c2(k)rk+2 + c3(k)rk+4

]
Yk(ω),

which implies that

∂νu
∣∣
Sn = −n− 5

2

∞∑
k=0

Yk(ω),

that

∆u(z) = 2

∞∑
k=0

[
(n+ 1 + 2k)c2(k) + 2(n+ 3 + 2k)c3(k)r2

]
rkYk(ω),

that

∂ν∆u
∣∣
Sn = 2

∞∑
k=0

[
k(n+ 1 + 2k)c2(k) + 2(k + 2)(n+ 3 + 2k)c3(k)

]
Yk(ω),

that

∆2u(z) = 8

∞∑
k=0

(n+ 1 + 2k)(n+ 3 + 2k)c3(k)rkYk(ω),

and that

∂ν∆2u
∣∣
Sn = 8

∞∑
k=0

k(n+ 1 + 2k)(n+ 3 + 2k)c3(k)Yk(ω).
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We are now in position to get∫
Bn+1

|∇∆u|2dz

=
1

36

∞∑
k=0

∫
Sn

(n− 5 + 2k)2(12k2 + 8kn+ n2 − 6n+ 9)(n+ 3 + 2k)|Yk|2dω.

(5.13)
Now let 0 < s < n/5. We define the function F on Rn by

F (x) = f(S(x))JS(x)
n−5s
2n .

Then we have ∫
Sn
|f |

2n
n−5s dω =

∫
Rn

|F |
2n
n−5s dx

and as in (3.12) we still have∫
Rn

F (x)(−∆)5s/2F (x)dx =

∞∑
k=0

Γ(k + n/2 + 5s/2)

Γ(k + n/2− 5s/2)

∫
Sn
|Yk|2(ω)dω.

We now use the fractional Sobolev inequality (1.6), the preceding identity, and (5.13) to
get

8

3

Γ(n+5s
2 )

Γ(n−5s2 )
ω5s/n
n

(∫
Sn
|f |

2n
n−5s dω

)n−5s
n

6
8

3

∞∑
k=0

Γ(k + n/2 + 5s/2)

Γ(k + n/2− 5s/2)

∫
Sn
|Yk|2dω

=

∫
Bn+1

|∇∆u|2dz +

∞∑
k=0


8

3

Γ(k + n/2 + 5s/2)

Γ(k + n/2− 5s/2)

− 1

36
(n− 5 + 2k)2(n+ 3 + 2k)

× (12k2 + 8kn+ n2 − 6n+ 9)


∫
Sn
|Yk|2dω.

(5.14)

Thus, we are in position to state the following sharp Beckner type inequality of order six
on Sn.

Theorem 5.2. Let n > 5 and 0 < s < n/5. Let f ∈ C∞(Sn) and v be a smooth extension
of f to the unit ball Bn+1 satisfying the boundary conditions

∂νv
∣∣
Sn =− n− 5

2
f,

∂2νv
∣∣
Sn =

1

3
∆̃f +

(n− 5)(n− 6)

6
f.

Suppose that f has a decomposition on spherical harmonics as f =
∑∞
k=0 Yk(ω). Then

the following inequality holds

8

3

Γ(n+5s
2 )

Γ(n−5s2 )
ω5s/n
n

(∫
Sn
|f |

2n
n−5s dω

)n−5s
n

6
∫
Bn+1

|∇∆v|2dz

+

∞∑
k=0


8

3

Γ(k + n/2 + 5s/2)

Γ(k + n/2− 5s/2)

− 1

36
(n− 5 + 2k)2(n+ 3 + 2k)

× (12k2 + 8kn+ n2 − 6n+ 9)


∫
Sn
|Yk|2dω.

(5.15)
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Moreover, equality in (5.15) holds if, and only if, v is a triharmonic extension of a function
of the form

c|1− 〈z0, ξ〉|−(n−5s)/2,
where c > 0 is a constant, ξ ∈ Sn, and z0 is some fixed point in the interior of Bn+1.

Proof. Let f ∈ C∞(Sn), it is well known that the minimizing problem (5.8)

inf
w

∫
Bn+1

|∇∆w|2dz

under the constraint w ∈ Wf with Wf is given in (5.9) is attained by some function u.
Clearly, ∆3u(z) = 0 in Bn+1 and u ≡ f , ∂νu = −((n− 5)/2)f , and ∂2νu = (1/3)∆̃f +
((n − 5)(n − 6)/6)f on Sn. The inequality (5.15) then follows from (5.14) and the fact
that ∫

Bn+1

|∇∆u|2dz 6
∫
Bn+1

|∇∆v|2dz

since u is a minimizer. Finally, the equality case in (5.15) can be obtained by following the
argument used in the proof of Theorem 3.2. �

It is worth noticing our choice of the coefficient (8/3)Γ(n+5s
2 )/Γ(n−5s2 )ω

5s/n
n appear-

ing on the left hand side of (5.15) comes from the similar coefficient of the left hand side
of (1.14).

5.4. Sharp Sobolev trace inequality of order six on Bn+1: Proof of Theorem 1.4. Now
we use the Beckner type inequality of order six (5.15) to derive the sharp Sobolev trace in-
equality of order six (1.18) on Sn. To this purpose, it is necessary to compute

∫
Sn(∆̃f)2dω

and
∫
Sn |∇̃f |

2dω in terms of spherical harmonics. Since f(ω) =
∑∞
k=0 Yk(ω), we obtain

∆̃f(ω) = −
∞∑
k=0

k(n− 1 + k)Yk(ω),

which then implies that∫
Sn

(∆̃f)2dω =

∞∑
k=0

k2(n− 1 + k)2
∫
Sn
|Yk|2(ω)dω. (5.16)

In a similar way, we compute∫
Sn
|∇̃f |2dω = −

∫
Sn
f∆̃fdω =

∞∑
k=0

k(n− 1 + k)

∫
Sn
|Yk|2(ω)dω. (5.17)

We now let n > 6 and select s = 1 in (5.15) to get

8

3

Γ(n+5
2 )

Γ(n−52 )
ω5/n
n

(∫
Sn
|f |

2n
n−5 dω

)n−5
n

6
∫
Bn+1

|∇∆v|2dz

+

∞∑
k=0


8

3

Γ(k + n/2 + 5/2)

Γ(k + n/2− 5/2)

− 1

36
(n− 5 + 2k)2(n+ 3 + 2k)

× (12k2 + 8kn+ n2 − 6n+ 9)


∫
Sn
|Yk|2(ω)dω.

(5.18)

When transferring back the above Beckner type inequality into the correct sharp trace in-
equality (1.18), the right hand side of (1.18) must contain all lower order terms

∫
Sn(∆̃f)2dω,∫

Sn |∇̃f |
2dω, and

∫
Sn |f |

2dω. Therefore, it is necessary to recast the coefficient of the term
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Sn |Yk|

2(ω)dω in (5.18) in such a way that it only consists of the term k(n−1+k). With-
out using any computer software, tedious computation shows that

8

3

Γ(k + n/2 + 5/2)

Γ(k + n/2− 5/2)
− 1

36
(n− 5 + 2k)2(n+ 3 + 2k)(12k2 + 8kn+ n2 − 6n+ 9)

=
1

18

[
4(n+ 3)k(n− 1 + k) + (n− 3)(n2 + 4n− 9)

]
×
[
4k(n− 1 + k) + (n+ 3)(n− 5)

]
.

This, (5.16), and (5.17) give us the desired inequality (1.18), namely

8

3

Γ(n+5
2 )

Γ(n−52 )
ω5/n
n

(∫
Sn
|f |

2n
n−5 dω

)n−5
n

6
∫
Bn+1

|∇∆v|2dx+
8(n+ 3)

9

∫
Sn

(∆̃f)2dω

+
4(n3 + n2 − 21n− 9)

9

∫
Sn
|∇̃f |2dω + cn

∫
Sn
|f |2dω

with cn = (n − 5)(n − 3)(n + 3)(n2 + 4n − 9)/18. Clearly, equality in (1.18) holds if,
and only if, equality in (5.15) with s = 1 holds, namely, v is a triharmonic extension of a
function of the form

c|1− 〈z0, ξ〉|−(n−5)/2,
where c is a constant, ξ ∈ Sn, and z0 is some fixed point in the interior of Bn+1, which
also satisfies the Neumann boundary conditions. The proof is complete.

5.5. A Ledebev–Milin type inequality of order six on B6. In the last part of this section,
we treat the limiting case n = 5. Our aim is to derive a Ledebev–Milin type inequality of
order six. To this purpose, we follow the strategy used to obtain Theorem 4.2.

Suppose that f ∈ C∞(S5) with
∫
S5 fdω = 0 and let v be a smooth extension of f in

B6. As before, we decompose f in terms of spherical harmonics to get

f =

∞∑
k=1

Yk(ω)

Note that the function 1 + 5
2 (1 − s)v is also a smooth extension of 1 + 5

2 (1 − s)f in B6

and ω5 = π3. Therefore, we can apply Theorem 5.2 to get

8

3

Γ( 5+5s
2 )

Γ( 5−5s
2 )

[
π3s
(∫

S5

∣∣∣1 +
5

2
(1− s)f

∣∣∣ 2
1−s

dω
)1−s

− 1
]

6
(5

2
(1− s)

)2 ∫
B6

|∇∆v|2dz

+
(5

2
(1− s)

)2 ∞∑
k=1


8

3

Γ(k + (5 + 5s)/2)

Γ(k + (5− 5s)/2)

− 8

9
k2(k + 4)(3k2 + 10k + 1)

∫
S5
|Yk|2dω

which implies

2

5

Γ( 5+5s
2 )

Γ( 5−5s
2 )

[( 1

π3

∫
S5

(
1 +

5(1− s)
2

f
) 2

1−s
dω
)1−s

− 1
]

6
15(1− s)2

16π3

∫
B6

|∇∆v|2dz +

∞∑
k=1


8

3

Γ(k + (5 + 5s)/2)

Γ(k + (5− 5s)/2)

− 8

9
k2(k + 4)(3k2 + 10k + 1)

∫
S5
|Yk|2dω

 .
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Dividing both sides by (1− s)2 and making use of Γ( 7−5s
2 ) = (5/2)(1− s)Γ( 5−5s

2 ) to get

Γ( 5+5s
2 )

Γ( 7−5s
2 )

1

1− s

[( 1

π3

∫
S5

(
1 +

5(1− s)
2

f
) 2

1−s
dω
)1−s

− 1
]

6
15

16π3

∫
B6

|∇∆v|2dz +

∞∑
k=1


8

3

Γ(k + (5 + 5s)/2)

Γ(k + (5− 5s)/2)

− 8

9
k2(k + 4)(3k2 + 10k + 1)

∫
S5
|Yk|2dω

 .
Note that

lim
s↗1

(8

3

Γ(k + 5+5s
2 )

Γ(k + 5−5s
2 )
−8

9
k2(k + 4)(3k2 + 10k + 1)

)
=

1

18

[
32k(k + 4) + 72

][
4k(k + 4)

]
.

for any k > 1. Hence letting s↗ 1, we obtain

24 log
( 1

π3

∫
S5
e5fdω

)
6

15

16π3

∫
B6

|∇∆v|2dx

+
15

16π3

[64

9

∫
S5
|∆̃f |2dω + 16

∫
S5
|∇̃f |2dω

]
for any smooth function f with

∫
S5 fdω = 0. For general function f , we apply the previous

inequality for f − π−3
∫
S5 fdω to get the following theorem.

Theorem 5.3 (Lebedev–Milin inequality of order six). Let f ∈ C∞(S5) and suppose that
v is a smooth extension of f to the unit ball B6. If v satisfies the boundary conditions

∂νv
∣∣
S5 =0,

∂2νv
∣∣
S5 =

1

3
∆̃f,

then we have the following sharp trace inequality

log

(
1

π3

∫
S5
e5fdω

)
6

5

128π3

∫
B6

|∇∆v|2dx+
5

18π3

∫
S5
|∆̃f |2dω

+
5

8π3

∫
S5
|∇̃f |2dω +

5

π3

∫
S5
fdω.

(5.19)

Moreover, equality in (5.19) holds if, and only if, v is a biharmonic extension of a function
of the form

c− log |1− 〈z0, ξ〉|,

where c > 0 is a constant, ξ ∈ S5, z0 is some fixed point in the interior of B6, and v fulfills
the boundary conditions ∂νv = 0 and ∂2νv = (1/3)∆̃f .

We note that the coefficient of the two terms in the middle of the right hand side of
(5.19) is a multiple of c(1)5 and c(2)5 given in (1.19), respectively. Clearly, Inequality (5.19)
can be rewritten as follows

log
( 1

π3

∫
S5
e5(f−f)dω

)
6

5

128π3

∫
B6

|∇∆v|2dx

+
5

18π3

∫
S5
|∆̃f |2dω +

5

8π3

∫
S5
|∇̃f |2dω

where f is the average of f , which is π−3
∫
S5 fdω.
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6. SOBOLEV TRACE INEQUALITY OF ORDER EIGHT AND BEYOND

In the final part of the paper, we would like to emphasize that sharp Sobolev trace
inequalities of lower order can be easily derived using our approach. As demonstrated
in Section 5 for the trace inequality of order six, we present in this section sharp trace
inequalities of order eight on Bn+1 and on Rn+1

+ .

The strategy is as follows. At the beginning, we have to look for a sharp trace inequality
of order eight on Rn+1

+ . In view of the boundary conditions in (1.15)λ, there is an ex-
tra boundary condition involving the third order partial derivative ∂3yU(x, 0). Our choice
for such a boundary condition again comes from [CY17, Theorem 3.3]. Our sharp trace
inequality on Rn+1

+ reads as follows.

Theorem 6.1 (Sobolev trace inequality of order eight on Rn+1
+ ). Let U ∈ W 4,2(Rn+1

+ )
be satisfied the Neumann boundary condition

∂yU(x, 0) = 0, ∂2yU(x, 0) = λ∆xU(x, 0), ∂3yU(x, 0) = 0. (6.1)λ

Then we have the sharp trace inequality

(20λ2 − 8λ+ 4)
Γ(n+7

2 )

Γ(n−72 )
ω7/n
n

(∫
Rn

|U(x, 0)|
2n
n−7 dx

)n−7
n

6
∫
Rn+1

+

|∇∆U(x, y)|2dxdy.

(6.2)λ

Moreover, equality in (6.2)λ holds if, and only if, U is a quadharmonic extension of a
function of the form

c
(
1 + |x− x0|2

)−(n−7)/2
,

where c > 0 is a constant, x ∈ Rn, x0 is some fixed point in Rn, and U fulfills the
boundary condition (6.1)λ.

The proof of Theorem 6.1 is almost similar to that of Theorem 1.3; hence we omit it.
Next we want to determine λ. The way we look for λ is to solve the equation 20λ2− 8λ+
4 = 16/5. The constant 16/5 comes from the constant c4 where cα is already given in
(1.13). Via the conformal transformation B, we need to determine appropriate boundary
conditions from (6.1)1/5.

Our sharp trace inequality on Bn+1 reads as follows.

Theorem 6.2 (Sobolev trace inequality of order eight). Let f ∈ C∞(Sn) with n > 7
and suppose v is a smooth extension of f in the unit ball Bn+1, which also satisfies the
boundary conditions

∂νv
∣∣
Sn =− n− 7

2
f,

∂2νv
∣∣
Sn =

1

5
∆̃f +

(n− 7)(2n− 15)

10
f,

∂3νv
∣∣
Sn =− 3(n− 5)

10
∆̃f − (n− 5)(n− 7)(n− 15)

20
f.

(6.3)

Then the following inequality holds

16

5

Γ(n+7
2 )

Γ(n−72 )
ω7/n
n

(∫
Sn
|f |

2n
n−7 dω

)n−7
n

6
∫
Bn+1

|∆2v|2dx+ d(1)n

∫
Sn
|∇̃∆̃f |2dω + d(2)n

∫
Sn

(∆̃f)2dω

+ d(3)n

∫
Sn
|∇̃f |2dω + d(4)n

∫
Sn
|f |2dω

(6.4)
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with

d(1)n =
8

25
(5n+ 1),

d(2)n =
1

25
(30n3 − 54n2 − 542n− 490),

d(3)n =
1

50
(15n5 − 57n4 − 482n3 + 582n2 + 4325n+ 10485),

d(4)n =
1

200
(n− 7)(n+ 5)(5n5 − 19n4 − 74n3 − 26n2 + 615n+ 3135).

(6.5)

Moreover, equality in (6.4) holds if, and only if, v is a quadharmonic extension of a function
of the form

fz0(ξ) = c|1− 〈z0, ξ〉|−(n−7)/2,

where c > 0 is a constant, ξ ∈ Sn, z0 is some fixed point in the interior of Bn+1, and v
fulfills the boundary condition (6.3).

To prove Theorem 6.2 we first establish a Beckner type inequality in the same fashion
of Theorem 5.2. To achieve that goal, we note that there is an extra work to consider the
term

∫
Sn |∇̃∆̃f |2dω. Using integration by parts, there holds∫

Sn
|∇̃∆̃f |2dω = −

∫
Sn

(∆̃f) (∆̃2f)dω.

While the spherical harmonic expansion involving ∆̃f is already computed in (4.19), the
spherical harmonic expansion involving ∆̃2f is nothing but

∆̃2Yk = k2(n+ k − 1)2Yk.

This is because ∆̃Yk = −k(n+ k − 1)Yk. Thus,∫
Sn
|∇̃∆̃f |2dω =

∞∑
k=0

k3(n− 1 + k)3
∫
Sn
|Yk|2(ω)dω.

Putting all these information together, we eventually obtain an estimate similar to (5.18),
however, there are terms with higher order derivatives. Furthermore, the coefficient of∫
Sn |Yk|

2dω becomes

16

5

Γ(k + n/2 + 7/2)

Γ(k + n/2− 7/2)
− 1

100
(n+ 5 + 2k)(n− 7 + 2k)

×


80k5 + 160k4n+ 120k3n2 + 40k2n3 + 5kn4

− 208k4 − 336k3n− 192k2n2 − 44kn3 − 3n4

− 184k3 − 136k2n+ 2kn2 + 12n3 + 912k2

+ 732kn+ 138n2 − 375k − 285n− 1680

 .

Finally, it remains to recast the above coefficient in terms of powers of k(n + k − 1). A
detailed proof of Theorem 6.2 is left for interested readers.

Up to this position, one can ask if there is a sharp Sobolev trace inequality of any or-
der on Bn+1. In principle, our approach is easy to implement, but boundary conditions of
higher orders, like (6.1)λ and (6.3) for order eight, are not easy to derive. Jeffrey Case sug-
gests us to compute boundary conditions from the paper of Graham and Zworski [GZ03].

Finally, we put here a Lebedev–Milin inequality of order eight, whose proof is also left
for interested readers.
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Theorem 6.3 (Lebedev–Milin inequality of order eight). Let f ∈ C∞(S7) and suppose
that v is a smooth extension of f to the unit ball B8. If v satisfies the boundary conditions

∂νv
∣∣
S7 =0,

∂2νv
∣∣
S7 =

1

5
∆̃f,

∂3νv
∣∣
S7 =− 3(n− 5)

10
∆̃f.

Then we have the following sharp trace inequality

log

(
3

π4

∫
S7
e7fdω

)
6

7

1728π4

∫
B8

|∆2v|2dx+
7

150π4

∫
S7
|∇̃∆̃f |2dω

+
49

90π4

∫
S7
|∆̃f |2dω +

49

90π4

∫
S7
|∇̃f |2dω +

21

π4

∫
S7
fdω.

(6.6)

Moreover, equality in (6.6) holds if, and only if, v is a quadharmonic extension of a function
of the form

c− log |1− 〈z0, ξ〉|,
where c > 0 is a constant, ξ ∈ S7, z0 is some fixed point in the interior of B8, and v fulfills
the boundary conditions ∂νv = 0, ∂2νv = (1/5)∆̃f , and ∂3νv = −(3(n− 5)/10)∆̃f .

We note that, and as always, the coefficient of the three terms in the middle of the right
hand side of (6.6) is a multiple of d(1)7 , d(2)7 , and d(3)7 given in (6.5), respectively. Clearly,
Inequality (6.6) can also be rewritten as follows

log
( 3

π4

∫
S7
e7(f−f)dω

)
6

7

1728π4

∫
B8

|∆2v|2dx+
7

150π4

∫
S7
|∇̃∆̃f |2dω

+
49

90π4

∫
S7
|∆̃f |2dω +

49

90π4

∫
S7
|∇̃f |2dω,

where f is the average of f over S7, which is (3/π4)
∫
S7 fdω.
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APPENDIX A. PROOF OF PROPOSITION 3.1

This appendix is devoted to a proof of Proposition 3.1. To proceed, we first observe that
αk and βk are solutions to

X2 −
(n− 1

2
+ k + b

)
X +

kb

2
= 0;

thanks to k + b > 0. If we denote by f(X) the left hand side of the preceding equation,
then it is not hard to verify that f(−1) > 0 since b > −1 and f(b − 1) > 0 since b < 1.
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This fact and (n− 1)/2 + k + b > 0 imply that

αk + 1, βk + 1, αk + 1− b, βk + 1− b > 0.

Obviously, A(0, k) = k for any k. In our proof below, we will use the Gaussian hypergeo-
metric functions to describe the functions fk; see [AS64, Chapter 15]. Resolving (3.8) for
fk gives

r2(1− r2)f ′′k (r) + (n− (n+ 2b)r2)rf ′k(r)− ck(1− r2)fk(r) = 0.

Using the following variable change fk(r) = gk(r2), it is easy to verify that gk solves

t2(1− t)g′′k (t) +
(n+ 1

2
− n+ 1 + 2b

2
t
)
tg′k(t)− ck

4
(1− t)gk(t) = 0.

We now further change gk(t) = tk/2hk(t) to get the following equation

t(1− t)h′′k(t) +
(n+ 1 + 2k

2
− n+ 1 + 2k + 2b

2
t
)
h′k(t)− kb

2
hk(t) = 0.

Recall that
αk + βk =

n+ 2k − 1 + 2b

2
, αkβk =

kb

2
.

Denote
γk =

n+ 2k + 1

2
= αk + βk + 1− b.

Hence, solving the hypergeometric differential equation satisfied by hk gives

hk(t) = C1F (αk, βk; γk; t) + C2t
1−γkF (αk − γk + 1, βk − γk + 1; 2− γk; t),

for some constants C1 and C2. Note that in the preceding formula, F is the Gaussian
hypergeometric function; see [AS64, Section 15.5]. Since b < 1, we deduce that γk >
αk + βk. Now, replacing hk(r2) by r−kfk(r) gives

fk(r) = C1r
kF (αk, βk; γk; r2) + C2r

1−n−kF (αk − γk + 1, βk − γk + 1; 2− γk; r2).

Keep in mind that fk(r) = O(rk) when r is near 0. From this it is immediate to see that
C2 = 0, which then implies

fk(r) = C1r
kF (αk, βk; γk; r2).

Now the condition fk(1) = 1 tells us that C1 = 1/F (αk, βk; γk; 1) and in terms of the
Gamma function, we obtain

C1 =
Γ(γk − αk)Γ(γk − βk)

Γ(γk)Γ(γk − αk − βk)
;

see [AS64, 15.1.20]. Using the differential formula [AS64, 15.2.1] and , we get
f ′k(r)

C1
= krk−1F (αk, βk; γk; r2) + 2

αkβk
γk

rk+1F (αk + 1, βk + 1; γk + 1; r2). (A.1)

Depending on the size of b, we have the following three cases.

The case b > 0. In this case, we apply the linear transformation formula [AS64, 15.3.3] to
further decompose f ′k from (A.1) as follows

f ′k(r)

C1
=krk−1F (αk, βk, γk, r

2)

+ 2
αkβk
γk

rk+1(1− r2)−bF (γk − αk, γk − βk, γk + 1, r2),

which then implies(1− r2

2

)b f ′k(r)

C1
=k
(1− r2

2

)b
rk−1F (αk, βk; γk; r2)

+ 2−b
kb

γk
rk+1F (γk − αk, γk − βk; γk + 1; r2),
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Keep in mind that γk+1−(γk−αk+γk−βk) = b > 0, hence F (γk−αk, γk−βk; γk+1; 1)
exists; see [AS64, 15.1.1(a)]. Therefore, we can send r to 1 to get

lim
r→1

(1− r2

2

)b
f ′k(r) = 2−b

Γ(γk − αk)Γ(γk − βk)

Γ(γk)Γ(γk − αk − βk)

kb

γk

Γ(γk + 1)Γ(αk + βk + 1− γk)

Γ(αk + 1)Γ(βk + 1)

= 2−b
Γ(1 + b)

Γ(1− b)
Γ(βk + 1− b)Γ(αk + 1− b)

Γ(αk + 1)Γ(βk + 1)
k = A(b, k)

as claimed.

The case b < 0. In this case, we decompose f ′k from (A.1) as follows

f ′k(r)

C1
=rk−1

[
kF (αk, βk; γk; r2) +

kb

γk
F (αk + 1, βk + 1; γk + 1; r2)

]
− kb

γk
rk−1(1− r2)F (αk + 1, βk + 1; γk + 1; r2).

(A.2)

In the sequel, we consider the behavior of the first term on the right hand side of (A.2)
as t ↗ 1. This is because after multiplying both sides by (1 − r2)b the second term
is negligible as t ↗ 1 due to the term 1 − r2. We now apply the linear transformation
formula [AS64, 15.3.6] to get

kF (αk,βk, γk, t) +
kb

γk
F (αk + 1, βk + 1; γk + 1; t)

=k
Γ(γk)Γ(1− b)

Γ(γk − αk)Γ(γk − βk)
F (αk, βk; b; 1− t)

+ k(1− t)1−bΓ(γk)Γ(b− 1)

Γ(αk)Γ(βk)
F (γk − αk, γk − βk; 2− b; 1− t)

+
kb

γk

Γ(γk + 1)Γ(−b)
Γ(γk − αk)Γ(γk − βk)

F (αk + 1, βk + 1; 1 + b; 1− t)

+
kb

γk

Γ(γk + 1)Γ(b)

Γ(αk + 1)Γ(βk + 1)
(1− t)−bF (γk − αk, γk − βk; 1− b; 1− t).

Observe that

Γ(γk)Γ(1− b)
Γ(γk − αk)Γ(γk − βk)

+
b

γk

Γ(γk + 1)Γ(−b)
Γ(γk − αk)Γ(γk − βk)

= 0.

Hence by the definition of the hypergeometric series, we deduce that

kF (αk,βk, γk, t) +
kb

γk
F (αk + 1, βk + 1; γk + 1; t)

=k
Γ(γk)Γ(1− b)

Γ(γk − αk)Γ(γk − βk)

∑
n>1

(αk)n(βk)n
(b)n

(1− t)n

n!

+ k(1− t)1−bΓ(γk)Γ(b− 1)

Γ(αk)Γ(βk)
F (γk − αk, γk − βk; 2− b; 1− t)

+
kb

γk

Γ(γk + 1)Γ(−b)
Γ(γk − αk)Γ(γk − βk)

∑
n>1

(αk + 1)n(βk + 1)n
(1 + b)n

(1− t)n

n!

+
kb

γk

Γ(γk + 1)Γ(b)

Γ(αk + 1)Γ(βk + 1)
(1− t)−bF (γk − αk, γk − βk; 1− b; 1− t).

(A.3)
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From this, it is immediate to see that the first three terms on the right hand side of the
preceding identity is of class O(1− t). Hence, by (A.3), we obtain

kF (αk,βk; γk; t) +
kb

γk
F (αk + 1, βk + 1; γk + 1; t) = O(1− t)

+
kb

γk

Γ(γk + 1)Γ(b)

Γ(αk + 1)Γ(βk + 1)
(1− t)−b

[
1 +

∑
n>1

(γk − αk)n(γk − βk)n
(1− b)n

(1− t)n

n!

]
,

which also implies that

kF (αk, βk; γk; t)+
kb

γk
F (αk + 1, βk + 1; γk + 1; t)

=O(1− t) +
kb

γk

Γ(γk + 1)Γ(b)

Γ(αk + 1)Γ(βk + 1)
(1− t)−b,

thanks to −b > 0 and the fact that F (αk + 1, βk + 1, γk + 1, 0) exists because γk + 1 −
(βk + 1 + αk + 1) = −b > 0. This together with (A.2) yields

lim
r→1

(1− r2

2

)b
f ′k(r) = 2−b

kb

γk

Γ(γk + 1)Γ(b)

Γ(αk + 1)Γ(βk + 1)
C1 = A(b, k).

The case b = 0. This case is trivial because in this scenario u is simply a harmonic
extension of f . Consequently, fk(r) = rk and therefore

lim
r→1

f ′k(r) = k = A(0, k)

as claimed.

APPENDIX B. SHARP SOBOLEV TRACE INEQUALITY OF ORDER FOUR ON Rn+1
+

As discussed in the introduction, (1.11) can be derived from a general result due to Case
by considering the model case (Rn+1

+ ,Rn, y−2(dx2 +dy2)); see [Cas15b, Corollary 1.5].
In this appendix, we provide a new proof of (1.11). As usual,

f̂(ξ) =

∫
Rn

f(x)e−i〈x,ξ〉dx

denotes the Fourier transform of f .

Proposition B.1. Given a function u ∈ W 1,2(Rn). Any function U ∈ W 2,2(Rn+1
+ )

satisfying
∆2U(x, y) = 0 (B.1)

on the upper half space Rn+1
+ and the boundary condition

U(x, 0) = u(x), ∂yU(x, 0) = 0 (B.2)

enjoys the following identity∫
Rn+1

+

|∆U(x, y)|2dxdy = 2

∫
Rn

u(x)(−∆)3/2u(x)dx.

Proof. The existence and uniqueness of U solving (B.1) and (B.2) is standard. Now by
taking the Fourier transform in the x variable on (5.1) we arrive at

0 = ∆̂2U(ξ, y) =
(
− |ξ|2 Id +

∂2

∂y2

)2
Û(ξ, y)

=|ξ|4Û(ξ, y)− 2|ξ|2Ûyy(ξ, y) + Ûyyyy(ξ, y).

(B.3)

Thus, we obtain an ordinary differential equation of order four for each value of ξ. Inspired
by (B.3), let us now consider the ODE

φ(4) − 2φ′′ + φ = 0 (B.4)
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in (0,+∞). From this, it is routine to verify that φ ∈ H4((0,+∞)). In particular, all
derivatives φ(i) with i = 2, 3 vanish at infinity.

It is an easy computation to verify that any solution φ to (B.4) satisfying the initial
conditions

φ(0) = 1, φ′(0) = 0.

must be of the form

φ(y) = (C1 + C2y)e−y +
[
(2C1 − C2 − 1)y − (C1 − 1)

]
ey

for some constants C1 and C2. If, in addition, we assume that φ is bounded, then we find
that C1 = C2 = 1, which then implies that

φ(y) = (1 + y)e−y.

Hence we have just shown that there is a unique bounded solution φ to (B.4) satisfying
φ(0) = 1, φ′(0) = 0. Furthermore, by direct computation, we get∫ +∞

0

(
− φ+ φ′′

)2
dy = 2.

Now from (B.3), it is easy to verify that

Û(ξ, y) = û(ξ)φ(|ξ|y).

We now compute
∫
Rn+1

+
|∆U(x, y)|2dxdy. By the Plancherel theorem and the relation

∆̂U(ξ, y) = −|ξ|2 Û(ξ, y) + Ûyy(ξ, y), we obtain∫
Rn+1

+

|∆U(x, y)|2dxdy =
1

(2π)n

∫
Rn

∫ +∞

0

[
− |ξ|2û(ξ)φ(|ξ|y) + |ξ|2û(ξ)φ′′(|ξ|y)

]2
dξdy

=
1

(2π)n

∫
Rn

|ξ|4û(ξ)2
∫ +∞

0

[
− φ(|ξ|y) + φ′′(|ξ|y)

]2
dydξ

=
J(φ)

(2π)n

∫
Rn

|ξ|3û(ξ)2dξ

=2

∫
Rn

u(x)(−∆)3/2u(x)dx.

The proof is complete. �

We now use Proposition B.1 to prove (1.11), namely, the following inequality holds

2
Γ(n+3

2 )

Γ(n−32 )
ω3/n
n

(∫
Rn

|U(x, 0)|
2n
n−3 dx

)n−3
n

6
∫
Rn+1

+

|∆U(x, y)|2dxdy

for functions U with ∂yU(x, 0) = 0. Indeed, for simplicity, we set u(x) = U(x, 0). First
we apply the fractional Sobolev inequality (1.6) to get∫

Rn

u(x)(−∆)3/2u(x)dx >
Γ(n+3

2 )

Γ(n−32 )
ω3/n
n

(∫
Rn

|u(x)|
2n
n−3 dx

)n−3
n

. (B.5)

Then we combine the preceding inequality and Proposition B.1 to obtain the desired in-
equality. Clearly, equality in (1.11) holds if, and only if, equality in (B.5) occurs, which
implies that U must be a biharmonic extension of a function of the form

c
(
1 + |ξ − z0|2

)−(n−3)/2
,

where c > 0 is a constant, ξ ∈ Rn, z0 ∈ Rn, and U also fulfills the boundary condition
∂yU(x, 0) = 0.
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