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Abstract. In this paper, we prove that the t-th ordinary and/or symbolic power
of a Stanley-Reisner ideal is level for some positive integer t ≥ 3 if and only if I∆

is a complete intersection and equi-generated. For t = 2, we give a characterzation

of level property of the second symbolic power I
(2)
∆ when ∆ is a matroid complex of

dimension one.

1. Introduction

Let ∆ be a simplicial complex on [n] = {1, . . . , n} and S = K[x1, . . . , xn] a poly-
nomial over a field K. The Stanley-Reisner ideal I∆ of ∆ (over K) is the ideal in S
which is generated by all square-free monomials xi1 . . . xip such that {i1, . . . , ip} /∈ ∆.
It is known that I∆ has the primary decomposition I∆ =

⋂
F : facet of ∆ PF , where

PF = (xi | i ∈ [n] \F ). Then for t ≥ 1, the t-th symbolic power I
(t)
∆ of I∆ is expressed

as
I

(t)
∆ =

⋂
F : facet of ∆

P t
F .

The purpose of this paper is to study the following question:

Question. When is S/I t∆ or S/I
(t)
∆ a level ring for t ≥ 1 ?

This question fits into an ongoing research program to characterize ring properties of
S/I t or S/I(t). The Cohen-Macaulayness, the Buchsbaumness, the generalized Cohen-
Macaulayness , and the k-Buchsbaumness were studied, for example, in [MT1], [MT2],
[TT], [RTY], [HMT], [TY] and [M]. For Cohen-Macaulay case it is known from [MT2]
[V] [TT] that I(t) (resp. I t) is Cohen-Macaulay for some t ≥ 3 (and then for all t ≥ 1)
if and only if I is the Stanley-Reisner ideal of a matroid complex (resp. a complete
intersection Stanley-Reisner ideal) for a squarefree monomial ideal I.

There are some equivalent ways to define a graded ring is level, but we shall use
the following definition. The ring S/I is called a level ring (for shortly, I level) if S/I
is Cohen-Macaulay and the last free module in the minimal graded free resolution of
S-module S/I has a basis of the same degree. The concept of a level ring was firstly
introduced by R. Stanley. The level property is weaker than the Gorenstein property.
A level ring of type 1 is precisely a Gorenstein ring. Level rings have attracted a lot of
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attention as in the work of M. Boij ([B]), T. Hibi ([H]), A. Geramita et. al. ([GHMS]),
but many fundamental questions about this class of rings are still open.

In this article we shall give a complete answer of the above question for t ≥ 3.
Namely, we prove the following theorem:

Theorem 1. Let I = I∆ be the Stanley-Reisner ideal of a simplicial complex ∆.
Then, the following conditions are equivalent:

(1) I t is level for all t ≥ 1;
(2) I t is level for some t ≥ 3;
(3) I(t) is level for all t ≥ 1;
(4) I(t) is level for some t ≥ 3;
(5) I is a complete intersection and equi-generated.

For t ≥ 3, the level properties of the ordinary power I t and the symbolic one I(t)

are equivalent, that is different from Cohen-Macaylay case.
For t = 2, the situation is quite complicated. Hence we consider the case that a

simplicial complex ∆ has dimension one. The ordinary power I2
∆ is level if and only if

∆ is one of the following simplicial complexes: a 2-vertex segment, a 3-vertex segment,
a triangle, a quadrilateral, and a pentagon. It follows from the fact that I2

∆ is level if
and only if ∆ is one of the above simplicial complexes in [MT1].

For the symbolic power case, we only give an answer when I is the Stanley-Reisner
ideal of a one-dimensional matroid complex ∆. In this case, we think of the facets
of ∆ as the edges of a simple graph on the vertex set [n]. In other words, I is the
Stanley-Reisner ideal of a matroid graph. Note that there are non-matroid graphs of
which the second symbolic power of the Stanley-Reisner ideals are level. See the last
two examples of the paper.

Theorem 2. Let I be the Stanley-Reisner ideal of a matroid graph ∆. Then, I(2) is
level if and only if ∆ is either a complete graph or a complete bipartite graph.

Now we explain the organization of the paper. In Section 2, we recall some notations
and basic facts about the Stanley-Reisner ideal and matroids. Section 3 contains
results for non-vanishing reduced homology groups which are used later. Section 4 is
devoted to the proof of Theorem 1. After, Theorem 2 is proved in the last section.

2. Preliminaries

We will use some notation on graphs according to [D]. We refer the reader to
e. g. [BH], [S],[MS] for the detailed information about combinatorial and algebraic
background.

Let ∆ be a simplicial complex on [n] = {1, . . . , n} that is a collection of subsets of
[n] closed under taking subsets. We put dimF = |F | − 1, where |F | is the cardinality
of F , and dim ∆ = max{dimF | F ∈ ∆}, which is called the dimension of ∆. It is
clear that ∆ can be uniquely determinate by the set of its maximal elements under
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inclusion, called by facets. The set of all facets of ∆ is denote by F(∆). The complex
∆ is said pure if all its facets have the same cardinality.

For fixed field K, the i-th reduced simplicial (co)homology group of ∆ denoted by

H̃i(∆;K) (w. r. t H̃ i(∆;K)). Note that H̃i(∆;K) = 0 for all i ∈ Z if ∆ is a cone
(i.e., there exists a vertex x such that x ∈ F for any facet F of ∆).

A matroid M on the ground set [n] is a collection F of subsets of [n], which are
called independent sets, satisfying the following conditions:

(i) ∅ ∈ F,
(ii) If I ∈ F and J ⊆ I, then J ∈ F,

(iii) If I, J ∈ F and |J | < |I|, then there exists an element x ∈ I \ J such that
J ∪ {x} ∈ F.

Maximal independent sets of M are called bases. They have the same cardinality
called the rank of M . Denote by B(M) the set of all bases of M . A dependent set
is a subset of E which is not in F. Minimal dependent sets are called circuits of M .
Denote by C(M) the set of all circuits of M . It is clear that C(M) determines M : F
consists of subsets of E that do not contain any member of C(M).

It is apparent from the definition that the collection of independent sets of a matroid
M forms a simplicial complex, which is called the matroid complex (or the indepen-
dence complex) of M . This one is a pure simplicial complex of dimension r(M)− 1.
For simlicity, we also use C(∆), B(∆) as the set of circuits and the set of bases of a
matroid ∆.

We will also need the following property of a matroid due to by Stanley.

Lemma 2.1 (S, Theorem 3.4). Let ∆ be a matroid complex. Then, ∆ is a cone if
and only if ∆ is acyclic (i.e., has vanishing reduced homology).

Suppose V1 ∩ V2 = ∅. Let ∆1 (respectively ∆2) be a simplicial complex on V1

(respectively V2). Then, the simplicial join of ∆1 and ∆2, denoted by ∆1 ∗ ∆2, is
defined by {F ∪ G | F ∈ ∆1, G ∈ ∆2}. It is clear that it is a simplicial complex on
V1 ∪ V2. The following lemma is easy to check from the definition.

Lemma 2.2. If ∆1,∆2 be two matroid complexes, which are not cones, over disjoint
ground sets V1, V2 then so is ∆1 ∗∆2 with the ground set V1 ∪ V2.

For a face F ∈ ∆, we define the link and the star of F in a simplicial complex ∆
to be

lk∆ F = {G ∈ ∆ | F ∪G ∈ ∆, F ∩G = ∅};

st∆ F = {G ∈ ∆ | F ∪G ∈ ∆}.
The next lemma appeared in [MTr, Lemma 2.3], and we would like to sketch the

proof just for completeness.

Lemma 2.3. Let ∆ be a matroid complex which it is not a cone. If lk∆(F ) 6= ∅ for
some F , then it is also a matroid complex and is not a cone.
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Proof. It suffices to prove the case F = {x} for x ∈ V . It is well-known that lk∆(x) is
a matroid. Assume the contrary, that lk∆(x) 6= ∅ is a cone for some x ∈ V . Let y be
a center of this cone. Obviously, y 6= x. Since ∆ is not a cone, there exists B ∈ F(∆)
such that y /∈ B (i.e. x /∈ B). Put F ∈ F(lk∆(x)), then F ∪ {x} ∈ F(∆), x /∈ F .
Therefore, F ′ = (F ∪{x}) \ {y} ∈ ∆ and |(F ∪{x}) \ {y}| < |B|. By the definition of
matroids, there exists z ∈ B \F ′ such that F ′ ∪{z} ∈ F(∆). Thus, (F ′ ∪{z}) \ {x} ∈
F(lk∆(x)) and y /∈ (F ′ ∪ {z}) \ {x}, which is a contradiction. �

Let

core([n]) = {i ∈ [n] | st∆(i) 6= ∆},
and core(∆) = ∆[core([n])]. It is clear that ∆[[n] \ core([n])] is a simplex and {xi |
i ∈ [n] \ core([n])} forms a linear regular sequence of S/I(t). Therefore, I(t) is level if

and only if I
(t)
core(∆)) is level. For simplicity of exposition, throughout the rest of this

paper, we always assume ∆ = core(∆), i.e. ∆ is not a cone.

3. Non-vanishing reduced homology groups

Let ∆ be a matroid complex of dimension (d − 1) ≥ 0. We shall give some non-
vanishing reduced homology groups of certain subcomplexes of ∆, which are used
later. The first result is as follows.

Theorem 3.1. For any circuit C ∈ C(∆),

H̃d−1(
⋃
i∈C

st∆(C \ {i});K) 6= 0.

Proof. Since C ∈ C(∆), C \ {i} ∈ ∆ for any i ∈ C, i.e. st∆(C \ {i})) 6= ∅. It
is well known that the sub-complex ∆[C] is also matroid complex with its facet set
{C \ {i} | i ∈ C}. This implies that ∆[C] is always not a cone. Fix i ∈ C, take
B ∈ lk∆(C \ {i}). By the third condition of a matroid, B ∪ (C \ {j}) ∈ ∆ for all
j ∈ C. Thus, ⋃

i∈C

st∆(C \ {i}) = ∆[C] ∗ lk∆(C \ {i}).

Combining Lemma 2.3 and Lemma 2.2,
⋃

i∈C st∆(C \{i}) is always a matroid complex
and is not a cone. Then, our assertion comes from Lemma 2.1. �

Next, we obtain the second result that:

Theorem 3.2. Assume every circuit of ∆ has the same cardinality and there exist
two circuits of ∆ which have at least one common vertex. Choose C 6= C ′ ∈ C(∆)
such that |C ∩ C ′| is as large as possible. Then,

H̃d−1

( ⋃
U⊆(C∪C′),|U |=2

st∆(C ∪ C ′ \ U);K
)
6= 0.
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Proof. Let W = C ∩ C ′, V0 = C \ W and V ′0 = C ′ \ W . Then, |W | ≥ 1 and
|V0| = |V ′0 | = α ≥ 1. Now, we need to prepare the following claims.

Claim 1: For any x ∈ W , there exists Wx ⊆ W such that |Wx| = α, x ∈ Wx and

Cx = (V0 ∪ V ′0 ∪W ) \Wx ∈ C(∆).

By a basic property of a matroid (see [O, Proposition 1.4.11]), there exists C ′′ ∈
C(∆) such that C ′′ ⊆ (C ∪ C ′) \ {x}. Let U1 = W ∩ C ′′, U2 = (C ∩ C ′′) \ U1 and
U3 = (C ′ ∩ C ′′) \ U1. It yields that x ∈ W \ U1. It is noticed that

|C| = |U1|+ |U2|+ |W \ U1|+ |C \ (C ′ ∪ C ′′)|
|C ′| = |U1|+ |U3|+ |W \ U1|+ |C ′ \ (C ∪ C ′′)|
|C ′′| = |U1|+ |U2|+ |U3|,

and |C ′′∩C| = |U1|+|U2|, |C ′′∩C ′| = |U1|+|U3|. By choosing of C,C ′, |U2| ≤ |W \U1|
and |U3| ≤ |W \U1|. From this and our assumption, one can see that C \ (C ′ ∪C ′′) =
C ′ \ (C ∪ C ′′) = ∅ and |U2| = |U3| = |W \ U1|. Put Wx = W \ U1 and Cx = C ′′, we
will obtain the result as required of this Claim.

Claim 2: For any x, y ∈ W , then either Wx = Wy or Wx ∩Wy = ∅.
Assume the contrary, that Wx ∩Wy 6= ∅ and Wx 6= Wy for some x, y ∈ W . As in

the above Claim,

Cx = (V0 ∪ V ′0 ∪W ) \Wx ∈ C(∆),

Cy = (V0 ∪ V ′0 ∪W ) \Wy ∈ C(∆).

Therefore, Cx 6= Cy and

|Cx ∩ Cy| = |V0|+ |V ′0 |+ |W | − |Wx| − |Wy|+ |Wx ∩Wy| > |W |,

which is a contradiction with choosing C and C ′.
By Claim 2, we have a partition of W by Wi for i = 1, . . . , s. For simplicity,

we rewrite W0 = V0 and Ws+1 = V ′0 . Then, C ∪ C ′ is a disjoint union of Wi for
i = 0, . . . , s+ 1. And, for all i, |Wi| = α and

(C ∪ C ′) \Wi ∈ C(∆).

Claim 3: For any U = {x, y} ⊆ C ∪ C ′, then (C ∪ C ′) \ U ∈ ∆ if and only if x, y
belong to two different subsets Wi for some i = 0, . . . , s+ 1.

It is clear that if x, y ∈ Wi for some i = 0, . . . , s + 1 then (C ∪ C ′) \ U 6∈ ∆ by
(C ∪ C ′) \Wi ∈ C(∆). Assume x ∈ Wa, y ∈ Wb for some 0 ≤ a 6= b ≤ s + 1 and
(C∪C ′)\U 6∈ ∆. Therefore, there exists a circuit C ′′ of M such that C ′′ ⊆ (C∪C ′)\U .
Let αi = |Wi \ C ′′| ≥ 0 for all i. It is noted that αa ≥ 1 and αb ≥ 1. Then,

s+1∑
i=0

αi = α,
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by C ′′ has the same cardinality with C, i.e. |C ′′| = (s+1)α. Thus, ((C∪C ′)\Wa) 6= C ′′,
and we have

|((C ∪ C ′) \Wa) ∩ C ′′| =
∑
i 6=a

|Wi ∩ C ′′|

=
∑
i 6=a

(α− αi)

= (s+ 1)α−
∑
i 6=a

αi = sα + αa > sα = |C ∩ C ′|,

a contradiction.
We now return to prove our statement. Using Claim 3,⋃

U⊆(C∪C′),|U |=2

st∆(C ∪ C ′ \ U) =
⋃

x∈Wa,y∈Wb,a 6=b

st∆(C ∪ C ′ \ {x, y}).

Also by this Claim, ∆[C∪C ′] is a matroid complex with the facet set which consists of
C∪C ′ \{x, y} for x, y belong to two different subsets Wi. It implies that this complex
is always neither emptyset nor a cone. Fix x ∈ W0 and y ∈ W1. Take any B ∈
lk∆(C∪C ′\{x, y}). Then, by the third condition of a matroid, B ∈ lk∆(C∪C ′\{x′, y′})
for any x′, y′ belong to two different subsets Wi for some i = 0, . . . , s+ 1. From this,⋃

U⊆(C∪C′),|U |=2

st∆(C ∪ C ′ \ U) = ∆[C ∪ C ′] ∗ lk∆(C ∪ C ′ \ {x, y}).

Then, our statement comes from combining Lemmas 2.1, 2.2 and 2.3. �

4. Large symbolic powers

First, we need to recall a formula for computing the multigraded Betti numbers
of a monomial ideal due to by Miller and Sturmfels throughout the (non)-vanishing
of reduced homology groups of certain simplicial complexes. Let ei be the ith-unit
vector for i = 1, . . . , n. For each vector a ∈ Nn, define esupp(a) =

∑
i∈supp(a) ei, where

supp(a) = {i | ai 6= 0}. Given a monomial ideal J and a degree a ∈ Nn, the lower
Koszul simplicial complex of S/J in degree a is

Ka(J) = {F ⊆ supp(a) | xa−esupp(a) .xF 6∈ J},

where xF =
∏

i∈F xi and xa =
∏

i∈supp(a) x
ai
i .

Theorem 4.1 (MS, Theorem 5.11). Given a vector a ∈ Nn with support supp(a) and
a monomial ideal J in S, the Betti numbers of S/J in degree a can be expressed as

βi,a(S/J) = dimK(H̃ | supp(a)|−i−1(Ka(J);K)) = dimK(H̃| supp(a)|−i−1(Ka(J);K)),

for all i.
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From the level property of a symbolic power for t ≥ 2, we always obtain the
condition that the original ideal is equi-generated as follows.

Theorem 4.2. Let ∆ be the matroid complex of dimension (d− 1) ≥ 0 and I be the
Stanley-Reisner ideal of ∆. If S/I(t) is level for some t ≥ 2, then I is equi-generated,
i.e. every circuit of ∆ has the same cardinality.

Proof. For each circuit C ∈ C(∆), let aC =
∑

i∈C tei +
∑

i/∈C ei. Then,

KaC
(I(t)) = {F ⊆ [n] | fC .xF 6∈ I(t)},

where fC =
∏

i∈C x
t−1
i . For each B ∈ B(∆), one can see that |C\B| ≥ 1. This implies

that fC .x
F 6∈ I(t) if and only if F ⊆ B for some B ∈ B(∆) such that |C \ B| = 1.

Therefore,

KaC
(I(t)) =

⋃
i∈C

st∆(C \ {i}).

Using Theorem 4.1 and Theorem 3.1,

βn−d,aC
(S/I(t)) = dimK(H̃d−1(

⋃
i∈C

st∆(C \ {i});K)) 6= 0.

This yields βn−d,(t−1)|C|+n(S/I(t)) 6= 0 for each C ∈ C(∆). By our assumption, every
circuit of ∆ has the same cardinality as required. �

We are now in a position to prove the first main result of this paper.

Theorem 4.3. Let ∆ be a simplicial complex of dimension d − 1 ≥ 0 and I be the
Stanley-Reisner ideal of ∆. Then, the following conditions are equivalent:

(1) S/I t is level for all t ≥ 1,
(2) S/I t is level for some t ≥ 3,
(3) S/I(t) is level for all t ≥ 1,
(4) S/I(t) is level for some t ≥ 3,
(5) I is equi-generated and a complete intersection.

Proof. The implications (1)⇒ (2) and (3)⇒ (4) are clear. Note that for some t ≥ 1
S/I t is Cohen-Macaulay if and only if S/I(t) is Cohen-Macaulay and I t = I(t). Hence
S/I t is level if and only if S/I(t) is level and I t = I(t). Then the implications (1)⇒ (3)
and (2)⇒ (4) are clear.

We consider the implication (5) ⇒ (1). The t-th power of the graded maximal
ideal has a t-linear resolution. See, e.g., [BH, Exercises 4.1.17]. Hence if I is equi-
generated and a complete intersection, then I t has a pure resolution, since each pair
of generators of I is coprime and has the same degree. Since S/I t is Cohen-Macaulay,
it is level.

Now it is enough to prove that (4) implies (5). By Theorem 4.2, we only need
to show that two different circuits of ∆ must be disjoint. Assume the contrary,
that there exist two circuits of ∆ which have at least a common vertex. Choose
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C 6= C ′ ∈ C(∆) such that cardinality of ∅ 6= W = C ∩ C ′ is as large as possible. Let
a(C,C′) =

∑
i∈C(t− 1)ei + 2

∑
i∈C′\C ei +

∑
i/∈C∪C′ ei. Then,

Ka(C,C′)
(I(t)) = {F ⊆ [n] | f(C,C′).x

F 6∈ I(t)},

where f(C,C′) =
∏

i∈C x
t−2
i

∏
i∈C′\C xi. For each B ∈ B(∆), one can see that |C\B| ≥ 1

and |C ′ \B| ≥ 1.
If |(C ∪ C ′) \ B| = 1, assume x ∈ (C ∪ C ′) \ B, then x must belong to W and

(C ∪C ′)\{x} ⊆ B. Since Claim 1 in the Theorem 3.2, there exists x ∈ Wx ⊆ W such
that Cx = (V0 ∪ V ′0 ∪W ) \Wx ∈ C(∆), which is a contradiction by Cx ⊆ B ∈ ∆.

If |(C ∪ C ′) \B| ≥ 3, then f(C,C′) ∈ P t
B by t ≥ 3. Therefore, f(C,C′).x

F 6∈ I(t) if and
only if F ⊆ B for some B ∈ B(∆) such that either |(C ∪ C ′) \ B| = 2 if t = 3 or
(C ∪ C ′) \B = {x, y} for x ∈ C, y ∈ C ′ \ C if t ≥ 4.

We consider two cases as follows.

Case 1: t = 3. Then, as in the above,

Ka(C,C′)
(I(t)) =

⋃
U⊆(C∪C′),|U |=2

st∆(C ∪ C ′ \ U).

Using Theorem 3.2, H̃d−1(Ka(C,C′)
(I(t));K) 6= 0.

Case 2: t ≥ 4. We can see that

Ka(C,C′)
(I(t)) =

⋃
x∈C,y∈(C′\C)

st∆(C ∪ C ′ \ {x, y}).

Similarly as in the proof of Theorem 3.2, fixed x ∈ C, y ∈ C ′ \ C, one can check that⋃
x∈C,y∈(C′\C)

st∆(C ∪ C ′ \ {x, y}) = ∆[C] ∗ Γ ∗ lk∆(C ∪ C ′ \ {x, y})

where Γ is the matroid complex which consists of all subsets (C ′\C)\{z} for z ∈ C ′\C.

Using again Lemma 2.1, Lemma 2.3 and Lemma 2.2, H̃d−1(Ka(C,C′)
(I(t));K) 6= 0.

From both of cases and Theorem 4.1, one can see that βn−d,(t−1)|C|+n−|W |(S/I
(t)) 6= 0.

Combining it and Theorem 4.2, we will obtain a contradiction with the levelness of
S/I(t). �

It can be noted that there is a Stanley-Reisner ideal I such that S/I(2) is level but
S/I2 is not (see the last example of next section). So, t = 3 is the best value for this
theorem.

Corollary 4.4. Let ∆ be a simplicial complex and I be the Stanley-Reisner ideal of
∆. Then, the following conditions are equivalent:

(1) S/I t is Gorenstein for all t ≥ 1,
(2) S/I t is Gorenstein for some t ≥ 3,
(3) S/I(t) is Gorenstein for all t ≥ 1,
(4) S/I(t) is Gorenstein for some t ≥ 3,
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(5) I is a principal ideal.

Proof. The implications (1) ⇒ (2), (2) ⇒ (4), (1) ⇒ (3), (3) ⇒ (4) and (5) ⇒ (1)
are clear. Hence it is enough to prove that (4) implies (5). Assume the condition
(4). By Theorem 4.3, I is equi-generated and a complete intersection. Suppose I
is not principal. Suppose I is minimally generated by p monomials for p ≥ 2. Set
J = (x1, x2, . . . , xp). Then for t ≥ 3, J t is not Gorenstein, since the coefficient of the
highest degree of the numerator of Hilbert series of S/J t is

(
p+t−2
t−1

)
6= 1. Hence I t is

not Gorenstein, which is a constradiction with the condition (4). �

5. The second symbolic power

In this section we only consider the second symbolic power of Stanley-Reisner ideal
of a one-dimensional matroid complex. For simplicity of exposition, in this section,

we assume that ∆ is a matroid complex of dimension one. Then, S/I
(2)
∆ is Cohen-

Macaulay of dimension two. It is clear that ∆ can be viewed as a simple graph on [n]
for n ≥ 2. It can be noted that if n = 2, 3 then ∆ is a complete graph and I∆ is a

principal ideal, so I
(2)
∆ is always level. So, we may assume that n ≥ 4.

For the proof of the main theorem, some more preparations are needed.

Lemma 5.1. If ∆ does not contain any triangles then ∆ is a complete bipartite graph.

Proof. By the connectedness of ∆, one may assume that 12, 13 ∈ ∆. Let

X = {i ∈ [n] | i 6= 2, 2i ∈ ∆}

and

Y = {j ∈ [n] | j 6= 1, there exists a vertex ij ∈ X such that jij ∈ ∆}.

It is clear that 1 ∈ X and both of 2, 3 are in Y . Firstly, for all a 6= b ∈ X, then
ab 6∈ ∆ by the triangle-free property of ∆. Take a 6= b ∈ Y , then there exist ia, ib ∈ X
such that aia, bib ∈ ∆. If ia = ib then ab 6∈ ∆ as above. If ia 6= ib then iaib 6∈ ∆.
Therefore, iab ∈ ∆ by the matroid condition. Thus, ab 6∈ ∆. Secondly, take any vertex
u ∈ [n] \ {1, 2, 3}, one may see that either 1u or 2u is in ∆ by the matroid property.
Therefore, X ∪ Y = [n] and it can check that X ∩ Y = ∅. Take any u ∈ X, v ∈ Y . If
v = 2 then uv ∈ ∆. If v 6= 2 then there exists i(v) ∈ X such that viv ∈ ∆. If iv = u
then uv ∈ ∆, otherwise iv 6= u then uv ∈ ∆ by its matroid property. Thus, uv always
belongs to ∆ which implies that ∆ is the complete bipartite graph over X and Y as
required.

�

Proposition 5.2. If ∆ be a complete graph then I
(2)
∆ is level.

Proof. Let a = 2(e1 + e2 + e3) +
∑n

i=4 ei. Then, supp(a) = [n] and by definition,

Ka(I
(t)
∆ ) = {F ⊆ [n] | x1x2x3.x

F 6∈ I(2)
∆ .}
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Note that, if |F \ {1, 2, 3}| ≥ 1 then x1x2x3.x
F ∈ I

(2)
∆ . If F ⊆ {1, 2, 3} then

one can see that the facets of Ka(I
(t)
∆ ) are 12, 23, 31. Therefore, by Theorem 4.1,

βn−2,a(S/I
(t)
∆ ) = dim(H̃1(Ka(I

(t)
∆ );K)) = dim(H̃1(S1;K)) 6= 0. It is enough to show

that H̃| supp(b)|−n+1(Kb(I
(2)
∆ );K) = 0 for all b ∈ Nn and |b| 6= n + 3. Fix a vector

b ∈ Nn with |b| 6= n+ 3, let W = supp(b),u = b− esupp(b). Let

∆u = {F ⊆ [n] | xu.xF 6∈ I(2)
∆ },

then Kb(I
(2)
∆ ) = ∆u[W ]. It is clear that supp(u) ⊆ W . We distinguish some types of

∆u.
Type 1: | supp(u)| ≥ 4. It is clear that xu ∈ I(2)

∆ . Therefore, ∆u = ∅.
Type 2: | supp(u)| = 3. Write 1, 2, 3 ∈ supp(u).

(i) If u1 = u2 = u3 = 1 then the facets of ∆u are 12, 13, 23;
(ii) If u1 ≥ 2, u2 = u3 = 1 then the facets of ∆u are 12, 13;

(iii) If u1 ≥ 2, u2 ≥ 2, u3 = 1 then the facets of ∆u are 12;

(iv) If u1 ≥ 2, u2 ≥ 2, u3 ≥ 2 then ∆u = ∅ by x2
1x

2
2x

2
3 ∈ I

(2)
∆ .

Type 3: | supp(u)| = 2. Write 1, 2 ∈ supp(u). If |F \{1, 2}| ≥ 2 then xu.xF ∈ I(2)
∆ .

Note that xu.xi 6∈ P 2
1,2 for all i. Therefore, the facets of ∆u are {12i | i = 3, . . . , n}.

Type 4: | supp(u)| = 1. Write 1 ∈ supp(u). If |F \ {1}| ≥ 3 then xu.xF ∈ I(2)
∆ .

From xu.xixj 6∈ P 2
1,i for all i 6= j, the facets of ∆u are {1ij | 2 ≤ i < j ≤ n}.

Type 5: | supp(u)| = 0. One can see that the facets of ∆u are {ijh | 1 ≤ i < j <
h ≤ n}.

From these types and supp(u) ⊆ W , we always obtain H̃|W |−n+1(∆u[W ];K)) = 0
except the case type 2 (i) occurs and |W | = n, i.e. |b| = n+ 3. From this, we obtain
as required. �

Proposition 5.3. If ∆ is a complete bipartite graph then I
(2)
∆ is level.

Proof. Assume that ∆ is a complete bipartite graph K|X|,|Y | for X ∪Y = [n], X ∩Y =
∅, X, Y 6= ∅. Fix a vector b ∈ Nn, let W = supp(b),u = b− esupp(b). Let

∆u = {F ⊆ [n] | xu.xF 6∈ I(2)
∆ },

then Kb(I
(2)
∆ ) = ∆u[W ]. Similarly as in the above proof, we have some types of ∆u.

Type 1: | supp(u)| ≥ 4. It is clear that xu ∈ I(2)
∆ . Therefore, ∆u = ∅.

Type 2: | supp(u)| = 3. Write 1, 2, 3 ∈ supp(u).

(i) If 1, 2, 3 ∈ X or 1, 2, 3 ∈ Y then ∆u = ∅ by x1x2x3 ∈ I(2)
∆ ;

(ii) If 1, 2 ∈ X and 3 ∈ Y then the facets of ∆u are 23, 13 if u1 = u2 = u3 = 1, or
13 if u1 ≥ 2, u2 = u3 = 1, or 23 if u1 = 1, u2 ≥ 2, u3 = 1, or ∅ otherwise.

Type 3: | supp(u)| = 2. Write 1, 2 ∈ supp(u).

(i) If 1, 2 ∈ X or 1, 2 ∈ Y then ∆u is st∆(1) ∪ st∆(2) if u1 = u2 = 1, or st∆(1) if
u1 ≥ 2, u2 = 1, or st∆(2) if u1 = 1, u2 ≥ 2, or ∅ otherwise.
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(ii) If 1 ∈ X and 2 ∈ Y then the facets of ∆u are {12i | i = 3, . . . , n} if u1 = u2 = 1,
or {1i | i = 3, . . . , n} if u1 ≥ 2, u2 = 1, or {2i | i = 3, . . . , n} if u1 = 1, u2 ≥ 2,
or ∅ otherwise.

Type 4: | supp(u)| = 1. Write 1 ∈ supp(u). Assume 1 ∈ X, then the facets of ∆u

are {1ij | i ∈ Y or j ∈ Y }.
Type 5: | supp(u)| = 0. One can see that the facets of ∆u are

{ijh | except in the case of i, j, h ∈ X or in the case of i, j, h ∈ Y }.

One can see that H̃|W |−n+1(∆u[W ];K)) = 0 if form of ∆u likes as type 1, type
2, type 3 (ii) and type 4 by supp(u) ⊆ W and the acyclic property of a cone. We
distinguish some cases as follows.

Case 1: |X| = 1 or |Y | = 1. Assume |X| = 1 and t ∈ X. Therefore, if ∆u has

form as type 3 (i) H̃|W |−n+1(∆u[W ];K)) 6= 0 when W = [n] \ {t} and u1 = u2 = 1
for 1, 2 ∈ Y . In this case, ∆u[W ] consists of two points 1, 2. One can see that

H̃|W |−n+1(∆u[W ];K)) = 0 if ∆u has form as type 5 because it is a cone over t.
Case 2: |X| = 2 and |Y | = 2. Then, I∆ is a complete intersection which implies the

level property of I
(2)
∆ .

Case 3: |X| ≥ 2 and |Y | ≥ 3 or |X| ≥ 3 and |Y | ≥ 2. Assume |X| ≥ 2 and |Y | ≥ 3.

If ∆u has form as type 3 (i) then H̃ |W |−n+1(∆u[W ];K)) 6= 0 when b has a form
2(e1 + e2) +

∑
i≥3 en (for 1, 2 ∈ X or 1, 2 ∈ Y ). In this case W = [n],u = e1 + e2 and

the reduced cohomology groups are not vanishing by there exists a ”empty” circle in
∆u[W ].

In fact, if |W | = n−2 then ∆u[W ] 6= {∅} by it contains some points; if |W | = n−1
then ∆u[W ] is always connected; if |W | = n and either u1 ≥ 2 or u2 ≥ 2 then

H̃1(∆u[W ];K)) = 0. If ∆u has form as type 5, then ∆u[W ] 6= {∅} if |W | = n− 2 and
∆u[W ] is connected if |W | = n− 1. When |W | = n, by induction on |X| ≥ 1 and the

Mayer-Vietoris sequence, one can check that H̃1(∆u;K) = 0.

From these cases, βn−2((S/I
(2)
∆ )) only concentrated at degree n + 2, which implies

the conclusion as required. �

Proposition 5.4. If ∆ is neither a complete graph nor a complete bipartite graph

then I
(2)
∆ is not level.

Proof. By Lemma 5.1, ∆ must contain at least a triangle, say 12, 23, 31 ∈ ∆. Put a =

2(e1+e2+e3)+
∑n

i=4 ei. Arguing as in the proof of Proposition 5.2, βn−2,a(S/I
(2)
∆ ) 6= 0

. Because ∆ is not a complete graph, we assume 14 6∈ ∆. From the matroid property
of ∆, 24, 34 ∈ ∆. Let b = 2(e1 + e4) + e2 + e3 +

∑n
i>4 ei then supp(b) = [n] and

|b| = n+ 2. Then,

Kb(I
(2)
∆ ) = {F ⊆ [n] | x1x4.x

F 6∈ I(2)
∆ } = st∆(1) ∪ st∆(4).

We can rewrite st∆(1)∪st∆(4) = ∆1∪∆2, where the facets of ∆1 are 12, 13, 24, 34 and
the facets of ∆2 are the other facets of st∆(1)∪ st∆(4). Therefore, dim(∆1 ∩∆2) ≤ 0.
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Then, H̃1(∆1∩∆2;K) = 0. And, it is clear that H̃1(∆1;K) 6= 0. By using the Mayer-

Vietoris sequence, · · · → H̃1(∆1 ∩ ∆2;K) → H̃1(∆1;K) ⊕ H̃1(∆2;K) → H̃1(∆1 ∪
∆2;K) → H̃0(∆1 ∩∆2;K) → · · · , we have H̃1(∆1 ∪∆2;K) 6= 0. Thus, by Theorem
4.1,

βn−2,b(S/I
(2)
∆ ) = dimK(H̃1(Kb(I

(2)
∆ );K)) 6= 0.

This proves our assertion. �

Combining Proposition 5.2, Proposition 5.3 and Proposition5.4 yields the result as
follows.

Theorem 5.5. Let ∆ be a matroid graph over [n] for n ≥ 2. Then, I
(2)
∆ is level if and

only if ∆ is either a complete graph or a complete bipartite graph.

In the end of this section, we shall give two examples of non-matroid graphs of which
the second symbolic power of the Stanley-Reisner ideals are level. These examples
are inspired by computations of the computer algebra system as CoCoA [Co]. For the
second example, it can be noted that the second ordinary power of its Stanley-Reisner
ideal is not Cohen-Macaulay by [MT1, Corollary 3.4], so it is not also level.

Example 5.6. (1) Let n = 5 and ∆ be a pentagon such that its facet set is

{12, 23, 34, 45, 15}. Then, I
(2)
∆ is level. This induced from the minimal graded

resolution of S/I
(2)
∆ as follows:

0 → S(−6)10 −→ S(−5)24 −→ S(−4)15 −→ S → 0.

(2) Let n = 10 and ∆ be the Petersen graph such that its facet set is

{12, 23, 34, 45, 15, 16, 27, 38, 49, 510, 68, 69, 79, 710, 810}.

Then, I
(2)
∆ is level but I2

∆ is not level. In fact that, S/I
(2)
∆ has a minimal graded

resolution that

0→ S(−11)90 −→ S(−10)684 −→ S(−9)2240 −→ S(−8)4095 −→ S(−6)5⊕S(−7)4500

−→ S(−5)60⊕S(−6)2945 −→ S(−4)75⊕S(−5)1068 −→ S(−3)30⊕S(−4)165 −→ S → 0.
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