LAMN PROPERTY FOR THE DRIFT PARAMETER OF TIME
INHOMOGENEOUS DIFFUSIONS WITH DISCRETE OBSERVATIONS

HOANG-LONG NGO AND NGOC KHUE TRAN

ABSTRACT. We consider a multidimensional inhomogeneous diffusion whose drift coefficient
depends on a multidimensional unknown parameter. Under some appropriate assumptions
on the coefficients, we prove the local asymptotic mixed normality property for the drift
parameter from high frequency observations when the length of the observation window
tends to infinity. To obtain the result, we use the Malliavin calculus techniques and the
Girsanov change of measures. Our approach is applicable for both ergodic and non-ergodic
diffusions.

1. INTRODUCTION

We consider on a complete probability space (€, F,P) a d-dimensional process X¢ =
(X{)i>0 solution to the following inhomogeneous stochastic differential equation (SDE)

dx? =v(0,t, X0)dt + o(t, X?)dB,, (1.1)

where Xg =129 € R% and B = (Bt)t>0 is a d-dimensional Brownian motion. The unknown
parameter 0 = (01, ...,0,,) belongs to ©, a compact subset of R™, for some integer m > 1.

Given n > 1, we consider a discrete observation scheme at deterministic and equidistant
times tp, = kA, k € {0,...,n} of the process X solution to , which is denoted by X™¢ =
(Xfo, Xfl, o ,an). We assume that the high-frequency and infinite horizon conditions hold.
That is, A, — 0 and nA, — oo as n — oco. Let P% denote the probability law of the random
vector X™Y.

We say that the local asymptotic mixed normality (LAMN) property holds at #° € © with
asymptotic random Fisher information matrix I'(#°) and rate of convergence @, (8°) if for
any v € R™, as n — oo,

8%+pnn, (0°)u 560
dP,, " o 1
log S <Xn,9°) L) w*T(0°) 2N (0, I,,) — 5u*I‘(QO)u,

where N(0, I,,,) is a centered R™-valued Gaussian random variable independent of T'(6°) with
identity covariance matrix I,,,. Here, T'(6°) is a symmetric positive definite random matrix in
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R™*™ oA, (0°) is a diagonal matrix in R"™*™ whose diagonal entries tend to zero as n goes
(P’ -

to infinity, (—>) denotes the convergence in P?_law which will be specified later on, and *

denotes the transpose. If T'(6°) is non-random, we say that the local asymptotic normality

(LAN) property holds at 6°.

The LAMN property plays a fundamental role in the asymptotic theory of statistics. This
property developed by Jeganathan [12] extends the notion of LAN property introduced by Le
Cam [I5] and Héjek []] in the situations where the asymptotic Fisher information matrix is
deterministic. These properties allow to give the notion of asymptotically efficient estimators
in the sense of Hajek-Le Cam convolution theorem as well as the lower bounds for the variance
of estimators (see Jeganathan [12]). More precisely, a sequence of estimators (én)nzl of the
parameter 0° is called regular at 6 if for any u € R™, as n — oo,

"6‘0+<pnAn (Go)u)

2, (0%) (00 = (00 + 0, (%)) ) 5T w0y,

for some R™-valued random variable V(6°), independent of u, where gogin(eo) denotes the
inverse matrix of p,a, (6°). Note that taking u = 0, this implies that as n — oo,

_ ~ £(®*’)
G, (0°) (0 = 0°) 55 v 00).

Suppose that the LAMN property holds at point #°. Let (é\n)nZI be a regular sequence of
estimators of the parameter #. Then the law of V' (6°) conditionally on I'(6°) is a convolution
between the Gaussian law N (0,T'(#°)~!) and some other law Gr(goy on R™, that is,

L(V©O)(6°) =N (0,T(6°) ") * Gpgo).-

Hence, the random variable V(6°) can be written as a sum of two independent random
variables

V(6°) = T(6°) AN (0, 1) + R,
where R is a random variable with distribution Grgoy, independent of N(0, I,,) (see [12,
Corollary 1]). This implies that as n — oo,

—~ pe°
Sagin(e()) <9n o 00) ﬁ(i)) 11(90)—1/2/\/'(0’1771) +R.

This conditional convolution theorem suggests the notion of asymptotically efficient estimators
in terms of minimal asymptotic variance when R = 0. That is, assume that the LAMN
property holds at point 6°, a sequence of estimators (§n)n21 of the parameter 60 is called
asymptotically efficient at #° in the sense of Hijek-Le Cam convolution theorem if as n — oo,

~ P60
e, (0°) (B, — 0°) S5 T(00) AN (0, 1),

where I'(8°) and NV(0, I,,,) are independent. We refer the reader to Subsection 7.1 of Hopfner
[9] or Le Cam and Lo Yang [16] for further details.

On the basis of continuous observations with increasing observation window, the LAMN
property was established by Luschgy in [17] for semimartingale, by Kutoyants in [I3] for
null-recurrent process (see [13, Remark 3.42]), and for Ornstein-Uhlenbeck process (see [13|
Remark 3.47]), and by Bishwal in [4, Chapter 4] for inhomogeneous diffusions. Let us mention
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here that the asymptotic likelihood theory for multidimensional inhomogeneous diffusion pro-
cesses whose drift coefficient depends linearly on the parameter can be found in Section
5 of [I, Chapter 9], which includes the case of homogeneous ergodic diffusions. Besides, the
asymptotic properties of maximum likelihood estimator and Bayes estimator for the nonlinear
drift parameter of one-dimensional inhomogeneous diffusion were also studied in [4, Chapter
4] and [18]. In [6], Gobet proved the LAMN property for elliptic diffusion based on discrete
observations on a fixed time interval. Later on, from discrete observations with increasing
observation window nA,, Gobet in [7] obtained the LAN property for homogeneous ergodic
diffusions using Malliavin calculus, and Shimizu in [20] showed the LAMN property for a
particular case of non-recurrent Ornstein-Uhlenbeck process using the explicit expression of
the transition density. Recall also that results on parameter estimation for discretely observed
non-ergodic diffusions can be found in Jacod [I0] where the rate is (v/nA,,/n) for the drift
and diffusion parameters, respectively, and in Shimizu [21I] where the rate varies depending
on the observed Fisher information. Indeed, in [I0], the author constructed estimators from
a moment type contrast function for the drift and diffusion parameters of multidimensional
homogeneous and non-ergodic diffusions and established the consistency of the estimators in
the sense of tightness under some suitable smoothness and identifiability conditions. These
estimators converge at rate /nA,, for the drift parameter and at rate \/n for the diffusion
parameter. In [2I], the author constructed M-estimators from a quadratic-type contrast
function for the drift and diffusion parameters of one-dimensional homogeneous diffusions
without ergodicity assumption and established the consistency of the M-estimators in the
sense of tightness. These M-estimators converge with a variety of rates of convergence for
the drift and diffusion parameters. However, the validity of the LAMN property on the basis
of discrete observations of solution to a general inhomogeneous and non-ergodic SDE when
the length of the observation window tends to infinity has not been investigated yet.

In this paper, we prove the LAMN property for a general class of inhomogeneous diffu-
sions observed at discrete time without assuming ergodicity. Unlike the Ornstein-Uhlenbeck
process, the transition density of the solution to the general equation is not explicit.
Therefore, we use the Malliavin calculus approach initiated by Gobet [6] to derive an explicit
expression for the logarithm derivative of the transition density w.r.t. the parameter (see
Lemma . With the help of this explicit expression, we derive an appropriate expansion
of the log-likelihood ratio (see Lemma . In order to treat the main contributions, we
need to use the asymptotic behavior of the observed Fisher information process based on
the continuous observation (see condition (A4) below) together with the multivariate central
limit theorem for continuous local martingales (see Lemma. As will be seen in Subsection
[4.3] with the help of two conditions (A5)-(A6), the negligible contribution of the expansion
is shown by using two technical Lemmas and which are respectively related to the
Girsanov change of measures and the deviation of Girsanov change of measures when the
drift parameter changes. This techniques is not the same as the one that Gobet used in [7].
Indeed, in [7] the author used a change of transition densities, the upper and lower bounds of
Gaussian type of the transition densities together with the ergodic property. In our situation,
the ergodic assumption is not required, which makes impossible to implement the argument
in Gobet [7].

The paper is organized as follows. In Section [2| we formulate the assumptions on equa-
tion and state our main result in Theorem Section [3| presents preliminary results
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needed for the proof of the main result, which concern the explicit expression for the log-
arithm derivative of the transition density w.r.t. the parameter and the Girsanov change
of measures. The proofs of these technical results are postponed to Appendix in Section
[0] in order to maintain the flow of the exposition. We prove our main result in Section [4]
which follows the aforementioned strategy. Several illustrated examples will be also given in
Section [5] which discusses homogeneous ergodic diffusion processes, homogeneous Ornstein-
Uhlenbeck process, two-dimensional Gaussian diffusion process, null-recurrent diffusion pro-
cess, exponential growth process, inhomogeneous Ornstein-Uhlenbeck process and a special
inhomogeneous diffusion process.

2. ASSUMPTIONS AND MAIN RESULT

Let {ﬁt}tzo denote the natural filtration generated by B. We always suppose that the
coefficients b = (b1,...,bg) : © x Ry x R — R and ¢ : Ry x R? — R? @ R? are mea-
surable functions satisfying the Lipschitz continuity and linear growth condition (A1) below
under which equation (|1.1}) has a unique {ft}t>0 adapted solution X? possessing the strong
Markov property. We denote by P? the probability measure induced by the process X% on the
canonical space (C(Ry,R?), B(C(R,,R%))) endowed with the natural filtration {]:t}tZO Here
C (R4, R%) denotes the set of R%-valued continuous functions defined on R, and B(C(R4, R%))

~ ~ Do
is its Borel o-algebra. We denote by E? the expectation with respect to (w.r.t.) PY. Let P—>

£(P?
( ) P9 a.s., H and (—>) denote the convergence in po- probability, in p? -law, in P?_almost

surely, in P- probablhty, and in P-law, respectively. For z € R%, |z| denotes the Euclidean
norm. |A| denotes the Frobenius norm of the square matrix A, and tr(A) denotes the trace.

We now recall some concepts on asymptotic statistical inference for the continuously ob-
served parametric model. For details, we refer the reader to Barndorfl-Nielsen and Sgrensen
[3]. For any T > 0 and 0 € O, we let ﬁaT denote the probability measure generated by the
process X0 .= (X )telo,7) solving equation under the parameter 6 on the measurable
space (C([0,T],RY), B(C([0,T],R%))). Here C([0,T],R?) denotes the set of Ré-valued contin-
uous functions defined on [0, 7], and B(C([0, T], R%)) is its Borel o-algebra. Therefore, PT is
the restriction of PY to .7?T. We define the log-likelihood function of the family of probability
measures (lSeT)ge@ as

Py,
lr(0) = log ——

dPT
where Pr is a probability measure on (C([0,T],R%), B(C/([0,T], R%))) which is supposed to
satisfy that ﬁ% is absolutely continuous w.r.t. IST, for all T > 0 and 6 € ©. In fact, by
[13, Theorem 1.12], for all §,6' € ©, the probability measures P?F and PCH; are absolutely

continuous w.r.t. each other and its Radon-Nikodym derivative is given by

dﬁ% 01 g -1 01 01 1 01
o (X ieromy) = exp{ /0 o1, X7 (06,1, X0~ 0(0", 6, X)) - B,
1 [T 2
—2/0 ‘a’l(t,Xfl)(b(@,t,Xfl)—b(@l,t,Xfl)ﬂ dt}.
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~

By Girsanov’s theorem, the process B = (Bt)iejo,r) s a Brownian motion under PY, where
for any ¢ € 0,71,

t
By =B - / o (5, X2) (b(6, 5, X2) b0, 5, X7 ) ds.
0

Therefore, the log-likelihood function is given by

1

d?e T _ 1 1 1
r(6) =log i (X! e ) = /0 o, X" (00,1, XE) — 00", 6, X7 ) - dB,
T

_ % /T ’afl(t,thl) (b(0.0.X7") — b0, 1. X)) ‘2 "
0

where §9T1 is considered as the dominating probability measure ?T of the family of probability
measures (P%)pco. The score vector which is defined as the vector of first derivatives of the
log-likelihood function is given by the gradient

T
Volr(0) = / o, X )Vob(0,, X7 - (aBy — o 6, XT) (b0, 6, X7) — 00,1, XT)))
0
Hence, under f’e, the score vector is rewritten as
T
Volr(0) = [ o7t X0)Vab(0. . X )dB,
0

which is a martingale w.r.t. the filtration {}/:t}te[o,T}- The quadratic variation of the score
vector martingale is given by

[V@E(@)]T = /OT(V9b(97 t, Xte))*(oﬁl(tv Xto))*oﬁl(t? th)vé’b(ea t, Xf)dt,

which can be interpreted as the observed Fisher information process at 6 based on the con-
tinuous observation (X7 )eelo,1]-

We impose the following assumptions on equation (1.1J).
(A1) For any # € ©, there exist a constant L > 0 such that for all z,y € R? and ¢ > 0,
b(0,¢,2) = b(0,t,y)| + |o(t,x) — o(t,y)| < Llz —yl,
6(0, ¢, )| + |o(t, z)] < L (1 + [x).
Moreover, the Lipschitz constant L is uniformly bounded on ©.
(A2) The diffusion matrix o is symmetric, positive and satisfies an uniform ellipticity condi-

tion, that is, there exists a constant ¢ > 1 such that for all z,¢ € R% and ¢ > 0,

YeP < lo(t,2)el? < cleP

(A3) The functions b and o are of class C! w.r.t. 6, t and x. Each partial derivative dp,b,
Oz,b and 0,0 is of class C! w.r.t. @, and 9p,b is of class C! w.r.t. t. Moreover, for any
(0,601,602, 2,y) € ©3 x (RY)? and ¢ > 0, there exist positive constants C, vy, independent
of (0,61,02,x,y) such that
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(a) |g(-,t,x)| < C for g(-,t,x) = @Cib(e,t,x),8“0(15,93),8t0(t,1:),892ﬂjb(0,t,93),
8%1,%6(9, t,x), 8%1,%0(15, x);

(b) |h(-,t,x)| < C(1+ |x|) for h(-,z) = 89ib(9,t,x),8tb(9,t,a:),8gitb(9,t, x);

(c) 10;0(61,t,x) — 0p,b(02,t,x)| < Cl01 — 0o (1 4 [z]).

(A4) For any § € O, there exist a mxm non-random diagonal matrix ¢7(6) = diag(ph(0), ..., 7 (0))
whose diagonal entries ¢k(6),..., o7 (6) are strictly positive, decreasing w.r.t. T and
tend to zero as T'— oo, and a m X m symmetric positive definite random matrix I'(6)
such that the observed Fisher information process at QA based on the continuous obser-
vation (Xf)te[O’T] converges to I'(9) at rate pr(#) in P?-probability as T — co. That
is, as T' — oo,

o1(0) /0 T(wa,t, XO))* (oL (t, X0)) oL (t, XP)Vob(0, 1, X0)dt or(6) T T(0).

(A5) For any # € © and 7,5 € {1,...,m},

oy {sup Iwi(G)Xf!] LB [sup ol (0)] <9>\Xfﬂ LB [supm'(e))%z(e)rxfﬁ
>0 >0 >0
+E [sup \gpi(&)Xf\‘l] < 0.
>0

(A6) Forany 0 € © and i € {1,...,m}, as n — oo,

3. 5 . .
nA; = 0, nAZppa, (0) = 0, nAZ (a,(0)) 7" = 0, nAL(pha, (6) 7 — 0.

To be able to apply the Malliavin calculus, the uniform ellipticity condition (A2) and reg-
ularity condition (A3) on the coefficients are required. Condition (A4) is given in order
to ensure asymptotic result for the score vector, which will be seen in Subsection Let
us recall that condition (A4) is similar to general condition (3.3) of Barndorff-Nielsen and
Serensen [3] which is given for general asymptotic likelihood theory for stochastic processes.
This condition (A4) is also similar to condition (2.12) of Luschgy [17] which is established
for semimartingales. It is worth noticing that from page 155 of Luschgy [17], the chosen rate
o7 (0) in condition (A4) is naturally concerned with the expected Fisher information at 6
and T based on the continuous observation (X7 )tefo,7], Which is defined by

B [[Vol(0)];] = E [ / T(wa,t,xfn*(a—l(t, X)) ot XD)Veb(0,t, X)dt | .
0

Let us mention that as will be seen in Subsection [£.3] conditions (A5) and (A6) are due to
our techniques developed in this paper, which are used to show the negligible contributions
for negligible terms in the expansion of the log-likelihood ratio. They are similar to condition
(48) on page 572 and conditions (13), (14), (16) on page 554 and 555 of [2I] which are used
to prove the consistency of the aforementioned M-estimators.

Now, for fixed #° € ©, we consider a discrete observation X n0° — (X%O,Xflo, e ,Xf:) of

the process X " The main result of this paper is the following LAMN property.

Theorem 2.1. Assume conditions (A1)-(A6). Then, the LAMN property holds for the likeli-
hood at 0° with rate of convergence pna, (6°) = diag(g, A (0°),..., 97 (6°)) and asymptotic
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random Fisher information matriz T'(0°). That is, for all u € R™, as n — oo,
dpy, Honan
dp?°

where N'(0, I,,,) is a centered R™-valued Gaussian random variable independent of T'(6°) with
identity covariance matrix L.

590 1
log (xm") L) T (092N (0, ) — Su T,

Technical conditions (A5) and (A6) now can be simplified for some particular classes of
diffusions, which depends on the homogeneity of the coefficients and the derivatives of drift
coefficient. See Remark [4.8

When equation (1.1]) is time homogeneous, then condition (A3)(b) becomes 9;b(0,z) =
agitb(e,a:) =0 and |09p,b(6,x)| < C(1+ |z|). In this case, conditions (A5)-(A6) are reformu-
lated as follows

(A5’) Forany € © and i,j € {1,...,m},
B sup I4(0) 71| + B [sup i(0)0) XF] < o
>0 >0
(A6’) For any 0 € © and i € {1,...,m}, as n — o0,

3
nA% -0, nApnona, (0) = 0.

Corollary 2.2. Let equation (1.1) be homogeneous. Assume conditions (A1l)-(A4) and
(A5°)-(A6°). Then, the statement of Theorem [2.1] remains valid.

Furthermore, when |0,b(0, z)| < C|x| for all @ € ©, i € {1,...,m}, z € R? and some constant
C > 0, condition (A6) is reformulated as follows

3
(A6”) For any 0 € © and i € {1,...,m}, nAzp, 5 (0) =0 as n — oo.

Corollary 2.3. Let equation (1.1)) be homogeneous. Assume that [9p,6(6,x)| < C|z| for all
0€0,ic{l,...,m}, v € R? and some constant C' > 0, and assume conditions (A1)-(A4)
and (A5’)-(A6”). Then, the statement of Theorem [2.1] remains valid.

When equation ((1.1f) is homogeneous and 9p,b(6, x) is bounded, in this case, condition (A5)
is not required and condition (A6) is reformulated as follows

3 ,
(A6”’) For any 6 € © and 4,5 € {1,...,m}, nAZ QLA (0)@l A (0) = 0 as n — oco.

Corollary 2.4. Let equation (1.1 be homogeneous. Assume that 0p,b(0,x) is bounded for
all i € {1,...,m}, and assume conditions (A1)-(A4) and (A6”’). Then, the statement of
Theorem [2.1] remains valid.

Remark 2.5. Theorem can be seen as an extension of [7, Theorem 4.1] when the unknown
parameter appears only in the drift coefficient and when equation (1.1)) is homogeneous and

ergodic (see Subsection .

As usual, constants will be denoted by C' and they will always be independent of time and
A, but may depend on bounds for the set ©. They may change of value from one line to the
next.
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3. PRELIMINARIES

In this section, we introduce some preliminary results needed for the proof of Theorem
For this, we consider the canonical filtered probability spaces (2, F,{F;}+>0,P) and

(ﬁ,f , {]-N't}tzo,ﬁ) associated respectively to each of two processes B and W, where W =
(Wi)¢>0 is a d-dimensional standard Brownian motion independent of B. Let (2, F, {ft}t>0, P)

be the product ﬁltered probablhty space of these two canonical spaces. That is, 2 = O x Q
F=F® .7-' P=P® P Fi = }"t ® .7-}, andE=E® E where E, E E denote the expectation
w.r.t. P, P and P respectively.

To simplify the exposition, for i € {1,...,m} we set

0° = (00 09, u = (ug,ug, . Uuy),

07t = 0° + onn, (0%)u = () + ona, (0%)ur, .. B0, + oia,, (6%)uim),

90+ (‘9 s 791 1 90 + @n (9 )ula 01—0—1 + (lerl (eo)ui+1’ s 799n + @?An (go)um)v

HOJF(E) (9 s 702 1 90 + &:DnA (eo)uh 9z+1 + QD:LJFAIR (eo)uiJrl? ey 021 + QD:LTLA,L (eo)um)
Under conditions (A1), (A2) and (A3)(a), for any ¢ > s the law of X! conditioned on
Xg = 2 admits a positive transition density p?(s,t,z,y), which is differentiable w.r.t. . We
denote by p,,(-; ) the density of the random vector X™?. To deal with the log-likelihood ratio

in Theorem we use the Markov property to rewrite the global likelihood function in terms
of a product of transition densities and then apply a mean value theorem. Precisely,

0 0
1 P! e ) (X” 00) P (X"’e ;00 + %An(GO)U) oo (Xn’g ?90+>
og —mM8M ’ = 10 = 10,
g deLO g (Xnﬂo. 90) & D, (X”ﬂo; 90)
n—1 peo“' o 90+ 0
= log pT (tk’atk’-i-lath ’thk+l> Zlog (tk’tk—i_l’th 7thk+l)
k=0
1 0+ g0+ 0+ o+ iy
—ilog(pel p’ ...pei ...p0m1p9 )(tktkHX x? )
= 0+ 0+ 0+ 0+ 0 ’ Rl 7 A 4
e~ p92 p93 pel T pem p? k k+1
n—1 pO(lH' o n-l p9(2)+ 0 0
= IOg W (tkv thrlv th ’XtQk+l> + Z log W (tk’ tk+1’ Xtek 7Xtek+l>
k=0 D7 =0 P
n—1 90+ 90+
4+ Z log , T (tk, that, th ,thﬂ) -+ Z log (tk, tey1, th ,th+1>
k=0 ‘

S 1 0 O pe‘f+(€) 09 ~+-6°
o 1
= kE_O PnA, (¢ )ul/o pG(IH(Z) (tlﬁ e+ th ’thﬂ) de

n—1

Dy, pP2 20 0

+ Z SOELA” (GO)UQ/O W (tk’a tk’-i-l) ka 7Xt0k+1) de
k=0

n-1 o 89 p00+(€)
+ .-+ Z @%An (6 )Uz/ W (tk,tk—i-l)th 7th+1> de
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n—1 0 1 ) p99n+(£) 0 90
4+ -+ ;} QDZLAn (9 )um/o W (tk?7tk2+17th 7th+1) de. (31)

We start as in Gobet [6] by applying the integration by parts formula of the Malliavin calculus
on each interval [tg,tx+1] to obtain an explicit expression for the logarithm derivative of the
transition density w.r.t. the parameter. In order to avoid confusion with the observed process
X% we introduce an extra probabilistic representation of X? for which the Malliavin calculus
will be applied. That is, we consider on the same probability space (€2, F,P) the stochastic
flow Y?(s,2) = (Y (s,z),t > s), 2 € R? on the time interval [s, c0) and with initial condition
Y2 (s, ) = x satisfying

¢

Y (s,z) =x + / b(0,u, Y (s, x))du + /ta(u, Y0 (s, 2))dW,,. (3.2)

s

In particular, we write Y,/ = Y,(0, 2¢), for all £ > 0. That is,

t t
Yte:xg—l—/ b(e,u,Yf)du+/ o(u, Y2)dW,. (3.3)
0 0

We will apply the Malliavin calculus on the Wiener space induced by W. Let D and §
denote the Malliavin derivative and the Skorohod integral w.r.t. W on each interval [t, t+1],
respectively. We denote by D2 the space of random variables differentiable in the sense of
Malliavin, and by Dom ¢ the domain of §. We refer to Nualart [19] for a detailed exposition of
the Malliavin calculus on the Wiener space. Recall that for a differentiable random variable
F € DY? its Malliavin derivative is denoted by DF = (D'F,..., D?F), where D' is the
Malliavin derivative in the ith direction W* of the Brownian motion W = (W?',... W%), for
i € {1,...,d}. For a Ré-valued process U = (U',...,U%) € Dom §, the Skorohod integral of
U is defined as 6(U) = 2?21 §4(U?), where §° denotes the Skorohod integral w.r.t. We.

For any k € {0,...,n — 1}, under conditions (A1), (A2) and (A3)(a)-(b), the process
(Y2 (ty,x),t € [tp,trr1]) is differentiable w.r.t. z and . We denote by (V.Y (ty,x),t €
[tr, ks 1]) the Jacobian matrix, and by (g, Y (tr, ), t € [tg, trs1]) the derivative w.r.t. ; for
i€{1,...,m} (see Kunita [I4]). These processes are the solutions to the linear equations

t
VoY (tg,x) =Tg+ | Vb8, s, Y (tr, 2)) VY2 (ty, z)ds (3.4)

tk

+Z v 0j(5, Y (t, )V Y (b, 2) AW,
t

00, Y} (b, ) = / (agib(o,s,xge(tk,x))+vxb(e,s,yf(tk,x>)aai1(£(tk,x)) ds  (35)
+Z v 2058, Y (th, )09, Y (tr ) AW,

fori € {1,...,m}, where o1,...,04 : R = R? denote the columns of the matrix o.

Moreover, the random variables Y, (ty, ), V.Y (tr, x), (VoY (tr,z))~' and 0y, Y7 (ty, )
belong to D12 for any t € [tg,txr1] (see Nualart [19, Section 2.2]). On the other hand, the
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Malliavin derivative DY (ty, x) satisfies the following linear equation

DY (ty,x) = o(s, Y (ty, / Vb0, u, Y0 (tr, 2)) DY (th,, 2)du

+Z / V0 (u, Y (tg, )) DY (g, 2)dW,
j=1"°¢

for s <t a.e., and DY (t, ) =0 for s >t a.e. By [19, (2.59)], we have that
DY (ty, x) = VzYte(tk,fU)(Vng(tk,33))_10(&5’0(% 2))1,,.q(5)-

Now, for all & € {0, .. 1} and = € R?, we denote by , the probability law of Y
starting at = at time tk, ie. Ptk L(A) = E[1A|Y9 = z] for all A € F, and denote by Ef
the expectation w.r.t. Pt . That is, for all F-measurable random variables V, we have that
Eka[V] = E[V\YQZ = z]. Hence, Ef x
starting at = at time 2.

tr,T
is the expectation under the probability law of Y

Similarly, we denote by f’fkw the probability law of X% starting at z at time tj, i.e.,
Pfk L(A) = E[1A|Xt — 1] for all A € F, and denote by Et . the expectation w.r.t. lgka
That is, for all F-measurable random variables V, we have that Etk V] = E[V|ka = x|.
Let PY .= P? =E Eka denotes the

tr,T tr,T tr,T

® Ptk » be the product measure, and Ef

tr,T
expectation w.r.t. Ptk -

As a consequence of [6, Proposition 4.1], we have the following expression for the logarithm
derivative of the transition density w.r.t. € in terms of a conditional expectation involving
Skorohod integral.

Lemma 3.1. Under conditions (A1), (A2) and (A3)(a)-(b), for alli € {1,...,m}, k €
{0,..,n—1},0 €0, and x,y € R?,

9
Bt (s 1) = A—Eﬁkx[5(U9<tk,x)agi1@§“(tk, NI, =],

where U (ty, ) = (DthZH(tk,:n))_l, t € [th, thti]-

Now, we have the following decomposition of the Skorohod integral appearing in the con-
ditional expectation of Lemma

Lemma 3.2. Under conditions (A1), (A2) and (A3)(a)-(b), for alli € {1,...,m}, k €
{0,..,n—1},0 €O, and x € R?,

) (UH(tk,x)ﬁgintiH(tk,x)) = An<8gib(0,tk7x))*(o’o’*)*l(tmw) (Y;ZH — Y;i — b(@,tk, Ytz)An)
— R%* + RO¥ 4+ RO* — ROF — ROK

where

0,k bt [l 1 9 1 9 0
R = [ b (DT )00, Y 1)) Y 0 ) VY 2)) s,
ty

0,k Pt 9 1 9
RO = / (VaYE (b, 2)) " 00,b(0, 5, Y (7)) ds

173



LAMN PROPERTY FOR INHOMOGENEOUS DIFFUSIONS 11

. /thrl ((Vste(tk,w))*(071(37Y59(tka z)))* — (Vq;Yti (tkyw))*((?’*l(tkv Yti (tk,w)))*) dWs,

173

ROk — / (Y2 01 2) 7 0,00, .Y b1 2))" — (VY (5, 2)) 00,006, 3, Y (11 2)))° ) s

tg

tkt+1
- / (V¥ (11 2))* (0 (14, Y (b, 2))) AW,

tg

t41
RYY = A (09,50, 12, V) (00") ™ (14, V) / (000,57 = 006,10, 1)) s,
tg

tet1
REY = A (09,b(0, 1, Y1) (00™) 7 (14, V) / (o, Y2) = o(tr, V) ) dW..
tg

As a consequence of Lemmas [3.1] and we have the following explicit expression for the
logarithm derivative of the transition density w.r.t. the parameter.

Lemma 3.3. Under conditions (A1), (A2) and (A3)(a)-(b), for alli € {1,...,m}, k €
{0,...,n—1},0 €0, and z,y € R?,

;ﬁ” (thy thst, 2,y) = (00,0(6, 1, 7)) (00%) " (b, ) (y — & — (0, tg, ) A)
1 ~
+ 5 Bl [—R‘l’”“ +RYY+ RYF — RYF - RIMYY = y} .

We will use the following estimates for the solution to ([3.2)).
Lemma 3.4. Assume conditions (A1)-(A2).

(i) For any p > 1 and § € O, there exists a constant C, > 0 such that for all k €
{0,....n—1} and t € [ty, tg41],

0
Etk,a: |:

(ii) For any function g defined on © x RY with polynomial growth in x uniformly in 6 € O,
there exist constants C,q > 0 such that for all k € {0,...,n — 1} and t € [tg, tx+1],

|

Moreover, all these statements remain valid for X°.

p P
Yty @) = Y (b, )| | < Cplt = tal¥ (1+ [af?)

9(0.Y! (t, )| < €+ o).

Assuming conditions (A1), (A2), and (A3)(a)-(b), and using Gronwall’s inequality, one
can easily check that for any 6 € © and p > 2, there exists a constant C, > 0 such that for
all k € {0,...,n—1} and ¢ € [tg, trr1],

Bl [Va¥P )|+ [0 o) T+ _swp B ([P )]
SClkslk+1
+s€[ts;:,ltpk+1]ﬁfk’x [Ds (Vsz(tk,x)ﬂp} <C,, (3.6)
B, o [|on ¥ (e )|[] < Gy 1+ ol (37)
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where the constant C), is uniform in 6. As a consequence, we have the following estimates,
which follow easily from (6.2]), Lemma and properties of the moments of the Brownian

motion.

Lemma 3.5. Under conditions (A1), (A2), and (A3)(a)-(b), for any 6 € © and p > 2,
there exists a constant Cp, > 0 such that for all k € {0,...,n — 1},

Ef, 0 [—R?’k + Ry + Rg’k} =0, (3.8)

~ p
BY o [|-RUF+ RN+ R < cpa (1 Jal). (3.9)

We next recall Girsanov’s theorem on each interval [ty,t;1]. For all ,0' € ©, z € R? and
k € {0,...,n — 1}, the probability measures P} _ and Pf;z
each other and its Radon-Nikodym derivative is given by

dpy, . o1 b o1 o1 1 o1
o (T el —exp{ /t oM, X7 (000, X0~ b(8 ¢, X7")) - dBy

tr,x

1 /tk+1
2 tr
0

o P
See [13, Theorem 1.12]. By Girsanov’s theorem, the process Ble = (B, ™"t € [tg, txr1])
is a Brownian motion under Pfk@, where for any ¢ € [tx, tky1),

are absolutely continuous w.r.t.

(3.10)
2
oLt X0 (b(&t, X - b(&l,t,Xfl))’ dt}.

pY !
B g, / o (s, X2 (00,5, X0) — (0", 5, X01)) ds.

173
Next, we give two following technical lemmas which will be useful in the sequel.

Lemma 3.6. Assume conditions (A1), (A2) and (A3)(a). Let 0p,60 € ©. Then for any
k€ {0,....,n—1} and Fty,., -measurable random variable V',

o [~
E? [E?
tk,ka

0 _ y0° A _ 10
ot -] -5
Now, to simplify the notation, for j € {1,...,m} we set
0;(0+) := (69,...,0% 1,065,091 + @R (00)ujpn, ..., 00, + @in, (6% um).
Lemma 3.7. Assume conditions (A1) and (A2). Let p,q > 1 satisfying that % + % = 1.

Then for any k € {0,....,n — 1} and z € R?, there exists a constant C > 0 which does not
depend on x such that for any Fy, ,-measurable random variable V,

0
~00F (¢ dPg 00+ (¢
Et;,z() T% (X" ())te[tk:thrl] —1
dP;’ .

21y

i

1
70; (0 q
/ | (BRSO 1vie)" as,
GQJF&D:LAR (09)u;

k3

GiOJrl ~0511(04) 1
/90 i+1 (g0 (Etlzjrfﬂl Hv|q]) ! d0i+1
Ujt1

i1 TPnA,,

SC@UH@“I)(

+
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90
m 0m (0+)
E m( Ol 1.
/0 m (00 u, < b [|V| ]> )

9'1+50nA
We finally recall a convergence in probability result. For each n € N, let ((xn)r>1 be a
sequence of random variables defined on the filtered probability space (€2, F, {F:}+>0, P), and
assume that they are F3, ,  -measurable for all k.

Lemma 3.8. [I1, Lemma 3.4] a) Assume that as n — oo,

n—1 n—1
) S ElGealFo] =20, and (i) Y E[,|F,] —=0
k=0 k=0

_ P
Then as n — oo, Zzzé Cen — 0.

b) Assume that 3 7—5 E[|ChnlFi] 250 asn — 00. Then asn — oo, S0 Chm Lso.

4. PROOF OF THEOREM [2.1]

In this section, the proof of Theorem [2.1] will be divided into three steps. We begin deriving
an appropriate stochastic expansion of the log-likelihood ratio using Lemma The second
step deals with the main contributions by applying the multivariate central limit theorem for
continuous local martingales in order to show the LAMN property. Finally, the last step is
devoted to treat the negligible contributions of the expansion.

4.1. Expansion of the log-likelihood ratio.

Lemma 4.1. Assume conditions (A1), (A2) and (A3)(a)-(b). Then

0°+pna, (00)u n—1 m 1
1ogdmdp90( ") = Zzﬁ'@n*ZZ%A ul/o {Z’k"+z

k=0 i=1 k=0 i=1
+Ef?*<) {Re(”(f)k ROk Re‘)*(e)k‘ytk“() Xffﬂ] } i,
where
Gk = Fha, 0 [ (000040t XE) ) (00") 00 XE)

(ol X0 (Bugy = Bu) + (b0 by, XE0) = 0007 (0), 10, X0 ) A ),

),k 0°F (0),k 0%% (0),k

RETOk — IOk | pOTOK | ROk

tet1
Z5 = Na(@0,0(077 (0), tr, X0 (00™) (b, X1 / (b6, 5, X2") 06", 14, X)) ds,

i,k,n
ty
5,0 0+ 00\\k [ wy—1 go, [t 60 90
Zi77]g7n = An(aezb(ez (E)’ tk? th )) (UU ) (tkH th ) (0(87 XS ) - a(tk7 th )) dBS
ti

Proof. Using the decomposition |D and Lemma we obtain that

dPOO""SOnAn (6°)u 02% (o)

1 0
0 aelp ¢ 0 0
on g (107) = S8 0 [ s AL

n k=0 1=1 0 p
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n—1 m 1
7 04\ % £\ — 0 0 0
k=0 i=1
0 90 L =624 (0) [ poo+ (e 07 (€),k 90
_ b(9i+(€),tk,th A, ) + EEtk,XGO {R 0,k — R, _ R5 ‘ tk+1 _ thﬂ})df-

Next, using equation ((1.1)), we get that
0 0 0
X0 = X0 = 0(ty, X0) (Big,y — Biy) + b(6°, 1, X2)A,,

tit1

tet1 tkt1
+/ (b(@o,s,Xfo)—b(&o,tk,Xf:)>ds+/ (o(s,Xgo)—a(tk,Xf:)) dB,.

ti 173

This, together with (4.1f), gives the desired result. O

In the next two subsections, we will show that & 1, is the only term that contributes to
the limit and all the others terms are negligible.

4.2. Main contributions: LAMN property.

Lemma 4.2. Assume conditions (A1)- (A6). Then, as n — oo,

n—1 m

SO 6 L5 w0 A0, 1) - ST

k=0 i=1
where N'(0, I,,) is independent of T'(6).

Proof. Observe that & . n = £1,i kn + £2,ik,n, Where
1
ELijeon = Phn, (00)u; /0 (90, b(0°, b, X)) (00™) " (1, X1
0 0 0
. (cr(tk,ka ) (By,,, — Bi,) + (b(eo,tk,ka ) — b(60(0), ty, X0 )) An) e,
1
Eaigon = Pon, (00)u; /0 (D, (07 (0), th, X0 ) — 0,00, 13, X2))* (00™) ™ (1, X1
( (tes X&) (Byy,, — Buy) + (b(@“, by X0 — b(60F(0), 4, XT )) An) dv.
We write £14.6,n = &1,1,i,kn + §1,2,i,k,n, Where
i 0y *\— 0 0
51,1,i,k,n = nAa, (90)ui(89ib(907 k, Xtek )) (UU ) 1(tk7 thk )U(tkv Xtek ) (Btk+1 - Btk) )
1
12 km = Pan, (00)u; /0 (9,b(6°, ti, X)) (00*) "L (1, XL

. (b(&o,tk, X - b(9?+(€),tk,Xf:)> Apde.
First, notice that

n—1 m n—1 m

SN nikn =D > Gha, (009,66, ti, X)) (00") Mt X0y o (th, Xfy ) (B, — Bu,)

k=0 i=1 k=0 i=1

lkt1
=Zwm ) / o (b, XU Vab(0°, b, X0 ),
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n—1

nAn
— s, (0°) [ 0 (X )Vob(O°. 1. XE VB~ 3 H
0 k=0

where
* o [ 90 0 90 1 90 0 90
Hl,k,n =u ‘PnAn(e ) (J (t7Xt )VQb(H ataXt ) -0 (tk’th )ng(@ atkath ))dBt
tr

Next, we treat £ 2 . For this, using the mean value theorem,

(0"t XE7) = bOT(0), by, X0 ) = = (B0 (0), 14, XE) = b0, 1, XEL)
0Ot XE) — (00T b, XY 4 -+ B0 b, X ) — (OO, 1, XT)

m—1
+ (005 b, X0 — B(6°, 1, X90)>
(wwn (6°)u / Do, (09" (aul), tk,th)daerl 0%) 41 / g, bV ( ),tk,Xf:)da

ol () [ 00, 00 (0), 11, X )

— (i, n, (0°)uidp,b(0°, ti, X)) + @i (0°)uui 10

i+1

b(6°, by, X1 )

e o (60, (0", i, X0 )da)
1
— (teha, (6% / (90,006 (at), i X0 = D0,b(6° 14, X7, ) ) da
0

i 0 0
+ @i ()i /0 (0,060 (0) 11, X0) = 00,006, 11, X)) d

1
bt gl (0% / (00,6065 () tr, XE7) = 00, b(6°, 14, X)) ) dar),
0
where, to simplify the exposition, we have set for j € {i +1,...,m},

00T (aul) := (09,...,09 1,00 + bl n (0°)us, 09, + wl (O i1, ..., 00, + @n (0%)un),
9?+(a) = (9?, e OJ 1> 00 4 aapnAn(G ), QOH + @ (90)u]+1, e (921 + @?An(Qo)um).
This implies that

n—1 m n—1 m

1
SN Gpikn =) SDZAH(QO)W/ (00,0(0°, tr, X01))* (00™)  (th, X0
0

k=0 i=1 k=0 i=1
(b(eo tr, X2°) — b(09F (0), 14, Xf:)) Andl

n—1 m
0\ % oy — 0
72 (pnA ul 89 (eoatkaXtek)) (UO_ ) l(tkaXtek)
k=0 i=1

1, ,
~ (2@;%(90)%8@(00, i X0) + o, (60 i1, b(6°, b, X))
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n—1 m
0
+e QpnmAn (Qo)uWaamb(eov lk, Xtek ) Z Z ikn Kz—i—l kn+ o+ Km,k,n)
k=0 =1
1% bt _ _
= -3 u*gonA / (Vob(8°, by, X2 ) * (07 (b, X2)) 0L (e, X2 ) Vb (60, 1y, X1 )t pna, (6°)u
k=
n—1 m
o Z Z (Kivkvn + Ki+1,k,n +o+ Kmykyn)
k=0 i=1

1 * nin * — * _—
= —Ju"ena, (0°) / (Vab(6°, ¢, X)) (0= (t, X2"))*o 2 (¢, X0 )Wb(6°,t, X" Vdtonn, (0°)u
0
n—1 m

n—
+;ZH2,kn ZZ Kign + Kiv1on + -+ Kngen)

k=0 =1
where for j € {i +1,.

Kifon = ¢ha, (0")u / / (90,b(60°, 1, XI))* (00"~ (b1, XI)
i n (00)us (agi (09F (uh), b, X0°) — 0, b(6°, i, Xf;)) A, dadl,
K = @ha, (0°)u; /0 (00 b0, 14, XE))*00) " 11 X0
P, (0 (90,b(0T (), ta, XE7) = 00,b(6° 14, X1 ) ) A,

tkt+1
Hyjon = t*na, (0°) / <(V9b(00,t,Xf0))*(al(t, XN o ¢, X )Vab(6°,t, X7

173

— (Vb (6°, 1y, X2 (0 Yty X0)) 0 (14, fj)veb(eo,tk,xt"j))dt P, (00)u.

Therefore, we have shown that

n—1 m n—1 m n—1 m
Z Z §ikn = Z Z ik T &2, km) = Z Z 11k T 1,20 km + &2, km)
=01:=1 =01:=1 k=0 i=1

nAn,
= u*pna, (0°) / o1 (t, X )Veb(6°, ¢, X VdB,
0

1 * nén * — * _—
- §u e (60°) / (Vob(6°, £, /")) (0" (6. X7)) "0 (6, X7 ) Vob(6. £, X[ )dtipna, (6)u
0
n—1 m n—1 m
_ZHIkn+ ZH2kn ZZ zkn+Kz+1kn "'+Km,k,n)+ZZ§2,i,k,n-
k=0 i=1 k=0 i=1

(4.2)
Next, using condition (A4), as n — oo,

nAn, ~,0
P, (6°) / (Vob(6°, £, XI))* (0= (t, X)) o1 (1, XP°)Vab(6°, £, X0Vt oo, (60°) 2 T(6°).
0
(4.3)
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Then, using the multivariate central limit theorem for continuous local martingales (see [22]
Theorem 4.1]), we obtain that as n — oo,

nAn
uonn, (0°) / o (t, X )Veb(6°, t, X" )dB, SR “T(6°)/2N(0, I, (4.4)
0
where N(0, I,,) is independent of I'(§°). Finally, by Lemma below, as n — oo,
n—1 1 n—1 n—1 m
_ZH177€7”+§ZH ZZ zkn+KZ+lkn+"'+Km,k,n)
k=0 k=0 k=0 i=1
L o (4.5)
+) ) ikm — 0.
k=0 i=1
Thus, the desired result follows from (4.2))-(4.5)). O
4.3. Negligible contributions.
Lemma 4.3. Under conditions (A1)-(A3) and (A5)-(A6), as n — oo,
n—1 m 0 1
()0 A ‘9 uz
>y Pt [t v
k=0 i=1 0
L RO | gtk _ IOk 9°+(1z Yoo g0 po°
+E g [R Ok _ RY ( AR G /)
Proof. The proof is completed by combining three Lemmas and [4.6] below. O

Consequently, from Lemmas and the proof of Theorem [2.1] is now completed.
Lemma 4.4. Under conditions (A1)-(A3) and (A5)-(A6), as n — oo,

=& ‘PnA Oyui [ g0+ (o) 0+ (¢ ) 90 e’
So 3 Fah FREG [ osy O —x Jar o,
k=0 i=1 Tk

Proof. 1t suffices to show that conditions (i) and (ii) of Lemma [3.8]a) hold under the measure
pe’ applied to the random variable

P, (0w [0 [ g0 (0) k0" (O 6°
Chon = Gikn = A, Etk,X]f RO ‘ o = Xy | 46
for any ¢ € {1,...,m}. We start showing (i) of Lemma a). Applying Lemma to
0 =6 (0) and V = ROV, and using the fact that, by (3.8] ., E i O [R9?+(Z)’k] =0, we

t
obtain that ’
n—1 n—1 0
0 ~ Onn, (O)ui [ g0 [<09 @) [ g0+ A0 o |z
SR |:Cz',k,n|]:tk} :ZT i 5 B, o B Ok|ys D= x| |F, | de
k=0 k=0 " ks
n—1 4 0
=3 Fun s [L0 ) ot 41gp g,
E—0 An 0 t’WXtG/:

Thus, the term appearing in condition (i) of Lemma [3.8/a) actually equals zero.
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Next, applying Jensen’s inequality and Lemma to 6 = ,9?+(g) and V = ( R0?+(£),k)2’ and
(3.9), we obtain that

n—1 n—1 i 0\\2 . 2 2

S0 [r2 (3 (Pha, (67) 47 g0 Lot o) [ et MO >
ZE {C@k’" ] - Z TE 0 Etk,XeO R ‘ tk+1 th+1 dt “Ftk
k=0 k=0 n

2%
n—1 01)2 1
(S%A (6°))“u; =~ 9?*(5) 09t (0), 00 =
<y gt [ [0 [(n 0y 0 <t 1o
k=0 n 0 k> fk
:"71 (h, (09))%uf oo (Re;”(e),k)? &0
— A2 0o trXE

n—1
< CA2(¢ha, ()22 Y- (141X 1)
k=0
< Cufndilgna, (0°)° + CufnAl _ max |, (60X
" ke{0,....,n—1}
which, by conditions (A5)- (A6) converges to zero in P? -probability as n — co. Thus, we
have shown that Zk 0 Cikn P70 for any 7 € {1,...,m}. Thus, the result follows. O
Lemma 4.5. Under conditions (A1)-(A3) and (A5)-(A6), as n — oo,
n—1 0 1 ~,0
o A (0%)ui a6 FOTO | gl Ok 6O 60 P
Z Z n /0 {Zi,k — E Ry ’ b th+1 dl — 0.
k=0 i=1

w X0
Proof. We rewrite

BT | OOk O _ o0
zkzn Et X90 |:R ‘Ytk+l - th+1

tk+1
= A, (p,b(0° (0), t, kao))*(aa*)_l(tk,Xf:)( / (b(eo, 5, X) - b(@“,tk,Xf:)> ds
12

~09t (¢ brt1 09t (¢ 90+ (¢ 0
Y R CCRURS SR O A PR vl )
Nt E

= N (9, 0(67F (0), 1, X2 (00™) M (b, X&) (M1 pm + Miogn) s

where

, _ [ 0 00\ 1/00 00N (1 0+ 00\ 170+ 90
M1 gn = b(0°, s, X5 ) —b(0°, tr, X7, ) — (b(6;7(0), 5, X5 ) — b(0,F(0), tr, X7 ) ) ds,

ti

tet1
Migpn = / (67 (0). 5, X2") = b(O7F (0), 11, XE ) ) dis

ty

~0?+(f) tpt1 0+ G?Jr (@) 0+ 9?+ (E) 9?+(£) 00
By [ /t (b6 (00,5, v ) = b8 (0), i vy ) )as| v = XEL
Thus,
P, (00)ui [ =6+ (0) [ L00(0),k ¢
G = G = 220580 [t B[RO0 - x| far
n bk
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P, (0)ui [ 0+ 90\yk /-1 90
= A / An(aeib(ei (5)? s th )) (UU ) (tka th ) (Mi71,k:,n + Mi,?,km) dar
n 0

= Giikn + Gi2kn

where

) 1
Citen = Pha, (0°)u; / (D0, b(8F(0), 11, X)) (00™) by XE ) M1 g,
0

1
; NN K — 0
G = P, (0% [ (G0 MO0 (), 10 XE)) (00°) (00, X)) Myl
0
Now, using the mean value theorem,

b(6°, 5, X2") — b(69F(€), 5, X2°) = b(0%F,, 5, X0") — b(6F(0), 5, XO°) + b(6%F,, 5, X'

- b(agj__la Sngo) R b(09n+7 Sngo) - b(60+ S, Xseo) + b(907 S7X390) - b(@?nJr’ Sngo)

m—1’

1 ) 1
= Lot (00)u; / 89ib(6’?+(af),s,Xgo)da—ga?‘Aln(Go)uiH / 89i+1b(9?j1(a),s,X§0)da
0 0

T () / 00 b6 (). 5. X% )dar
Therefore, 0
b(6°, 5, X2°) = b(60°, 1, X7,) — (b(O0F(0), 5, XE") = b(ODT (£), i, X))
= (6%, 5, X2°) — b(60F(0), 5, X0") — (b(8°, ti, X0 ) — b(69F(£), ti, X0))

1
= —lgin () / (00,600 (a0), 5, X2") = 0,660 (al), 14, X{y) ) da
0
1
(4 0 0
o (@) /0 (,0,0(0%, (). 5. XE°) — g, (625 (@) 15, X1)) ) d

1
T (0%t / (0,605 (), 5, XE°) = 8y, b5 (), ty, X{y) ) d
0
Next, using the mean value theorem for vector-valued functions,

Do, b(0F (), 5, X0") — g, (07 (), te, X1 )

1
0 0 0 s—1
0 J s tk
for all j € {i,...,m}, where the Jacobian matrix is given by
Jagjb(tk +v(s —tg), Xf: + v(Xg0 — Xf;)))
Bt B b . OB
=\ e [E @t (s = ). X o(XT - XED).
892jtbd 8gjzlbd . agjxdbd
Then, using conditions (A2)-(A3) and Lemma (i), we get that

3
2

n—1

760 T 2,4 i i
SOE" [[Gasnl 1| < CAZgha, (0°) il (i, (6°)uil + i (6°) i1
k=0
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n—1
90
et i, Ohnl) Y (1410
k=0

n—1
1 m 0
+ OAZgh . (0) sl (P, (O] 255 (O | -+ + 2, (6 enl) 3 (1 4+ 1XET2)
k=0

3 . .
< Cni; (|ui|2<so:m (09)) + il i |, ()b (6) + -+ [uillum| o, (6°) P, (6))

0
+ Clulnad (s, ()l + G188, (0 sl + -+ 8, (Ol ) o I, ()57

ke{ B
+ Ona2 (Jui*(ha, (600 + il [wisa |, ()RR, (0°) + -+ + Juillum| i, <90>%n (0")

2 2 0y v6°2 i (00, i+1/p0 09,2
+ Clul ”A”ke{&“ X !wtk(H VX0, P+ Cluilluiga[nA], ke{é??ﬁfl}%(e )y, (07)1 X4, |

; 0
oot Clullunfna?_ max |, (00)f(00)1 X7,

which, by conditions (A5)- (A6) converges to zero in P?’-probability as n — co. Thus, by
Lemma 3.8/ b), > 7~ C%L;m H 0 for any i € {1,...,m}.

Next, using Girsanov’s theorem and Lemma we get that

~ ~ R trt+1
B | Myl | = B [ / (b(o7* (), 5, X2") —b(egw),tk,xfj)) ds

tk

=0, (0) ek 0 07+ (0) 0+ o0t g0 ~
_E%th]S [/tk (b(ﬁﬁ(f),s,Ys ) — (0, (Z),tk,Ytk ) ‘ tk+1 = X7 | Fe
— B o (B89 (00,5, XE°) — b(O2* (0), 14, XE1) ) s
= tk,Xf: " i 5Oy g i s Uiy Aty
~g0 ~9?+(£) tet1 0 ¢ (@) ot 02 o
_Etk’XtG: |:Etk,Xf£ |:/tk (b(@iJr(ﬂ), ,Y ) — b(, (f),tk,ytk >d8‘ tk+1 = th+1
90
~09t (¢ trta 99+ (¢ 09+ (¢ te, XGO
=E;§e%[ / (b6 (0). 5, X5 ) = b(80 (0), b0, X5 ) ds e@)]
F Lt P’
tk,XGI?
~0%T (¢ tht1 00t (¢ 00+ (¢
~E Y (002 (0), 5, Y2 ) = b0 (0), 11, v ) ds
X0 |y,
o+ et o+ 0t (g) dﬁfo x0°
_/\Qi 0) 0+ 97,’ 0) _ 0+ 91, 0 ke Xy B
&7 [ /t (b0 (1), 5, X O) b0+ (0), 14, X7 O)) s (dﬁem 1>]
tk,Xgo

0 tk+1 0+
+E01+(Q [ / b(60F(0), 5, X2 D) = b(00F (0), by, X" (‘)))ds]
t

~ 0 k+1 0 0+
_E0i+(£) |:/ ( 90-&- S,Ytsei+(z)) - b(9?+(f) tk,Yel (@)) ds]
i
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ar?”

90+(f) tot+1 9?+(£) 0’?+(g) tk)Xt
=B [ /t (b0 (0), 5, X5* ) — 000 (0), t, X0 D)) ds <T+(z]; _ 1) ,

* dP’

tk,th

where we have used the fact that X% ) is the independent copy of Yo, Here, to simplify

ap?’ ap?’

0 60 04
- . tp, X o Xy, 0.7 (¢)
kE — 2
the exposition, we write O = A9_0+<e) (X, )tE[tk,tk+1})'
P dP
e X e X

Then, using Lemma [3.7| with ¢ = 2, conditions (A1)-(A2) and Lemma (3.4 (i), we get that

E? [Cz 2,k n!]:tk]

1
Zm s [ O0bO ().t X)) (00) 7 0 XEVE (Mol
k=

P, (0° uzZ / tk,Xgo[a DO (0), tr, XE) (00") ™ (11, X7,

p?°
k1 0+ t, X 00
- / (b(89(0), 5, X7 O) _p(6%* (0, t,, X% D)) ds (’;%—1)]015
i ' b’ ¢
tk7XtQIS
< gha B0 | 006 (0,00, X)) (07) 01, XE)
o
tei1 t 7){'90
/ (b(O0F (0), 5, X% D) — (0% (0), 1, X7 D)) ds (H-Q”dﬁ
th d?ei (0)
£, X0°

0

0! 3
0 90 )
<O i [V (1) (| [, (SR 1Y)

9?+1 on) %
i+1 .
/9 g ()it (Etkvxg [‘V‘ ]) daz—l—l
)de

L+1+<pnA
09, 3
09, +omn,, (00)um \ ey
7 m 0
< CAZgh A (0°) il (2, (0" uil + 5 (60 i + -+ in, (6% unl) - (141X, 2)
(1415 7)

_|_

i
L

3
= O

+ CATLSDnA (0°) il (0na,, (09 |uil + @3ix (0% uial + -+ @lia, (6°) [uml)

B
Il
o

< Oni2 (Jui P pha, (0°))2 + il 11t s, (00D SERL (60) + - fuilluml g, (60) i, (69))
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. 20
+ C]ui|2nA31 ke{énax—l} |g0;ik (GO)th ]2 + C|ui|]ui+1\nAi e max

i 0y Ji+1/n0 69,2
(a0 () (01X, |

yeeeTl

Clu: AQ i 00 meO X902
+ - 4 Clugl|um|n ”ke{éf.lf‘féfl}%( Jer, (7)1 Xz, |

5 . . . .
+ OnAg (Juil(2ha, (0°) + luilluialha, (0)6 00 (6) + -+ + sl fuml e, (6°) 6, (6°) )

5 3 - 0
T CluPndd (g, (0°) 7 max 164, (67) X5

30 i - i i 0
+ Cluilluis|ndd (Pha, (09) 7, _max (0}, (6°))%637 (6°)1 X5,

S i - i m 0
e CluillumlnAd (2,0, (00) 7 max (g, (00) 7 (0°) X

which, by conditions (A5)-(A6), converges to zero in P? -probability as n — co. Here,
0\ x .y — 0
V.= (aeib(0?+<£)7tk7ka )) (UU ) 1<tk7Xt9k )
tk+1 0+ 0+
T 0o 05 X <0 0, X0 ).
tg

and we have used the mean value theorem for vector-valued functions,

00+ (¢ 99t (¢
b(0%F (0),5, X2 ) — (80 (0), tr, X107

1 o+ 0+ 0+ s—t
0" 0" (¢ 0.7 (¢ k
= (/ Jb(tk + ’U(S — tk),thz © + U(Xsl ©_ thz ( )))dv> . <X9?+(4) X0?+(Z)) ,
0 s -

tg
where the Jacobian matrix is given by

Jy(te + v(s — tk)7ng+(f) + U(XEEH(@ . ngJr(@)))

Ob1 Op b1 ... Oyyby
_| - c Ot (s — 1), X0 O p(xBTO x0T Oy
Obg  Opbg ... 8xdbd

~ ~ _ 5o
Therefore, Zz;é E? [Gi2.em| Fri) P 0asn— oo

Next, applying Jensen’s inequality and Lemma conditions (A1)-(A2), the mean value
theorem for vector-valued functions and Lemma (i), we obtain that

n—1
ZEGO { z‘2,2,k,n|~7:tk}
k=0
. o 1 , . 2
= (¢ha, (°)us)* Y E! Xi0 [( /O (8eib(9?+(€),tk7Xt9k))*(UO'*)1(tk,Xtak)Mi,2,k,nd€> }
k=0 'k
; o ~p0 0 0 2
< (@ha, (O)u)” ) /0 EY o0 [ (30, b(67 " (0), t, X7,)) " (00") ™ (th, X5 ) Mi2 o }dﬁ
k=0 Tk
4 noloere . . 2
< 2, (O)ui)? /0 {Efbxfli)[(aéib(0?+(£)7tk7ka))*(O'U*)1(tk7ka)Mi,2,1,k,n }
k=0
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(0 0°
‘ tk+1 = th+1]] }dﬁ

T

b(6T(0), ty, X2))* (00™) " (ty X0 ) Mi22 e

90
Et]erO |: XGO |:
n—1
0
=2 gonA (6°)u; 22/ {EG X00|:
k=0

i ()
+ENG)

(90, 0(69F (), ti, X)) (00™) "L (i, X2 Y Mi21 k.

e

n—

n—1
< OO} (ha, (00 22(1+|th 2) + CAL(eha, (O Y (1+ X011
k=0

(90, 0(69F (), ti, X)) (00™) "L (i, X2 Y Mi 20,10

O

0
< Ol (gha, () + ChusPnd] | masc | |, (00) X

7 _ i 0
- Cluaddpha, O+ s () [, 00X

which, by conditions (A5)-(A6), converges to zero in P _probability as n — co. Here
tk+1 90 00
12

ar 09+ (¢ 09+ (¢
Mgz = [ (06070507~ 62 (0,00 ).

173

90
Thus, by Lemma a), Zk 0 Gi2kn P70 for any 7 € {1,...,m}. Thus, the result follows.
(]

Lemma 4.6. Under conditions (A1)-(A3) and (A5)-(A6), as n — oo,

n—1 m 0 1 ~.0

sOnA (07)u; 50 =00t (o) 00+ yo® 90 po
ZZ Zi,k,n E X9° ‘ tk+1 th+1 de 0.
k=0 i=1 0

Proof. For any i € {1,...,m}, we set

@i, (0)u; [ ¢ =00 [ 00 0
Gk = Gikn i= - A, Z /0 Zi}cn - E ;02) Ry’ ‘Ytkﬂ = kaﬂ dr.

Using Lemma [3.6] we get that

ZE” G

n—1

SD%AH (‘90)%‘ =00 | 5.0 ~09%(0) o0 ~
:| - Z A 0 E Zz k,n E XHO ‘ tk+1 th+1 ‘ftk dat
k=0 "

1
ot A =0 5,0 =091 (0) [ 007 (0),k
—Z n /0 (E%ng (20 B g B5 O ) ar=o.

Next, proceeding as in the proof of Lemma we obtain that

n—1 n—1
~n0 ~ i 0
SB[l < CAZ (A, (0u? Y (14 1XEP)
k=0 k=0
< Clu*nd(¢ha, (00" + Cluf'nal, _ max e, (0°)X5 P,
€{0,...,n—
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which, by conditions (A5)-(A6), converges to zero in P -probability as n — co. Thus, by

=0
Lemma (3.8 a), we have shown that ZZ;(l) Giken P70 for any ¢ € {1,...,m}. Thus, the result
follows. O
Lemma 4.7. Under conditions (A1)-(A3) and (A5)-(A6), as n — o,
n—1 m
_ZHIkn+ ZH2kn ZZ zkn+Kz+1kn+"‘+Km,k,n)
k=0 i=1
n—1 m
+ Z Z 52 i,k,n —> 0.
k=0 =1
Proof. We proceed as in the proof of Lemmas [4.4][4.5] and [£.6] O

Remark 4.8. To obtain the results in Corollary[2.3, and[2-), the proof follows along the
same lines as that of Theorem except that condition (AB) is now replaced by condition
(A5’) oris removed, condition (A6) is now replaced by condition (A6’) or (A6”) or (A6”’).

5. EXAMPLES

5.1. Homogeneous diffusions.

5.1.1. Homogeneous ergodic diffusion processes. Let X% = (X7 )t>0 be the unique strong so-
lution of the d-dimensional SDE

dX? =00, X))dt + o(X?)dB;. (5.1)

This is a particular case of the model discussed in [7] where the unknown parameter appears
only in the drift coefficient and when equation is homogeneous. We introduce the following
ergodic assumption.

(A4’) The process X? given by (5.1) is ergodic in the sense that there exists a unique
probability measure 7y(dz) such that as T — oo,

1t pe
7 [ aeeha T [ gtama),
0 R4

for any my-integrable function g.

Then, under condition (A4’), condition (A4) satisfies with m x m diagonal matrix o7 () =

dl&g(\/—, e %) whose diagonal entries are chosen as ph(0) = --- = Q(0) = % and

LO) = [ (Vab(0.2)" (07 (@)"0™ () V(0. )ma(d).
Rd
Then, by ergodicity, as n — oo,
1 n—1 50 1390 1 n—1 ) )
SN [ lelmtdn), and 3TN —>/ 220 ().
k=0 k=0

In this case, condition (A6) is not required. Condition (A5) is reformulated as follows

(A5”) For all 0 € ©, [pq|z|*mg(dz) < co.
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As a consequence of Theorem under conditions (A1)-(A3), (A4’) and (A5”), the
LAN property holds at §° with rate of convergence ¢, (8°) = diag( \/nli, e \/;T) where

rn, (0) == (0)= ﬁ and asymptotic Fisher information matrix

(%) = /R (Vob(8°,2))" (071 (@) 0 (1) Vb(6°, 2)mgo (d).

That is, for all u € R™, as n — oo,

0% +ona, (0°)u =40
dPyp, n 0 1
log o7 Xn,GO) L(P?) U*N(O,F(QO)) - iu*r(eﬂ)u

5.1.2. Homogeneous Ornstein-Uhlenbeck process. Let X0 = (Xf’b)tzo be the unique strong
solution of the one-dimensional SDE

dXM = (b— aX™)dt + 0dBy, (5.2)

with given initial condition Xg " = 9, 0 = (a,b) € R? are unknown parameters and o > 0.
By Itdé’s formula, the solution process is given by

b t
X = Xxgteot ¢ (=)o /0 e~ =4, (5.3)

The observed Fisher information process at (a, b) based on the continuous observation (X}’ ’b)te[o,T]
is given by

— [T xtdt T

T/ y-a,b T yra,b
1 (fo (x2h2d — [T X dt>
— .
o2

Case 1: a > 0. The solution X% is ergodic with invariant Gaussian distribution N'(2, %)
(see [13, Example 1.26]). That is,

Tap(dz) = f(a,b,x)dx = \/Eexp {_(axm:zb)Q} de.

By [13, Example 1.35], as T' — oo,

e pob

7 | xetpa ™ | el ) S
0

1 /T Pab b

T/ Xf’bdt L / xTgp(dr) = o

Thus, condition (A4) satisfies with o7 (a,b) = diag(—= NG T) and
2
1 2, %0 _
F(a, b) = —— b° + 9 ab
a“o —ab a2

Moreover, condition (A5”) holds. As a consequence of Theorem (Subsection [5.1.1)), the
LAN property holds at #° = (ag, by) with rate of convergence @, a, (ag, bg) = diag( N \/an)
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and asymptotic Fisher information matrix

a002

—apbo

1 2
F(ao, bo) = 3 bo +
apo —apbg ag

Case 2: a < 0. From (5.3), it can be checked that e®* X" b - Xy b a(eat )=o0o geasst,
t > 0 is a square integrable martingale. Thus, the martmgale convergence theorem implies
that as t — oo,

b ~
et XM 5 X3 Z 470 Pobas.,
a

o
where Z% := o [ e**dBs has Gaussian law /\/’(0,—(2’—2). Then, the integral version of the

0
Toeplitz lemma implies that as t — oo,

t va,b
X7d ~
Jo Xs7ds | an b + 2% P*-as.
fg e %5ds 0 a
X¢"2d b g
fO S Xg,b _ 24z 7 Pa’b—a.s.
fo e—2asdg a

which deduces that as ¢t — oo,

1 o~
X“ bds — 0, P*-as.

\[

t 1 b b 2 =

62‘”/ (Xg’b)st o= <Xg’ - =+ Z“) , Plas.

0 2a a

Thus, condition (A4) satisfies with o7 (a, b) = diag(e??, #) and

1 b 2

T(a,b) = <_2acr2(x0 ~a 2% ?) .

0 P2
g
Observe that |0,0(6,x)| = |x| and |Oyb(0,z)| = 1, where b(0,2) = b — ax. Hence condition
(A6”) holds for the parameter a and condition (A6”’) holds for the parameter b. On the
other hand, E® [supt>0 le® X" “bp) < o for any p > 0. Thus, condition (A5’) holds. As a
consequence of Theorem [2 - 2.1| (Corollary [2.3] ﬂ and [2.4), the LAMN property holds at (ag, bo)

with rate of convergence ¢,a,, (agp,bo) = diag(e aon’s, ,\/%) and asymptotic random Fisher

information matrix

b
1 0 4 yao)2
_W(%—CTO‘F “0)* 0
0 e
2

[

P(ao, b()) =

5.1.3. Two-dimensional Gaussian diffusion process. Let X% = (X¢, X§)* = (X?);>0 be the
unique strong solution of the 2-dimensional SDE

dXx? = A(0)XPdt + dBy, (5.4)
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_(—th —02
A(e) - < 92 _91> )
B = (By)i>0 is a 2-dimensional Brownian motion and © = R? (see [I7, Subsection 4.1]). By
1t6’s formula,

with Xg = 0, where

t
x? :eA(e)t/ A0SR
0

where

eA(g)t_e_glt COS@Qt —Sinegt
- sin @yt  cosOst

The observed Fisher information process at § = (01, 02) based on the continuous observation
(XSG)SE[O,t] is given by f(f |X?|2ds Is.
Case 1: 6; < 0. Ast — oo,

1 ~
e AOX0 5 - —V(0), Pl-as.,
20,

1 ~
— 012 X0? — §|V(9)|2, Pl-as.,
t
1 ~
Qefew/ X0 %ds I, — 5|V(19)|212, Pl-as.,
0

where V() ~ N(0, I5). Thus, condition (A4) satisfies with ¢} (0) = ¢?(0) = —v/201¢%* and
I'(0) = 5|V (0)*I>. On the other hand, conditions (A5’) and (A6”) hold. As a consequence of
Theorem (Corollary, the LAMN property holds for the likelihood at 8 = (69, 69) with
rate of convergence pn,a, (0°) = diag( V260 finin —ﬁ@?ee?"A") and asymptotic random
Fisher information matrix I'(§") = 3 |V(90)]2IQ

Case 2: 6; > 0. By ergodicity, as t — oo,

/ |X92ds — hm E[|X??] / |z|?7p (da) Pl-as.,

- |X§\2ds I — lim B[|XP| L, = — I, ﬁe—a.s.
t 0 5—00 91

Thus, condition (A4) satisfies with of (0) = ¢?(0) = % and F(G) = 4 g-12. On the other
hand, condition (A5”) holds. As a consequence of Theorem [2 (Subsectlon b.1.1)), the
LAN property holds for the likelihood at 6° = (69,69) with rate of convergence ©nn, (0°) =

12

0
diag( \/7 \/7) and asymptotic Fisher information matrix I'(6”) = @

5.1.4. Null-recurrent diffusion process. Let X¢ = (X?);>¢ be the unique strong solution of
the one-dimensional SDE

X7
1+ (X7)
where X§ = xg and 0 > 0 (see [I3, Subsection 3.5.1]). Observe that b(f, ) = —0 175 which
satisfies |9pb(0, )| < 1. Hence, condition (A5) is not required.

dx? =—6 dt + odBy, (5.5)
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The observed Fisher information process at 6 based on the continuous observation (X7 )telo,1]

S T X9)?
is given by [, Wdt.

Case 1: 6 > "72 The process X? is ergodic with invariant density

F(0,7) = ! with am:/m de

G(0)(1 + x2)0/o* Lo (1 22)0/0%”
By ergodicity, as T — oo,

17T X?)? 0
e oot IO

where

() = — /m s d
T a2G(9) J_ (1+x2)2+0/02 T

VT
(Subsection [5.1.1]), the LAN property holds for the likelihood at #° with rate of convergence

©nn, (0°) = T and asymptotic Fisher information I'(6°).

Case 2: —%2 <0< U—; We set v(0) := % + % and

Thus, condition (A4) satisfies with ¢7(0) = —= and I'(d). As a consequence of Theorem

I'(1+~(6))
2(v(0)*B) )T (1 - 4(0))’

K.(B,~(0)) =

where T'(+) is the Gamma function and

2 20\ ~ i
o<+20

g

Let 1 be a random variable with stable distribution function having the Laplace transform
Ele P =e?. As T — oo,

1 T (X2)? I
dt 2510
TM@A o2(1 + (X9)2)2 — IO,

where
() = 2 [ x’ —(6)
(0) = K(BA0) 5 [ et
Thus,;zondition (A4) satisfies with o7 (6) = 7% and I'(f). Condition (A6”’) writes as
nAf{SZ;Z; — 0 as n — 00. As a consequence of Theorem (Corollary , under condition
nAz‘(’g’;ZO> — 0, the LAMN property holds for the likelihood at #° with rate of convergence

0
©nn,, (0°) = (nAn)_w and asymptotic random Fisher information I'(6").
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5.1.5. Ezponential growth process. Let X? = (Xf)tzo be the unique strong solution of the
one-dimensional SDE

dX? = 0a(X?)dt + dB;, (5.6)

with given initial condition Xg = 9. The unknown parameter @ is positive. For some
constant ¢ > 0, the known trend coefficient admits the representation

a(x) =cx+r(z), =€k,

such that the function r satisfies the following Lipschitz and growth conditions with appro-
priate constants K > 0, L > 0 and v € [0,1). That is, for all (z,y) € R?,

r(z) —r(y)l < Lz —yl,
r(z)| < K (1+|2]7).
See Dietz and Kutoyants [5]. When taking large value, Xf behaves like an Ornstein-Uhlenbeck
process. The observed Flsher information process at # based on the continuous observation
(x? )telo,T] is given by fo 2(X0)at.
By [B, Lemma 2.1 and Corollary 2.2], as t — oo and T" — o0,

e X0 — XY 4+60 + Y, Pl-as.,
T 2 ~
e—20eT /0 a(X{)dt — (XO Ty pm) . Plas.,

where ¢4, = [ e %*dB, and p?, = [;° e°0r(X?)ds. Moreover, Ee[suptzo le 0t XIP] < 0o
for p > 1. Thus, condition (A4) satisfies with ¢7(6) = ™" and I'(0) = 5 (X§ +§Oo +p%0)2.
Moreover, conditions (A5’) and (A6”) hold. As a consequence of Theorem |2 (Corollary

. the LAMN property holds for the likelihood at §° with rate of convergence p,a, (0°) =

—0%cnAn and asymptotic random Fisher information

00 C ( 00 90)
5.2. Inhomogeneous diffusions.
5.2.1. Inhomogeneous Ornstein-Uhlenbeck process. Let X? = (Xt )i>0 be the unique strong
solution of the one-dimensional SDE

dX? = —0At)XPdt + dB,, (5.7)

where X§ =0, A : Ry — R is measurable with fo A2%(s)ds < oo for every t (see [17 Subsection
4.2]). By Ito’s formula, X¢ = f(0,1t) fo f(0,5)"'dB, where f(0,t) = exp{— Hfo s)ds}.

The observed Fisher information process at 6 based on the continuous observation (X?) s€[0,4]
is given by fo A2%(s5)(X9)%ds.

Case 1: Consider the set of explosive parameters

t 00
O = {HGR:—G/ A(s)ds — o0 as t — oo and / f(@,t)_th<oo}.
0 0
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For any 6 € ©g, we have sup;~ f(6,%)~ 2E0[(XF)? = [o° f(0,t)72dt < 0o and as t — oo,

0,671 x7 — </ 70, s) 2ds> V(0), Pl-as.,

)? / A%(s)(X%)2ds — V(0)%, Pl-as.,
0

(/ f(8,s) 2cis/A2 932ds>%.

Thus, condition (A4) satisfies with ¢;(6) and I'(§) = V(#)2. On the other hand, condition
(A5) holds. As a consequence of Theorem under condition (A6), the LAMN property
holds for the likelihood at 6° € ©¢ with rate of convergence @, A, (6°) and asymptotic random
Fisher information I'(8°) = V/(6°)2.

Case 2: Consider the set of parameters

where V() ~ N (0,1) and

t
@1:—{9€R /AQ() f(0,s) /f@u )" 2duds — o0 as t — oo

and A%(t)f(0,t)* </f03 2d3> —0(/ A?(s 9,3)2/0 f(H,u)Qduds> }

where assume that A is continuous.

For any 6 € ©1, as t — oo,
t
9)2/ A%(s)(X%)2ds — 1, in L?*(PY),
0

where

[

— </0t A%(s)f(0,s)? /0 f(8, u)_2duds) -

Thus, condition (A4) satisfies with ¢;(f) and I'(#) = 1. On the other hand, condition
(A5) holds. As a consequence of Theorem under condition (A6), the LAN property
holds for the likelihood at #° € ©; with rate of convergence p,a (/) and asymptotic Fisher
information I'(#") = 1.
When A(t) = 1, X? becomes the classical homogeneous Ornstein-Uhlenbeck process which
has been addressed in Subsection 5.1.21
1 00). For any 6 € Oy, we choose

When A(t) - 1+ta then @0 = (_OO,—%) and @1 = (—27

or(0) = —(20 + )T6+2 and for any 6 € ©1, we choose ¢7(0) = 105(9111T)'

5.2.2. A special inhomogeneous diffusion process. Let X? = (Xf)tzo be the unique strong
solution of the one-dimensional SDE which is a special case of Hull-White model

dX? = 0b(t) XPdt + o (t)dBy, (5.8)

with given initial condition X§ = 0, where b : Ry — R and o : Ry — (0,00) are known
Borel-measurable functions. Here, # € R is an unknown parameter. See Barczy et Pap [2].
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When o(t) = o > 0, X? becomes the inhomogeneous Ornstein-Uhlenbeck process which has
been considered in Subsection 52,11

The SDE (5.8)) has a unique strong solution given by

X! = /Ota(s) exp {9/: b(u)du} dB.

The observed Fisher information process at 6 based on the continuous observation (X?) s€[0,4]

2 6\2
is given by fg %ds. The expected Fisher information at  and ¢ based on the continuous

observation (X?) sefo,] is given by

ot = [ e [xey] as,

where

B[] = /O " o2(u) exp {29 /u ) b(v)dv} du.

Case 1: Consider the set of parameters

t—o00 t—o00

t s
Qg := {0 €R: lim Iyo(t) =00 and lim [ o*(s)exp {20/ b(v)dv} ds < oo} .
0 0
Then, for any 6 € O¢, as t — oo,
tp2 02 N
L / b(s)(X5) ds — &2, Plas.,
Ixo(t) Jo  o2(s)
where £ ~ N(0,1) (see the proof of [2, Theorem 7]).

Thus, condition (A4) satisfies with ¢;(0) = Iyo (t)_% and I'(#) = €2, On the other hand,
condition (A5) holds. As a consequence of Theorem under condition (A6), the LAMN
property holds for the likelihood at #° with rate of convergence @na, (0°) = Iy (nAn)_%
and asymptotic random Fisher information I'(6°) = £2.

Case 2: Consider the set of parameters

= : lim = 00 an im$b(t) t02sex t v)dvds =
@1.f{0€R.tI_>OOIXe(t)f dthJWUQ(t)/[) (s) p{29/8b( )dvld o}.

Then, for any 6 € ©1, as t — oo, (see [2, Theorem 10])

LR .
IXe(t)/O 2(5) ds — 1, L*(PY).

Thus, condition (A4) satisfies with 4(0) = Iyoe (t)_% and I'(#) = 1. On the other hand,
condition (A5) holds. As a consequence of Theorem under condition (A6), the LAN

property holds for the likelihood at §° with rate of convergence @,a, (6°) = 60 (nAn)_%
and asymptotic Fisher information I'(§°) = 1.
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6. APPENDIX

6.1. Proof of Lemma [3.11

Proof. Let f : RY — R be a continuously differentiable function with compact support.

Fix t € [tg,tg+1]. The chain rule of the Malliavin calculus gives (Dt(f(YtZH(tk,x))))* =
(Vf( tk“(tk,x)))*DtY?fZH(tk, x). Since the matrix Dth;H(tk,x) is invertible a.s., we have

(Vf( tk+1(tk7x)))* - (Dt(f(yiiJrl (tlﬁx))))* Ute(tlww)? where Ute(tlwm) - (Dtl/tiJrl(tk?x))il'

Then, using the integration by parts formula of the Malliavin calculus on [tx, tx+1], we get
that for any i € {1,...,m},

OE [FOV,, (o)) | = B (TS, (b0 )" 00,5, (0, )]

- trt1
D / (VI (o )))*aemiﬂuk,x)dt}

. tk+1
E / O (13 ) UF (15, 2) aemim,x)dt]

—E f(YtzH(tk,x))(S (U (tk,x)agiY'tzH(tk,x))] .

Observe that by li the family ((Vf(Y;ZH(tk,a:)))* 892,Y;i+1(tk,m),0 € ©) is uniformly

integrable. This justifies that we can interchange 0y, and E. Note that here oV) =
(V1 4,01 () for any V' € Dom 4. On the other hand, using the stochastic flow prop-
erty, we have that

?~ﬁ~?%

OB (10, )] = [ £ Btz )

and
E[f Y (o 5( (tr, )05, Y,, (ty ))]
=B 100,08 (Ut )00, YE, (1 2) ) |V = 2]
[ TR (6 (U7 o) ¥ (1)) |V = .Y = o] s i, )y,
which finishes the desired proof. O

6.2. Proof of Lemma [3.21

Proof. From (§3.4]) and It6’s formula,

t d
(vxifte(tk’x))il =14 _/ (vxyvse(tk’z))il vxb(evs’}/se(tkvgc)) - Z:(vﬂﬁo-j(s’sze(tkivx)))2 ds

tk Jj=1

d
-3 / (VoD (14, 2)) " aer; (5, Y2 (b, 2)) AW,
—1 7tk
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which, together with (3.5 and Itd’s formula again, implies that

tkt+1
(V$Y;€i+1(tk7'r)) 189 tk+1(tk7x):/ (vIsze(tkvx))_la@b(aSvyse(tk?x))ds' (61)

173

Then, using the product rule [I9} (1.48)] and (6.1]), we obtain that

6 (U° (s 2)00,YE,, (th, ) )

—5 (U,% Y2 (b, @) VoY (b, @) (VaYE | (b, 7)) 00, Y (b g;))

th41

= (aethiH(%$))*((Vx122+1(tk7$))_1)*/ (VoY (ty2))* (0 (5, Y (g, ) dWs

tr

B /tk+1 o (DS ((agthiH (t, x))*((VthZH (tk,x))—l)*) 0-—1(5’ Yse(tk,a’ﬂ))vmyse(tk,iﬁ)) ds

ti
tet1

_ / (VYD (11 2)) " B0 b0, 5, YO (11, 1)) s / (V¥ (b, 2) (0 (5, Y2 (b1, ) dWs

127
et e 1 9 1 9 9
/ / tr (VoY (t, )19, 0(0, u, Y (tk,x)))*) o1 (s, Y2 (t, )V, (tk,x)> duds.
tr s

We next add and subtract the matrix ((VzY;Z (tg, ) 109,b(0, ty, Y;Z (tg,x)))* in the first inte-
gral and the matrix (VoY (t, ))* (o7 (t, Y (ty, x)))* in the second integral. This, together
with the fact that Yt‘z (tg,z) = Yti =z, yields

0 (Ue(tka Z’)agiY;i_H (tkv [E)) = An(a_l(tka x)a@b(ev s x))*(Wtk+1 - Wtk) - Rﬁ’k + Rg’k + jok
(6.2)
On the other hand, by equation (3.3) we have that

tet+1
Wiy — Wi, = 0 1t YY) (ytz+1 — Y —b(0, ., YY) Ay — / (b(e, s, Y2) = (0, 1y, YtZ)) ds

_/tkﬂ (a(s,yse) _a(tk,yti)) dWS). k

ty

This, together with (6.2]), conclude the desired result. ]

6.3. Proof of Lemma [3.61

Proof. For simplicity, we set g(y) = g(kaO,y) = E9 60 V‘)QZH = y] for all y € R% Then,

e
applying Girsanov’s theorem, we obtain that

(4 _ 0° T~ _ g0 0° 0 _ 1Y 0°
E [E X90 [V‘ tht1 th+1} ’]:tk} =E [g(thH)'th} =E XOIS [ (th+1)}

tk, +
90
, , dPtkvaE )
_Etk,X"O g( tk+1)d97 ((Xt)te[tk,tkﬂ])
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- dﬁfo » -
_ 10 0 0 ko tty 0 0
Etk,Xf: Etk7X$: g( tk+1)d§9 " ((Xt )te[tk7tk+1]) th+1
L b X i
- dﬁfo » o5
_ T 6 [0 ko te 6 6
- EthXtekO g(thJrl)Etk,Xf]S dﬁe . <(Xt )te[tk,tk+1]) )th+1
L tk,ka 44
5o
50 s - 0 0 60
= | 9WE] o0 | =5 (X teltptnan) [ Xipsr = ¥ | P (oo tirr, X, y)dy
R4 ket | dP 00
tk,th
] P,
_ o 0 _ 0 ke 0 0 _ 0 69
= / Bl o VIV, y} E ol =g ((Xt )te[tk,tk+1]) ‘th =y| " (tes trr1, X, Y)dy
Rd ki L ke | dP 0
tantHk
[ dp?”
N L Y (e X{ =y Y Ot trpr, X2 1)d
RA t’WXtek df)e . t te[tk,tk+1] tk+1 - y’ tk+1 y p ks Uk+1, ti 7y y
L tk’ka
] AP .
_ 10 0 ko ty, 0 0 _ 0
Etk XHO Etk XGO 14 Y (( t )te[tk,tk+1]) |th+1 ) }/tchrl - th+1
Lt 7% i L dPt X90 1
k> i
] P .
_ 0 ko2 ty, 0 0 0 _ 0
Etk XHO Etk XGO 14 350 (( t )te[tk,tk+1]) |th+1 ’ }/;kJrl - th+1
[l 79 e L dPt X90 1
k> i
- dp” dp?”’
0 o Xfy 0 =0 5o Xy 0
= Etk,XGO V 56 ((Xt )te[tk7tk+1]) = Etk,XGO [V] EthXQO 36 ((Xt )te[tk,tk+1])
te L dP 60 tk te | dP 60
t, XP, b, X,
_ b
- Etkva: v,

where we have used the fact that, by definition of Efk@, for any ]?tk ,,-measurable random

variable V; and F3, ,  -measurable random variable V5,

E?k,a: [Vl‘Xo = y} E?lwl“ [VQ‘YQ = y} = E?k@ |:V1V2‘Xtek+1 = y’Y;erl — 3/:| ,

Tt thet1
ap?”
~ t, x99
and Efk 00 [#((Xf)te[%tkﬂ])} = 1 together with the independence between V' and
Ttk zk,ka
=00
dek o0
750 t’; ((Xf)te[tk,tkﬂ}) w.r.t. P. Thus, the result follows. O
tk,ka

6.4. Proof of Lemma
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Proof. Using (3.10]), we have that

=~ 50 5007 (0)
Py, L dPy , —dP, ,
g O o
ti,T kT
B Oy e PO _ gpim- PO gpon
_(dPyl — dPt;,gc( )) + (dP,fy —dP, )+ (dP?k,:c —dP," ) + (AP, — dek,gc)
B 509F(0)
d tk,x
" BO0+) "0 Buss(04)
= o | sz v+ [ O i [
/G?W:;An @ \ Pl 0ol @i\ Pl O
/ - 0 Lf}j 0 do
4+ 0o — /\7 m—1
921—14‘90?&; (09w —1 ' fz—;(e)
+ /0 89m % d9m
Omtena,, (00)um dPy; o
69 tet1 0+ 0+
o ) [ @0 Oy T )
9i+&p;An 09 u; Jty,
1, 00 60+ (0) ot 09+ (0) Lo
. (dBt —o Mt X ) (b(0:(0+),t, X, ) — b6, (0),t, X, ))dt) dAGO;(Z) do;
Pt;i x
Ol e O (O 1wy wy1p, 0O
+ o i1 (89i+1b<0i+1(0+)7t7xt )) (U ) (tht )
031 tenn,, (00)uivs Jix
0; 0
IR 6% (0) 0+ 0 o
-|\dBy— o (t,th )(b(9i+1(0+),t,th ) — 5(92 (ﬁ),t,th ))dt Wdﬁﬂ_l
dPt; v
05, tht1 00+ (¢ 00+ (¢
e [ [ om0, X ) e )
m+<P:LnAn Um J 1k
0m (0
-1 0,7 () 077 (0) 0+ 0;%(0) tk,i Y
N dBy— o (t, X0 ) (b(0m (04), 8, X, ) = b(67F(0), ¢, X)) de T+(€)d9m,
dPt; -
where for j € {i,...,m},
0, (0+ 6,;(0+
dPt;JC,(x ) dPt;,(x )(( 0?+ Z) )
A90+(€) AngL(E) t t€(tr,thr1] )
dPt,;x dPt;J

and

0;(0+) := (69,...,69 1,0;, 69, + go{gln () ujsts s 00, + O (0%) ).
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Then, using Girsanov’s theorem, we get that

0
=60+ (0) dPy, o 007 (o)
Etkvx 14 dﬁeoi(z) (Xt )te[tk,thrl] -1
t,x
69 0+ let1 0+ 0+
— [ RO @ x e e )
9?+Z@;An(90)uz tk
69F (o) 69F (o) 0 6%% (o) fi(gﬂ
: (dBt — o X ) (b(0:(0+4), 8, X, ) = b(0YT(0), 8, X, ))dt) dﬁa’g;(@}d&
tk,x
O =00t (¢ Pt 09" (¢ 09t (¢
e[ B [T @ubOaon, Xy e x! )
00, o (60)ui t
Y0 A0 0t 0 e )
N dBy = o t, X7 Y (0011 (04), 1, X7 ) — (09 (0), 1, X7 D)) at TW)}dai+1
dPtl,x
em ~pn0+ tk+1 04 0+
b | B OV [ @0, 600, ) ) e )
‘99n+S0$An(90)“m e
Orm (04)
_ 0%t (e 00t (e 0%t (¢ T
-(dBt—a ) (00,8, ) — b0 (0,8, X7 ”))dt) i |
tr,T
6 ~0, B+t . . poi(0+)
= L o BRSOV [ 00,000,800 o), X O
i Honn,, (09)ui k
07 —~0. tet1 ) , ’\9¢+H1(0+)
[ B2 OOV [ @b (0. X O (0, X0 D)
9?+1+50;-_A1n(90)ui+1 23
69, . tht1 pom (0+)
bt [0 B [ 00000 X o) X0
em—Hp?An 0 um ty
L plon Y . . .
Here, fgr j € {i,...,m} the process B ** = (B, |t € [tg,tgs+1]) is a Brownian motion
under Pf}i(gﬂ, where for any ¢ € [tg, txi1],
50;(0+) ¢ o+ o+ o+
B, = Bt—/ o (s, X0 ) (b(0;(04), 5, X5 ) = b0t (0), 5, X5 1)) ds.
123

Next, using Holder’s and Burkholder-David-Gundy’s inequalities, conditions (A2) and (A3)(b),
and Lemma (ii), we get that

<0
=097 (0) dPy, » 60+ (1)
Etkvx A‘goi(ﬁ) (Xt )tE[tk,thrl] -1
dpP,; .
07 ~. it ‘ _ $0:(0+)
</ ELOO [V [ @0b(0s(04), 0,00 (o) e X am) | o
€?+£¢;An(00)uz ’ tr
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02 ~p. tk+1 ) 7,+1(0+>
[ B[V [ b0 (04,6 X7 O (o) X7 OB o

09, 1+l (00)uig k

do,

tk,

~ let1 I36m<0+)
tg

0.
90n+9021An(00)um
1
<C)/ 0(0+ Vi) ?
o (9%( nG i)
%—1 e 6:00+)y e sv—1 s 3004 [P] ;)7
(az R0+ Hab (0-0), £, X OP )y ()~ L(¢, X )Hds do;

1
A91+1(0+) q E
+ C’ \/;0 i1 Qo)uiJrl (Etk,x [|V‘ ])

+g0A

=

3=

p_q1 [th+1 o ) P
<A2 / Ef:; (0+) Hae » (0i41(0+), 8, X z+1(0+))) (o¥) 1(t,XtHZ+1(O+))’ }ds) d9i+1‘

o C‘ /90 T (00)u (Ef:“ " V] ]);

p_ Tt
-<A§ ' /t B ([0, b(0m (04), 8, X7 D) (%) 8, x| ds) a0,
k

3=

0

oL
g 9
sovadasin (| (BT ve RS

PP A,

09, 1

¢ 91 O+) q
+ / E, ! V19) " db;ia
9 (ELaD1vi)” o,

0 et (00)uig

0 1

m 530m (0+) q
+...+/ (Bl (vi) " don| ).

99n+‘:0;nAn(90)“m

for some constant C' > 0, where p, ¢ > 1 and % + % = 1. Thus, the result follows. ]
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