
LAMN PROPERTY FOR THE DRIFT PARAMETER OF TIME

INHOMOGENEOUS DIFFUSIONS WITH DISCRETE OBSERVATIONS

HOANG-LONG NGO AND NGOC KHUE TRAN

Abstract. We consider a multidimensional inhomogeneous diffusion whose drift coefficient
depends on a multidimensional unknown parameter. Under some appropriate assumptions
on the coefficients, we prove the local asymptotic mixed normality property for the drift
parameter from high frequency observations when the length of the observation window
tends to infinity. To obtain the result, we use the Malliavin calculus techniques and the
Girsanov change of measures. Our approach is applicable for both ergodic and non-ergodic
diffusions.

1. Introduction

We consider on a complete probability space (Ω,F ,P) a d-dimensional process Xθ =
(Xθ

t )t≥0 solution to the following inhomogeneous stochastic differential equation (SDE)

dXθ
t = b(θ, t,Xθ

t )dt+ σ(t,Xθ
t )dBt, (1.1)

where Xθ
0 = x0 ∈ Rd, and B = (Bt)t≥0 is a d-dimensional Brownian motion. The unknown

parameter θ = (θ1, . . . , θm) belongs to Θ, a compact subset of Rm, for some integer m ≥ 1.

Given n ≥ 1, we consider a discrete observation scheme at deterministic and equidistant
times tk = k∆n, k ∈ {0, . . . , n} of the process Xθ solution to (1.1), which is denoted by Xn,θ =
(Xθ

t0 , X
θ
t1 , . . . , X

θ
tn). We assume that the high-frequency and infinite horizon conditions hold.

That is, ∆n → 0 and n∆n →∞ as n→∞. Let Pθn denote the probability law of the random
vector Xn,θ.

We say that the local asymptotic mixed normality (LAMN) property holds at θ0 ∈ Θ with
asymptotic random Fisher information matrix Γ(θ0) and rate of convergence ϕn∆n(θ0) if for
any u ∈ Rm, as n→∞,

log
dP

θ0+ϕn∆n (θ0)u
n

dPθ0

n

(
Xn,θ0

) L(P̂θ
0
)−→ u∗Γ(θ0)1/2N (0, Im)− 1

2
u∗Γ(θ0)u,

where N (0, Im) is a centered Rm-valued Gaussian random variable independent of Γ(θ0) with
identity covariance matrix Im. Here, Γ(θ0) is a symmetric positive definite random matrix in
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Rm×m, ϕn∆n(θ0) is a diagonal matrix in Rm×m whose diagonal entries tend to zero as n goes

to infinity,
L(P̂θ

0
)−→ denotes the convergence in P̂θ

0
-law which will be specified later on, and ∗

denotes the transpose. If Γ(θ0) is non-random, we say that the local asymptotic normality
(LAN) property holds at θ0.

The LAMN property plays a fundamental role in the asymptotic theory of statistics. This
property developed by Jeganathan [12] extends the notion of LAN property introduced by Le
Cam [15] and Hájek [8] in the situations where the asymptotic Fisher information matrix is
deterministic. These properties allow to give the notion of asymptotically efficient estimators
in the sense of Hájek-Le Cam convolution theorem as well as the lower bounds for the variance

of estimators (see Jeganathan [12]). More precisely, a sequence of estimators (θ̂n)n≥1 of the
parameter θ0 is called regular at θ0 if for any u ∈ Rm, as n→∞,

ϕ−1
n∆n

(θ0)
(
θ̂n −

(
θ0 + ϕn∆n(θ0)u

)) L(P̂θ
0+ϕn∆n

(θ0)u)−→ V (θ0),

for some Rm-valued random variable V (θ0), independent of u, where ϕ−1
n∆n

(θ0) denotes the

inverse matrix of ϕn∆n(θ0). Note that taking u = 0, this implies that as n→∞,

ϕ−1
n∆n

(θ0)
(
θ̂n − θ0

) L(P̂θ
0
)−→ V (θ0).

Suppose that the LAMN property holds at point θ0. Let (θ̂n)n≥1 be a regular sequence of
estimators of the parameter θ0. Then the law of V (θ0) conditionally on Γ(θ0) is a convolution
between the Gaussian law N (0,Γ(θ0)−1) and some other law GΓ(θ0) on Rm, that is,

L
(
V (θ0)|Γ(θ0)

)
= N

(
0,Γ(θ0)−1

)
? GΓ(θ0).

Hence, the random variable V (θ0) can be written as a sum of two independent random
variables

V (θ0)
law
= Γ(θ0)−1/2N (0, Im) +R,

where R is a random variable with distribution GΓ(θ0), independent of N (0, Im) (see [12,
Corollary 1]). This implies that as n→∞,

ϕ−1
n∆n

(θ0)
(
θ̂n − θ0

) L(P̂θ
0
)−→ Γ(θ0)−1/2N (0, Im) +R.

This conditional convolution theorem suggests the notion of asymptotically efficient estimators
in terms of minimal asymptotic variance when R = 0. That is, assume that the LAMN

property holds at point θ0, a sequence of estimators (θ̂n)n≥1 of the parameter θ0 is called
asymptotically efficient at θ0 in the sense of Hájek-Le Cam convolution theorem if as n→∞,

ϕ−1
n∆n

(θ0)
(
θ̂n − θ0

) L(P̂θ
0
)−→ Γ(θ0)−1/2N (0, Im),

where Γ(θ0) and N (0, Im) are independent. We refer the reader to Subsection 7.1 of Höpfner
[9] or Le Cam and Lo Yang [16] for further details.

On the basis of continuous observations with increasing observation window, the LAMN
property was established by Luschgy in [17] for semimartingale, by Kutoyants in [13] for
null-recurrent process (see [13, Remark 3.42]), and for Ornstein-Uhlenbeck process (see [13,
Remark 3.47]), and by Bishwal in [4, Chapter 4] for inhomogeneous diffusions. Let us mention
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here that the asymptotic likelihood theory for multidimensional inhomogeneous diffusion pro-
cesses (1.1) whose drift coefficient depends linearly on the parameter can be found in Section
5 of [1, Chapter 9], which includes the case of homogeneous ergodic diffusions. Besides, the
asymptotic properties of maximum likelihood estimator and Bayes estimator for the nonlinear
drift parameter of one-dimensional inhomogeneous diffusion were also studied in [4, Chapter
4] and [18]. In [6], Gobet proved the LAMN property for elliptic diffusion based on discrete
observations on a fixed time interval. Later on, from discrete observations with increasing
observation window n∆n, Gobet in [7] obtained the LAN property for homogeneous ergodic
diffusions using Malliavin calculus, and Shimizu in [20] showed the LAMN property for a
particular case of non-recurrent Ornstein-Uhlenbeck process using the explicit expression of
the transition density. Recall also that results on parameter estimation for discretely observed
non-ergodic diffusions can be found in Jacod [10] where the rate is (

√
n∆n,

√
n) for the drift

and diffusion parameters, respectively, and in Shimizu [21] where the rate varies depending
on the observed Fisher information. Indeed, in [10], the author constructed estimators from
a moment type contrast function for the drift and diffusion parameters of multidimensional
homogeneous and non-ergodic diffusions and established the consistency of the estimators in
the sense of tightness under some suitable smoothness and identifiability conditions. These
estimators converge at rate

√
n∆n for the drift parameter and at rate

√
n for the diffusion

parameter. In [21], the author constructed M -estimators from a quadratic-type contrast
function for the drift and diffusion parameters of one-dimensional homogeneous diffusions
without ergodicity assumption and established the consistency of the M -estimators in the
sense of tightness. These M -estimators converge with a variety of rates of convergence for
the drift and diffusion parameters. However, the validity of the LAMN property on the basis
of discrete observations of solution to a general inhomogeneous and non-ergodic SDE when
the length of the observation window tends to infinity has not been investigated yet.

In this paper, we prove the LAMN property for a general class of inhomogeneous diffu-
sions observed at discrete time without assuming ergodicity. Unlike the Ornstein-Uhlenbeck
process, the transition density of the solution to the general equation (1.1) is not explicit.
Therefore, we use the Malliavin calculus approach initiated by Gobet [6] to derive an explicit
expression for the logarithm derivative of the transition density w.r.t. the parameter (see
Lemma 3.3). With the help of this explicit expression, we derive an appropriate expansion
of the log-likelihood ratio (see Lemma 4.1). In order to treat the main contributions, we
need to use the asymptotic behavior of the observed Fisher information process based on
the continuous observation (see condition (A4) below) together with the multivariate central
limit theorem for continuous local martingales (see Lemma 4.2). As will be seen in Subsection
4.3, with the help of two conditions (A5)-(A6), the negligible contribution of the expansion
is shown by using two technical Lemmas 3.6 and 3.7 which are respectively related to the
Girsanov change of measures and the deviation of Girsanov change of measures when the
drift parameter changes. This techniques is not the same as the one that Gobet used in [7].
Indeed, in [7] the author used a change of transition densities, the upper and lower bounds of
Gaussian type of the transition densities together with the ergodic property. In our situation,
the ergodic assumption is not required, which makes impossible to implement the argument
in Gobet [7].

The paper is organized as follows. In Section 2, we formulate the assumptions on equa-
tion (1.1) and state our main result in Theorem 2.1. Section 3 presents preliminary results
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needed for the proof of the main result, which concern the explicit expression for the log-
arithm derivative of the transition density w.r.t. the parameter and the Girsanov change
of measures. The proofs of these technical results are postponed to Appendix in Section
6 in order to maintain the flow of the exposition. We prove our main result in Section 4,
which follows the aforementioned strategy. Several illustrated examples will be also given in
Section 5 which discusses homogeneous ergodic diffusion processes, homogeneous Ornstein-
Uhlenbeck process, two-dimensional Gaussian diffusion process, null-recurrent diffusion pro-
cess, exponential growth process, inhomogeneous Ornstein-Uhlenbeck process and a special
inhomogeneous diffusion process.

2. Assumptions and main result

Let {F̂t}t≥0 denote the natural filtration generated by B. We always suppose that the
coefficients b = (b1, . . . , bd) : Θ × R+ × Rd → Rd and σ : R+ × Rd → Rd ⊗ Rd are mea-
surable functions satisfying the Lipschitz continuity and linear growth condition (A1) below

under which equation (1.1) has a unique {F̂t}t≥0-adapted solution Xθ possessing the strong

Markov property. We denote by P̂θ the probability measure induced by the process Xθ on the

canonical space (C(R+,Rd),B(C(R+,Rd))) endowed with the natural filtration {F̂t}t≥0. Here
C(R+,Rd) denotes the set of Rd-valued continuous functions defined on R+, and B(C(R+,Rd))

is its Borel σ-algebra. We denote by Êθ the expectation with respect to (w.r.t.) P̂θ. Let
P̂θ−→,

L(P̂θ)−→ , P̂θ-a.s.,
P−→, and

L(P)−→ denote the convergence in P̂θ-probability, in P̂θ-law, in P̂θ-almost
surely, in P-probability, and in P-law, respectively. For x ∈ Rd, |x| denotes the Euclidean
norm. |A| denotes the Frobenius norm of the square matrix A, and tr(A) denotes the trace.

We now recall some concepts on asymptotic statistical inference for the continuously ob-
served parametric model. For details, we refer the reader to Barndorff-Nielsen and Sørensen

[3]. For any T ≥ 0 and θ ∈ Θ, we let P̂θT denote the probability measure generated by the

process XT,θ := (Xθ
t )t∈[0,T ] solving equation (1.1) under the parameter θ on the measurable

space (C([0, T ],Rd),B(C([0, T ],Rd))). Here C([0, T ],Rd) denotes the set of Rd-valued contin-

uous functions defined on [0, T ], and B(C([0, T ],Rd)) is its Borel σ-algebra. Therefore, P̂θT is

the restriction of P̂θ to F̂T . We define the log-likelihood function of the family of probability

measures (P̂θT )θ∈Θ as

`T (θ) = log
dP̂θT

d
̂̂
PT

,

where
̂̂
PT is a probability measure on (C([0, T ],Rd),B(C([0, T ],Rd))) which is supposed to

satisfy that P̂θT is absolutely continuous w.r.t.
̂̂
PT , for all T ≥ 0 and θ ∈ Θ. In fact, by

[13, Theorem 1.12], for all θ, θ1 ∈ Θ, the probability measures P̂θT and P̂θ
1

T are absolutely
continuous w.r.t. each other and its Radon-Nikodym derivative is given by

dP̂θT

dP̂θ
1

T

(
(Xθ1

t )t∈[0,T ]

)
= exp

{∫ T

0
σ−1(t,Xθ1

t )
(
b(θ, t,Xθ1

t )− b(θ1, t,Xθ1

t )
)
· dBt

− 1

2

∫ T

0

∣∣∣σ−1(t,Xθ1

t )
(
b(θ, t,Xθ1

t )− b(θ1, t,Xθ1

t )
)∣∣∣2 dt}.
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By Girsanov’s theorem, the process B̂ = (B̂t)t∈[0,T ] is a Brownian motion under P̂θ, where
for any t ∈ [0, T ],

B̂t := Bt −
∫ t

0
σ−1(s,Xθ1

s )
(
b(θ, s,Xθ1

s )− b(θ1, s,Xθ1

s )
)
ds.

Therefore, the log-likelihood function is given by

`T (θ) = log
dP̂θT

dP̂θ
1

T

(
(Xθ1

t )t∈[0,T ]

)
=

∫ T

0
σ−1(t,Xθ1

t )
(
b(θ, t,Xθ1

t )− b(θ1, t,Xθ1

t )
)
· dBt

− 1

2

∫ T

0

∣∣∣σ−1(t,Xθ1

t )
(
b(θ, t,Xθ1

t )− b(θ1, t,Xθ1

t )
)∣∣∣2 dt,

where P̂θ
1

T is considered as the dominating probability measure
̂̂
PT of the family of probability

measures (P̂θT )θ∈Θ. The score vector which is defined as the vector of first derivatives of the
log-likelihood function is given by the gradient

∇θ`T (θ) =

∫ T

0
σ−1(t,Xθ1

t )∇θb(θ, t,Xθ1

t ) ·
(
dBt − σ−1(t,Xθ1

t )
(
b(θ, t,Xθ1

t )− b(θ1, t,Xθ1

t )
))

.

Hence, under P̂θ, the score vector is rewritten as

∇θ`T (θ) =

∫ T

0
σ−1(t,Xθ

t )∇θb(θ, t,Xθ
t )dB̂t,

which is a martingale w.r.t. the filtration {F̂t}t∈[0,T ]. The quadratic variation of the score
vector martingale is given by

[∇θ`(θ)]T =

∫ T

0
(∇θb(θ, t,Xθ

t ))∗(σ−1(t,Xθ
t ))∗σ−1(t,Xθ

t )∇θb(θ, t,Xθ
t )dt,

which can be interpreted as the observed Fisher information process at θ based on the con-
tinuous observation (Xθ

t )t∈[0,T ].

We impose the following assumptions on equation (1.1).

(A1) For any θ ∈ Θ, there exist a constant L > 0 such that for all x, y ∈ Rd and t ≥ 0,

|b(θ, t, x)− b(θ, t, y)|+ |σ(t, x)− σ(t, y)| ≤ L|x− y|,
|b(θ, t, x)|+ |σ(t, x)| ≤ L (1 + |x|) .

Moreover, the Lipschitz constant L is uniformly bounded on Θ.

(A2) The diffusion matrix σ is symmetric, positive and satisfies an uniform ellipticity condi-
tion, that is, there exists a constant c ≥ 1 such that for all x, ξ ∈ Rd and t ≥ 0,

1

c
|ξ|2 ≤ |σ(t, x)ξ|2 ≤ c|ξ|2.

(A3) The functions b and σ are of class C1 w.r.t. θ, t and x. Each partial derivative ∂θib,
∂xib and ∂xiσ is of class C1 w.r.t. x, and ∂θib is of class C1 w.r.t. t. Moreover, for any
(θ, θ1, θ2, x, y) ∈ Θ3 × (Rd)2 and t ≥ 0, there exist positive constants C, γ, independent
of (θ, θ1, θ2, x, y) such that
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(a) |g(·, t, x)| ≤ C for g(·, t, x) = ∂xib(θ, t, x), ∂xiσ(t, x), ∂tσ(t, x), ∂2
θixj

b(θ, t, x),

∂2
xixjb(θ, t, x), ∂2

xixjσ(t, x);

(b) |h(·, t, x)| ≤ C (1 + |x|) for h(·, x) = ∂θib(θ, t, x), ∂tb(θ, t, x), ∂2
θit
b(θ, t, x);

(c) |∂θib(θ1, t, x)− ∂θib(θ2, t, x)| ≤ C|θ1 − θ2|γ (1 + |x|).

(A4) For any θ ∈ Θ, there exist am×m non-random diagonal matrix ϕT (θ) = diag(ϕ1
T (θ), . . . , ϕmT (θ))

whose diagonal entries ϕ1
T (θ), . . . , ϕmT (θ) are strictly positive, decreasing w.r.t. T and

tend to zero as T →∞, and a m×m symmetric positive definite random matrix Γ(θ)
such that the observed Fisher information process at θ based on the continuous obser-

vation (Xθ
t )t∈[0,T ] converges to Γ(θ) at rate ϕT (θ) in P̂θ-probability as T → ∞. That

is, as T →∞,

ϕT (θ)

∫ T

0
(∇θb(θ, t,Xθ

t ))∗(σ−1(t,Xθ
t ))∗σ−1(t,Xθ

t )∇θb(θ, t,Xθ
t )dt ϕT (θ)

P̂θ−→ Γ(θ).

(A5) For any θ ∈ Θ and i, j ∈ {1, . . . ,m},

Êθ
[
sup
t≥0
|ϕit(θ)Xθ

t |
]

+ Êθ
[
sup
t≥0

ϕit(θ)ϕ
j
t (θ)|Xθ

t |2
]

+ Êθ
[
sup
t≥0

(ϕit(θ))
2ϕjt (θ)|Xθ

t |3
]

+ Êθ
[
sup
t≥0
|ϕit(θ)Xθ

t |4
]
<∞.

(A6) For any θ ∈ Θ and i ∈ {1, . . . ,m}, as n→∞,

n∆2
n → 0, n∆

3
2
nϕ

i
n∆n

(θ)→ 0, n∆
5
2
n (ϕin∆n

(θ))−1 → 0, n∆4
n(ϕin∆n

(θ))−2 → 0.

To be able to apply the Malliavin calculus, the uniform ellipticity condition (A2) and reg-
ularity condition (A3) on the coefficients are required. Condition (A4) is given in order
to ensure asymptotic result for the score vector, which will be seen in Subsection 4.2. Let
us recall that condition (A4) is similar to general condition (3.3) of Barndorff-Nielsen and
Sørensen [3] which is given for general asymptotic likelihood theory for stochastic processes.
This condition (A4) is also similar to condition (2.12) of Luschgy [17] which is established
for semimartingales. It is worth noticing that from page 155 of Luschgy [17], the chosen rate
ϕT (θ) in condition (A4) is naturally concerned with the expected Fisher information at θ
and T based on the continuous observation (Xθ

t )t∈[0,T ], which is defined by

Êθ [[∇θ`(θ)]T ] = Êθ
[∫ T

0
(∇θb(θ, t,Xθ

t ))∗(σ−1(t,Xθ
t ))∗σ−1(t,Xθ

t )∇θb(θ, t,Xθ
t )dt

]
.

Let us mention that as will be seen in Subsection 4.3, conditions (A5) and (A6) are due to
our techniques developed in this paper, which are used to show the negligible contributions
for negligible terms in the expansion of the log-likelihood ratio. They are similar to condition
(48) on page 572 and conditions (13), (14), (16) on page 554 and 555 of [21] which are used
to prove the consistency of the aforementioned M -estimators.

Now, for fixed θ0 ∈ Θ, we consider a discrete observation Xn,θ0
= (Xθ0

t0 , X
θ0

t1 , . . . , X
θ0

tn ) of

the process Xθ0
. The main result of this paper is the following LAMN property.

Theorem 2.1. Assume conditions (A1)-(A6). Then, the LAMN property holds for the likeli-
hood at θ0 with rate of convergence ϕn∆n(θ0) = diag(ϕ1

n∆n
(θ0), . . . , ϕmn∆n

(θ0)) and asymptotic
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random Fisher information matrix Γ(θ0). That is, for all u ∈ Rm, as n→∞,

log
dP

θ0+ϕn∆n (θ0)u
n

dPθ0

n

(
Xn,θ0

) L(P̂θ
0
)−→ u∗Γ(θ0)1/2N (0, Im)− 1

2
u∗Γ(θ0)u,

where N (0, Im) is a centered Rm-valued Gaussian random variable independent of Γ(θ0) with
identity covariance matrix Im.

Technical conditions (A5) and (A6) now can be simplified for some particular classes of
diffusions, which depends on the homogeneity of the coefficients and the derivatives of drift
coefficient. See Remark 4.8.

When equation (1.1) is time homogeneous, then condition (A3)(b) becomes ∂tb(θ, x) =
∂2
θit
b(θ, x) = 0 and |∂θib(θ, x)| ≤ C(1 + |x|). In this case, conditions (A5)-(A6) are reformu-

lated as follows

(A5’) For any θ ∈ Θ and i, j ∈ {1, . . . ,m},

Êθ
[
sup
t≥0
|ϕit(θ)Xθ

t |
]

+ Êθ
[
sup
t≥0

ϕit(θ)ϕ
j
t (θ)|Xθ

t |2
]
<∞.

(A6’) For any θ ∈ Θ and i ∈ {1, . . . ,m}, as n→∞,

n∆2
n → 0, n∆

3
2
nϕ

i
n∆n

(θ)→ 0.

Corollary 2.2. Let equation (1.1) be homogeneous. Assume conditions (A1)-(A4) and
(A5’)-(A6’). Then, the statement of Theorem 2.1 remains valid.

Furthermore, when |∂θib(θ, x)| ≤ C|x| for all θ ∈ Θ, i ∈ {1, . . . ,m}, x ∈ Rd and some constant
C > 0, condition (A6) is reformulated as follows

(A6”) For any θ ∈ Θ and i ∈ {1, . . . ,m}, n∆
3
2
nϕin∆n

(θ)→ 0 as n→∞.

Corollary 2.3. Let equation (1.1) be homogeneous. Assume that |∂θib(θ, x)| ≤ C|x| for all
θ ∈ Θ, i ∈ {1, . . . ,m}, x ∈ Rd and some constant C > 0, and assume conditions (A1)-(A4)
and (A5’)-(A6”). Then, the statement of Theorem 2.1 remains valid.

When equation (1.1) is homogeneous and ∂θib(θ, x) is bounded, in this case, condition (A5)
is not required and condition (A6) is reformulated as follows

(A6”’) For any θ ∈ Θ and i, j ∈ {1, . . . ,m}, n∆
3
2
nϕin∆n

(θ)ϕjn∆n
(θ)→ 0 as n→∞.

Corollary 2.4. Let equation (1.1) be homogeneous. Assume that ∂θib(θ, x) is bounded for
all i ∈ {1, . . . ,m}, and assume conditions (A1)-(A4) and (A6”’). Then, the statement of
Theorem 2.1 remains valid.

Remark 2.5. Theorem 2.1 can be seen as an extension of [7, Theorem 4.1] when the unknown
parameter appears only in the drift coefficient and when equation (1.1) is homogeneous and
ergodic (see Subsection 5.1.1).

As usual, constants will be denoted by C and they will always be independent of time and
∆n but may depend on bounds for the set Θ. They may change of value from one line to the
next.
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3. Preliminaries

In this section, we introduce some preliminary results needed for the proof of Theorem

2.1. For this, we consider the canonical filtered probability spaces (Ω̂, F̂ , {F̂t}t≥0, P̂) and

(Ω̃, F̃ , {F̃t}t≥0, P̃) associated respectively to each of two processes B and W , where W =
(Wt)t≥0 is a d-dimensional standard Brownian motion independent ofB. Let (Ω,F , {Ft}t≥0,P)

be the product filtered probability space of these two canonical spaces. That is, Ω = Ω̂× Ω̃,

F = F̂ ⊗ F̃ , P = P̂⊗ P̃, Ft = F̂t ⊗ F̃t, and E = Ê⊗ Ẽ, where E, Ê, Ẽ denote the expectation

w.r.t. P, P̂ and P̃, respectively.

To simplify the exposition, for i ∈ {1, . . . ,m} we set

θ0 = (θ0
1, . . . , θ

0
m), u = (u1, u2, . . . , um),

θ0+ := θ0 + ϕn∆n(θ0)u = (θ0
1 + ϕ1

n∆n
(θ0)u1, . . . , θ

0
m + ϕmn∆n

(θ0)um),

θ0+
i := (θ0

1, . . . , θ
0
i−1, θ

0
i + ϕin∆n

(θ0)ui, θ
0
i+1 + ϕi+1

n∆n
(θ0)ui+1, . . . , θ

0
m + ϕmn∆n

(θ0)um),

θ0+
i (`) := (θ0

1, . . . , θ
0
i−1, θ

0
i + `ϕin∆n

(θ0)ui, θ
0
i+1 + ϕi+1

n∆n
(θ0)ui+1, . . . , θ

0
m + ϕmn∆n

(θ0)um).

Under conditions (A1), (A2) and (A3)(a), for any t > s the law of Xθ
t conditioned on

Xθ
s = x admits a positive transition density pθ(s, t, x, y), which is differentiable w.r.t. θ. We

denote by pn(·; θ) the density of the random vector Xn,θ. To deal with the log-likelihood ratio
in Theorem 2.1, we use the Markov property to rewrite the global likelihood function in terms
of a product of transition densities and then apply a mean value theorem. Precisely,

log
dP

θ0+ϕn∆n (θ0)u
n

dPθ0

n

(
Xn,θ0

)
= log

pn

(
Xn,θ0

; θ0 + ϕn∆n(θ0)u
)

pn
(
Xn,θ0 ; θ0

) = log
pn

(
Xn,θ0

; θ0+
)

pn
(
Xn,θ0 ; θ0

)
=

n−1∑
k=0

log
pθ

0+

pθ0

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

log
pθ

0+
1

pθ0

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

log

(
pθ

0+
1

pθ
0+
2

pθ
0+
2

pθ
0+
3

· · · p
θ0+
i

pθ
0+
i+1

· · · p
θ0+
m−1

pθ
0+
m

pθ
0+
m

pθ0

)(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

log
pθ

0+
1

pθ
0+
2

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
+

n−1∑
k=0

log
pθ

0+
2

pθ
0+
3

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
+ · · ·+

n−1∑
k=0

log
pθ

0+
i

pθ
0+
i+1

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
+ · · ·+

n−1∑
k=0

log
pθ

0+
m

pθ0

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

ϕ1
n∆n

(θ0)u1

∫ 1

0

∂θ1p
θ0+
1 (`)

pθ
0+
1 (`)

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
d`

+

n−1∑
k=0

ϕ2
n∆n

(θ0)u2

∫ 1

0

∂θ2p
θ0+
2 (`)

pθ
0+
2 (`)

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
d`

+ · · ·+
n−1∑
k=0

ϕin∆n
(θ0)ui

∫ 1

0

∂θip
θ0+
i (`)

pθ
0+
i (`)

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
d`
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+ · · ·+
n−1∑
k=0

ϕmn∆n
(θ0)um

∫ 1

0

∂θmp
θ0+
m (`)

pθ
0+
m (`)

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
d`. (3.1)

We start as in Gobet [6] by applying the integration by parts formula of the Malliavin calculus
on each interval [tk, tk+1] to obtain an explicit expression for the logarithm derivative of the
transition density w.r.t. the parameter. In order to avoid confusion with the observed process
Xθ, we introduce an extra probabilistic representation of Xθ for which the Malliavin calculus
will be applied. That is, we consider on the same probability space (Ω,F ,P) the stochastic
flow Y θ(s, x) = (Y θ

t (s, x), t ≥ s), x ∈ Rd on the time interval [s,∞) and with initial condition
Y θ
s (s, x) = x satisfying

Y θ
t (s, x) = x+

∫ t

s
b(θ, u, Y θ

u (s, x))du+

∫ t

s
σ(u, Y θ

u (s, x))dWu. (3.2)

In particular, we write Y θ
t ≡ Y θ

t (0, x0), for all t ≥ 0. That is,

Y θ
t = x0 +

∫ t

0
b(θ, u, Y θ

u )du+

∫ t

0
σ(u, Y θ

u )dWu. (3.3)

We will apply the Malliavin calculus on the Wiener space induced by W . Let D and δ
denote the Malliavin derivative and the Skorohod integral w.r.t. W on each interval [tk, tk+1],
respectively. We denote by D1,2 the space of random variables differentiable in the sense of
Malliavin, and by Dom δ the domain of δ. We refer to Nualart [19] for a detailed exposition of
the Malliavin calculus on the Wiener space. Recall that for a differentiable random variable
F ∈ D1,2, its Malliavin derivative is denoted by DF = (D1F, . . . ,DdF ), where Di is the
Malliavin derivative in the ith direction W i of the Brownian motion W = (W 1, . . . ,W d), for
i ∈ {1, . . . , d}. For a Rd-valued process U = (U1, . . . , Ud) ∈ Dom δ, the Skorohod integral of

U is defined as δ(U) =
∑d

i=1 δ
i(U i), where δi denotes the Skorohod integral w.r.t. W i.

For any k ∈ {0, . . . , n − 1}, under conditions (A1), (A2) and (A3)(a)-(b), the process
(Y θ
t (tk, x), t ∈ [tk, tk+1]) is differentiable w.r.t. x and θ. We denote by (∇xY θ

t (tk, x), t ∈
[tk, tk+1]) the Jacobian matrix, and by (∂θiY

θ
t (tk, x), t ∈ [tk, tk+1]) the derivative w.r.t. θi for

i ∈ {1, . . . ,m} (see Kunita [14]). These processes are the solutions to the linear equations

∇xY θ
t (tk, x) = Id +

∫ t

tk

∇xb(θ, s, Y θ
s (tk, x))∇xY θ

s (tk, x)ds (3.4)

+
d∑
j=1

∫ t

tk

∇xσj(s, Y θ
s (tk, x))∇xY θ

s (tk, x)dW j
s ,

∂θiY
θ
t (tk, x) =

∫ t

tk

(
∂θib(θ, s, Y

θ
s (tk, x)) +∇xb(θ, s, Y θ

s (tk, x))∂θiY
θ
s (tk, x)

)
ds (3.5)

+

d∑
j=1

∫ t

tk

∇xσj(s, Y θ
s (tk, x))∂θiY

θ
s (tk, x)dW j

s ,

for i ∈ {1, . . . ,m}, where σ1, ..., σd : Rd → Rd denote the columns of the matrix σ.

Moreover, the random variables Y θ
t (tk, x), ∇xY θ

t (tk, x), (∇xY θ
t (tk, x))−1 and ∂θiY

θ
t (tk, x)

belong to D1,2 for any t ∈ [tk, tk+1] (see Nualart [19, Section 2.2]). On the other hand, the
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Malliavin derivative DsY
θ
t (tk, x) satisfies the following linear equation

DsY
θ
t (tk, x) = σ(s, Y θ

s (tk, x)) +

∫ t

s
∇xb(θ, u, Y θ

u (tk, x))DsY
θ
u (tk, x)du

+
d∑
j=1

∫ t

s
∇xσj(u, Y θ

u (tk, x))DsY
θ
u (tk, x)dW j

u ,

for s ≤ t a.e., and DsY
θ
t (tk, x) = 0 for s > t a.e. By [19, (2.59)], we have that

DsY
θ
t (tk, x) = ∇xY θ

t (tk, x)(∇xY θ
s (tk, x))−1σ(s, Y θ

s (tk, x))1[tk,t](s).

Now, for all k ∈ {0, ..., n − 1} and x ∈ Rd, we denote by P̃θtk,x the probability law of Y θ

starting at x at time tk, i.e., P̃θtk,x(A) = Ẽ[1A|Y θ
tk

= x] for all A ∈ F̃ , and denote by Ẽθtk,x
the expectation w.r.t. P̃θtk,x. That is, for all F̃-measurable random variables V , we have that

Ẽθtk,x[V ] = Ẽ[V |Y θ
tk

= x]. Hence, Ẽθtk,x is the expectation under the probability law of Y θ

starting at x at time tk.

Similarly, we denote by P̂θtk,x the probability law of Xθ starting at x at time tk, i.e.,

P̂θtk,x(A) = Ê[1A|Xθ
tk

= x] for all A ∈ F̂ , and denote by Êθtk,x the expectation w.r.t. P̂θtk,x.

That is, for all F̂-measurable random variables V , we have that Êθtk,x[V ] = Ê[V |Xθ
tk

= x].

Let Pθtk,x := P̂θtk,x ⊗ P̃θtk,x be the product measure, and Eθtk,x = Êθtk,x ⊗ Ẽθtk,x denotes the

expectation w.r.t. Pθtk,x.

As a consequence of [6, Proposition 4.1], we have the following expression for the logarithm
derivative of the transition density w.r.t. θ in terms of a conditional expectation involving
Skorohod integral.

Lemma 3.1. Under conditions (A1), (A2) and (A3)(a)-(b), for all i ∈ {1, . . . ,m}, k ∈
{0, ..., n− 1}, θ ∈ Θ, and x, y ∈ Rd,

∂θip
θ

pθ
(tk, tk+1, x, y) =

1

∆n
Ẽθtk,x

[
δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
) ∣∣Y θ

tk+1
= y
]
,

where U θt (tk, x) = (DtY
θ
tk+1

(tk, x))−1, t ∈ [tk, tk+1].

Now, we have the following decomposition of the Skorohod integral appearing in the con-
ditional expectation of Lemma 3.1.

Lemma 3.2. Under conditions (A1), (A2) and (A3)(a)-(b), for all i ∈ {1, . . . ,m}, k ∈
{0, ..., n− 1}, θ ∈ Θ, and x ∈ Rd,

δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)

= ∆n(∂θib(θ, tk, x))∗(σσ∗)−1(tk, x)
(
Y θ
tk+1
− Y θ

tk
− b(θ, tk, Y θ

tk
)∆n

)
−Rθ,k1 +Rθ,k2 +Rθ,k3 −R

θ,k
4 −R

θ,k
5 ,

where

Rθ,k1 =

∫ tk+1

tk

∫ tk+1

s
tr
(
Ds

(
((∇xY θ

u (tk, x))−1∂θib(θ, u, Y
θ
u (tk, x)))∗

)
σ−1(s, Y θ

s (tk, x))∇xY θ
s (tk, x)

)
duds,

Rθ,k2 =

∫ tk+1

tk

((∇xY θ
s (tk, x))−1∂θib(θ, s, Y

θ
s (tk, x)))∗ds
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·
∫ tk+1

tk

(
(∇xY θ

s (tk, x))∗(σ−1(s, Y θ
s (tk, x)))∗ − (∇xY θ

tk
(tk, x))∗(σ−1(tk, Y

θ
tk

(tk, x)))∗
)
dWs,

Rθ,k3 =

∫ tk+1

tk

(
((∇xY θ

s (tk, x))−1∂θib(θ, s, Y
θ
s (tk, x)))∗ − ((∇xY θ

tk
(tk, x))−1∂θib(θ, tk, Y

θ
tk

(tk, x)))∗
)
ds

·
∫ tk+1

tk

(∇xY θ
tk

(tk, x))∗(σ−1(tk, Y
θ
tk

(tk, x)))∗dWs,

Rθ,k4 = ∆n(∂θib(θ, tk, Y
θ
tk

))∗(σσ∗)−1(tk, Y
θ
tk

)

∫ tk+1

tk

(
b(θ, s, Y θ

s )− b(θ, tk, Y θ
tk

)
)
ds,

Rθ,k5 = ∆n(∂θib(θ, tk, Y
θ
tk

))∗(σσ∗)−1(tk, Y
θ
tk

)

∫ tk+1

tk

(
σ(s, Y θ

s )− σ(tk, Y
θ
tk

)
)
dWs.

As a consequence of Lemmas 3.1 and 3.2, we have the following explicit expression for the
logarithm derivative of the transition density w.r.t. the parameter.

Lemma 3.3. Under conditions (A1), (A2) and (A3)(a)-(b), for all i ∈ {1, . . . ,m}, k ∈
{0, ..., n− 1}, θ ∈ Θ, and x, y ∈ Rd,

∂θip
θ

pθ
(tk, tk+1, x, y) = (∂θib(θ, tk, x))∗(σσ∗)−1(tk, x) (y − x− b(θ, tk, x)∆n)

+
1

∆n
Ẽθtk,x

[
−Rθ,k1 +Rθ,k2 +Rθ,k3 −R

θ,k
4 −R

θ,k
5

∣∣Y θ
tk+1

= y
]
.

We will use the following estimates for the solution to (3.2).

Lemma 3.4. Assume conditions (A1)-(A2).

(i) For any p ≥ 1 and θ ∈ Θ, there exists a constant Cp > 0 such that for all k ∈
{0, ..., n− 1} and t ∈ [tk, tk+1],

Ẽθtk,x

[∣∣∣Y θ
t (tk, x)− Y θ

tk
(tk, x)

∣∣∣p] ≤ Cp |t− tk| p2 (1 + |x|p) .

(ii) For any function g defined on Θ×Rd with polynomial growth in x uniformly in θ ∈ Θ,
there exist constants C, q > 0 such that for all k ∈ {0, ..., n− 1} and t ∈ [tk, tk+1],

Ẽθtk,x

[∣∣∣g(θ, Y θ
t (tk, x))

∣∣∣] ≤ C (1 + |x|q) .

Moreover, all these statements remain valid for Xθ.

Assuming conditions (A1), (A2), and (A3)(a)-(b), and using Gronwall’s inequality, one
can easily check that for any θ ∈ Θ and p ≥ 2, there exists a constant Cp > 0 such that for
all k ∈ {0, ..., n− 1} and t ∈ [tk, tk+1],

Ẽθtk,x

[∣∣∣∇xY θ
t (tk, x)

∣∣∣p +
∣∣∣(∇xY θ

t (tk, x))−1
∣∣∣p]+ sup

s∈[tk,tk+1]
Ẽθtk,x

[∣∣∣DsY
θ
t (tk, x)

∣∣∣p]
+ sup
s∈[tk,tk+1]

Ẽθtk,x

[∣∣∣Ds

(
∇xY θ

t (tk, x)
)∣∣∣p] ≤ Cp, (3.6)

Ẽθtk,x

[∣∣∣∂θiY θ
t (tk, x)

∣∣∣p] ≤ Cp (1 + |x|p), (3.7)



12 HOANG-LONG NGO AND NGOC KHUE TRAN

where the constant Cp is uniform in θ. As a consequence, we have the following estimates,
which follow easily from (6.2), Lemma 3.4 and properties of the moments of the Brownian
motion.

Lemma 3.5. Under conditions (A1), (A2), and (A3)(a)-(b), for any θ ∈ Θ and p ≥ 2,
there exists a constant Cp > 0 such that for all k ∈ {0, ..., n− 1},

Ẽθtk,x

[
−Rθ,k1 +Rθ,k2 +Rθ,k3

]
= 0, (3.8)

Ẽθtk,x

[∣∣∣−Rθ,k1 +Rθ,k2 +Rθ,k3

∣∣∣p] ≤ Cp∆2p
n (1 + |x|p) . (3.9)

We next recall Girsanov’s theorem on each interval [tk, tk+1]. For all θ, θ1 ∈ Θ, x ∈ Rd and

k ∈ {0, ..., n − 1}, the probability measures P̂θtk,x and P̂θ
1

tk,x
are absolutely continuous w.r.t.

each other and its Radon-Nikodym derivative is given by

dP̂θtk,x

dP̂θ
1

tk,x

(
(Xθ1

t )t∈[tk,tk+1]

)
= exp

{∫ tk+1

tk

σ−1(t,Xθ1

t )
(
b(θ, t,Xθ1

t )− b(θ1, t,Xθ1

t )
)
· dBt

− 1

2

∫ tk+1

tk

∣∣∣σ−1(t,Xθ1

t )
(
b(θ, t,Xθ1

t )− b(θ1, t,Xθ1

t )
)∣∣∣2 dt}. (3.10)

See [13, Theorem 1.12]. By Girsanov’s theorem, the process B
P̂θtk,x = (B

P̂θtk,x
t , t ∈ [tk, tk+1])

is a Brownian motion under P̂θtk,x, where for any t ∈ [tk, tk+1],

B
P̂θtk,x
t := Bt −

∫ t

tk

σ−1(s,Xθ1

s )
(
b(θ, s,Xθ1

s )− b(θ1, s,Xθ1

s )
)
ds.

Next, we give two following technical lemmas which will be useful in the sequel.

Lemma 3.6. Assume conditions (A1), (A2) and (A3)(a). Let θ0, θ ∈ Θ. Then for any

k ∈ {0, ..., n− 1} and F̃tk+1
-measurable random variable V ,

Êθ
0

[
Ẽθ
tk,X

θ0
tk

[
V
∣∣Y θ
tk+1

= Xθ0

tk+1

] ∣∣F̂tk] = Ẽθ
tk,X

θ0
tk

[V ] .

Now, to simplify the notation, for j ∈ {1, . . . ,m} we set

θj(0+) := (θ0
1, . . . , θ

0
j−1, θj , θ

0
j+1 + ϕj+1

n∆n
(θ0)uj+1, . . . , θ

0
m + ϕmn∆n

(θ0)um).

Lemma 3.7. Assume conditions (A1) and (A2). Let p, q > 1 satisfying that 1
p + 1

q = 1.

Then for any k ∈ {0, ..., n − 1} and x ∈ Rd, there exists a constant C > 0 which does not

depend on x such that for any F̂tk+1
-measurable random variable V ,∣∣∣∣∣∣Êθ0+

i (`)
tk,x

V
 dP̂θ

0

tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
− 1

∣∣∣∣∣∣
≤ C

√
∆n (1 + |x|)

(∣∣∣∣∣
∫ θ0

i

θ0
i+`ϕin∆n

(θ0)ui

(
Ê
θi(0+)
tk,x

[|V |q]
) 1
q
dθi

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

(
Ê
θi+1(0+)
tk,x

[|V |q]
) 1
q
dθi+1

∣∣∣∣∣
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+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ϕmn∆n

(θ0)um

(
Ê
θm(0+)
tk,x

[|V |q]
) 1
q
dθm

∣∣∣∣∣
)
.

We finally recall a convergence in probability result. For each n ∈ N, let (ζk,n)k≥1 be a
sequence of random variables defined on the filtered probability space (Ω,F , {Ft}t≥0,P), and
assume that they are Ftk+1

-measurable for all k.

Lemma 3.8. [11, Lemma 3.4] a) Assume that as n→∞,

(i)
n−1∑
k=0

E [ζk,n|Ftk ]
P−→ 0, and (ii)

n−1∑
k=0

E
[
ζ2
k,n|Ftk

] P−→ 0.

Then as n→∞,
∑n−1

k=0 ζk,n
P−→ 0.

b) Assume that
∑n−1

k=0 E [|ζk,n||Ftk ]
P−→ 0 as n→∞. Then as n→∞,

∑n−1
k=0 ζk,n

P−→ 0.

4. Proof of Theorem 2.1

In this section, the proof of Theorem 2.1 will be divided into three steps. We begin deriving
an appropriate stochastic expansion of the log-likelihood ratio using Lemma 3.3. The second
step deals with the main contributions by applying the multivariate central limit theorem for
continuous local martingales in order to show the LAMN property. Finally, the last step is
devoted to treat the negligible contributions of the expansion.

4.1. Expansion of the log-likelihood ratio.

Lemma 4.1. Assume conditions (A1), (A2) and (A3)(a)-(b). Then

log
dP

θ0+ϕn∆n (θ0)u
n

dPθ0

n

(
Xn,θ0

)
=

n−1∑
k=0

m∑
i=1

ξi,k,n +

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∆n

∫ 1

0

{
Z4,`
i,k,n + Z5,`

i,k,n

+ Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k −Rθ

0+
i (`),k

4 −Rθ
0+
i (`),k

5

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`,

where

ξi,k,n = ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
(
σ(tk, X

θ0

tk
)
(
Btk+1

−Btk
)

+
(
b(θ0, tk, X

θ0

tk
)− b(θ0+

i (`), tk, X
θ0

tk
)
)

∆n

)
d`,

Rθ
0+
i (`),k = −Rθ

0+
i (`),k

1 +R
θ0+
i (`),k

2 +R
θ0+
i (`),k

3 ,

Z4,`
i,k,n = ∆n(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

∫ tk+1

tk

(
b(θ0, s,Xθ0

s )− b(θ0, tk, X
θ0

tk
)
)
ds,

Z5,`
i,k,n = ∆n(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

∫ tk+1

tk

(
σ(s,Xθ0

s )− σ(tk, X
θ0

tk
)
)
dBs.

Proof. Using the decomposition (3.1) and Lemma 3.3, we obtain that

log
dP

θ0+ϕn∆n (θ0)u
n

dPθ0

n

(
Xn,θ0

)
=

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∫ 1

0

∂θip
θ0+
i (`)

pθ
0+
i (`)

(
tk, tk+1, X

θ0

tk
, Xθ0

tk+1

)
d`
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=
n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∫ 1

0

(
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)
(
Xθ0

tk+1
−Xθ0

tk
(4.1)

− b(θ0+
i (`), tk, X

θ0

tk
)∆n

)
+

1

∆n
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k −Rθ

0+
i (`),k

4 −Rθ
0+
i (`),k

5

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

])
d`.

Next, using equation (1.1), we get that

Xθ0

tk+1
−Xθ0

tk
= σ(tk, X

θ0

tk
)
(
Btk+1

−Btk
)

+ b(θ0, tk, X
θ0

tk
)∆n

+

∫ tk+1

tk

(
b(θ0, s,Xθ0

s )− b(θ0, tk, X
θ0

tk
)
)
ds+

∫ tk+1

tk

(
σ(s,Xθ0

s )− σ(tk, X
θ0

tk
)
)
dBs.

This, together with (4.1), gives the desired result. �

In the next two subsections, we will show that ξi,k,n is the only term that contributes to
the limit and all the others terms are negligible.

4.2. Main contributions: LAMN property.

Lemma 4.2. Assume conditions (A1)- (A6). Then, as n→∞,

n−1∑
k=0

m∑
i=1

ξi,k,n
L(P̂θ

0
)−→ u∗Γ(θ0)1/2N (0, Im)− 1

2
u∗Γ(θ0)u,

where N (0, Im) is independent of Γ(θ0).

Proof. Observe that ξi,k,n = ξ1,i,k,n + ξ2,i,k,n, where

ξ1,i,k,n = ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
(
σ(tk, X

θ0

tk
)
(
Btk+1

−Btk
)

+
(
b(θ0, tk, X

θ0

tk
)− b(θ0+

i (`), tk, X
θ0

tk
)
)

∆n

)
d`,

ξ2,i,k,n = ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0+
i (`), tk, X

θ0

tk
)− ∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
(
σ(tk, X

θ0

tk
)
(
Btk+1

−Btk
)

+
(
b(θ0, tk, X

θ0

tk
)− b(θ0+

i (`), tk, X
θ0

tk
)
)

∆n

)
d`.

We write ξ1,i,k,n = ξ1,1,i,k,n + ξ1,2,i,k,n, where

ξ1,1,i,k,n = ϕin∆n
(θ0)ui(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)σ(tk, X

θ0

tk
)
(
Btk+1

−Btk
)
,

ξ1,2,i,k,n = ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
(
b(θ0, tk, X

θ0

tk
)− b(θ0+

i (`), tk, X
θ0

tk
)
)

∆nd`.

First, notice that

n−1∑
k=0

m∑
i=1

ξ1,1,i,k,n =

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)σ(tk, X

θ0

tk
)
(
Btk+1

−Btk
)

=
n−1∑
k=0

u∗ϕn∆n(θ0)

∫ tk+1

tk

σ−1(tk, X
θ0

tk
)∇θb(θ0, tk, X

θ0

tk
)dBt
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= u∗ϕn∆n(θ0)

∫ n∆n

0
σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )dBt −
n−1∑
k=0

H1,k,n,

where

H1,k,n = u∗ϕn∆n(θ0)

∫ tk+1

tk

(
σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )− σ−1(tk, X
θ0

tk
)∇θb(θ0, tk, X

θ0

tk
)
)
dBt.

Next, we treat ξ1,2,i,k,n. For this, using the mean value theorem,

b(θ0, tk, X
θ0

tk
)− b(θ0+

i (`), tk, X
θ0

tk
) = −

(
b(θ0+

i (`), tk, X
θ0

tk
)− b(θ0+

i+1, tk, X
θ0

tk
)

+ b(θ0+
i+1, tk, X

θ0

tk
)− b(θ0+

i+2, tk, X
θ0

tk
) + · · ·+ b(θ0+

m−1, tk, X
θ0

tk
)− b(θ0+

m , tk, X
θ0

tk
)

+ b(θ0+
m , tk, X

θ0

tk
)− b(θ0, tk, X

θ0

tk
)
)

= −
(
`ϕin∆n

(θ0)ui

∫ 1

0
∂θib(θ

0+
i (α`), tk, X

θ0

tk
)dα+ ϕi+1

n∆n
(θ0)ui+1

∫ 1

0
∂θi+1

b(θ0+
i+1(α), tk, X

θ0

tk
)dα

+ · · ·+ ϕmn∆n
(θ0)um

∫ 1

0
∂θmb(θ

0+
m (α), tk, X

θ0

tk
)dα
)

= −
(
`ϕin∆n

(θ0)ui∂θib(θ
0, tk, X

θ0

tk
) + ϕi+1

n∆n
(θ0)ui+1∂θi+1

b(θ0, tk, X
θ0

tk
)

+ · · ·+ ϕmn∆n
(θ0)um∂θmb(θ

0, tk, X
θ0

tk
)dα
)

−
(
`ϕin∆n

(θ0)ui

∫ 1

0

(
∂θib(θ

0+
i (α`), tk, X

θ0

tk
)− ∂θib(θ

0, tk, X
θ0

tk
)
)
dα

+ ϕi+1
n∆n

(θ0)ui+1

∫ 1

0

(
∂θi+1

b(θ0+
i+1(α), tk, X

θ0

tk
)− ∂θi+1

b(θ0, tk, X
θ0

tk
)
)
dα

+ · · ·+ ϕmn∆n
(θ0)um

∫ 1

0

(
∂θmb(θ

0+
m (α), tk, X

θ0

tk
)− ∂θmb(θ0, tk, X

θ0

tk
)
)
dα
)
,

where, to simplify the exposition, we have set for j ∈ {i+ 1, . . . ,m},

θ0+
i (α`) := (θ0

1, . . . , θ
0
i−1, θ

0
i + α`ϕin∆n

(θ0)ui, θ
0
i+1 + ϕi+1

n∆n
(θ0)ui+1, . . . , θ

0
m + ϕmn∆n

(θ0)um),

θ0+
j (α) := (θ0

1, . . . , θ
0
j−1, θ

0
j + αϕjn∆n

(θ0)uj , θ
0
j+1 + ϕj+1

n∆n
(θ0)uj+1, . . . , θ

0
m + ϕmn∆n

(θ0)um).

This implies that

n−1∑
k=0

m∑
i=1

ξ1,2,i,k,n =

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
(
b(θ0, tk, X

θ0

tk
)− b(θ0+

i (`), tk, X
θ0

tk
)
)

∆nd`

= −
n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
(

1

2
ϕin∆n

(θ0)ui∂θib(θ
0, tk, X

θ0

tk
) + ϕi+1

n∆n
(θ0)ui+1∂θi+1

b(θ0, tk, X
θ0

tk
)
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+ · · ·+ ϕmn∆n
(θ0)um∂θmb(θ

0, tk, X
θ0

tk
)

)
∆n −

n−1∑
k=0

m∑
i=1

(Ki,k,n +Ki+1,k,n + · · ·+Km,k,n)

= −1

2

n−1∑
k=0

u∗ϕn∆n(θ0)

∫ tk+1

tk

(∇θb(θ0, tk, X
θ0

tk
))∗(σ−1(tk, X

θ0

tk
))∗σ−1(tk, X

θ0

tk
)∇θb(θ0, tk, X

θ0

tk
)dtϕn∆n(θ0)u

−
n−1∑
k=0

m∑
i=1

(Ki,k,n +Ki+1,k,n + · · ·+Km,k,n)

= −1

2
u∗ϕn∆n(θ0)

∫ n∆n

0
(∇θb(θ0, t,Xθ0

t ))∗(σ−1(t,Xθ0

t ))∗σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )dtϕn∆n(θ0)u

+
1

2

n−1∑
k=0

H2,k,n −
n−1∑
k=0

m∑
i=1

(Ki,k,n +Ki+1,k,n + · · ·+Km,k,n) ,

where for j ∈ {i+ 1, . . . ,m},

Ki,k,n = ϕin∆n
(θ0)ui

∫ 1

0

∫ 1

0
(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

· `ϕin∆n
(θ0)ui

(
∂θib(θ

0+
i (α`), tk, X

θ0

tk
)− ∂θib(θ

0, tk, X
θ0

tk
)
)

∆ndαd`,

Kj,k,n = ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0, tk, X
θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

· ϕjn∆n
(θ0)uj

(
∂θjb(θ

0+
j (α), tk, X

θ0

tk
)− ∂θjb(θ

0, tk, X
θ0

tk
)
)

∆ndα,

H2,k,n = u∗ϕn∆n(θ0)

∫ tk+1

tk

(
(∇θb(θ0, t,Xθ0

t ))∗(σ−1(t,Xθ0

t ))∗σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )

− (∇θb(θ0, tk, X
θ0

tk
))∗(σ−1(tk, X

θ0

tk
))∗σ−1(tk, X

θ0

tk
)∇θb(θ0, tk, X

θ0

tk
)

)
dt ϕn∆n(θ0)u.

Therefore, we have shown that

n−1∑
k=0

m∑
i=1

ξi,k,n =

n−1∑
k=0

m∑
i=1

(ξ1,i,k,n + ξ2,i,k,n) =

n−1∑
k=0

m∑
i=1

(ξ1,1,i,k,n + ξ1,2,i,k,n + ξ2,i,k,n)

= u∗ϕn∆n(θ0)

∫ n∆n

0
σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )dBt

− 1

2
u∗ϕn∆n(θ0)

∫ n∆n

0
(∇θb(θ0, t,Xθ0

t ))∗(σ−1(t,Xθ0

t ))∗σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )dtϕn∆n(θ0)u

−
n−1∑
k=0

H1,k,n +
1

2

n−1∑
k=0

H2,k,n −
n−1∑
k=0

m∑
i=1

(Ki,k,n +Ki+1,k,n + · · ·+Km,k,n) +

n−1∑
k=0

m∑
i=1

ξ2,i,k,n.

(4.2)

Next, using condition (A4), as n→∞,

ϕn∆n(θ0)

∫ n∆n

0
(∇θb(θ0, t,Xθ0

t ))∗(σ−1(t,Xθ0

t ))∗σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )dt ϕn∆n(θ0)
P̂θ

0

−→ Γ(θ0).

(4.3)
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Then, using the multivariate central limit theorem for continuous local martingales (see [22,
Theorem 4.1]), we obtain that as n→∞,

u∗ϕn∆n(θ0)

∫ n∆n

0
σ−1(t,Xθ0

t )∇θb(θ0, t,Xθ0

t )dBt
L(P̂θ

0
)−→ u∗Γ(θ0)1/2N (0, Im), (4.4)

where N (0, Im) is independent of Γ(θ0). Finally, by Lemma 4.7 below, as n→∞,

−
n−1∑
k=0

H1,k,n +
1

2

n−1∑
k=0

H2,k,n −
n−1∑
k=0

m∑
i=1

(Ki,k,n +Ki+1,k,n + · · ·+Km,k,n)

+

n−1∑
k=0

m∑
i=1

ξ2,i,k,n
P̂θ

0

−→ 0.

(4.5)

Thus, the desired result follows from (4.2)-(4.5). �

4.3. Negligible contributions.

Lemma 4.3. Under conditions (A1)-(A3) and (A5)-(A6), as n→∞,

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∆n

∫ 1

0

{
Z4,`
i,k,n + Z5,`

i,k,n

+ Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k −Rθ

0+
i (`),k

4 −Rθ
0+
i (`),k

5

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

P̂θ
0

−→ 0.

Proof. The proof is completed by combining three Lemmas 4.4 4.5 and 4.6 below. �

Consequently, from Lemmas 4.1, 4.2 and 4.3, the proof of Theorem 2.1 is now completed.

Lemma 4.4. Under conditions (A1)-(A3) and (A5)-(A6), as n→∞,

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∆n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
d`

P̂θ
0

−→ 0.

Proof. It suffices to show that conditions (i) and (ii) of Lemma 3.8 a) hold under the measure

P̂θ
0

applied to the random variable

ζk,n = ζi,k,n :=
ϕin∆n

(θ0)ui

∆n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
d`,

for any i ∈ {1, . . . ,m}. We start showing (i) of Lemma 3.8 a). Applying Lemma 3.6 to

θ = θ0+
i (`) and V = Rθ

0+
i (`),k, and using the fact that, by (3.8), Ẽ

θ0+
i (`)

tk,X
θ0
tk

[Rθ
0+
i (`),k] = 0, we

obtain that
n−1∑
k=0

Êθ
0
[
ζi,k,n|F̂tk

]
=

n−1∑
k=0

ϕin∆n
(θ0)ui

∆n

∫ 1

0
Êθ

0

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

] ∣∣F̂tk] d`
=

n−1∑
k=0

ϕin∆n
(θ0)ui

∆n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[Rθ
0+
i (`),k]d` = 0.

Thus, the term appearing in condition (i) of Lemma 3.8 a) actually equals zero.
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Next, applying Jensen’s inequality and Lemma 3.6 to θ = θ0+
i (`) and V = (Rθ

0+
i (`),k)2, and

(3.9), we obtain that

n−1∑
k=0

Êθ
0
[
ζ2
i,k,n|F̂tk

]
=

n−1∑
k=0

(ϕin∆n
(θ0))2u2

i

∆2
n

Êθ
0

[(∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
d`

)2 ∣∣F̂tk
]

≤
n−1∑
k=0

(ϕin∆n
(θ0))2u2

i

∆2
n

∫ 1

0
Êθ

0

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[(
Rθ

0+
i (`),k

)2 ∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

] ∣∣F̂tk] d`
=

n−1∑
k=0

(ϕin∆n
(θ0))2u2

i

∆2
n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[(
Rθ

0+
i (`),k

)2
]
d`

≤ C∆2
n(ϕin∆n

(θ0))2u2
i

n−1∑
k=0

(
1 + |Xθ0

tk
|2
)

≤ Cu2
in∆2

n(ϕin∆n
(θ0))2 + Cu2

in∆2
n max
k∈{0,...,n−1}

|ϕitk(θ0)Xθ0

tk
|2,

which, by conditions (A5)-(A6), converges to zero in P̂θ
0
-probability as n → ∞. Thus, we

have shown that
∑n−1

k=0 ζi,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}. Thus, the result follows. �

Lemma 4.5. Under conditions (A1)-(A3) and (A5)-(A6), as n→∞,

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∆n

∫ 1

0

{
Z4,`
i,k,n − Ẽ

θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

4

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

P̂θ
0

−→ 0.

Proof. We rewrite

Z4,`
i,k,n − Ẽ

θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

4

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
= ∆n(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

(∫ tk+1

tk

(
b(θ0, s,Xθ0

s )− b(θ0, tk, X
θ0

tk
)
)
ds

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s, Y
θ0+
i (`)

s )− b(θ0+
i (`), tk, Y

θ0+
i (`)

tk
)

)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

])
= ∆n(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
) (Mi,1,k,n +Mi,2,k,n) ,

where

Mi,1,k,n =

∫ tk+1

tk

(
b(θ0, s,Xθ0

s )− b(θ0, tk, X
θ0

tk
)−

(
b(θ0+

i (`), s,Xθ0

s )− b(θ0+
i (`), tk, X

θ0

tk
)
))
ds,

Mi,2,k,n =

∫ tk+1

tk

(
b(θ0+

i (`), s,Xθ0

s )− b(θ0+
i (`), tk, X

θ0

tk
)
)
ds

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s, Y
θ0+
i (`)

s )− b(θ0+
i (`), tk, Y

θ0+
i (`)

tk
)
)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

]
.

Thus,

ζk,n = ζi,k,n :=
ϕin∆n

(θ0)ui

∆n

∫ 1

0

{
Z4,`
i,k,n − Ẽ

θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

4

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`
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=
ϕin∆n

(θ0)ui

∆n

∫ 1

0
∆n(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
) (Mi,1,k,n +Mi,2,k,n) d`

= ζi,1,k,n + ζi,2,k,n,

where

ζi,1,k,n = ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,1,k,nd`,

ζi,2,k,n = ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,2,k,nd`.

Now, using the mean value theorem,

b(θ0, s,Xθ0

s )− b(θ0+
i (`), s,Xθ0

s ) = b(θ0+
i+1, s,X

θ0

s )− b(θ0+
i (`), s,Xθ0

s ) + b(θ0+
i+2, s,X

θ0

s )

− b(θ0+
i+1, s,X

θ0

s ) + · · ·+ b(θ0+
m , s,Xθ0

s )− b(θ0+
m−1, s,X

θ0

s ) + b(θ0, s,Xθ0

s )− b(θ0+
m , s,Xθ0

s )

= −`ϕin∆n
(θ0)ui

∫ 1

0
∂θib(θ

0+
i (α`), s,Xθ0

s )dα− ϕi+1
n∆n

(θ0)ui+1

∫ 1

0
∂θi+1

b(θ0+
i+1(α), s,Xθ0

s )dα

− · · · − ϕmn∆n
(θ0)um

∫ 1

0
∂θmb(θ

0+
m (α), s,Xθ0

s )dα.

Therefore,

b(θ0, s,Xθ0

s )− b(θ0, tk, X
θ0

tk
)−

(
b(θ0+

i (`), s,Xθ0

s )− b(θ0+
i (`), tk, X

θ0

tk
)
)

= b(θ0, s,Xθ0

s )− b(θ0+
i (`), s,Xθ0

s )−
(
b(θ0, tk, X

θ0

tk
)− b(θ0+

i (`), tk, X
θ0

tk
)
)

= −`ϕin∆n
(θ0)ui

∫ 1

0

(
∂θib(θ

0+
i (α`), s,Xθ0

s )− ∂θib(θ
0+
i (α`), tk, X

θ0

tk
)
)
dα

− ϕi+1
n∆n

(θ0)ui+1

∫ 1

0

(
∂θi+1

b(θ0+
i+1(α), s,Xθ0

s )− ∂θi+1
b(θ0+

i+1(α), tk, X
θ0

tk
)
)
dα

− · · · − ϕmn∆n
(θ0)um

∫ 1

0

(
∂θmb(θ

0+
m (α), s,Xθ0

s )− ∂θmb(θ0+
m (α), tk, X

θ0

tk
)
)
dα.

Next, using the mean value theorem for vector-valued functions,

∂θjb(θ
0+
j (α), s,Xθ0

s )− ∂θjb(θ
0+
j (α), tk, X

θ0

tk
)

=

(∫ 1

0
J∂θj b(tk + v(s− tk), Xθ0

tk
+ v(Xθ0

s −Xθ0

tk
))dv

)
·
(

s− tk
Xθ0

s −Xθ0

tk

)
,

for all j ∈ {i, . . . ,m}, where the Jacobian matrix is given by

J∂θj b(tk + v(s− tk), Xθ0

tk
+ v(Xθ0

s −Xθ0

tk
))

=

∂
2
θjt
b1 ∂2

θjx1
b1 . . . ∂2

θjxd
b1

...
...

. . .
...

∂2
θjt
bd ∂2

θjx1
bd . . . ∂2

θjxd
bd

 (θ0+
j (α), tk + v(s− tk), Xθ0

tk
+ v(Xθ0

s −Xθ0

tk
)).

Then, using conditions (A2)-(A3) and Lemma 3.4 (i), we get that

n−1∑
k=0

Êθ
0
[
|ζi,1,k,n| |F̂tk

]
≤ C∆

3
2
nϕ

i
n∆n

(θ0)|ui|
(
ϕin∆n

(θ0)|ui|+ ϕi+1
n∆n

(θ0)|ui+1|
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+ · · ·+ ϕmn∆n
(θ0)|um|

) n−1∑
k=0

(
1 + |Xθ0

tk
|
)

+ C∆2
nϕ

i
n∆n

(θ0)|ui|
(
ϕin∆n

(θ0)|ui|+ ϕi+1
n∆n

(θ0)|ui+1|+ · · ·+ ϕmn∆n
(θ0)|um|

) n−1∑
k=0

(
1 + |Xθ0

tk
|2
)

≤ Cn∆
3
2
n

(
|ui|2(ϕin∆n

(θ0))2 + |ui||ui+1|ϕin∆n
(θ0)ϕi+1

n∆n
(θ0) + · · ·+ |ui||um|ϕin∆n

(θ0)ϕmn∆n
(θ0)

)
+ C|ui|n∆

3
2
n

(
ϕin∆n

(θ0)|ui|+ ϕi+1
n∆n

(θ0)|ui+1|+ · · ·+ ϕmn∆n
(θ0)|um|

)
max

k∈{0,...,n−1}
|ϕitk(θ0)Xθ0

tk
|

+ Cn∆2
n

(
|ui|2(ϕin∆n

(θ0))2 + |ui||ui+1|ϕin∆n
(θ0)ϕi+1

n∆n
(θ0) + · · ·+ |ui||um|ϕin∆n

(θ0)ϕmn∆n
(θ0)

)
+ C|ui|2n∆2

n max
k∈{0,...,n−1}

|ϕitk(θ0)Xθ0

tk
|2 + C|ui||ui+1|n∆2

n max
k∈{0,...,n−1}

ϕitk(θ0)ϕi+1
tk

(θ0)|Xθ0

tk
|2

+ · · ·+ C|ui||um|n∆2
n max
k∈{0,...,n−1}

ϕitk(θ0)ϕmtk(θ0)|Xθ0

tk
|2,

which, by conditions (A5)-(A6), converges to zero in P̂θ
0
-probability as n → ∞. Thus, by

Lemma 3.8 b),
∑n−1

k=0 ζi,1,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}.
Next, using Girsanov’s theorem and Lemma 3.6, we get that

Êθ
0
[
Mi,2,k,n|F̂tk

]
= Êθ

0

[ ∫ tk+1

tk

(
b(θ0+

i (`), s,Xθ0

s )− b(θ0+
i (`), tk, X

θ0

tk
)
)
ds

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s, Y
θ0+
i (`)

s )− b(θ0+
i (`), tk, Y

θ0+
i (`)

tk
)
)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

] ∣∣F̂tk]
= Êθ

0

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s,Xθ0

s )− b(θ0+
i (`), tk, X

θ0

tk
)
)
ds

]
− Êθ

0

tk,X
θ0
tk

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s, Y
θ0+
i (`)

s )− b(θ0+
i (`), tk, Y

θ0+
i (`)

tk
)
)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

]]

= Ê
θ0+
i (`)

tk,X
θ0
tk

[ ∫ tk+1

tk

(
b(θ0+

i (`), s,X
θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)
)
ds

dP̂θ
0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

]

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s, Y
θ0+
i (`)

s )− b(θ0+
i (`), tk, Y

θ0+
i (`)

tk
)
)
ds

]

= Ê
θ0+
i (`)

tk,X
θ0
tk

[ ∫ tk+1

tk

(
b(θ0+

i (`), s,X
θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]

+ Ê
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s,X
θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)
)
ds

]
− Ẽ

θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), s, Y
θ0+
i (`)

s )− b(θ0+
i (`), tk, Y

θ0+
i (`)

tk
)

)
ds

]
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= Ê
θ0+
i (`)

tk,X
θ0
tk

[ ∫ tk+1

tk

(
b(θ0+

i (`), s,X
θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]
,

where we have used the fact that Xθ0+
i (`) is the independent copy of Y θ0+

i (`). Here, to simplify

the exposition, we write

dP̂θ
0

tk,X
θ0
tk

dP̂
θ0+
i

(`)

tk,X
θ0
tk

=

dP̂θ
0

tk,X
θ0
tk

dP̂
θ0+
i

(`)

tk,X
θ0
tk

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
.

Then, using Lemma 3.7 with q = 2, conditions (A1)-(A2) and Lemma 3.4 (i), we get that∣∣∣∣∣
n−1∑
k=0

Êθ
0
[
ζi,2,k,n|F̂tk

]∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
k=0

ϕin∆n
(θ0)ui

∫ 1

0
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Êθ

0
[
Mi,2,k,n|F̂tk

]
d`

∣∣∣∣∣
=

∣∣∣∣ϕin∆n
(θ0)ui

n−1∑
k=0

∫ 1

0
Ê
θ0+
i (`)

tk,X
θ0
tk

[
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
∫ tk+1

tk

(
b(θ0+

i (`), s,X
θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]
d`

∣∣∣∣
≤ ϕin∆n

(θ0)|ui|
n−1∑
k=0

∫ 1

0

∣∣∣∣Êθ0+
i (`)

tk,X
θ0
tk

[
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
∫ tk+1

tk

(
b(θ0+

i (`), s,X
θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]∣∣∣∣d`

≤ Cϕin∆n
(θ0)|ui|

n−1∑
k=0

∫ 1

0

√
∆n

(
1 + |Xθ0

tk
|
)( ∣∣∣∣∣

∫ θ0
i

θ0
i+`ϕin∆n

(θ0)ui

(
Ê
θi(0+)

tk,X
θ0
tk

[
|V |2

]) 1
2

dθi

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

(
Ê
θi+1(0+)

tk,X
θ0
tk

[
|V |2

]) 1
2

dθi+1

∣∣∣∣∣
+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ϕmn∆n

(θ0)um

(
Ê
θm(0+)

tk,X
θ0
tk

[
|V |2

]) 1
2

dθm

∣∣∣∣∣
)
d`

≤ C∆2
nϕ

i
n∆n

(θ0)|ui|
(
ϕin∆n

(θ0)|ui|+ ϕi+1
n∆n

(θ0)|ui+1|+ · · ·+ ϕmn∆n
(θ0)|um|

) n−1∑
k=0

(
1 + |Xθ0

tk
|2
)

+ C∆
5
2
nϕ

i
n∆n

(θ0)|ui|
(
ϕin∆n

(θ0)|ui|+ ϕi+1
n∆n

(θ0)|ui+1|+ · · ·+ ϕmn∆n
(θ0)|um|

) n−1∑
k=0

(
1 + |Xθ0

tk
|3
)

≤ Cn∆2
n

(
|ui|2(ϕin∆n

(θ0))2 + |ui||ui+1|ϕin∆n
(θ0)ϕi+1

n∆n
(θ0) + · · ·+ |ui||um|ϕin∆n

(θ0)ϕmn∆n
(θ0)

)
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+ C|ui|2n∆2
n max
k∈{0,...,n−1}

|ϕitk(θ0)Xθ0

tk
|2 + C|ui||ui+1|n∆2

n max
k∈{0,...,n−1}

ϕitk(θ0)ϕi+1
tk

(θ0)|Xθ0

tk
|2

+ · · ·+ C|ui||um|n∆2
n max
k∈{0,...,n−1}

ϕitk(θ0)ϕmtk(θ0)|Xθ0

tk
|2

+ Cn∆
5
2
n

(
|ui|2(ϕin∆n

(θ0))2 + |ui||ui+1|ϕin∆n
(θ0)ϕi+1

n∆n
(θ0) + · · ·+ |ui||um|ϕin∆n

(θ0)ϕmn∆n
(θ0)

)
+ C|ui|2n∆

5
2
n (ϕin∆n

(θ0))−1 max
k∈{0,...,n−1}

|ϕitk(θ0)Xθ0

tk
|3

+ C|ui||ui+1|n∆
5
2
n (ϕin∆n

(θ0))−1 max
k∈{0,...,n−1}

(ϕitk(θ0))2ϕi+1
tk

(θ0)|Xθ0

tk
|3

+ · · ·+ C|ui||um|n∆
5
2
n (ϕin∆n

(θ0))−1 max
k∈{0,...,n−1}

(ϕitk(θ0))2ϕmtk(θ0)|Xθ0

tk
|3,

which, by conditions (A5)-(A6), converges to zero in P̂θ
0
-probability as n→∞. Here,

V : = (∂θib(θ
0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)

·
∫ tk+1

tk

(
b(θ0+

i (`), s,X
θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)
)
ds.

and we have used the mean value theorem for vector-valued functions,

b(θ0+
i (`), s,X

θ0+
i (`)
s )− b(θ0+

i (`), tk, X
θ0+
i (`)
tk

)

=

(∫ 1

0
Jb(tk + v(s− tk), X

θ0+
i (`)
tk

+ v(X
θ0+
i (`)
s −Xθ0+

i (`)
tk

))dv

)
·

(
s− tk

X
θ0+
i (`)
s −Xθ0+

i (`)
tk

)
,

where the Jacobian matrix is given by

Jb(tk + v(s− tk), X
θ0+
i (`)
tk

+ v(X
θ0+
i (`)
s −Xθ0+

i (`)
tk

))

=

∂tb1 ∂x1b1 . . . ∂xdb1
...

...
. . .

...
∂tbd ∂x1bd . . . ∂xdbd

 (θ0+
i (`), tk + v(s− tk), X

θ0+
i (`)
tk

+ v(X
θ0+
i (`)
s −Xθ0+

i (`)
tk

)).

Therefore,
∑n−1

k=0 Êθ
0
[ζi,2,k,n|F̂tk ]

P̂θ
0

−→ 0 as n→∞.

Next, applying Jensen’s inequality and Lemma 3.6, conditions (A1)-(A2), the mean value
theorem for vector-valued functions and Lemma 3.4 (i), we obtain that

n−1∑
k=0

Êθ
0
[
ζ2
i,2,k,n|F̂tk

]
= (ϕin∆n

(θ0)ui)
2
n−1∑
k=0

Êθ
0

tk,X
θ0
tk

[(∫ 1

0
(∂θib(θ

0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,2,k,nd`

)2]

≤ (ϕin∆n
(θ0)ui)

2
n−1∑
k=0

∫ 1

0
Êθ

0

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,2,k,n

∣∣∣∣2]d`
≤ 2(ϕin∆n

(θ0)ui)
2
n−1∑
k=0

∫ 1

0

{
Êθ

0

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,2,1,k,n

∣∣∣∣2]
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+ Êθ
0

tk,X
θ0
tk

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,2,2,k,n

∣∣∣∣2∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]]}
d`

= 2(ϕin∆n
(θ0)ui)

2
n−1∑
k=0

∫ 1

0

{
Êθ

0

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,2,1,k,n

∣∣∣∣2]

+ Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), tk, X

θ0

tk
))∗(σσ∗)−1(tk, X

θ0

tk
)Mi,2,2,k,n

∣∣∣∣2]}d`
≤ C∆3

n(ϕin∆n
(θ0)ui)

2
n−1∑
k=0

(
1 + |Xθ0

tk
|2
)

+ C∆4
n(ϕin∆n

(θ0)ui)
2
n−1∑
k=0

(
1 + |Xθ0

tk
|4
)

≤ C|ui|2n∆3
n(ϕin∆n

(θ0))2 + C|ui|2n∆3
n max
k∈{0,...,n−1}

|ϕitk(θ0)Xθ0

tk
|2

+ C|ui|2n∆4
n(ϕin∆n

(θ0))2 + C|ui|2n∆4
n(ϕin∆n

(θ0))−2 max
k∈{0,...,n−1}

|ϕitk(θ0)Xθ0

tk
|4,

which, by conditions (A5)-(A6), converges to zero in P̂θ
0
-probability as n→∞. Here

Mi,2,1,k,n =

∫ tk+1

tk

(
b(θ0+

i (`), s,Xθ0

s )− b(θ0+
i (`), tk, X

θ0

tk
)
)
ds,

Mi,2,2,k,n =

∫ tk+1

tk

(
b(θ0+

i (`), s, Y
θ0+
i (`)

s )− b(θ0+
i (`), tk, Y

θ0+
i (`)

tk
)
)
ds.

Thus, by Lemma 3.8 a),
∑n−1

k=0 ζi,2,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}. Thus, the result follows.
�

Lemma 4.6. Under conditions (A1)-(A3) and (A5)-(A6), as n→∞,

n−1∑
k=0

m∑
i=1

ϕin∆n
(θ0)ui

∆n

∫ 1

0

{
Z5,`
i,k,n − Ẽ

θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

5

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

P̂θ
0

−→ 0.

Proof. For any i ∈ {1, . . . ,m}, we set

ζk,n = ζi,k,n :=
ϕin∆n

(θ0)ui

∆n

∫ 1

0

{
Z5,`
i,k,n − Ẽ

θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

5

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`.

Using Lemma 3.6, we get that

n−1∑
k=0

Êθ
0
[
ζi,k,n|F̂tk

]
=

n−1∑
k=0

ϕin∆n
(θ0)ui

∆n

∫ 1

0
Êθ

0

[
Z5,`
i,k,n − Ẽ

θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

5

∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

] ∣∣F̂tk] d`
=

n−1∑
k=0

ϕin∆n
(θ0)ui

∆n

∫ 1

0

(
Êθ

0

tk,X
θ0
tk

[
Z5,`
i,k,n

]
− Ẽ

θ0+
i (`)

tk,X
θ0
tk

[R
θ0+
i (`),k

5 ]

)
d` = 0.

Next, proceeding as in the proof of Lemma 4.5, we obtain that

n−1∑
k=0

Êθ
0
[
ζ2
i,k,n|F̂tk

]
≤ C∆2

n(ϕin∆n
(θ0)ui)

2
n−1∑
k=0

(
1 + |Xθ0

tk
|2
)

≤ C|ui|2n∆2
n(ϕin∆n

(θ0))2 + C|ui|2n∆2
n max
k∈{0,...,n−1}

|ϕitk(θ0)Xθ0

tk
|2,
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which, by conditions (A5)-(A6), converges to zero in P̂θ
0
-probability as n → ∞. Thus, by

Lemma 3.8 a), we have shown that
∑n−1

k=0 ζi,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}. Thus, the result
follows. �

Lemma 4.7. Under conditions (A1)-(A3) and (A5)-(A6), as n→∞,

−
n−1∑
k=0

H1,k,n +
1

2

n−1∑
k=0

H2,k,n −
n−1∑
k=0

m∑
i=1

(Ki,k,n +Ki+1,k,n + · · ·+Km,k,n)

+

n−1∑
k=0

m∑
i=1

ξ2,i,k,n
P̂θ

0

−→ 0.

Proof. We proceed as in the proof of Lemmas 4.4 4.5 and 4.6. �

Remark 4.8. To obtain the results in Corollary 2.2, 2.3 and 2.4, the proof follows along the
same lines as that of Theorem 2.1 except that condition (A5) is now replaced by condition
(A5’) or is removed, condition (A6) is now replaced by condition (A6’) or (A6”) or (A6”’).

5. Examples

5.1. Homogeneous diffusions.

5.1.1. Homogeneous ergodic diffusion processes. Let Xθ = (Xθ
t )t≥0 be the unique strong so-

lution of the d-dimensional SDE

dXθ
t = b(θ,Xθ

t )dt+ σ(Xθ
t )dBt. (5.1)

This is a particular case of the model discussed in [7] where the unknown parameter appears
only in the drift coefficient and when equation is homogeneous. We introduce the following
ergodic assumption.

(A4’) The process Xθ given by (5.1) is ergodic in the sense that there exists a unique
probability measure πθ(dx) such that as T →∞,

1

T

∫ T

0
g(Xθ

t )dt
P̂θ−→
∫
Rd
g(x)πθ(dx),

for any πθ-integrable function g.

Then, under condition (A4’), condition (A4) satisfies with m×m diagonal matrix ϕT (θ) =
diag( 1√

T
, . . . , 1√

T
) whose diagonal entries are chosen as ϕ1

T (θ) = · · · = ϕmT (θ) = 1√
T

and

Γ(θ) =

∫
Rd

(∇θb(θ, x))∗ (σ−1(x))∗σ−1(x)∇θb(θ, x)πθ(dx).

Then, by ergodicity, as n→∞,

1

n

n−1∑
k=0

|Xθ0

tk
| P̂θ

0

−→
∫
Rd
|x|πθ0(dx), and

1

n

n−1∑
k=0

|Xθ0

tk
|2 P̂θ

0

−→
∫
Rd
|x|2πθ0(dx).

In this case, condition (A6) is not required. Condition (A5) is reformulated as follows

(A5”) For all θ ∈ Θ,
∫
Rd |x|

2πθ(dx) <∞.
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As a consequence of Theorem 2.1, under conditions (A1)-(A3), (A4’) and (A5”), the
LAN property holds at θ0 with rate of convergence ϕn∆n(θ0) = diag( 1√

n∆n
, . . . , 1√

n∆n
) where

ϕ1
n∆n

(θ) = · · · = ϕmn∆n
(θ) = 1√

n∆n
and asymptotic Fisher information matrix

Γ(θ0) =

∫
Rd

(
∇θb(θ0, x)

)∗
(σ−1(x))∗σ−1(x)∇θb(θ0, x)πθ0(dx).

That is, for all u ∈ Rm, as n→∞,

log
dP

θ0+ϕn∆n (θ0)u
n

dPθ0

n

(
Xn,θ0

) L(P̂θ
0
)−→ u∗N (0,Γ(θ0))− 1

2
u∗Γ(θ0)u.

5.1.2. Homogeneous Ornstein-Uhlenbeck process. Let Xa,b = (Xa,b
t )t≥0 be the unique strong

solution of the one-dimensional SDE

dXa,b
t = (b− aXa,b

t )dt+ σdBt, (5.2)

with given initial condition Xa,b
0 = x0, θ = (a, b) ∈ R2 are unknown parameters and σ > 0.

By Itô’s formula, the solution process is given by

Xa,b
t = Xa,b

0 e−at +
b

a

(
1− e−at

)
+ σ

∫ t

0
e−a(t−s)dBs. (5.3)

The observed Fisher information process at (a, b) based on the continuous observation (Xa,b
t )t∈[0,T ]

is given by

1

σ2

(∫ T
0 (Xa,b

t )2dt −
∫ T

0 Xa,b
t dt

−
∫ T

0 Xa,b
t dt T

)
.

Case 1: a > 0. The solution Xa,b is ergodic with invariant Gaussian distribution N ( ba ,
σ2

2a )
(see [13, Example 1.26]). That is,

πa,b(dx) = f(a, b, x)dx =

√
a

πσ2
exp

{
−(ax− b)2

aσ2

}
dx.

By [13, Example 1.35], as T →∞,

1

T

∫ T

0
(Xa,b

t )2dt
P̂a,b−→

∫
R
|x|2πa,b(dx) =

b2

a2
+
σ2

2a
,

1

T

∫ T

0
Xa,b
t dt

P̂a,b−→
∫
R
xπa,b(dx) =

b

a
.

Thus, condition (A4) satisfies with ϕT (a, b) = diag( 1√
T
, 1√

T
) and

Γ(a, b) =
1

a2σ2

b2 +
aσ2

2
−ab

−ab a2

 .

Moreover, condition (A5”) holds. As a consequence of Theorem 2.1 (Subsection 5.1.1), the
LAN property holds at θ0 = (a0, b0) with rate of convergence ϕn∆n(a0, b0) = diag( 1√

n∆n
, 1√

n∆n
)
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and asymptotic Fisher information matrix

Γ(a0, b0) =
1

a2
0σ

2

b20 +
a0σ

2

2
−a0b0

−a0b0 a2
0

 .

Case 2: a < 0. From (5.3), it can be checked that eatXa,b
t −X

a,b
0 − b

a(eat− 1) = σ
∫ t

0 e
asdBs,

t ≥ 0 is a square integrable martingale. Thus, the martingale convergence theorem implies
that as t→∞,

eatXa,b
t → Xa,b

0 − b

a
+ Za, P̂a,b-a.s.,

where Za := σ
∞∫
0

easdBs has Gaussian law N (0,−σ2

2a ). Then, the integral version of the

Toeplitz lemma implies that as t→∞,∫ t
0 X

a,b
s ds∫ t

0 e
−asds

→ Xa,b
0 − b

a
+ Za, P̂a,b-a.s.∫ t

0 (Xa,b
s )2ds∫ t

0 e
−2asds

→
(
Xa,b

0 − b

a
+ Za

)2

, P̂a,b-a.s.

which deduces that as t→∞,

1√
t
eat
∫ t

0
Xa,b
s ds→ 0, P̂a,b-a.s.

e2at

∫ t

0
(Xa,b

s )2ds→ − 1

2a

(
Xa,b

0 − b

a
+ Za

)2

, P̂a,b-a.s.

Thus, condition (A4) satisfies with ϕT (a, b) = diag(eaT , 1√
T

) and

Γ(a, b) =

(
− 1

2aσ2 (x0 − b
a + Za)2 0

0 1
σ2

)
.

Observe that |∂ab(θ, x)| = |x| and |∂bb(θ, x)| = 1, where b(θ, x) = b − ax. Hence condition
(A6”) holds for the parameter a and condition (A6”’) holds for the parameter b. On the

other hand, Êa,b[supt≥0 |eatX
a,b
t |p] < ∞ for any p > 0. Thus, condition (A5’) holds. As a

consequence of Theorem 2.1 (Corollary 2.3 and 2.4), the LAMN property holds at (a0, b0)
with rate of convergence ϕn∆n(a0, b0) = diag(ea0n∆n , 1√

n∆n
) and asymptotic random Fisher

information matrix

Γ(a0, b0) =

− 1
2a0σ2 (x0 −

b0
a0

+ Za0)2 0

0 1
σ2

 .

5.1.3. Two-dimensional Gaussian diffusion process. Let Xθ = (Xθ
1 , X

θ
2 )∗ = (Xθ

t )t≥0 be the
unique strong solution of the 2-dimensional SDE

dXθ
t = A(θ)Xθ

t dt+ dBt, (5.4)
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with Xθ
0 = 0, where

A(θ) =

(
−θ1 −θ2

θ2 −θ1

)
,

B = (Bt)t≥0 is a 2-dimensional Brownian motion and Θ = R2 (see [17, Subsection 4.1]). By
Itô’s formula,

Xθ
t = eA(θ)t

∫ t

0
e−A(θ)sdBs,

where

eA(θ)t = e−θ1t
(

cos θ2t − sin θ2t
sin θ2t cos θ2t

)
.

The observed Fisher information process at θ = (θ1, θ2) based on the continuous observation

(Xθ
s )s∈[0,t] is given by

∫ t
0 |X

θ
s |2ds I2.

Case 1: θ1 < 0. As t→∞,

e−A(θ)tXθ
t −→

√
− 1

2θ1
V (θ), P̂θ-a.s.,

− θ1e
2θ1t|Xθ

t |2 −→
1

2
|V (θ)|2, P̂θ-a.s.,

2θ2
1e

2θ1t

∫ t

0
|Xθ

s |2ds I2 −→
1

2
|V (θ)|2I2, P̂θ-a.s.,

where V (θ) ∼ N (0, I2). Thus, condition (A4) satisfies with ϕ1
t (θ) = ϕ2

t (θ) = −
√

2θ1e
θ1t and

Γ(θ) = 1
2 |V (θ)|2I2. On the other hand, conditions (A5’) and (A6”) hold. As a consequence of

Theorem 2.1 (Corollary 2.3), the LAMN property holds for the likelihood at θ0 = (θ0
1, θ

0
2) with

rate of convergence ϕn∆n(θ0) = diag(−
√

2θ0
1e
θ0
1n∆n ,−

√
2θ0

1e
θ0
1n∆n) and asymptotic random

Fisher information matrix Γ(θ0) = 1
2 |V (θ0)|2I2.

Case 2: θ1 > 0. By ergodicity, as t→∞,

1

t

∫ t

0
|Xθ

s |2ds −→ lim
s→∞

E[|Xθ
s |2] =

∫
R2

|x|2πθ(dx) =
1

θ1
, P̂θ-a.s.,

1

t

∫ t

0
|Xθ

s |2ds I2 −→ lim
s→∞

E[|Xθ
s |2] I2 =

1

θ1
I2, P̂θ-a.s.

Thus, condition (A4) satisfies with ϕ1
t (θ) = ϕ2

t (θ) = 1√
t

and Γ(θ) = 1
θ1
I2. On the other

hand, condition (A5”) holds. As a consequence of Theorem 2.1 (Subsection 5.1.1), the
LAN property holds for the likelihood at θ0 = (θ0

1, θ
0
2) with rate of convergence ϕn∆n(θ0) =

diag( 1√
n∆n

, 1√
n∆n

) and asymptotic Fisher information matrix Γ(θ0) =
1

θ0
1

I2.

5.1.4. Null-recurrent diffusion process. Let Xθ = (Xθ
t )t≥0 be the unique strong solution of

the one-dimensional SDE

dXθ
t = −θ Xθ

t

1 + (Xθ
t )2

dt+ σdBt, (5.5)

where Xθ
0 = x0 and σ > 0 (see [13, Subsection 3.5.1]). Observe that b(θ, x) = −θ x

1+x2 which

satisfies |∂θb(θ, x)| ≤ 1
2 . Hence, condition (A5) is not required.
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The observed Fisher information process at θ based on the continuous observation (Xθ
t )t∈[0,T ]

is given by
∫ T

0
(Xθ

t )2

σ2(1+(Xθ
t )2)2dt.

Case 1: θ > σ2

2 . The process Xθ is ergodic with invariant density

f(θ, x) =
1

G(θ)(1 + x2)θ/σ2 with G(θ) =

∫ ∞
−∞

dx

(1 + x2)θ/σ2 .

By ergodicity, as T →∞,

1

T

∫ T

0

(Xθ
t )2

σ2(1 + (Xθ
t )2)2

dt
P̂θ−→ Γ(θ),

where

Γ(θ) :=
1

σ2G(θ)

∫ ∞
−∞

x2

(1 + x2)2+θ/σ2 dx.

Thus, condition (A4) satisfies with ϕT (θ) = 1√
T

and Γ(θ). As a consequence of Theorem 2.1

(Subsection 5.1.1), the LAN property holds for the likelihood at θ0 with rate of convergence
ϕn∆n(θ0) = 1√

n∆n
and asymptotic Fisher information Γ(θ0).

Case 2: −σ2

2 < θ < σ2

2 . We set γ(θ) := 1
2 + θ

σ2 and

K∗(B, γ(θ)) =
Γ(1 + γ(θ))

2(γ(θ)2B)γ(θ)Γ(1− γ(θ))
,

where Γ(·) is the Gamma function and

B =
2

σ2

(
1 +

2θ

σ2

)− 4θ
σ2+2θ

.

Let η be a random variable with stable distribution function having the Laplace transform
E[e−pη] = e−p

γ
. As T →∞,

1

T γ(θ)

∫ T

0

(Xθ
t )2

σ2(1 + (Xθ
t )2)2

dt
P̂θ−→ Γ(θ),

where

Γ(θ) := K∗(B, γ(θ))
2

σ2

∫ ∞
−∞

x2

(1 + x2)2+θ/σ2 dx η
−γ(θ).

Thus, condition (A4) satisfies with ϕT (θ) = T−
γ(θ)

2 and Γ(θ). Condition (A6”’) writes as

n∆
2(σ2−θ)
σ2−2θ
n → 0 as n→∞. As a consequence of Theorem 2.1 (Corollary 2.4), under condition

n∆
2(σ2−θ0)

σ2−2θ0

n → 0, the LAMN property holds for the likelihood at θ0 with rate of convergence

ϕn∆n(θ0) = (n∆n)−
γ(θ0)

2 and asymptotic random Fisher information Γ(θ0).
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5.1.5. Exponential growth process. Let Xθ = (Xθ
t )t≥0 be the unique strong solution of the

one-dimensional SDE

dXθ
t = θa(Xθ

t )dt+ dBt, (5.6)

with given initial condition Xθ
0 = x0. The unknown parameter θ is positive. For some

constant c > 0, the known trend coefficient admits the representation

a(x) = cx+ r(x), x ∈ R,

such that the function r satisfies the following Lipschitz and growth conditions with appro-
priate constants K ≥ 0, L ≥ 0 and γ ∈ [0, 1). That is, for all (x, y) ∈ R2,

|r(x)− r(y)| ≤ L |x− y| ,
|r(x)| ≤ K (1 + |x|γ) .

See Dietz and Kutoyants [5]. When taking large value, Xθ
t behaves like an Ornstein-Uhlenbeck

process. The observed Fisher information process at θ based on the continuous observation

(Xθ
t )t∈[0,T ] is given by

∫ T
0 a2(Xθ

t )dt.

By [5, Lemma 2.1 and Corollary 2.2], as t→∞ and T →∞,

e−θctXθ
t −→ Xθ

0 + ξθ∞ + ρθ∞, P̂θ-a.s.,

e−2θcT

∫ T

0
a2(Xθ

t )dt −→ c

2θ

(
Xθ

0 + ξθ∞ + ρθ∞

)2
, P̂θ-a.s.,

where ξθ∞ =
∫∞

0 e−θcsdBs and ρθ∞ =
∫∞

0 e−θcsθr(Xθ
s )ds. Moreover, Êθ[supt≥0 |e−θctXθ

t |p] <∞
for p ≥ 1. Thus, condition (A4) satisfies with ϕT (θ) = e−θcT and Γ(θ) = c

2θ (Xθ
0 + ξθ∞+ρθ∞)2.

Moreover, conditions (A5’) and (A6”) hold. As a consequence of Theorem 2.1 (Corollary
2.3), the LAMN property holds for the likelihood at θ0 with rate of convergence ϕn∆n(θ0) =

e−θ
0cn∆n and asymptotic random Fisher information

Γ(θ0) =
c

2θ0

(
Xθ0

0 + ξθ
0

∞ + ρθ
0

∞

)2
.

5.2. Inhomogeneous diffusions.

5.2.1. Inhomogeneous Ornstein-Uhlenbeck process. Let Xθ = (Xθ
t )t≥0 be the unique strong

solution of the one-dimensional SDE

dXθ
t = −θA(t)Xθ

t dt+ dBt, (5.7)

where Xθ
0 = 0, A : R+ → R is measurable with

∫ t
0 A

2(s)ds <∞ for every t (see [17, Subsection

4.2]). By Itô’s formula, Xθ
t = f(θ, t)

∫ t
0 f(θ, s)−1dBs where f(θ, t) = exp{−θ

∫ t
0 A(s)ds}.

The observed Fisher information process at θ based on the continuous observation (Xθ
s )s∈[0,t]

is given by
∫ t

0 A
2(s)(Xθ

s )2ds.

Case 1: Consider the set of explosive parameters

Θ0 :=

{
θ ∈ R : −θ

∫ t

0
A(s)ds→∞ as t→∞ and

∫ ∞
0

f(θ, t)−2dt <∞
}
.
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For any θ ∈ Θ0, we have supt≥0 f(θ, t)−2Êθ[(Xθ
t )2] =

∫∞
0 f(θ, t)−2dt <∞ and as t→∞,

f(θ, t)−1Xθ
t −→

(∫ ∞
0

f(θ, s)−2ds

) 1
2

V (θ), P̂θ-a.s.,

ϕt(θ)
2

∫ t

0
A2(s)(Xθ

s )2ds −→ V (θ)2, P̂θ-a.s.,

where V (θ) ∼ N (0, 1) and

ϕt(θ) =

(∫ ∞
0

f(θ, s)−2ds

∫ t

0
A2(s)f(θ, s)2ds

)− 1
2

.

Thus, condition (A4) satisfies with ϕt(θ) and Γ(θ) = V (θ)2. On the other hand, condition
(A5) holds. As a consequence of Theorem 2.1, under condition (A6), the LAMN property
holds for the likelihood at θ0 ∈ Θ0 with rate of convergence ϕn∆n(θ0) and asymptotic random
Fisher information Γ(θ0) = V (θ0)2.

Case 2: Consider the set of parameters

Θ1 : =

{
θ ∈ R :

∫ t

0
A2(s)f(θ, s)2

∫ s

0
f(θ, u)−2duds→∞ as t→∞

and A2(t)f(θ, t)4

(∫ t

0
f(θ, s)−2ds

)2

= o

(∫ t

0
A2(s)f(θ, s)2

∫ s

0
f(θ, u)−2duds

)}
,

where assume that A is continuous.

For any θ ∈ Θ1, as t→∞,

ϕt(θ)
2

∫ t

0
A2(s)(Xθ

s )2ds −→ 1, in L2(P̂θ),

where

ϕt(θ) =

(∫ t

0
A2(s)f(θ, s)2

∫ s

0
f(θ, u)−2duds

)− 1
2

.

Thus, condition (A4) satisfies with ϕt(θ) and Γ(θ) = 1. On the other hand, condition
(A5) holds. As a consequence of Theorem 2.1, under condition (A6), the LAN property
holds for the likelihood at θ0 ∈ Θ1 with rate of convergence ϕn∆n(θ0) and asymptotic Fisher
information Γ(θ0) = 1.

When A(t) = 1, Xθ becomes the classical homogeneous Ornstein-Uhlenbeck process which
has been addressed in Subsection 5.1.2.

When A(t) = 1
1+t , then Θ0 = (−∞,−1

2) and Θ1 = (−1
2 ,∞). For any θ ∈ Θ0, we choose

ϕT (θ) = −(2θ + 1)T θ+
1
2 and for any θ ∈ Θ1, we choose ϕT (θ) =

√
2θ+1

log(1+T ) .

5.2.2. A special inhomogeneous diffusion process. Let Xθ = (Xθ
t )t≥0 be the unique strong

solution of the one-dimensional SDE which is a special case of Hull-White model

dXθ
t = θb(t)Xθ

t dt+ σ(t)dBt, (5.8)

with given initial condition Xθ
0 = 0, where b : R+ → R and σ : R+ → (0,∞) are known

Borel-measurable functions. Here, θ ∈ R is an unknown parameter. See Barczy et Pap [2].
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When σ(t) = σ > 0, Xθ becomes the inhomogeneous Ornstein-Uhlenbeck process which has
been considered in Subsection 5.2.1.

The SDE (5.8) has a unique strong solution given by

Xθ
t =

∫ t

0
σ(s) exp

{
θ

∫ t

s
b(u)du

}
dBs.

The observed Fisher information process at θ based on the continuous observation (Xθ
s )s∈[0,t]

is given by
∫ t

0
b2(s)(Xθ

s )2

σ2(s)
ds. The expected Fisher information at θ and t based on the continuous

observation (Xθ
s )s∈[0,t] is given by

IXθ(t) =

∫ t

0

b2(s)

σ2(s)
E
[
(Xθ

s )2
]
ds,

where

E
[
(Xθ

s )2
]

=

∫ s

0
σ2(u) exp

{
2θ

∫ s

u
b(v)dv

}
du.

Case 1: Consider the set of parameters

Θ0 :=

{
θ ∈ R : lim

t→∞
IXθ(t) =∞ and lim

t→∞

∫ t

0
σ2(s) exp

{
−2θ

∫ s

0
b(v)dv

}
ds <∞

}
.

Then, for any θ ∈ Θ0, as t→∞,

1

IXθ(t)

∫ t

0

b2(s)(Xθ
s )2

σ2(s)
ds −→ ξ2, P̂θ-a.s.,

where ξ ∼ N (0, 1) (see the proof of [2, Theorem 7]).

Thus, condition (A4) satisfies with ϕt(θ) = IXθ(t)−
1
2 and Γ(θ) = ξ2. On the other hand,

condition (A5) holds. As a consequence of Theorem 2.1, under condition (A6), the LAMN

property holds for the likelihood at θ0 with rate of convergence ϕn∆n(θ0) = I
Xθ0 (n∆n)−

1
2

and asymptotic random Fisher information Γ(θ0) = ξ2.

Case 2: Consider the set of parameters

Θ1 :=
{
θ ∈ R : lim

t→∞
IXθ(t) =∞ and lim

t→∞

1√
IXθ(t)

b(t)

σ2(t)

∫ t

0
σ2(s) exp

{
2θ

∫ t

s
b(v)dv

}
ds = 0

}
.

Then, for any θ ∈ Θ1, as t→∞, (see [2, Theorem 10])

1

IXθ(t)

∫ t

0

b2(s)(Xθ
s )2

σ2(s)
ds −→ 1, in L2(P̂θ).

Thus, condition (A4) satisfies with ϕt(θ) = IXθ(t)−
1
2 and Γ(θ) = 1. On the other hand,

condition (A5) holds. As a consequence of Theorem 2.1, under condition (A6), the LAN

property holds for the likelihood at θ0 with rate of convergence ϕn∆n(θ0) = I
Xθ0 (n∆n)−

1
2

and asymptotic Fisher information Γ(θ0) = 1.
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6. Appendix

6.1. Proof of Lemma 3.1.

Proof. Let f : Rd → R be a continuously differentiable function with compact support.
Fix t ∈ [tk, tk+1]. The chain rule of the Malliavin calculus gives (Dt(f(Y θ

tk+1
(tk, x))))∗ =

(∇f(Y θ
tk+1

(tk, x)))∗DtY
θ
tk+1

(tk, x). Since the matrix DtY
θ
tk+1

(tk, x) is invertible a.s., we have

(∇f(Y θ
tk+1

(tk, x)))∗ = (Dt(f(Y θ
tk+1

(tk, x))))∗ U θt (tk, x), where U θt (tk, x) = (DtY
θ
tk+1

(tk, x))−1.

Then, using the integration by parts formula of the Malliavin calculus on [tk, tk+1], we get
that for any i ∈ {1, . . . ,m},

∂θiẼ
[
f(Y θ

tk+1
(tk, x))

]
= Ẽ

[
(∇f(Y θ

tk+1
(tk, x)))∗ ∂θiY

θ
tk+1

(tk, x)
]

=
1

∆n
Ẽ

[∫ tk+1

tk

(∇f(Y θ
tk+1

(tk, x)))∗ ∂θiY
θ
tk+1

(tk, x)dt

]
=

1

∆n
Ẽ

[∫ tk+1

tk

(Dt(f(Y θ
tk+1

(tk, x))))∗ U θt (tk, x) ∂θiY
θ
tk+1

(tk, x)dt

]
=

1

∆n
Ẽ
[
f(Y θ

tk+1
(tk, x))δ

(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)]
.

Observe that by (3.7), the family ((∇f(Y θ
tk+1

(tk, x)))∗ ∂θiY
θ
tk+1

(tk, x), θ ∈ Θ) is uniformly

integrable. This justifies that we can interchange ∂θi and Ẽ. Note that here δ(V ) ≡
δ(V 1[tk,tk+1](·)) for any V ∈ Dom δ. On the other hand, using the stochastic flow prop-
erty, we have that

∂θiẼ
[
f(Y θ

tk+1
(tk, x))

]
=

∫
Rd
f(y)∂θip

θ(tk, tk+1, x, y)dy,

and

Ẽ
[
f(Y θ

tk+1
(tk, x))δ

(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)]

= Ẽ
[
f(Y θ

tk+1
)δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
) ∣∣∣Y θ

tk
= x

]
=

∫
Rd
f(y)Ẽ

[
δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
) ∣∣∣Y θ

tk
= x, Y θ

tk+1
= y
]
pθ(tk, tk+1, x, y)dy,

which finishes the desired proof. �

6.2. Proof of Lemma 3.2.

Proof. From (3.4) and Itô’s formula,

(∇xY θ
t (tk, x))−1 = Id −

∫ t

tk

(∇xY θ
s (tk, x))−1

∇xb(θ, s, Y θ
s (tk, x))−

d∑
j=1

(∇xσj(s, Y θ
s (tk, x)))2

 ds

−
d∑
j=1

∫ t

tk

(∇xY θ
s (tk, x))−1∇xσj(s, Y θ

s (tk, x))dW j
s ,
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which, together with (3.5) and Itô’s formula again, implies that

(∇xY θ
tk+1

(tk, x))−1∂θiY
θ
tk+1

(tk, x) =

∫ tk+1

tk

(∇xY θ
s (tk, x))−1∂θib(θ, s, Y

θ
s (tk, x))ds. (6.1)

Then, using the product rule [19, (1.48)] and (6.1), we obtain that

δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)

= δ
(
σ−1(·, Y θ

· (tk, x))∇xY θ
· (tk, x)(∇xY θ

tk+1
(tk, x))−1∂θiY

θ
tk+1

(tk, x)
)

= (∂θiY
θ
tk+1

(tk, x))∗((∇xY θ
tk+1

(tk, x))−1)∗
∫ tk+1

tk

(∇xY θ
s (tk, x))∗(σ−1(s, Y θ

s (tk, x)))∗dWs

−
∫ tk+1

tk

tr
(
Ds

(
(∂θiY

θ
tk+1

(tk, x))∗((∇xY θ
tk+1

(tk, x))−1)∗
)
σ−1(s, Y θ

s (tk, x))∇xY θ
s (tk, x)

)
ds

=

∫ tk+1

tk

((∇xY θ
s (tk, x))−1∂θib(θ, s, Y

θ
s (tk, x)))∗ds

∫ tk+1

tk

(∇xY θ
s (tk, x))∗(σ−1(s, Y θ

s (tk, x)))∗dWs

−
∫ tk+1

tk

∫ tk+1

s
tr
(
Ds

(
((∇xY θ

u (tk, x))−1∂θib(θ, u, Y
θ
u (tk, x)))∗

)
σ−1(s, Y θ

s (tk, x))∇xY θ
s (tk, x)

)
duds.

We next add and subtract the matrix ((∇xY θ
tk

(tk, x))−1∂θib(θ, tk, Y
θ
tk

(tk, x)))∗ in the first inte-

gral and the matrix (∇xY θ
tk

(tk, x))∗(σ−1(tk, Y
θ
tk

(tk, x)))∗ in the second integral. This, together

with the fact that Y θ
tk

(tk, x) = Y θ
tk

= x, yields

δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)

= ∆n(σ−1(tk, x)∂θib(θ, tk, x))∗(Wtk+1
−Wtk)−Rθ,k1 +Rθ,k2 +Rθ,k3 .

(6.2)
On the other hand, by equation (3.3) we have that

Wtk+1
−Wtk = σ−1(tk, Y

θ
tk

)

(
Y θ
tk+1
− Y θ

tk
− b(θ, tk, Y θ

tk
)∆n −

∫ tk+1

tk

(
b(θ, s, Y θ

s )− b(θ, tk, Y θ
tk

)
)
ds

−
∫ tk+1

tk

(
σ(s, Y θ

s )− σ(tk, Y
θ
tk

)
)
dWs

)
.

This, together with (6.2), conclude the desired result. �

6.3. Proof of Lemma 3.6.

Proof. For simplicity, we set g(y) = g(Xθ0

tk
, y) := Ẽθ

tk,X
θ0
tk

[V
∣∣Y θ
tk+1

= y] for all y ∈ Rd. Then,

applying Girsanov’s theorem, we obtain that

Êθ
0

[
Ẽθ
tk,X

θ0
tk

[
V
∣∣Y θ
tk+1

= Xθ0

tk+1

] ∣∣F̂tk] = Êθ
0
[
g(Xθ0

tk+1
)
∣∣Xθ0

tk

]
= Êθ

0

tk,X
θ0
tk

[
g(Xθ0

tk+1
)
]

= Êθ
tk,X

θ0
tk

g(Xθ
tk+1

)

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

)
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= Êθ
tk,X

θ0
tk

Êθ
tk,X

θ0
tk

g(Xθ
tk+1

)

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1




= Êθ
tk,X

θ0
tk

g(Xθ
tk+1

)Êθ
tk,X

θ0
tk

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1




=

∫
Rd
g(y)Êθ

tk,X
θ0
tk

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

∣∣∣Xθ
tk+1

= y

 pθ(tk, tk+1, X
θ0

tk
, y)dy

=

∫
Rd

Ẽθ
tk,X

θ0
tk

[
V
∣∣Y θ
tk+1

= y
]

Êθ
tk,X

θ0
tk

[dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1

= y

]
pθ(tk, tk+1, X

θ0

tk
, y)dy

=

∫
Rd

Eθ
tk,X

θ0
tk

V dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1

= y, Y θ
tk+1

= y

 pθ(tk, tk+1, X
θ0

tk
, y)dy

= Êθ
tk,X

θ0
tk

[
Eθ
tk,X

θ0
tk

[
V

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

∣∣Xθ
tk+1

, Y θ
tk+1

= Xθ
tk+1

]]

= Eθ
tk,X

θ0
tk

[
Eθ
tk,X

θ0
tk

[
V

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

∣∣Xθ
tk+1

, Y θ
tk+1

= Xθ
tk+1

]]

= Eθ
tk,X

θ0
tk

[
V

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

]
= Ẽθ

tk,X
θ0
tk

[V ] Êθ
tk,X

θ0
tk

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

)
= Ẽθ

tk,X
θ0
tk

[V ] ,

where we have used the fact that, by definition of Eθtk,x, for any F̂tk+1
-measurable random

variable V1 and F̃tk+1
-measurable random variable V2,

Êθtk,x

[
V1|Xθ

tk+1
= y
]

Ẽθtk,x

[
V2|Y θ

tk+1
= y
]

= Eθtk,x

[
V1V2|Xθ

tk+1
= y, Y θ

tk+1
= y
]
,

and Êθ
tk,X

θ0
tk

[dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

]
= 1 together with the independence between V and

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1]) w.r.t. P. Thus, the result follows. �

6.4. Proof of Lemma 3.7.
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Proof. Using (3.10), we have that

dP̂θ
0

tk,x

dP̂
θ0+
i (`)
tk,x

− 1 =
dP̂θ

0

tk,x
− dP̂

θ0+
i (`)
tk,x

dP̂
θ0+
i (`)
tk,x

=
(dP̂

θ0+
i+1

tk,x
− dP̂

θ0+
i (`)
tk,x

) + (dP̂
θ0+
i+2

tk,x
− dP̂

θ0+
i+1

tk,x
) + · · ·+ (dP̂θ

0+
m
tk,x
− dP̂

θ0+
m−1

tk,x
) + (dP̂θ

0

tk,x
− dP̂θ

0+
m
tk,x

)

dP̂
θ0+
i (`)
tk,x

=

∫ θ0
i

θ0
i+`ϕin∆n

(θ0)ui

∂θi

dP̂
θi(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθi +

∫ θ0
i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

∂θi+1

dP̂
θi+1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθi+1

+ · · ·+
∫ θ0

m−1

θ0
m−1+ϕm−1

n∆n
(θ0)um−1

∂θm−1

dP̂
θm−1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθm−1

+

∫ θ0
m

θ0
m+ϕmn∆n

(θ0)um

∂θm

dP̂
θm(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθm

=

∫ θ0
i

θ0
i+`ϕin∆n

(θ0)ui

∫ tk+1

tk

(∂θib(θi(0+), t,X
θ0+
i (`)
t ))∗(σ∗)−1(t,X

θ0+
i (`)
t )

·
(
dBt − σ−1(t,X

θ0+
i (`)
t )

(
b(θi(0+), t,X

θ0+
i (`)
t )− b(θ0+

i (`), t,X
θ0+
i (`)
t )

)
dt

)
dP̂

θi(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

dθi

+

∫ θ0
i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), t,X

θ0+
i (`)
t ))∗(σ∗)−1(t,X

θ0+
i (`)
t )

·
(
dBt − σ−1(t,X

θ0+
i (`)
t )

(
b(θi+1(0+), t,X

θ0+
i (`)
t )− b(θ0+

i (`), t,X
θ0+
i (`)
t )

)
dt

)
dP̂

θi+1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

dθi+1

+ · · ·+
∫ θ0

m

θ0
m+ϕmn∆n

(θ0)um

∫ tk+1

tk

(∂θmb(θm(0+), t,X
θ0+
i (`)
t ))∗(σ∗)−1(t,X

θ0+
i (`)
t )

·
(
dBt − σ−1(t,X

θ0+
i (`)
t )

(
b(θm(0+), t,X

θ0+
i (`)
t )− b(θ0+

i (`), t,X
θ0+
i (`)
t )

)
dt

)
dP̂

θm(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

dθm,

where for j ∈ {i, . . . ,m},

dP̂
θj(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

=
dP̂

θj(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
,

and

θj(0+) := (θ0
1, . . . , θ

0
j−1, θj , θ

0
j+1 + ϕj+1

n∆n
(θ0)uj+1, . . . , θ

0
m + ϕmn∆n

(θ0)um).
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Then, using Girsanov’s theorem, we get that

Ê
θ0+
i (`)
tk,x

V
 dP̂θ

0

tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
− 1


=

∫ θ0
i

θ0
i+`ϕin∆n

(θ0)ui

Ê
θ0+
i (`)
tk,x

[
V

∫ tk+1

tk

(∂θib(θi(0+), t,X
θ0+
i (`)
t ))∗(σ∗)−1(t,X

θ0+
i (`)
t )

·
(
dBt − σ−1(t,X

θ0+
i (`)
t )

(
b(θi(0+), t,X

θ0+
i (`)
t )− b(θ0+

i (`), t,X
θ0+
i (`)
t )

)
dt

)
dP̂

θi(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

]
dθi

+

∫ θ0
i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

Ê
θ0+
i (`)
tk,x

[
V

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), t,X

θ0+
i (`)
t ))∗(σ∗)−1(t,X

θ0+
i (`)
t )

·
(
dBt − σ−1(t,X

θ0+
i (`)
t )

(
b(θi+1(0+), t,X

θ0+
i (`)
t )− b(θ0+

i (`), t,X
θ0+
i (`)
t )

)
dt

)
dP̂

θi+1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

]
dθi+1

+ · · ·+
∫ θ0

m

θ0
m+ϕmn∆n

(θ0)um

Ê
θ0+
i (`)
tk,x

[
V

∫ tk+1

tk

(∂θmb(θm(0+), t,X
θ0+
i (`)
t ))∗(σ∗)−1(t,X

θ0+
i (`)
t )

·
(
dBt − σ−1(t,X

θ0+
i (`)
t )

(
b(θm(0+), t,X

θ0+
i (`)
t )− b(θ0+

i (`), t,X
θ0+
i (`)
t )

)
dt

)
dP̂

θm(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

]
dθm

=

∫ θ0
i

θ0
i+`ϕin∆n

(θ0)ui

Ê
θi(0+)
tk,x

[
V

∫ tk+1

tk

(∂θib(θi(0+), t,X
θi(0+)
t ))∗(σ∗)−1(t,X

θi(0+)
t )dB

P̂
θi(0+)
tk,x

t

]
dθi

+

∫ θ0
i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

Ê
θi+1(0+)
tk,x

[
V

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), t,X

θi+1(0+)
t ))∗(σ∗)−1(t,X

θi+1(0+)
t )dB

P̂
θi+1(0+)

tk,x

t

]
dθi+1

+ · · ·+
∫ θ0

m

θ0
m+ϕmn∆n

(θ0)um

Ê
θm(0+)
tk,x

[
V

∫ tk+1

tk

(∂θmb(θm(0+), t,X
θm(0+)
t ))∗(σ∗)−1(t,X

θm(0+)
t )dB

P̂
θm(0+)
tk,x

t

]
dθm.

Here, for j ∈ {i, . . . ,m} the process B
P̂
θj(0+)

tk,x = (B
P̂
θj(0+)

tk,x

t , t ∈ [tk, tk+1]) is a Brownian motion

under P̂
θj(0+)
tk,x

, where for any t ∈ [tk, tk+1],

B
P̂
θj(0+)

tk,x

t := Bt −
∫ t

tk

σ−1(s,X
θ0+
i (`)
s )

(
b(θj(0+), s,X

θ0+
i (`)
s )− b(θ0+

i (`), s,X
θ0+
i (`)
s )

)
ds.

Next, using Hölder’s and Burkholder-David-Gundy’s inequalities, conditions (A2) and (A3)(b),
and Lemma 3.4 (ii), we get that∣∣∣∣∣∣Êθ0+

i (`)
tk,x

V
 dP̂θ

0

tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
− 1

∣∣∣∣∣∣
≤

∣∣∣∣∣
∫ θ0

i

θ0
i+`ϕin∆n

(θ0)ui

∣∣∣∣∣Êθi(0+)
tk,x

[
V

∫ tk+1

tk

(∂θib(θi(0+), t,X
θi(0+)
t ))∗(σ∗)−1(t,X

θi(0+)
t )dB

P̂
θi(0+)
tk,x

t

]∣∣∣∣∣ dθi
∣∣∣∣∣
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+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

∣∣∣∣∣Êθi+1(0+)
tk,x

[
V

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), t,X

θi+1(0+)
t ))∗(σ∗)−1(t,X

θi+1(0+)
t )dB

P̂
θi+1(0+)

tk,x

t

]∣∣∣∣∣ dθi+1

∣∣∣∣∣
+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ϕmn∆n

(θ0)um

∣∣∣∣Êθm(0+)
tk,x

[
V

∫ tk+1

tk

(∂θmb(θm(0+), t,X
θm(0+)
t ))∗(σ∗)−1(t,X

θm(0+)
t )dB

P̂
θm(0+)
tk,x

t

]∣∣∣∣ dθm
∣∣∣∣∣

≤ C
∣∣∣ ∫ θ0

i

θ0
i+`ϕin∆n

(θ0)ui

(
Ê
θi(0+)
tk,x

[|V |q]
) 1
q

·
(

∆
p
2
−1

n

∫ tk+1

tk

Ê
θi(0+)
tk,x

[∣∣∣∂θib(θi(0+), t,X
θi(0+)
t ))∗(σ∗)−1(t,X

θi(0+)
t )

∣∣∣p] ds) 1
p

dθi

∣∣∣
+ C

∣∣∣ ∫ θ0
i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

(
Ê
θi+1(0+)
tk,x

[|V |q]
) 1
q

·
(

∆
p
2
−1

n

∫ tk+1

tk

Ê
θi+1(0+)
tk,x

[∣∣∣∂θi+1
b(θi+1(0+), t,X

θi+1(0+)
t ))∗(σ∗)−1(t,X

θi+1(0+)
t )

∣∣∣p] ds) 1
p

dθi+1

∣∣∣
+ · · ·+ C

∣∣∣ ∫ θ0
m

θ0
m+ϕmn∆n

(θ0)um

(
Ê
θm(0+)
tk,x

[|V |q]
) 1
q

·
(

∆
p
2
−1

n

∫ tk+1

tk

Ê
θm(0+)
tk,x

[∣∣∣∂θmb(θm(0+), t,X
θm(0+)
t ))∗(σ∗)−1(t,X

θm(0+)
t )

∣∣∣p] ds) 1
p

dθm

∣∣∣
≤ C

√
∆n (1 + |x|)

(∣∣∣∣∣
∫ θ0

i

θ0
i+`ϕin∆n

(θ0)ui

(
Ê
θi(0+)
tk,x

[|V |q]
) 1
q
dθi

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+ϕi+1

n∆n
(θ0)ui+1

(
Ê
θi+1(0+)
tk,x

[|V |q]
) 1
q
dθi+1

∣∣∣∣∣
+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ϕmn∆n

(θ0)um

(
Ê
θm(0+)
tk,x

[|V |q]
) 1
q
dθm

∣∣∣∣∣
)
,

for some constant C > 0, where p, q > 1 and 1
p + 1

q = 1. Thus, the result follows. �
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