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Abstract The purpose of this paper is to discuss some of the highlights of the theory
of metric regularity relative to a cone. For instance, we establish a slope and some
coderivative characterizations of this concept, as well as some stability results.
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1 Introduction and preliminaries

Since the pioneering work of Robinson [37, 38], the study of optimization and com-
plementarity problems, models in game theory, control and design problems, as well
as variational inequalities, leads to the study of inclusions of the type:

y ∈ F(x) for (x,y) ∈ X×Y, (1.1)
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where, X ,Y are metric spaces and F : X ⇒ Y is a set-valued mapping which de-
scribes the model under consideration. Undoubtedly, stability of the solutions of
(1.1) is an important issue and has been subject over the recent years to a large
number of contributions. These works have led to significant progress, both from
the theoretical and the numerical point of view. We refer the reader to the mono-
graphs [7, 10, 11, 15, 26, 33, 36, 39], to some recent publications [12, 14, 16] and the
references therein.

Notation

Before we go any further, let us recall several notions from set-valued analysis. By a
set-valued mapping (multifunction) F : X ⇒ Y , we mean a mapping from X into the
(possibly empty) subsets of Y . For such a mapping, the set gph F := {(x,y) ∈ X×Y :
y ∈ F(x)} is the graph of T , the domain of T is dom F := {x ∈ X : F(x) 6= /0}, and
F−1 : Y ⇒ X is the inverse of T defined, for each y ∈ Y , by

x ∈ F−1(y) ⇐⇒ y ∈ F(x).

In any metric space under consideration, d is the corresponding metric, B(x,ρ) and
B̄(x,ρ) are the open and the closed ball with radius ρ > 0 around x ∈ X , respectively.
We also note B := B(0,1) and B̄ := B̄(0,1), the open and closed unit ball when, in
addition, the space is a linear vector space. The distance from a point x∈X to a subset
Ω of X is d(x,Ω) := infu∈Ω d(x,u) and clΩ is the closure of Ω . Given a subset V of
X×Y and a point (x,y) ∈ X×Y , we set

Vx := {z ∈ Y : (x,z) ∈V} and Vy := {u ∈ X : (u,y) ∈V}.

Let us begin by reminding the notion of metric regularity relative to a set V .

Definition 1.1 (Ioffe [25]) Let X and Y be metric spaces, and let V ⊂ X ×Y . We
say that a set-valued mapping F : X ⇒ Y is metrically regular relatively to V at
(x̄, ȳ) ∈V ∩gph F with a modulus τ > 0, if there exists ε > 0 such that

d
(
x,F−1(y)∩ clVy

)
≤ τd(y,F(x)) (1.2)

whenever (x,y) ∈
(
B(x̄,ε)×B(ȳ,ε)

)
∩V and d(y,F(x))< ε .

The infinum of all the scalars τ > 0, such that (1.2) holds for some ε > 0, is called
the exact modulus of the metric regularity relative to V for F at (x̄, ȳ) and is denoted
by regV F(x̄, ȳ).

An important subcase of this concept is the notion of directional metric regularity
introduced by Arutuynov and Izmailov in [5], and extensively studied in Arutyunov et
al [4], Gfrerer [17,18], Ioffe [25] and Ngai-Théra [19]. The idea behind relative metric
regularity is that the values of ambient and image variables are not arbitrary points or
neighborhood of a certain nominal point of the product space, but are taken from a
certain set V . Thus, by choosing among possible V , one may obtain various versions
of metric regularity models existing in the literature and central for the analysis of
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sensitivity and controllability in optimization and control. For instance when V =
X ×Y , this model subsumes the usual local metric regularity. Some other examples
are described in [25, p. 343].

Some other versions of relative metric regularity (equivalently, relative covering) have
been initially introduced and studied since 1980 by Dimitruk-Milyutin-Osmolovskii
[13] and then by Mordukhovich in [34], [31] and [32]. For instance, let us mention a
relative covering property [34, Exercise 3.50], that is taken from [31] and [32]: given
set-valued mappings Ω : X ⇒ X and F : X ⇒Y between Banach spaces, a real κ > 0
and x̄ ∈ Ω(x̄)∩ dom F , we say that F has the covering property around x̄ relatively
to the mapping Ω with some modulus κ , if there is a neighborhood U of x̄ such that
F(x)+κrB ⊂ F((x+ rB)∩Ω(x)) whenever x+ rB ⊂U,r > 0. Observe that if the
mapping Ω : X ⇒ X is a constant mapping: Ω(x) := Ω ⊆ X , for some given Ω ⊆ X ,
for all x ∈ X , then the latter definition coincides with Definition 1.1 with V := Ω ×Y.
In general, the two definitions are different.

Metric regularity (and related properties) is a powerful tool for dealing with prob-
lems related to optimization and variational analysis. For these reasons, it has a long
and fascinating history, which goes back to the Banach open mapping theorem. Its
most important applications concern the study of stability of variational systems as
well as convergence of Newton’s type methods (see, e. g., [1–3, 29]). While more
recently, due to algorithmic purposes, an increasing attention has been paid to met-
ric regularity concepts, it has been observed that in some classes of particular prob-
lems from optimization, variational analysis, control,..., the usual metric regularity
property sometimes does not meet practical requirements. Therefore, relative metric
regularity and its variants appear to be convenient concepts for different purposes of
applications. For instance, in some recent works [30, p. 1155], [6], authors make use
of some kinds of relative metric regularity to quantitative convergence analysis of
algorithms, such as alternative projection methods, cyclic projections, projected gra-
dients and linear convergence of the Douglas-Rachford algorithm. Some applications
in sensitivity analysis of the directional metric regularity are, for instance, also given
in [5], [4], [9].

Motivated by the above-mentioned applications, in this contribution we will con-
sider the particular case of relative metric regularity given in Definition 1.1 and called
metric regularity relatively to a cone. This concept is a natural generalization of di-
rectional metric regularity in the sense that we have replaced some direction by some
cone.

The paper layout is as follows: after some basic definitions and useful tools given
in Section 2, we formulate in Section 3 (Theorem 3.1) a slope criterion for metric reg-
ularity relative to a set. In Section 4, we show (Theorem 4.1) that similarly to direc-
tional metric regularity studied in [4, 23, 25], metric regularity with respect to a cone
is also stable under a suitable Lipschitz perturbation. We finish the paper with Section
5 which contains some coderivative characterization of metric regularity relative to
a cone. It is worth mentioning that this coderivative characterization generalizes the
one in [23], not only from “direction” to “cone”, but also b y the fact that the assump-
tion of pseudo-Lipschitz property of the multifunction under consideration has been
removed.
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To conclude this introduction, we express the hope that this abstract contribution
will serve in a future paper to develop practicable approaches to solving problems
arising in concrete applications, in sensitivity analysis, in convergence analysis of
algorithms or in Newton ’s type methods for generalized equations.

Let Y be a normed linear space; given a cone C ⊆ Y (not nessesarily convex), for
any real δ > 0, we define the following two sets:

C(δ ) := {v ∈ Y : d(v,C)≤ δ‖v‖}.

and
VF(C,δ ) := {(x,y) ∈ X×Y : y ∈ F(x)+C(δ )} .

Definition 1.2 We will say that F is metrically regular relatively to C, if there exists
δ > 0 such that F is metrically regular relatively to V :=VF(C,δ ).

It results from Definition 1.1 that F is metrically regular relatively to a cone C at
(x̄, ȳ) ∈VF(C,δ )∩gph F with a modulus τ > 0, if there exists ε > 0 such that

d
(
x,F−1(y)∩ clVF,y(C,δ )

)
≤ τd(y,F(x)) (1.3)

whenever (x,y) ∈
(
B(x̄,ε)×B(ȳ,ε)

)
∩VF(C,δ ) and d(y,F(x))< ε .

The organisation of the paper is as follows. We start to establish in Theorem 3.1
a slope characterization of relative metric regularity with respect to a set V . Next we
use this result in Theorem 4.1 when we establish the stability of metric regularity
with respect to a cone under the perturbation by a Lipschitz continuous function.
In Section 5, we give a coderivative characterization of metric regularity relative to
a cone. It should be mentioned that this characterization is given by removing the
pseudo-Lipschitz property of the multifunction under consideration as it was the case
in [19].

2 Basic definitions, notations and basic tools

In this section we recall some necessary notions and results from Variational Analysis
used throughout the paper. If f : X → R∪{+∞} is an extended real-valued function
defined on a Banach space X , we denote by dom f = {x ∈ X : f (x)< ∞}, the domain
of f . The Fréchet (regular) subdifferential of f at x̄ ∈ dom f is given as

∂ f (x̄) =
{

x∗ ∈ X∗ : liminf
x→x̄, x 6=x̄

f (x)− f (x̄)−〈x∗,x− x̄〉
‖x− x̄‖

≥ 0
}
.

For reader’s convenience, we would like to mention that the terminology regular
subdifferential alongside of Fréchet subdifferential is also popular due to its use in
Rockafellar and Wets [39]. The Fréchet subdifferential is always convex and reduces
to the classical subdifferential of convex analysis for the case of convex functions.
Note also that this subdifferential obviously satisfies the generalized Fermat rule:
0 ∈ ∂ f (x) if x is a local minimizer of f . Every element of the Fréchet subdifferential
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is termed as a Fréchet (regular) subgradient. If x̄ is a point where f (x̄) = ∞, then we
set ∂ f (x̄) = /0. In fact one can show that an element x∗ is a Fréchet subgradient of f
at x̄ if and only if

f (x)≥ f (x̄)+ 〈x∗,x− x̄〉+o(‖x− x̄‖) where lim
x→x̄

o(‖x− x̄‖)
‖x− x̄‖

= 0.

Some of the results given in this article will be proved in the context of Asplund
spaces. There is a plethora of equivalent characterizations of Asplund spaces and
many of them can be found, e.g., in [33] and its bibliography and also in the well
written introduction for beginners by Yost [40]. Asplund spaces are Banach spaces
for which every convex continuous function is generically Fréchet differentiable. In
particular, any space with Fréchet smooth renorming (and hence any reflexive space)
is Asplund, as well as each Banach space such that each of its separable subspaces
has a separable dual.

It is well known that the Fréchet subdifferential satisfies a fuzzy sum rule on
Asplund spaces ( [33, Theorem 2.33]). More precisely, if X is an Asplund space and
f1, f2 : X → R∪{∞} are such that f1 is Lipschitz continuous around x ∈ dom f1 ∩
dom f2 and f2 is lower semicontinuous around x, then for any γ > 0 one has

∂ ( f1+ f2)(x)⊂
⋃
{∂ f1(x1)+∂ f2(x2) | xi ∈ x+γBX , | fi(xi)− fi(x)| ≤ γ, i= 1,2}+γBX∗ .

(2.1)
Given a nonempty closed set C ⊆ X , the indicator function associated to C is

the function ιC defined by ιC(x) = 0, when x ∈ C and ιC(x) = ∞ otherwise. The
Fréchet (regular) normal cone to C at x̄ is the set N(C, x̄) := ∂ ιC(x̄) if x̄ ∈ C, and
N(C, x̄) := ∂ ιC(x̄) = /0 if x̄ /∈C. It is a closed and convex cone in X∗.

We will have to use the following fuzzy intersection formula for Fréchet normal
cones (see, e.g., [21]).

Lemma 2.1 Let Ci, i = 1, ...,k, be nonempty closed subsets of an Asplund space X .
For given x̄ ∈C :=

⋂k
i=1 Ci, assume that for any sequences (xi

n) ∈Ci, (xi∗
n )⊆ X∗ with

xi∗
n ∈ N(Ci,xi

n), xi
n→ x̄, i = 1, ...,k,

lim
n→∞

∥∥∥∥∥ k

∑
i=1

xi∗
n

∥∥∥∥∥= 0 =⇒ lim
n→∞
‖xi∗

n ‖= 0, for all i = 1, ...,k.

Then, for any x near x̄ and for every ε > 0, one has

N(C,x)⊆

{
k

∑
i=1

N(Ci,xi)+ εBX∗ : xi ∈Ci∩B(x,ε), i = 1, ...,k

}
.

The limiting subdifferential (also known as the Mordukhovich subdifferential) is
defined as

∂M f (x̄) =
{

x∗ ∈ X∗ : ∃xk→ x̄, f (xk)→ f (x̄), and ∃x∗k ∈ ∂ f (xk), x∗k
∗→ x∗

}
.

In other words, the graph of the limiting Fréchet subdifferential is the sequential
closure of the graph of the Fréchet subdifferential in the product of the norm topology
on X with the weak?- topology on X∗.
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The concept of limiting normal cone NM (C, x̄) to a closed set C can be defined
through the indicator function of the set:

NM (C, x̄) := ∂M δC(x̄).

Given a normal cone N, we can associate with a set-valued mapping F : X ⇒ Y a
coderivative D∗N : Y ? ⇒ X∗ through the formula

D∗NF(x,y)(y∗) :=
{

x∗ ∈ X∗ | (x∗,−y∗) ∈ N(gph F,(x,y))
}
. (2.2)

In variational analysis, this notion is recognized to be a powerful tool when applied
to problems of optimization and control (e.g., see [28, 33, 35], and the references
therein). In what follows, when N is the Fréchet (regular) normal cone, the coderiva-
tive of F will be denoted by D∗F F , while when N is the limiting normal cone, then
we will use the notation by D∗M F . When N is the normal cone to a convex set C, then
all the coderivatives coincide and are simply denoted by D∗.

3 Slope criteria for relative metric regularity

In this section (unless clearly indicated otherwise), we suppose that X is a complete
metric space and Y is a metric space. We suppose given a set V ⊂ X ×Y , a real
β ∈ (0,1], and a set-valued mapping F : X ⇒ Y .

Given a ∈R, we set a+ = max{a,0}. Recall from [24], that for an extended real-
valued function f : X → R∪{+∞} and a point x ∈ X with f (x)<+∞, the local and
the global strong slope |∇ f |(x) and |Γ f |(x) of f at x are defined by

|∇ f |(x) = limsup
x 6=y→x

[ f (x)− f (y)]+
d(x,y)

and |Γ f |(x) = sup
y6=x

[ f (x)− f (y)]
d(x,y)

. (3.1)

If f (x) = +∞, then we set |∇ f |(x) = |Γ f |(x) = +∞.

From now on, P will denote a topological space considered in applications as the
space of parameters. The following proposition is a restatement of Theorem 2 and
Corollary 1 in [20].

Proposition 3.1 Let f : X×P→ [0,+∞] be a function. For each p ∈ P, set

S(p) = {x ∈ X : f (x, p) = 0}.

Suppose that (x̄, p̄) ∈ X ×P is such that x̄ ∈ S(p̄), and that, for any p near p̄, the
function f (·, p) is lower semicontinuous at x̄, and f (x̄, ·) is continuous at p̄. Let τ > 0
be given and consider the following statements:
(i) There exist γ > 0 and a neighborhood V ×W of (x̄, p̄) in X ×P such that for any
p ∈W , we have V ∩S(p) 6= /0 and

d(x,S(p))≤ τ f (x, p) for all (x, p) ∈ V ×W with f (x, p) ∈ (0,γ); (3.2)

(ii) There exist a neighborhood V ×W of (x̄, p̄) in X×P and γ > 0 such that for each
(x, p) ∈ V ×W with f (x, p) ∈ (0,γ) and for any ε > 0, there exists z ∈ X such that

0 < d(x,z)< (τ + ε)
(

f (x, p)− f (z, p)
)
; (3.3)
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(iii) There exists a neighborhood V ×W of (x̄, p̄) in X ×P along with positive reals
γ and τ such that |∇ f (·, p)|(x)≥ 1/τ for all (x, p) ∈ V ×W with f (x, p) ∈ (0,γ).

Then (i)⇔ (ii)⇐ (iii).

Note that since f takes non-negative values only, the continuity of f (x̄, ·) at p̄ is
equivalent to the upper semicontinuity at the same point.

Definition 3.1 For each y ∈ Y , the lower semicontinuous envelope relative to V of
the function x 7→ d(y,F(x)) is defined by

ϕF,V (x,y) :=

{
liminf

clVy×Y3(u,v)→(x,y)
d(v,F(u)) = liminf

clVy3u→x
d(y,F(u)) if x ∈ clVy

+∞ otherwise.
(3.4)

Equality in the above definition holds because the function d(·,F(u)) is Lipschitz.
Observe that ϕF,V (x,y)≥ 0 and ϕF,V (x,y)≤ d(y,F(x)) for every (x,y) ∈ clVy×Y .

Let us start with the following two observations.

Lemma 3.1 Suppose that the multifunction F : X ⇒ Y has a closed graph. Then

(i)
F−1(y)∩ clVy = {x ∈ X : ϕF,V (x,y) = 0} whenever y ∈ Y ;

(ii) F is metrically regular relative to V at (x0,y0) with a modulus τ > 0, if and only
if there exists ε > 0 such that

d(x,F−1(y)∩ clVy)≤ τϕF,V (x,y)

for all (x,y) ∈ (B(x0,ε)×B(y0,ε))∩V with d(y,F(x))< ε.

Proof. (i). Fix any y ∈ Y . If x ∈ F−1(y)∩ clVy, then y ∈ F(x), and so

0 = d(y,F(x))≥ ϕF,V (x,y)≥ 0.

Conversely, if x∈X verifies ϕF,V (x,y)= 0, this means that there is a sequence (un)n∈N
in clVy converging to x such that d(y,F(xn))→ 0. This in turn implies the existence
of a sequence (yn)n∈N converging to y such that yn ∈ F(un) for every n ∈ N. As the
graph of F is closed, it follows that x ∈ F−1(y), as claimed.

(ii). The first part of the proof follows from the fact that obviously the estimate
d(x,F−1(y)∩ clVy) ≤ τϕF,V (x,y) implies that d(x,F−1(y)∩ clVy) ≤ τd(y,F(x)) for
the same (x,y). Conversely, fix (x,y) ∈ (B(x0,ε)×B(y0,ε))∩V with d(y,F(x)) <
ε and take a sequence (xn) ⊂ clVy converging to x such that d(y,F(xn)) tends to
ϕF,V (x,y). Then, for large n, (xn,y) ∈ (B(x0,ε)×B(y0,ε))∩V and d(y,F(xn)) < ε.
Thus, by assumption we have d(xn,F−1(y)∩ clVy) ≤ τd(y,F(xn)). Passing to the
limit as n goes to +∞ gives d(x,F−1(y)∩ clVy) ≤ τϕF,V (x,y) which completes the
proof. �

From Proposition 3.1 and Lemma 3.1, we obtain the following slope characteri-
zations of the relative metric regularity.
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Theorem 3.1 Let X and Y be metric spaces with X complete and F : X ⇒Y be a set-
valued mapping with closed graph. Let (x̄, ȳ) ∈ gph F ∩V , V ⊂ X ×Y ; τ ∈ (0,+∞)
be given. Then, among the following statements,

(i) F is metrically regular relative to V at (x̄, ȳ);
(ii) There exist δ ,γ > 0 such that

|Γ ϕF,V (·,y)|(x)≥ τ
−1 for all (x,y) ∈B(x̄,δ )×B(ȳ,δ ) with ϕF,V (x,y) ∈ (0,γ);

(iii) There exist δ ,γ > 0 such that

|∇ϕF,V (·,y)|(x)≥ τ
−1 for all (x,y) ∈B(x̄,δ )×B(ȳ,δ ) with ϕF,V (x,y) ∈ (0,γ);

one has (i)⇔ (ii)⇐ (iii).

Proof. The implication (iii)⇒ (ii) is obvious. The equivalence between (i) and (ii)
follows from the equivalence between (i) and (ii) in Proposition 3.1 by considering
the function f ≡ ϕF,V . The proof is complete. �

4 Stability of metric regularity relative to a cone

We establish stability of metric regularity relative to a cone under a sufficiently small
Lipschitz perturbation. For a given multifunction F : X ⇒ Y from a complete metric
space X to a normed linear space Y, a cone C ⊆ Y, and a positive real δ , we remind
that

VF(C,δ ) = {(x,y) : y ∈ F(x)+C(δ )}.
For y ∈ Y, set

VF,y(C,δ ) := {x ∈ X : y ∈ F(x)+C(δ )}.
We note ϕVF (C,δ )(x,y), the lower semicontinuous envelope relative to VF(C,δ ) of
d(y,F(·)).

Theorem 4.1 Let X be a complete metric space and Y be a normed space. Let C⊆Y
be a nonempty cone in Y. Let F : X ⇒ Y be a closed multifunction and (x0,y0) ∈
gph F. Suppose that F is metrically regular with a modulus τ > 0 relatively to C, i.e.,
there exist reals ε > 0 and δ > 0 such that for all (x,y) ∈ B((x0,y0),ε)∩VF(C,δ )
with d(y,F(x))< ε. we have:

d(x,F−1(y)∩ clVF,y(C,δ ))≤ τd(y,F(x)). (4.1)

Let g : X→Y be locally Lipschitz around x0 with a Lipschitz constant L> 0. Then
F +g is metrically regular relatively to C at (x0,y0 +g(x0)) with modulus

regC(F +g)(x0,y0 +g(x0))≤
(

1−α

τ(1+α)
−L
)−1

,

provided

α ∈ (0,1), and L <
δ (1−α)α

τ(1+α)(1+δ (1−α))
.
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Proof. First note that for any ρ > 0,

ϕVF+g(C,ρ)(x,y) = ϕVF (C,ρ)((x,y−g(x)), for all (x,y) ∈ X×Y.

Let ε,δ ,α,L be as in the theorem. Reducing ε and δ if necessary, we suppose
that g : X →Y is Lipschitz continuous around x0 and with constant L on B(x0,ε) and
let us fix reals η and ρ such that

0 < ρ := δ (1−α) & η = min{ε/2(L+1),ε/(8τ)}. (4.2)

According to Theorem 3.1, it suffices to prove that

|Γ ϕVF+g(C,ρ)(·,y)|(x)≥
(

1−α

τ(1+α)
−L
)
, (4.3)

whenever

(x,y)∈B((x0,y0+g(x0)),η) satisfies x∈ clVF+g,y(ρ)& 0<ϕVF+g(x,y)<η , (4.4)

Let x,y be as in (4.4) and take sequences (λn)n∈N,(zn)n∈N,(xn)n∈N satisfying

λn > 0, zn ∈ BX , (xn)→ x, d(zn,C)≤ ρ, (4.5)

and

y−g(xn) ∈ F(xn)+λnzn, lim
n→∞

d(y,F(xn)+g(xn)) = ϕVF+g(C,ρ)(x,y). (4.6)

As d(zn,C) ≤ ρ, there is vn ∈C such that ‖zn− vn‖ ≤ ρ +1/n. Note that since (xn)
tends to x and x ∈ B(x0,η), then for n large (n≥ n0) we have

d(y,F(xn)+g(xn))≤ ‖λnzn‖ ≤ λn. (4.7)

Setting
tn := αϕVF+g(C,ρ)(xn,y)/(ρ +1+2/n), (4.8)

from the triangle inequality

‖vn‖ ≤ |‖zn‖+‖zn− vn‖ ≤ 1+ρ +1/n

we derive that for n≥ n0,

tn‖vn‖< αϕVF+g(C,ρ)(xn,y)(1+ρ +1/n)/(1+ρ +2/n)< η . (4.9)

Relations (4.7) and (4.8) yield,

tn(1+ρ +2/n)/α = ϕVF+g(C,ρ)(xn,y)≤ d(y,F(xn)+g(xn))≤ λn.

Consequently,

tn/λn ≤
α

1+ρ +2/n
≤ α

ρ +1
(4.10)
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Let us observe that

‖λnzn− tnvn‖
= ‖(λn− tn)zn + tn(zn− vn)‖
≥ λn− tn(1+ρ +1/n). (4.11)

From relation (4.10), we deduce that λn− tn ≥ λn

(
1− α

ρ+1

)
. Then, observing that

1− α

ρ+1 > 0, we obtain that λn−tn > 0, and since C is a cone, necessarily (λn−tn)vn ∈
C. Hence the following estimate holds:

d(λnzn− tnvn,C) ≤ ‖λnzn− tnvn− (λn− tn)vn‖
= λn‖zn− vn‖ ≤ λn(ρ +1/n)

=
λn(ρ +1/n)
‖λnzn− tnvn‖

‖λnzn− tnvn‖

≤ λn(ρ +1/n)
λn− tn(1+ρ +1/n)

‖λnzn− tnvn‖

≤ ρ +1/n
1−α(1+ρ +1/n)/(ρ +1)

‖λnzn− tnvn‖

≤ ρ +1/n

1− tn
λn

(1+ρ +1/n)
‖λnzn− tnvn‖

≤ ρα

1− α

ρ +1+2/n
(1+ρ +1/n)

‖λnzn− tnvn‖

≤ ρ

1−α
‖λnzn− tnvn‖= δ‖λnzn− tnvn‖.

Hence, d(λnzn− tnvn,C)≤ δ‖λnzn− tnvn‖ which means that

λnzn− tnvn ∈C(δ ). (4.12)

Since y−g(xn)−tnvn =(y−g(xn)−λnzn)+(λnzn−tnvn), combining (4.6) and (4.12)
gives

y−g(xn)− tnvn ∈ F(xn)+C(δ ). (4.13)

Moreover,

‖y−g(xn)− tnvn− y0‖ ≤ ‖y−g(x0)− y0‖+‖g(xn)−g(x0)‖+ tn‖vn‖< 2η(1+L)≤ ε,

(4.14)
and combining (4.7) and (4.9) we also have

d(y−g(xn)− tnvn,F(xn))≤ d(y−g(xn),F(xn))+ tn‖vn‖< 2η ≤ 2ε

L+2
< ε. (4.15)

From (4.14) and (4.15) we deduce that

y−g(xn)− tnvn ∈ B(y0,ε) & d(y−g(xn)− tnvn,F(xn))< ε, (4.16)

and
(xn,y−g(xn)− tnvn) ∈VF(C,δ ). (4.17)
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Fact 1 Replacing y by y−g(xn)− tnvn and x by xn in the assumptions of (ii) and V
by VF(C,δ ) we know from (4.17) that

(xn,y−g(xn)− tnvn ∈VF(C,δ )

and from (4.16) that

d(y−g(xn)− tnvn,F(xn))< ε and y−g(xn)− tnvn ∈ B(x0,ε).

Since ‖xn−x0‖ ≤ ‖xn−x‖+‖x−x0‖ ≤ 2η ≤ ε

L+1 ≤ ε , also xn ∈ B(x0,ε) and finally
all the conditions of Lemma 3.1 are satisfied.

Hence, according to this Lemma we have

d(xn,F−1(y−g(xn)− tnvn))

< τϕVF+g(C,δ )(xn,y−g(xn)− tnvn)

≤ τ(ϕVF+g(C,δ )(xn,y)+ tn‖vn‖) (4.18)

≤ τtn
(1+α)(1+ρ)+ 2+α

n
α

. (4.19)

Using the fact that tn‖vn‖< η and

ϕVF+g(C,δ )(xn,y)≤ ϕVF+g(C,ρ)(xn,y)≤ d(y−g(xn),F(xn))< 2η (C(ρ)⊂C(δ ),)

we obtain
d(xn,F−1(y−g(xn)− tnvn))< 2τη .

By the choice of η , we derive d(xn,F−1(y−g(xn)− tnvn))< ε/4, and therefore for
any r ∈ (0,1), we get the existence of of some un ∈ F−1(y− g(xn)− tnvn) such that
for n sufficiently large,

d(xn,un)< τ(1+ r)tn
(1+α)(1+ρ)+ 2+α

n
α

≤ ε/4.

Since (xn)→ x ∈ B(x0,η), for n sufficiently large we have

d(xn,x0)≤ d(xn,x)+d(x,x0)< ε/2+η < ε,

so that un ∈ B(x0,ε). Since

un ∈ F−1(y−g(xn)− tnvn)∩B(x0,ε)

and

‖g(un)−g(xn)‖ ≤ Ld(un,xn), (by the Lipschitz property of g onB(x0,ε)),

then

y ∈ F(un)+g(xn)+ tnvn ⊆ F(un)+g(un)+ tn
(

vn +L
d(un,xn)

tn
BY

)
.
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Therefore,

ϕVF+g(C,ρ)(un,y)≤ d(y−g(un),F(un))≤ tn‖vn‖+Ld(xn,un). (4.20)

As

tn‖vn‖ ≤ αϕVF+g(C,ρ)(xn,y)(1+ρ +1/n)/(1+ρ)

with α ∈ (0,1), it follows from (4.20) that

0 < ϕVF+g(C,ρ)(x,y)

≤ ϕVF+g(C,ρ)(un,y)

≤ αϕVF+g(C,ρ)(xn,y)(1+ρ +1/n)/(1+ρ)+Ld(xn,un).

When n goes to +∞, we get

0 < ϕVF+g(C,ρ)(x,y)≤ αϕVF+g(C,ρ)(x,y)+Lliminf
n→∞

d(xn,un).

Thus, liminf
n→∞

d(xn,un)> 0. Observing that

ϕVF+g(C,ρ)(x,y)−d(y,g(xn +F(xn))

d(x,un)
≥

ϕVF+g(C,ρ)(x,y)−d(y,g(xn +F(xn))

d(x,xn)+d(xn,un)
,

and using the fact that lim
n→+∞

d(y,g(xn +F(xn)) = ϕVF+g(C,ρ)(x,y), we deduce that

liminf
n→∞

ϕVF+g(C,ρ)(x,y)−d(y,g(xn +F(xn))

d(x,un)
≥ 0,

and therefore,

liminf
n→∞

ϕVF+g(C,ρ)(x,y)−ϕVF+g(C,ρ)(un,y)

d(x,un)

= liminf
n→∞

ϕVF+g(C,ρ)(x,y)−d(y,g(xn +F(xn))+d(y,g(xn +F(xn))−ϕVF+g(C,ρ)(un,y)

d(x,un)

≥ liminf
n→∞

d(y,F(xn)+g(xn))−ϕVF+g(C,ρ)(un,y)

d(x,un).
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Hence,

liminf
n→∞

ϕVF+g(C,ρ)(x,y)−ϕVF+g(C,ρ)(un,y)

d(x,un)

≥ liminf
n→∞

d(y,F(xn)+g(xn))−ϕVF+g(C,ρ)(un,y)

d(x,un)

≥ liminf
n→∞

d(y,F(xn)+g(xn))−ϕVF+g(C,ρ)(un,y)

d(x,xn)+d(xn,un)
due to d(x,un)≤ d(x,xn)+d(xn,un)

= liminf
n→∞

d(y,F(xn)+g(xn))−ϕVF+g(C,ρ)(un,y)

d(xn,un)
due to (xn)→ x

≥ liminf
n→∞

ϕVF+g(C,ρ)(xn,y)−ϕVF+g(C,ρ)(un,y)

d(xn,un)
due to d(y,F(xn)+g(xn))≥ ϕVF+g(C,ρ)(xn,y)

≥ liminf
n→∞

tn(1+ρ +2/n)/α− tn‖vn‖−Ld(xn,un)

d(xn,un)

= liminf
n→∞

tn(1+ρ +2/n)/α− tn‖vn‖
d(xn,un)

−L

≥ liminf
n→∞

tn(1+ρ +2/n)/α− tn‖vn‖
τtn(1+ r)[(1+ρ)(1+α)+(2+α)/n]/α

−L

= liminf
n→∞

(1+ρ +2/n)/α− (1+ρ +1/n)
τ(1+ r)[(1+ρ)(1+α)+(2+α)/n]/α

−L

=
1−α

τ(1+ r)(1+α)
−L,

As r > 0 is arbitrarily small, one obtains

|Γ ϕVF+g(C,ρ)(·,y)|(x) ≥
1−α

τ(1+α)
−L,

which completes the proof. �

5 Coderivative characterizations of relative metric regularity

Sufficient conditions in terms of coderivatives were given for usual metric regularity,
by various authors, for instance, in [8,22,27,33]. In this section, we establish a char-
acterization of relative metric regularity using the Fréchet subdifferential in Asplund
spaces.

Associated with the multifunction F, for given ε > 0,δ0 and (x0,y0) ∈ gph F, we
define the localization of F by

F(x0,y0,ε)(x) :=
{

F(x)∩ B̄(y0,δ0) if x ∈ B̄(x0,ε)
/0 otherwise. (5.1)

Note that, by definition, one has

D∗F F(x,y) = D∗F F(x0,y0,ε)(x,y) ∀(x,y) ∈ gph F ∩ (B(x0,ε)×B(y0,ε)). (5.2)
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The following proposition gives a connection between metric regularity relative to a
cone for a multifunction with convex values and metric regularity relative to the same
cone for its localizations.

Proposition 5.1 Suppose given a multifunction F : X ⇒ Y with convex values for x
near x0 and (x0,y0)∈ gph F. Then, F is metrically regular relatively to a cone C⊆Y ,
if and only if, F(x0,y0,ε) is metrically regular relatively to the same cone C for any
ε > 0.

Proposition 5.1 follows immediately from the following lemma.

Lemma 5.1 Let F : X ⇒ Y be a multifunction with convex values for x near x0 and
(x0,y0) ∈ gph F. Then, for given a nonempty cone C ⊆ Y, for any reals δ1,δ2 > 0,
there exist reals η ,δ > 0 such that for all x ∈ B(x0,η), one has(

F(x)+C(δ )
)
∩B(y0,η)∩{y ∈ Y : d(y,F(x))< η} ⊆ F(x)∩B(y0,δ1)+C(δ2). (5.3)

Proof. For δ1,δ2, take δ = δ2/2. Let η ∈ (0,δ1/4) such that F(x) is convex for all x∈
B(x0,η) and select x ∈ B(x0,η) and y ∈ (F(x)+C(δ ))∩B(y0,η) with d(y,F(x))<
η . Then, there exist z,v ∈ F(x) such that

y = z+λu, for λ ≥ 0, u ∈ Y, ‖u‖= 1; d(u,C)≤ δ , ‖y− v‖< η .

If z ∈ B(y0,δ1), then (5.3) holds trivially. Otherwise, one has

λ = ‖y− z‖ ≥ ‖z− y0‖−‖y− y0‖ ≥ δ1−η .

Setting

t :=
η(1+δ2)

δ2(δ1−η)/2+η(1+δ2)
, w := tz+(1− t)v ∈ F(x), (5.4)

and by taking η sufficiently small such that t < 1/2, one has

‖w−y0‖≤ t‖z−v‖+‖v−y0‖≤ tλ‖u‖+t‖y−v‖+‖v−y0‖< t(δ1−η)+tη+2η < δ1.

and,

‖y−w‖= ‖tλu+(1− t)(y− v)‖ ≥ tλ − (1− t)η

=
(δ2 +1)ηλ

λ (δ2−δ )+η(δ2 +1)
− λη(δ2−δ )

λ (δ2−δ )+η(δ2 +1)

=
(1+δ )λη

λ (δ2−δ )+η(δ2 +1)
> 0.

Thus,

d(y−w,C) = d(tλu+(1− t)(y− v),C)≤ (1− t)‖y− v‖+d(tλu,C)

≤ (1− t)η + tλδ ≤ (1− t)η + tλδ

tλ − (1− t)η
‖y−w‖= δ2‖y−w‖,

where the last equality follows from the definition of t in (5.4). Hence, y ∈ F(x)∩
B(y0,δ1)+C(δ2). �
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Denote by SY ∗ the unit sphere in the continuous dual Y ∗ of Y, and by d∗ the metric
associated with the dual norm on X∗. For given ȳ ∈ Y and δ > 0, let us define the set

T (C,δ ) := {(y∗1,y∗2) ∈ Y ∗×Y ∗ : ∃a ∈C∩SY ∗ ,max{|〈y∗1,a〉|, |〈y∗2,a〉|} ≤ δ , ‖y∗1 + y∗2‖= 1}. (5.5)

To a given multifunction F : X ⇒Y, we associate the multifunction G : X ⇒Y×Y
defined by

G(x) = F(x)×F(x), x ∈ X .

When considering convex-valued multifunctions defined on Asplund spaces, the fol-
lowing theorem establishes a coderivative characterization of relative metric regular-
ity.

Theorem 5.1 Let X ,Y be Asplund spaces and let F : X ⇒ Y be a closed multifunc-
tion. Let (x0,y0) ∈ gph F and a nonempty cone C ⊆ Y be given. Assume that F has
convex values around x0, i.e., F(x) is convex for all x near x0. If

liminf
(x,y1,y2)

G→(x0,y0,y0)
δ↓0+

d∗(0,D∗F G(x,y1,y2)(T (C,δ )))> m > 0, (5.6)

then F is metrically regular relatively to C with modulus τ ≤ m−1 at (x0,y0).The

notation (x,y1,y2)
G→ (x0,y0,y0) means that (x,y1,y2)→ (x0,y0,y0) with (x,y1,y2) ∈

gph G.

Proof. By the assumption, there is δ0 ∈ (0,1) such that

inf
(x,y1,y2)∈gph G∩B((x0,y0,y0),2δ0)

d∗(0,D∗F G(x,y1,y2)(T (ȳ,δ0)))≥ m+δ0. (5.7)

According to Proposition 5.1 and relation (5.2), by considering the localization F(x0,y0,δ0)

instead of F, without any loss of generality, we may assume that

F(x)⊆ B̄(y0,δ0) for all x ∈ B̄(x0,δ0). (5.8)

Denote by ϕδ (·,y) := ϕV (C,δ )(·,y), the lower semicontinuous envelope of d(y,F(·))
relative to V (C,δ ). By virtue of Theorem 3.1, it suffices to show that one has
|∇ϕδ (·,y)|(x)>m for any (x,y)∈

(
B(x0,δ )×B(y0,δ )

)
, x∈ clVy(C,δ ) with ϕδ (x,y)∈

(0,δ ). Let (x,y) ∈ B(x0,δ )×B(y0,δ ), x ∈ clV (ȳ,δ ) with ϕδ (x,y) ∈ (0,δ ) be given.
Set |∇ϕδ (·,y)|(x) :=α. By the definition of the strong slope, for each ε ∈ (0,min{δ ,1/2}),
there is η ∈ (0,ε) with

2η + ε < γ/2, 2η < εϕδ (x,y) and 1− (α + ε +2)η > 0

such that
d(y,F(x′))≥ (1− ε)ϕδ (x,y) for all x′ ∈ B(x,4η) (5.9)

and

ϕδ (x,y)≤ ϕδ (x
′,y)+(α + ε)‖x′− x‖ for all x′ ∈ B̄(x,3η)∩ clVy(C,δ ). (5.10)



16 Huynh Van Ngai et al.

Take u ∈ B(x,η2/4)∩Vy(C,δ ), v ∈ F(u) such that ‖y− v‖ ≤ ϕδ (x,y)+η2/4. Then,

‖y− v‖ ≤ d(y,F(x′))+(α + ε)‖x′− x‖+η
2/4 ∀x′ ∈ B̄(u,2η)∩ clVy(C,δ ).

Consequently, for every (x′,z′) ∈
(
B̄(u,2η)×Y

)
∩V (C,δ ) we have

‖y− v‖ ≤ d(y,F(x′))+(α + ε)‖x′−u‖+(α + ε +1)η2/4. (5.11)

Let z ∈C(δ ) be such that y− z ∈ F(u). Then,

‖z‖ ≥ d(y,F(u))≥ (1− ε)ϕδ (x,y))> η/ε. (5.12)

Setting

W := {(x,w1,w2,z) ∈ X×Y ×Y ×Y : (x,w1,w2) ∈ gph G, y = w2 + z, z ∈C(δ )} ,

we derive

‖y− v‖ ≤ ‖y−w1‖+(α + ε)‖x′−u‖+ ιW (x′,w1,w2,z′)+(α + ε +1)η2/4
for all(x′,w1,w2,z′) ∈ B̄(u,η)×Y ×Y × B̄(z,η).

Next, applying the Ekeland variational principle to the function

(x′,w1,w2,z′) 7→ ψ(x′,w1,w2,z′) := ‖y−w1‖+(α + ε)‖x′−u‖+ ιW (x′,w1,w2,z′)

on B̄(u,η)×Y ×Y × B̄(z,η), we select (u1,v1,v2,z1) ∈ (u,v,y− z,z)+ η

4 BX×Y×Y×Y
with (u1,v1,v2,z1) ∈W, such that

‖y− v1‖ ≤ ‖y− v‖(≤ d(y,F(x))+η
2/4) (5.13)

and

ψ(u1,v1,v2,z1)≤ ψ(x′,w1,w2,z′)+(α + ε +1)η‖(x′,w1,w2,z′)− (u1,v1,v2,z1)‖

for all (x′,w1,w2,z′) ∈ B̄(u,η)×Y ×Y × B̄(z,η). Thus,

0 ∈ ∂ (ψ +(α + ε +1)η‖ ·−(u1,v1,v2,z1)‖)(u1,v1,v2,z1). (5.14)

We need the following claim in order to make use of the fuzzy sum rule.

Claim. For each (u,w1,w2,z1) ∈W near (u,v,y− z,z), for every ε > 0, one has

N(W,(u,w1,w2,z1))⊆
{
(x∗,w∗1,w

∗
2,z
∗)+ εB∗X×Y×Y×Y : (x∗,w∗1,w

∗
2) ∈ N(gph G,(u′,w′1,w

′
2)), z′ ∈ N(C(δ ),z′),

‖w∗2 + z∗‖ ≤ ε, ‖(u′,w′1,w′2,z′)− (u,w1,w2,z1)‖< ε.

}
.

Proof of the claim. Observe that W =W1∩W2∩W3, where

W1 := {(x,w1,w2,z) ∈ X×Y ×Y ×Y : w2 + z = y};

W2 := {(x,w1,w2,z) ∈ X×Y ×Y ×Y : (x,w1,w2) ∈ gph G};

W3 := {(x,w1,w2,z) ∈ X×Y ×Y ×Y : z ∈C(δ )}.
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It suffices to check that the condition of Lemma 2.1 is satisfied. Indeed, pick any
sequences wi

n := (ui
n,w

i
1,n,w

i
2,n,z

i
n) ∈Wi, converging to (u,v,y− z,z) and

wi∗
n := (ui∗

n ,w
i∗
1,n,w

i∗
2,n,z

i∗
n ) ∈ N(Wi,(ui

n,w
i
1,n,w

i
2,n,z

i
n)) (i = 1,2,3), such that

‖w1∗
n +w2∗

n +w3∗
n ‖→ 0.

Then, by the definition of Wi, (i = 1,2,3),

u1∗
n = 0, w1∗

1,n = 0, w1∗
2,n =−z1∗

n ;

u2∗
n ∈ D∗F G((u1

n,w
2
1,n,w

2
2,n))(−(w2∗

1,n,w
2∗
2,n));

u3∗
n = 0, w3∗

1,n = 0, w3∗
2,n = 0, z3∗

n ∈ N(C(δ ),z3
n).

Thus,

‖u2∗
n ‖→ 0, ‖w2∗

1,n‖→ 0, and ‖w2∗
2,n +w1∗

2,n‖→ 0, ‖z1∗
n + z3∗

n ‖→ 0, as n→ ∞.

As w1∗
2,n = −z1∗

n , the latter relations imply ‖w2∗
2,n + z3∗

n ‖ → 0 as n→ ∞. Since z3∗
n ∈

N(C(δ ),z3
n), 〈z3∗

n ,z3
n〉= 0. As z 6= 0, z3

n 6= 0 when n is sufficiently large; therefore for
these n there is a ∈C∩SY ∗ such that ‖z3

n/‖z3
n‖− a‖ ≤ (δ + 1/n) < δ0. Hence for n

large,
〈w2∗

2,n,a〉 ≤ ‖w2∗
2,n‖δ0.

By (5.8), (u,v,y−z)∈B((x0,y0,y0),δ0); therefore, in view of relation (5.7), the latter
relation implies that the sequences (wi∗

n ) (i = 1,2,3) converge to 0, and the assump-
tion from Lemma 2.1 is satisfied, and the claim is proved.

Now using the claim and applying the fuzzy sum rule to (5.14), we derive the exis-
tence of

v3 ∈ B(v1,η), z2 ∈ B(z,η);

(u2,w1,w2) ∈ B(u1,η)×B(v1,η)×B(v2,η)∩gph G;

v∗3 ∈ ∂‖y−·‖(v3); (u∗2,−w∗1,−w∗2) ∈ N(gph G,(u2,w1,w2)); z∗2 ∈ N(C(δ ),z2),

such that

‖v∗3−w∗1‖< (α + ε +2)η ; ‖w∗2 + z∗2‖< (α + ε +2)η ; ‖u∗2‖ ≤ α + ε +(α + ε +2)η . (5.15)

Since v∗3 ∈ ∂‖y−·‖(v3) (note that ‖y− v3‖ ≥ ‖y− v‖−‖v3− v‖ ≥ d(y,F(x))− ε−
2η > 0), then ‖v∗3‖= 1 and 〈v∗3,v3− y〉= ‖y− v3‖. Thus, ‖w∗1‖ ≤ 1+(α + ε +2)η ,
and from the first relation of (5.15) it follows that

〈w∗1,w1−y〉≥ 〈v∗3,w1−y〉−(α+ε+2)η‖w1−y‖≥ (1−(α+ε+2)η)‖w1−y‖−2η .

As
η ≤ εd(y,F(x))≤ εd(y,F(u))/(1− ε) for all u ∈ B(x,4η),

then η ≤ ε‖w1− y‖/(1− ε), and therefore one obtains

〈w∗1,w1− y〉 ≥ (1− ε1)‖w1− y‖, (5.16)
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where
ε1 := (α + ε +2)η−2ε(1− ε)−1.

Since w2 ∈ B(v2,η) and v2 ∈ B(y− z,η), w2 ∈ B(y− z,2η). As F(u2) is convex,
w2 ∈ F(u2), and w∗1 ∈ −N(F(u2),w1), one has

〈w∗1,y−w2〉= 〈w∗1,y−w1〉+ 〈w∗1,w1−w2〉 ≤ 0.

Therefore,
〈w∗1,z〉 = 〈w∗1,y−w2〉+ 〈w∗1,z− (y−w2)〉

≤ 2η‖w∗1‖ ≤ 2η [1+(α + ε +2)η ],

and by (5.12), ‖z‖ ≥ η/ε,〈
w∗1,

z
‖z‖

〉
≤ 2ε[1+(α + ε +2)η ].

As z ∈C(δ ), there is d ∈C such that ‖z/‖z‖−d‖ ≤ 2δ , then ‖d‖ ≥ 1−2δ , and from
‖w∗1‖ ≤ 1+(α + ε +2)η , one obtains

〈w∗1,d〉 ≤ 〈w∗1,z/‖z‖〉+2δ‖w∗1‖
≤ 2ε[1+(α + ε +2)η ]+2δ [1+(α + ε +2)η ].

Hence for a := d/‖d‖ ∈C∩SY ∗ , one has

〈w∗1,a〉 ≤ (2ε[1+(α + ε +2)η ]+2δ [1+(α + ε +2)η ]) (1−2δ )−1 := ε2. (5.17)

As z∗2 ∈ N(C(δ ),z2), with z2 6= 0, then 〈z∗2,z2〉 = 0, therefore, from ‖w∗2 + z∗2‖ <
(α + ε +2)η , we have

|〈w∗2,z2〉| ≤ (α + ε +2)η‖z2‖.

As z2 ∈ B(z,η) and ‖z‖ ≥ η/ε, one has ‖z2‖ ≤ (1+ ε)‖z‖, and therefore,

|〈w∗2,z〉| ≤ 〈w∗2,z2〉+η‖w∗2‖
[(α + ε +2)η(1+ ε)+ ε‖w∗2‖]‖z‖.

This implies

|〈w∗2,a〉| ≤ [(α + ε +2)η(1+ ε)+(2δ + ε)‖w∗2‖](1−2δ )−1. (5.18)

We consider the following two cases:
Case 1. ‖w∗2‖ ≤ 1+2‖w∗1‖(≤ 1+2(1+(α + ε +2)η)). Then

〈w∗2,a〉| ≤ (α + ε +2)η(1+ ε)+(2δ + ε)(1+2(1+(α + ε +2)η))(1−2δ )−1 := ε3. (5.19)

Moreover, remind that 〈z∗2,z2〉= 0,

|〈w∗2,w2− y〉| ≤ |〈z∗2,w2− (y− z2)〉|+ |〈w∗2 + z∗2,w2− y〉| ≤ ε4‖w1− y‖,

where

ε4 :=
(

3[1+2(1+(α + ε +2)η)) +(α + ε +2)η ]η)
+2(α + ε +2)(‖y0‖+2δ0 +2η)

)
ε(1− ε)−1.
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The second inequality of the preceding relation follows from (5.15), as well as

η ≤ ε‖w1− y‖/(1− ε);

‖z∗2‖ ≤ ‖w∗2‖+‖z∗2 +w∗2‖ ≤ 1+2(1+(α + ε +2)η))+(α + ε +2)η ;

‖w2− y− z2‖ ≤ ‖w2− v2‖+‖v2− (y− z)‖+‖z2− z‖ ≤ 3η

and
‖w2− y‖ ≤ ‖w2− v2‖+‖v2− (y− z)‖+‖z‖< 2η +2δ0 +‖y0‖.

Hence, using the convexity of F(u2), and the fact that w∗2 ∈ −N(F(u2),w2) we have

〈w∗2,w1− y〉= 〈w∗2,w1−w2〉+ 〈w∗2,w2− y〉 ≥ −ε4‖w1− y‖. (5.20)

From relations (5.16) and (5.20), one derives that

〈w∗1 +w∗2,w1− y〉 ≥ (1− ε1− ε4)‖w1− y‖. (5.21)

Consequently, ‖w∗1 +w∗2‖ ≥ 1− ε1− ε4.

Set
y∗1 =

w∗1
‖w∗1 +w∗2‖

; y∗2 =
w∗2

‖w∗1 +w∗2‖
and x∗ =

u∗2
‖w∗1 +w∗2‖

.

From relations (5.17), (5.18), (5.21), one has

〈y∗1,a〉 ≤ ε2(1− ε1− ε4)
−1;

|〈y∗2,a〉| ≤ ε3(1− ε1− ε4)
−1,

and
x∗ ∈ D∗F G(u2,w1,w2)(y∗1,y

∗
2); ‖y∗1 + y∗2‖= 1.

As ε1,ε2,ε3,δ ,ε,η→ 0, then (y∗1,y
∗
2 ∈T (C,δ ). Since (u2,w1,w2)∈B((x0,y0,y0),δ0),

according to (5.15), one obtains

m+δ0 ≤ ‖x∗‖= ‖u∗2‖/‖w∗1 +w∗2‖ ≤
α + ε +(α + ε +2)η

1− ε1− ε4
. (5.22)

As ε,η ,ε1,ε2,ε3,ε4 are arbitrarily small, we obtain m+δ0 ≤ α.
Case 2. ‖w∗2‖> 1+2‖w∗1‖. For this case,

‖w∗1 +w∗2‖ ≥ ‖w∗2‖−‖w∗1‖ ≥ (‖w∗2‖+1)/2 > 1.

Therefore,
〈y∗1,a〉 ≤ ε2,

and by (5.18),

|〈y∗2,a〉| ≤ [(α + ε +2)η(1+ ε)+(2δ + ε)‖w∗2‖](1−2δ )−1‖w∗1 +w∗2‖−1

≤ [(α + ε +2)η(1+ ε)+2(2δ + ε)](1−2δ )−1.

Thus we also get (y∗1,y
∗
2) ∈ T (C,δ0). Similarly to the first case, one has m+δ0 ≤ α,

and the proof is complete. �

The following proposition shows that condition (5.6) is also a necessary condition
for metric regularity relative to a cone in Banach spaces when F is either a multifunc-
tion with a convex graph or F : X → Y is a continuous single-valued mapping.
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Proposition 5.2 Let X ,Y be Banach spaces and C ⊆ Y a nonempty cone. Suppose
that F : X ⇒ Y is either a closed convex multifunction or F : X → Y is a continu-
ous single-valued mapping. For a given (x0,y0) ∈ gph F, if F is metrically regular
relatively to C at (x0,y0), then

liminf
(x,y1,y2)

G→(x0,y0,y0)
δ↓0+

d∗(0,D∗F G(x,y1,y2)(T (C,δ )))> 0.

Proof. Assuming that F is metrically regular relatively to C, there exist τ > 0,δ >
0,ε > δ such that

d(x,F−1(y))≤ τd(y,F(x)) for all (x,y) ∈ B(x0,ε)×B(y0,ε); d(y,F(x))< ε; y ∈ F(x)+C(δ ). (5.23)

For γ ∈ (0,δ ), η ∈ (0,ε−δ ), let (x,y1,y2) ∈ gphG∩ [B(x0,ε/2)×B(y0,ε/2)×B(y0,ε/2)] ,
(y∗1,y

∗
2) ∈ T (C,γ) and x∗ ∈ D∗F G(x,y1,y2)(y∗1,y

∗
2).

Case 1. F is a convex multifunction. As x∗ ∈ D∗F G(x,y1,y2)(y∗1,y
∗
2), one has

〈x∗,u− x〉+〈y∗1,v1− y1〉−〈y∗2,v2− y2〉 ≤ 0 (5.24)

for all (u,v1,v2) ∈ gphG.

For δ1 ∈ (0,δ ), since (y∗1,y
∗
2) ∈ T (C,γ), there are a ∈C∩SY ∗ and w ∈ BY such

that 〈y∗1 + y∗2,a+ δw〉 ≤ 2γ − δ1. Since (5.23), for t := ε −η − δ1, then y2 + t(a+
δw) ∈ B(y0,ε), d(y2 + t(a+ δw),F(x)) ≤ t(1+ δ ), and therefore we may find u ∈
F−1(y2 + t(a+δw)) such that

‖x−u‖ ≤ (1+α)τd(y2 + t(a+δw),F(x))≤ (1+α)t‖a+δw‖.

By taking v1 = v2 = y2 + t(ȳ+δw) into account in (5.24), one obtains

(1+α)τ‖ta+δw‖‖x∗‖
≥ 〈x∗,x−u〉
≥ −〈y∗1 + y∗2,v− y2〉−〈y∗1,y2− y1〉
≥ t(δ1− γ)−2η‖y∗1‖. (5.25)

As α > 0, δ1 ∈ (0,δ ), η ∈ (0,ε−δ ) are arbitrarily, one has

‖x∗‖ ≥ δ − γ

τ‖a+δw‖
≥ δ − γ

τ(1+δ )
.

Thus,

liminf
(x,y1,y2)

G→(x0,y0,y0)
δ↓0+

d∗(0,D∗F G(x,y1,y2)(T (C,γ)))≥ δ

τ(1+δ )
> 0.

Case 2. F := f is a continuous single-valued maping around x0. For this case,
y1 = y2 = f (x), by setting g := ( f , f ) : X → Y ×Y and using the usual notation:
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D∗F g(x)(y∗) := D∗F f (x, f (x))(y∗), one has that for any α ∈ (0,1), there exists β ∈
(0,ε/2) such that

〈x∗,u− x〉−〈y∗1 + y∗2, f (u)− f (x)〉 ≤ α(‖u− x‖+‖ f (u)− f (x)‖), (5.26)

for all u ∈ B(x,β ).

As in the first case, for δ1 ∈ (0,δ ), take w ∈ BY such that 〈y∗1 + y∗2, ȳ+ δw〉 ≤
γ − δ1. Since (5.23), for all sufficiently small t > 0, we may find u ∈ f−1( f (x) +
t(a+δw)) such that

‖x−u‖ ≤ (1+α)τ‖ f (x)+ t(ȳ+δw)− f (x))‖= τ(1+α)t‖a+δw‖< β .

Therefore, by (5.26), one obtains

(1+α)τt‖a+δw‖‖x∗‖
≥ 〈x∗,x−u〉
≥ −〈y∗1 + y∗2, f (u)− f (x)〉−α(‖u− x‖+‖ f (u)− f (x)‖)
≥ t(δ1− γ)−αt‖a+δw‖[(1+α)τ +1]. (5.27)

As α > 0, δ1 ∈ (0,δ ) are arbitrary, one has

‖x∗‖ ≥ δ − γ

τ(1+δ )
≥ δ − γ

τ(1+δ )
.

Thus,

liminf
(x,y1,y2)

G→(x0,y0,y0)
γ→0+

d∗(0,D∗F G(x,y1,y2)(T (C,γ)))≥ δ

τ(1+δ )
> 0.

The proof is complete. � �

Remark 5.1 We note that the quantity

liminf
(x,y1,y2)

G→(x0,y0,y0)
δ↓0+

d∗(0,D∗F G(x,y1,y2)(T (C,δ )))

depends on the modulus of relative metric regularity, the radius of the neighborhood
of the point (x0,y0) and the constant δ in the set C(δ ).

Let us now recall the notion of partial sequential normal compactness (PSNC, in
short, [33, page 76]). A multifunction F : X ⇒ Y with nonempty graph is partially
sequentially normally compact at (x̄, ȳ) ∈ gph F , if for any sequence of quadruples
{(xk,yk,x?k ,y

?
k)}n∈N ⊂ gph F×X?×Y ? satisfying

(xk,yk)→ (x̄, ȳ),x?k ∈ D?
F F(xk,yk)(y?k),y

?
k

w?

→ 0,‖x?k‖→ 0,

one has ‖y?k‖→ 0 as k→ ∞.
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Remark 5.2 Note that condition (PSNC) at (x̄, ȳ) ∈ gph F is satisfied if Y is finite
dimensional.

The next corollary that follows directly from the preceding corollary, gives a
point-based condition for the relative metric regularity.

Corollary 5.1 Under the assumptions of Theorem 5.1, suppose further that G−1 is
PSNC at (x0,y0,y0). Then F is metrically regular relatively to C at (x0,y0) provided

d∗(0,D∗M G(x0,y0,y0)(T (C,0))> 0.

Next, let us consider the special case of F(x) := f (x)−K, where, K⊆Y is a nonempty
closed convex subset, f : X → Y is a continuous mapping around a given point x0 ∈
X with f (x0) ∈ K. Defining g := ( f , f ) : X → Y ×Y and using the usual notation:
D∗F f (x)(y∗) := D∗F f (x, f (x))(y∗), one has

D∗F G(x,y1,y2)((y∗1,y
∗
2)) =

{
D∗F g(x)((y∗1,y

∗
2)) if f (x)− yi ∈ K, y∗i ∈ N(K, f (x)− yi), i = 1,2

/0 otherwise.

From Theorem 5.1 we may deduce the following result.

Corollary 5.2 Let X ,Y be Asplund spaces and C ⊆ be a nonempty cone. Let K ⊆ Y
be a nonempty closed convex subset and f : X → Y be a continuous mapping around
x0 ∈ X with k0 := f (x0) ∈ K. If

liminf
(x,k1,k2)→(x0,k0,k0)

δ↓0+

d∗(0,D∗F f (x)(T (C,δ ))∩N(K,k1)×N(K,k2)))> m > 0, (5.28)

then the mapping F(x) := f (x)−K, x ∈ X is metrically regular relatively to C with
modulus τ = m−1 at x0.

Remark 5.3 Note that if K is sequentially normally compact at k̄, i.e., for all se-
quences (kn)n∈N ⊆ K, (k∗n)n∈N with k∗n ∈ N(K,kn),

kn→ k̄ and k∗n
w∗→ 0 ⇐⇒ ‖k∗n‖→ 0,

then instead of (5.28), the following point-based condition

d∗(0,D∗L f (x0)[T (C,0)∩ (N(K,k0)×N(K,k0))])> 0 (5.29)

is also sufficient for metric regularity relatively to C of F(x) := f (x)−K at x0.

Corollary 5.3 Under the assumptions of Corollary 5.2, suppose further that f is
Fréchet differentiable near x0, and its derivative is continuous at x0. Then, the map-
ping F(x) := f (x)−K, x ∈ X is metrically regular relatively to C if and only if

liminf
(k1,k2)→k0

δ↓0+

d∗(0, f ′∗(x0)[T (C,δ )∩ (N(K,k1)×N(K,k2))])> m > 0. (5.30)

Here, f ′∗(x) stands for the adjoint operator of f ′(x). Moreover, if K is sequentially
normally compact, then (5.30) is equivalent to

d∗(0, f ′∗(x0)[T (C,0)∩ (N(K,k0)×N(K,k0))])> 0. (5.31)
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Proof. For the sufficiency part, suppose that

liminf
(k1,k2)→(k0,k0)

δ↓0+

d∗(0, f ′∗(x0)(T (C,δ ))∩N(K,k1)×N(K,k2))> m > 0.

Since f ′ is continuous at x0, for any ε > 0, there exists δ > 0 such that

‖ f ′(x)− f ′(x0)‖< ε for all x ∈ B(x0,δ ).

Therefore, for all ε > 0,

‖ f ′(x)(y∗1,y
∗
2)− f ′(x0)(y∗1,y

∗
2)‖< ε,

for all x ∈ B(x0,δ ), k1,k2 ∈ B(k0,ε), (y∗1,y
∗
2) ∈ T (C,δ )∩ (N(K,k1)×N(K,k2)).

Consequently,

liminf
(x,k1,k2)→(x0,k0,k0)

δ↓0+

d∗(0, f ′∗(x)[T (C,δ )∩ (N(K,k1)×N(K,k2))])

= liminf
k→k0
δ↓0+

d∗(0, f ′∗(x0)[T (C,δ )∩ (N(K,k1)×N(K,k2))])> m > 0.
.

The conclusion follows from Corollary 5.2. For the necessity part, consider the map-
ping g : X → Y defined by

g(x) := f ′(x0)(x− x0)+ f (x0)− f (x), x ∈ X .

Since f is continuously differentiable at x0, for any ε > 0, there is δ > 0 such that g
is Lipschitz with constant ε on B(x0,δ ). Hence in view of Theorem 4.1, the metric
regularity relative to C of F := f −K around (x0,y0) implies the one of

(F +g)(x) = f ′(x0)(x− x0)+ f (x0)−K.

As F +g is a convex multifunction, the conclusion of the necessary part follows from
Proposition 5.23. The equivalence between (5.30) and (5.31) follows from Remark
5.3. �
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22. V.N. Huynh and M. Théra. Error bounds and implicit multifunction theorem in smooth Banach spaces
and applications to optimization. Set-Valued Anal., 12(1-2):195–223, 2004.
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