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Abstract. Let I be a homogeneous ideal in a polynomial ring over a field.

Let I(n) be the n-th symbolic power of I. Motivated by results about ordi-
nary powers of I, we study the asymptotic behavior of the regularity function

reg(I(n)) and the maximal generating degree function d(I(n)), when I is a

monomial ideal. It is known that both functions are eventually quasi-linear.
We show that, in addition, the sequences (reg I(n)/n)n and (d(I(n))/n)n con-

verge to the same limit, which can be described combinatorially. We construct

an example of an equidimensional, height two squarefree monomial ideal I for
which d(I(n)) and reg(I(n)) are not eventually linear functions. For the last

goal, we introduce a new method for establishing the componentwise linearity
of ideals. This method allows us to identify a new class of monomial ideals

whose symbolic powers are componentwise linear.

1. Introduction

Let R = k[x1, . . . , xr] be a polynomial ring over a field k. In this paper we
investigate the maximal generating degree and the regularity of symbolic powers of
monomial ideals in R. Let I be a homogeneous ideal of R. Then the n-th symbolic
power of I is defined by

I(n) =
⋂

p∈Min(I)

InRp ∩R,

where Min(I) is as usual the set of minimal associated prime ideals of I.
Symbolic powers were studied by many authors. While sharing some similar

features with ordinary powers, the symbolic powers are usually much harder to
deal with. One difficulty lies in the fact that the symbolic Rees algebra, defined as

Rs(I) = R⊕ I(1) ⊕ I(2) ⊕ · · · ,
is not noetherian in general. Examples of non-noetherian symbolic Rees algebras
were discovered by Roberts [31] and simpler examples were provided by Goto-
Nishida-Watanabe [11].

Denote by reg(I) and d(I) to be the regularity of I and the maximal degree
of the homogeneous generators I, respectively. By celebrated results by Cutkosky-
Herzog-Trung [6] and Kodiyalam [23], we know that reg In and d(In) are eventually
linear functions with the same leading coefficients. In particular, there exist the
limits

lim
n→∞

reg In

n
= lim
n→∞

d(In)

n
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and the common limit is integral. On the other hand, by [3, Proposition 7], when
I defines 2r + 1 points on a rational normal curve in Pr, where r ≥ 2, then for all
n ≥ 1,

reg I(n) = 2n+ 1 +

⌊
n− 2

r

⌋
.

Hence the function reg I(n) is not eventually linear in general. Cutkosky [5] could
even construct a smooth curve in P3 whose homogeneous defining ideal I has the
property that limn→∞ reg I(n)/n is an irrational number. Another peculiar example
is given in [6, Example 4.4]: given any prime number p ≡ 2 modulo 3, there exist
some field k of characteristic p, and some collection of 17 fat points in P2

k whose

defining ideal I has the property that reg I(n) is not eventually quasi-linear.
While the question about eventual quasi-linear behavior of reg I(n) has a negative

answer in general, various basic questions remain tantalizing. For example:

(1) There was no known example of a homogeneous ideal I in a polynomial ring
for which the limit limn→∞ reg(I(n))/n does not exist (Herzog-Hoa-Trung
[18, Question 2]);

(2) It remains an open question whether for every such homogeneous ideal I,
the function reg I(n) is bounded by a linear function;

(3) Even an answer for the analogue of the last question for d(I(n)) remains
unknown.

In [21, Theorem 4.9], it is shown that limn→∞ reg(I(n))/n exists if I is a square-
free monomial ideal (but a description of the limit was not provided). By [18,
Section 2], Question (2) (and hence of course (3)) has a positive answer if either I
is a monomial ideal, or dim(R/I) ≤ 2, or the singular locus of R/I has dimension
at most 1. The general case remains open for all of these questions.

In the present paper, we address the following related questions for a monomial
ideal I of R.

Question 1.1. Does the limit lim
n→∞

reg(I(n))

n
exists? If it does, describe the limit

in terms of I. The same questions for lim
n→∞

d(I(n))

n
.

Question 1.2 (Minh-T.N. Trung [25, Question A, part (i)]). Is the function reg I(n)

eventually linear if I is squarefree?

A motivation for Question 1.2 is a result of Herzog, Hibi, Trung [17], that reg I(n)

is eventually quasi-linear. Another motivation is a recent result of Hoa et al. [20] on
the existence of lim

n→∞
depth I(n) when I is a squarefree monomial ideal. It is worth

pointing out that Question 1.2 has a negative answer for non-squarefree monomial
ideals; see Remark 5.16.

Extending previous result of Hoa and T.N. Trung, our first main result answers
Question 1.1 in the positive for both limits (they are actually the same). We also
describe explicitly the limits in terms of certain polyhedron associated to I. Our
second main result answers the other question in the negative. In fact, a counterex-
ample is given using equidimensional height 2 squarefree monomial ideals, in other
words, cover ideals of graphs. Interestingly, at the same time, our counterexam-
ple also gives a negative answer for the analogue of Question 1.2 for the function
d(I(n)).
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In detail, the main tool for Question 1.1 comes from the theory of convex poly-
hedra. Assume that I admits a minimal primary decomposition

I = Q1 ∩ · · · ∩Qs ∩Qs+1 ∩ · · · ∩Qt
where Q1, . . . , Qs are are the primary monomial ideals associated to the minimal
prime ideals of I. We define certain polyhedron associated to I as follows:

SP(I) = NP (Q1) ∩ · · · ∩NP (Qs) ⊂ Rr,

where NP (Qi) is the Newton polyhedron of Qi. Then SP(I) is a convex polyhedron
in Rr. For a vector v = (v1, . . . , vr) ∈ Rr, denote |v| = v1 + · · ·+ vr. Let

δ(I) = max{|v| | v is a vertex of SP(I)}.

Answering Question 1.1, our first two main results are:

Theorem 1.3 (Theorems 3.3 and 3.6). For all monomial ideal I, there are equal-
ities

lim
n→∞

d(I(n))

n
= lim
n→∞

reg(I(n))

n
= δ(I).

We next study componentwise linear ideals in the sense of Herzog and Hibi [14]
which are also known as Koszul ideals [19]. Our main tool is the following new
result on Koszul ideals, and we prove it by using the theory of linearity defect.

Proposition 1.4 (See Theorem 5.1). Let R be a polynomial ring over k with the
graded maximal ideal m. Let x be a non-zero linear form, I ′, T non-zero homoge-
neous ideals of R such that the following conditions are simultaneously satisfied:

(i) I ′ is Koszul;
(ii) T ⊆ mI ′;
(iii) x is a regular element with respect to R/T and grm T , the associated graded

module of T with respect to the m-adic filtration.

Denote I = xI ′ + T . Then I is Koszul if and only if so is T .

A common method (among a dozen of others), to establish the Koszul property
of an ideal is to show that it has linear quotients. Compared with this method,
the criterion of Proposition 1.4 has the advantage that it does not require the
knowledge of a system of generators of the ideal. It just asks for the knowledge
of a decomposition which is in many cases not hard to obtain, the more so if
we work with monomial ideals. Indeed, let I be a monomial ideal of R, and x
one of its variables. Then we always have a decomposition I = xI ′ + T , where
I ′, T are monomial ideals, and x does not divide any minimal generator of T . For
such a decomposition, condition (iii) in Proposition 1.4 is automatic. Hence given
conditions (i) and (ii), we can prove the Koszulness of I by passing to T , which
lives in a smaller polynomial ring.

Proposition 1.4 is interesting in its own and has further applications, which we
hope to pursue in future work. The main application of this proposition in our
paper is to study the Koszulness of symbolic powers of cover ideals of graphs. Let
G be an arbitrary simple graph with the vertex set V (G) = {1, . . . , r} and the edge
set E(G). Recall that the cover ideal of G is defined by

J(G) =
⋂

{i,j}∈E(G)

(xi, xj).
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Herzog, Hibi, and Trung showed that the symbolic Rees algebra of J(G) is by
elements of degree either 1 or 2 [17, Thereom 5.1]. Using this, we have a fairly
useful description of the function d(J(G)(n)) (see Theorem 4.9).

By using Proposition 1.4, we prove:

Theorem 1.5 (Theorem 5.7). Let G be the graph obtained by adding to each vertex
of a graph H at least one pendant. Then all the symbolic powers of J(G) are Koszul.

It is worth mentioning that, via Alexander duality, this can be seen as a gen-
eralization of previous work of Villarreal [37] and Francisco-Hà [8] on the Cohen-
Macaulay property of graphs.

In order to give a counter-example to Question 1.2, we apply Theorem 1.5 for
corona graphs. Namely,

Theorem 1.6 (Theorem 5.15). For m > 3 and s > 2, let G = cor(Km, s) be
the graph obtained from the complete graph on m vertices Km by adding exactly s
pendants to each of its vertex. Let J = J(G). Then for all n > 0,

(1) reg(J (2n)) = d(J (2n)) = m(s+ 1)n;
(2) reg(J (2n+1)) = d(J (2n+1)) = m(s+ 1)n+m+ s− 1.

In particular, for all n,

reg(J (n)) = d(J (n)) = (m+ s− 1)n+ (m− 2)(s− 1)
⌊n

2

⌋
,

which is not an eventually linear function of n.

Figure 1. The graph cor(K3, 2)

Let us summarize the structure of this article. In Section 2, we recall some
necessary background. In Section 3, we prove show that for any monomial ideal
I, the limits lim

n→∞
reg I(n)/n and lim

n→∞
d(I(n))/n exist and equal to each other. We

identify them in terms of the afore-mentioned polyhedron associated to I. In Section
4, we describe structural properties of the symbolic powers of a cover ideal J(G),
and compute the function d(J(G)(n)) in terms of the graph G in certain situations.
In Section 5, we first prove the Koszulness criterion of Proposition 1.4. The main
result of this section is the Koszul property of the symbolic powers for certain class
of cover ideals, stated in Theorem 5.7. Combining this with results in Section 4,
Theorem 1.6 is deduced at the end of this section.
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2. Preliminaries

For standard terminology and results in commutative algebra, we refer to the
book of Eisenbud [7]. Good references for algebraic aspects of monomial ideals and
simplicial complexes are the books of Herzog and Hibi [15], Miller and Sturmfels
[24], and Villarreal [38].

2.1. Regularity. Let R be a standard graded algebra over a field k. Let M be a
finitely generated graded nonzero R-module. Let

F : · · · −→ Fp −→ Fp−1 −→ · · · −→ F1 −→ F0 −→ 0

be the minimal graded free resolution of M over R. For each i ≥ 0, j ∈ Z,
denote βRi (M) = rankFi = dimk TorRi (k,M) and βRi,j(M) = dimk TorRi (k,M)j .
We usually omit the superscript R and write simply βi(M) and βi,j(M) whenever
this is possible. Let

ti(M) = sup{j | βi,j(M) 6= 0}
where, by convention, ti(M) = −∞ if Fi = 0. The CastelnuovoMumford regularity
of M measures the growth of the generating degrees of the Fi, i ≥ 0. Concretely,
it is defined by

regR(M) = sup{ti(M)− i | i > 0}.
In the remaining of this paper, we denote by d(M) the number t0(M). Hence

d(M) is the maximal degree of a minimal homogeneous generator of M . The
definition of the regularity implies

d(M) 6 regR(M).

If M is generated by elements of the same degree d, and regRM = d, we say that
M has a linear resolution over R. We also say M has a d-linear resolution in this
case.

If R is a standard graded polynomial ring over k, it is customary to denote
regRM simply by regM .

2.2. Linearity defect, Koszul modules, Betti splittings. We use the notion
of linearity defect, formally introduced by Herzog and Iyengar [19]. Let R be a
standard graded k-algebra, and M a finitely generated graded R-module. The
linearity defect of M over R, denoted by ldRM , is defined via certain filtration of
the minimal graded free resolution of M . For details of this construction, we refer
to [19, Section 1]. We say M is called a Koszul module if ldRM = 0. We say that
R is a Koszul algebra if regR k = 0. As a matter of fact, R is a Koszul algebra if
and only if k is a Koszul R-module [19, Remark 1.10].

For each d ∈ Z, denote by M〈d〉 the submodule of M generated by homogeneous
elements of degree d. Following Herzog and Hibi [14], M is called componentwise
linear if for all d ∈ Z, M〈d〉 has a d-linear resolution. By results of Römer [32,
Theorem 3.2.8] and Yanagawa [39, Proposition 4.9], if R is a Koszul algebra, then
M is Koszul if and only if M is componentwise linear.

Because of the last result and for unity of treatment, we use the terms Koszul
modules throughout, instead of componentwise linear modules.

The following result is folklore; see for example [1, Proposition 3.4].

Lemma 2.1. Let R be a standard graded k-algebra, and M be a Koszul R-module.
Then regRM = d(M).
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We also recall the following base change result for the linearity defect.

Lemma 2.2 (Nguyen and Vu [28, Corollary 3.2]). Let R → S be a flat extension
of standard graded k-algebras. Let I be a homogeneous ideal of R. Then

ldR I = ldS IS.

Let (R,m) be a noetherian local ring (or a standard graded k-algebra) and
P, I, J 6= (0) be proper (homogeneous) ideals of R such that P = I + J .

Definition 2.3. The decomposition of P as I + J is called a Betti splitting if for
all i ≥ 0, the following equality of Betti numbers holds: βi(P ) = βi(I) + βi(J) +
βi−1(I ∩ J).

We have the following reformulations of Betti splittings.

Lemma 2.4 ([28, Lemma 3.5]). The following are equivalent:

(i) The decomposition P = I + J is a Betti splitting;

(ii) The natural morphisms TorR(k, I ∩ J)→ TorR(k, I) and TorR(k, I ∩ J)→
TorR(k, J) are both zero;

(iii) The mapping cone construction for the map I ∩J → I⊕J yields a minimal
free resolution of P .

2.3. Symbolic powers of monomial ideals. Let R = k[x1, . . . , xr] be a standard
graded polynomial ring, and I a monomial ideal of R. Let G(I) denotes the set
of minimal monomial generators of I. In the present paper, when saying about
minimal generators of a monomial ideal we mean minimal monomial generators of
it. Let

I = Q1 ∩ · · · ∩Qs ∩Qs+1 ∩ · · · ∩Qt
be a minimal primary decomposition of I, where Qi is a primary monomial ideal
for i = 1, . . . , t, and Pj =

√
Qj is a minimal prime of I for j = 1, . . . , s. For each

i = 1, . . . , s, the monomial ideal Qj is obtained from minimal generators of I by
setting xi = 1 for all i for which xi /∈ Pj , thus

(2.1) d(Qj) 6 d(I), for j = 1, . . . , s.

In the case of monomial ideals, we have a simple formula for the symbolic powers
in terms of the minimal primary components (see [17, Lemma 3.1]).

Lemma 2.5. With notations as above, for all n ≥ 1, there is an equality

I(n) = Qn1 ∩Qn2 ∩ · · · ∩Qns .

A function f : N → N∪{−∞} is called quasi-linear if there exist a positive
integer N and rational numbers ai ∈ Q and bi ∈ Q∪{−∞}, for i = 0, . . . , N − 1,
such that

f(n) = ain+ bi, for all n ∈ N with n ≡ i (mod N).

In this case, the smallest such number N is called the period of f .

Assume that f is not identically −∞. Then lim
n→∞

f(n)

n
exists if and only if

a0 = · · · = aN−1. In this case we say that f has a constant leading coefficient.

Lemma 2.6. With notations as above, for every i > 0, ti(I
(n)) is quasi-linear in

n for n� 0. In particular, d(I(n)) and reg(I(n)) are quasi-linear in n for n� 0.
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Proof. By [17, Theorem 3.2], the symbolic Rees ring Rs(I) =
⊕∞

n=0 I
(n) is finitely

generated. By the very same way as the proof of [6, Theorem 4.3], we obtain ti(I
(n))

is quasi-linear in n for n� 0. �

If I is a monomial ideal of R, the minimal graded free resolution of I is Zr-
graded. For each α ∈ Zr, we denote by βi,α(I) the number dimk TorRk (k, I)α.
Clearly βi,α(I) = 0 if α /∈ Nr.

When we talk about a monomial xα of R, we always mean α = (α1, . . . , αr) ∈ Nr
and xα = xα1

1 · · ·xαr
r . A vector α = (α1, . . . , αr) ∈ Nr is called squarefree if for

all i = 1, . . . , r, αi is either 0 or 1. Let e1, . . . , er be the canonical basis of the
Z-module space Zr. For any α = (α1, . . . , αr) ∈ Nr the upper Koszul simplicial
complex associated with I at degree α is defined by

Kα(I) = {squarefree vector τ | xα−τ ∈ I},
where we use the convention α− τ = α−

∑
i∈τ ei. The multigraded Betti numbers

of I can be computed as follows.

Lemma 2.7. ([24, Theorem 1.34]) For all i > 0 and all α ∈ Nr, there is an equality

βi,α(I) = dimk H̃i−1(Kα(I); k).

Let I be the integral closure of the monomial ideal I. To describe I geometrically,
let E(I) = {α | α ∈ Nr and xα ∈ I}. The Newton polyhedron of I is the convex
polyhedron in Rr defined by NP (I) = conv{E(I)}. Then I is a monomial ideal
determined by (see [7, See Exercises 4.22 and 4.23]):

(2.2) E(I) = NP (I) ∩ Nr .

For each n > 1, let

SPn(I) =

s⋂
i=1

NP (Qni ),

and

Jn = Qn1 ∩ · · · ∩Qns .
Then from Equation (2.2) we have E(Jn) = SPn(I) ∩ Nr.

We will denote SP1(I) simply by SP(I).
For subsets X and Y of Rr and a positive integer n, we denote

nX = {ny | y ∈ X},
X + Y = {x+ y : x ∈ X, y ∈ Y }.

Denote by R+ the set of non-negative real numbers. The following lemma gives the
structure of the convex polyhedron SPn(I).

Lemma 2.8. Let {v1, . . . ,vd} be the set of vertices of SP(I). Then

SPn(I) = nSP(I) = n conv{v1, . . . ,vd}+ Rr+ .

Proof. For each i = 1, . . . , s, we have NP (Qnj ) = nNP (Qj) by [30, Lemma 2.5]. It
follows that SPn(I) = nSP(I).

For v ∈ SP(I) and u ∈ Rr+, one has v + u ∈ SP(I) again by [30, Lemma 2.5].
Combining this with [33, Formula (28), Page 106] we have

SP(I) = conv{v1, . . . ,vd}+ Rr+ .

Thus, SPn(I) = nSP(I) = n conv{v1, . . . ,vd}+ Rr+, as required. �
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The following result was proved in [35, Lemma 6].

Lemma 2.9. Let Q be a monomial ideal of R. Then the Newton polyhedron NP (Q)
is the set of solutions of a system of inequalities of the form

{x ∈ Rr | 〈aj ,x〉 ≥ bj , j = 1, . . . , q},

such that the following conditions are simultaneously satisfied:

(i) Each hyperplane with the equation 〈aj ,x〉 = bj defines a facet of NP (Q),
which contains sj affinely independent points of E(G(Q)) and is parallel
to r − sj vectors of the canonical basis. In this case sj is the number of
non-zero coordinates of aj.

(ii) 0 6= aj ∈ Nr, bj ∈ N for all j = 1, . . . , q.
(iii) If we write aj = (aj,1, . . . , aj,r), then aj,i ≤ sjd(Q)sj−1 for all i = 1, . . . , r.

Using this, we can give information about facets of SPn(I), which will be useful
to bound from below the maximal generating degree of I(n) by some linear function
of n.

Lemma 2.10. The polyhedron SP(I) is the solutions in Rr of a system of linear
inequalities of the form

{x ∈ Rr | 〈aj ,x〉 > bj , j = 1, 2, . . . , q},

where for each j, the following conditions are fulfilled:

(i) 0 6= aj ∈ Nr, bj ∈ N;
(ii) |aj | 6 r2d(I)r−1;

(iii) The equation 〈aj ,x〉 = bj defines a facet of SP(I).

Proof. Note that SP(I) is the solution in Rr of the system of all linear inequalities
that arise from those inequalities defining NP (Qj) where j = 1, . . . , s. Now com-
bining Lemma 2.9 with the fact that d(Qj) 6 d(I) (Inequality (2.1)), the lemma
follows. �

Let ∆ be a simplicial complex on {1, . . . , r}. For a subset F = {i1, . . . , ij} of
{1, . . . , r}, set xF = xi1 · · ·xij and PF = (xi : i /∈ F ). Then the Stanley-Reisner
ideal of ∆ is the squarefree monomial ideal

I∆ = (xG | G /∈ ∆) ⊆ R.

Let F(∆) denote the set of all facets of ∆. If F(∆) = {F1, . . . , Fm}, we write
∆ = 〈F1, . . . , Fm〉. Then I∆ admits the primary decomposition

I∆ =
⋂

F∈F(∆)

PF .

Thanks to Lemma 2.5, for every integer n > 1, the n-th symbolic power of I∆ is
given by

I
(n)
∆ =

⋂
F∈F(∆)

PnF .
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2.4. Graph theory. Let G be a finite simple graph. We use the symbols V (G)
and E(G) to denote the vertex set and the edge set of G, respectively. When there
is no confusion, the edge {u, v} of G is written simply as uv. Two vertices u and v
are adjacent if {u, v} ∈ E(G).

For a subset S of V (G), we define

NG(S) = {v ∈ V (G) \ S | uv ∈ E(G) for some u ∈ S}

and NG[S] = S ∪ NG(S). When there is no confusion, we shall omit G and write
N(S) and N [S]. If S consists of a single vertex u, denote NG(u) = NG(S) and
NG[u] = NG[S]. Define G[S] to be the induced subgraph of G on S, and G \ S to
be the subgraph of G with the vertices in S and their incident edges deleted.

The degree of a vertex u ∈ V (G) , denoted by degG(u), is the number of edges
incident to u. If degG(u) = 0, then u is called an isolated vertex ; if degG(u) = 1,
then u is a leave. An edge emanating from a leaf is called a pendant.

A vertex cover of G is a subset of V (G) which meets every edge of G; a vertex
cover is minimal if none of its proper subsets is itself a cover. The cover ideal of G
is defined by J(G) := (xτ | τ is a minimal vertex cover of G). Note that J(G) has
the primary decomposition

J(G) =
⋂

{i,j}∈E(G)

(xi, xj).

An independent set in G is a set of vertices no two of which are adjacent to each
other. An independent set in G is maximal (with respect to set inclusion) if the set
cannot be extended to a larger independent set. The set of all independent sets of
G, denoted by ∆(G), is a simplicial complex, called the independence complex of
G.

3. Asymptotic maximal generating degree and regularity

Let I be a monomial ideal of R = k[x1, . . . , xr] and let

I = Q1 ∩ · · · ∩Qs ∩Qs+1 ∩ · · · ∩Qt
be a minimal primary decomposition of I, where Q1, . . . , Qs are the components
associated to the minimal primes of I. By Lemma 2.5 we have

I(n) = Qn1 ∩Qn2 ∩ · · · ∩Qns .

Recall that

SPn(I) = NP (Qn1 ) ∩NP (Qn2 ) ∩ · · · ∩NP (Qns ) = nSP(I),

and

Jn = Qn1 ∩Qn2 ∩ · · · ∩Qns .
Observe that xα ∈ Jn if and only if α ∈ SPn(I) ∩ Nr. We note two simple facts.

Remark 3.1. Let J be a monomial ideal and xα ∈ J , with α = (α1, . . . , αr) ∈ Nr.
Then xα ∈ G(J) if and only if for every i with αi ≥ 1, we have xα−ei /∈ J .

Lemma 3.2. Let J be a monomial ideal and xα ∈ J . For i = 1, . . . , r, let mi ∈ N
be an integer such that xα−miei /∈ J if αi > mi. Then there are integers 0 6 ni 6
mi − 1 such that xα−(n1e1+···+nrer) ∈ G(J).
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Proof. Just choose 0 6 ni < mi for i = 1, . . . , r such that

xα−(n1e1+···+nrer) ∈ J

and n1 + · · ·+ nr is as large as possible. �

The first main result of this paper is

Theorem 3.3. There is an equality limn→∞
d(I(n))

n
= δ(I).

In fact, setting ρ = r2d(I)r−1, we will prove that for all n > 1, the followings
bounds for d(I(n)) hold:

(3.1) δ(I)n− rρ(1 + s(r − 1)d(I)) 6 d(I(n)) 6 δ(I)n+ r + r(r − 1)d(I).

This clearly implies the conclusion of Theorem 3.3.
For the upper bound, we need the following auxiliary statements.

Lemma 3.4. Let xα ∈ I(n) be a monomial. Assume that for some 1 ≤ i ≤ r, we
have xα−ei /∈ I(n). Denote m = (r − 1)d(I) + 1. If αi > m, then xα−mei /∈ Jn.

Proof. Since xα−ei /∈ I(n), xα−ei /∈ Qnj for some 1 6 j 6 s. By [36, Theorem 7.58],

we have Qnj = Qn−pj Qpj for some 0 6 p 6 r − 1.

Since xα ∈ Qnj and xα−ei /∈ Qnj , it follows that xi divides some generator of

Qnj . As the monomial ideal Qj is primary, x
d(Qj)
i ∈ Qj . In particular, x

d(I)
i ∈ Qj

because d(Qj) 6 d(I).

We now assume on the contrary that xα−mei ∈ Jn. Then xα−mei ∈ Qnj . Since

Qnj = Qn−pj Qpj , there are two monomials m1 ∈ Qn−pj and m2 ∈ Qpj such that

xα−mei = m1m2. It follows that xα−ei = (m1x
m−1
i )m2. Observe that xm−1

i ∈
Qr−1
j as m − 1 = (r − 1)d(I). Thus xα−ei = (m1x

m−1
i )m2 ∈ Qn−pj Qr−1

j ⊆ Qnj , a
contradiction. The lemma follows. �

Lemma 3.5. There is an inequality d(Jn) < δ(I)n+ r.

Proof. Let xα ∈ G(Jn), v1, . . . ,vd be all the vertices of SP(I). By Lemma 2.8, we
can represent α as

α = n(λ1v1 + · · ·+ λdvd) + u

where λi > 0, λ1 + · · ·+ λd = 1, and u = (u1, . . . , ur) ∈ Rr+.
Since xα is a minimal generator of Jn, necessarily ui < 1 for every i. Therefore,

|α| 6 δ(I)n+ (u1 + · · ·+ ur) < δ(I)n+ r.

It follows that d(Jn) < δ(I)n+ r, as required. �

Now we are ready for the

Proof of the inequality on the right of (3.1). Let xα be a minimal generator of I(n).
By Remark 3.1 we have xα−ei /∈ I(n) for each i = 1, . . . , r, whenever αi > 1.
For 1 ≤ i ≤ r, set mi = (r − 1)d(I) + 1. By Lemma 3.4, xα−miei /∈ Jn if
αi > (r − 1)d(I) + 1.

By Lemma 3.2, there are integers 0 6 ni 6 (r − 1)d(I) such that the monomial
xα−(n1e1+···+nrer) is a minimal generator of Jn. Thus

d(Jn) > |α| − (n1 + · · ·+ nr) > |α| − r(r − 1)d(I),
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and hence |α| 6 d(Jn)+r(r−1)d(I). It follows that d(I(n)) 6 d(Jn)+r(r−1)d(I).
Together with Lemma 3.5, we obtain

d(I(n)) 6 δ(I)n+ r + r(r − 1)d(I).

This is the desired inequality. �

For the remaining inequality in (3.1), we will make some use of Lemma 2.10.

Proof of the inequality on the left of (3.1). Let v = (v1, . . . , vr) be a vertex of the
polyhedron SP(I) such that δ(I) = |v|. Let α = (α1, . . . , αr) ∈ Nr where αi =
dnvie. Because nv is a vertex of SPn(I), xα ∈ Jn.

For each i = 1, . . . , s, we have xα ∈ Qni = Q
n−(r−1)
i Qr−1

i by [36, Theorem 7.58],
so we can write

xα = m1m2m3

where m1 ∈ Qi, m2 ∈ Qn−ri and m3 ∈ Qr−1
i . Let fi = mr−1

1 so that deg(fi) 6
(r − 1)d(Qi) 6 (r − 1)d(I). We have xαfi = (mr

1m2)m3 ∈ Qni .
Let xβ = f1 · · · fs and xγ = xαxβ. Then xγ ∈ Qni for all i, consequently

xαxβ ∈ I(n). Moreover, γi = 0 if and only if αi = 0, if and only if vi = 0. Note
that |β| = deg(f1) + · · ·+ deg(fs) 6 s(r − 1)d(I).

By Lemma 2.10, the convex polyhedron SP(I) is the solutions in Rr of a system
of linear inequalities of the form

{x ∈ Rr | 〈aj ,x〉 > bj , j = 1, 2, . . . , q},
such that:

(1) each equation 〈aj ,x〉 = bj defines a facets of SP(I),
(2) aj ∈ Nr, bj ∈ N, and,
(3) |aj | 6 r2d(I)r−1 for any j.

Let ρ = r2d(I)r−1 so that |aj | 6 ρ for every j = 1, . . . , q.
Since v is a vertex of SP(I), by [33, Formula 23 in Page 104], we may assume

that v is the unique solution of the following system

{x ∈ Rr | 〈ai,x〉 = bi, i = 1, . . . , r} .
For an index i with γi > 1, since the last system has a unique solution, we deduce

that aj,i 6= 0 for some 1 6 j 6 r. For simplicity, we denote a = aj = (a1, . . . , ar)
so that ai > 1.

Let m = ρ(1 + s(r − 1)d(I)) + 1. If γi > m, we have

〈a,γ −mei〉 = 〈a,α〉+ 〈a,β〉 − aim 6 〈a, nv + e1 + · · ·+ er〉+ 〈a,β〉 − aim
= 〈a, nv〉+ |a|+ 〈a,β〉 − aim = nbj + |a|+ 〈a,β〉 − aim
6 nbj + |a|+ |a||β| −m < nbj

since m = ρ(1 + s(r − 1)d(I)) + 1 > |a| + |a||β|. Consequently, xγ−mei /∈ Jn, and
hence xγ−mei /∈ I(n).

By Lemma 3.2, there are non-negative integers ni 6 ρ(1 + s(r − 1)d(I)) for
i = 1, . . . , r such that xγ−(n1e1+···+nrer) is a minimal generator of I(n). Therefore

d(I(n)) > |γ| − (n1 + · · ·+ nr) > |α|+ |β| − rρ(1 + s(r − 1)d(I))

> |α| − rρ(1 + s(r − 1)d(I)) > |nv| − rρ(1 + s(r − 1)d(I))

= δ(I)n− rρ(1 + s(r − 1)d(I)).

This finishes the proof of (3.1) and hence that of Theorem 3.3. �
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The second main result of this paper is

Theorem 3.6. There is an equality limn→∞
reg(I(n))

n
= δ(I).

Recall that for any finitely generated graded R-module M , and for any i ≥ 0,
we have the notation

ti(M) = sup{j : TorRi (k,M)j 6= 0}.
From Theorem 3.3 and the fact that d(M) ≤ regM , we see that Theorem 3.6 will
follow from a suitable linear upper bound for reg I(n). This is accomplished by

Lemma 3.7. For all i > 0, there is an inequality

ti(I
(n)) 6 δ(I)n+ 2r + r(r2d(I)r−1 + (r − 1)d(I)).

Proof. By Lemma 2.10, the convex polyhedron SP(I) is the solutions in Rr of a
system of linear inequalities of the form

{x ∈ Rr | 〈aj ,x〉 > bj , j = 1, 2, . . . , q},
where for each j, the equation 〈aj ,x〉 = bj defines a facets of SP(I), aj ∈ Nr,
bj ∈ N, and |aj | 6 r2d(I)r−1.

Let ρ = r2d(I)r−1 so that |aj | 6 ρ for every j.

Take α = (α1, . . . , αr) ∈ Nr such that βi,α(I
(n)
∆ ) 6= 0. Since βi,α(I

(n)
∆ ) =

dimk H̃i−1(Kα(I
(n)
∆ ); k) 6= 0 by Lemma 2.7, we have Kα(I

(n)
∆ ) is not a cone. Hence,

for each j = 1, . . . , r, we have j /∈ τ for some τ ∈ F(Kα(I
(n)
∆ )).

Since τ ∪ {j} /∈ Kα(I
(n)
∆ ), we have xα−τ−ej /∈ I(n). Let m = (r − 1)d(I) + 1.

Claim: If αj > ρ+m, then xα−(ρ+m)ej /∈ Jn.
Indeed, by Lemma 3.4, xα−τ−mej /∈ Jn. Therefore, 〈ai,α− τ −mej〉 < nbi for

some 1 6 i 6 q. Since xα−τ ∈ I(n) ⊆ Jn, we have 〈ai,α− τ〉 > nbi. It follows that
ai,j > 1. Thus

〈ai,α− (ρ+m)ej〉 = 〈ai,α− τ −mej〉+ 〈ai, τ − ρej〉 < nbj + 〈ai, τ − ρej〉
= nbj + 〈ai, τ〉 − 〈ai, ρej〉 = nbj + 〈ai, τ〉 − ai,jρ

6 nbj + 〈ai, τ〉 − ρ 6 nbj .

The last inequality holds since ρ > |ai| > 〈ai, τ〉. Consequently, xα−(ρ+m)ej /∈ Jn,
as desired.

By Lemma 3.4, there are integers 0 6 ni 6 ρ+m− 1 for i = 1, . . . , r, for which

xα−τ−n1e1−···−nrer

is a minimal generator of Jn. It follows that

d(Jn) > |α| − |τ | − (n1 + · · ·+ nr) > |α| − r − r(ρ+m− 1),

and hence

|α| 6 d(Jn) + r + r(ρ+m− 1) = d(Jn) + r + r(r2d(I)r−1 + (r − 1)d(I)).

Together with Lemma 3.5, this yields

ti(I
(n)) 6 d(Jn) + r + r

(
r2d(I)r−1 + (r − 1)d(I)

)
6 δ(I)n+ 2r + r

(
r2d(I)r−1 + (r − 1)d(I)

)
,

and the proof is complete. �
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Proof of Theorem 3.6. By Lemma 3.7 we have

reg I(n) = max{ti(I(n))− i | i > 0} 6 δ(I)n+ 2r + r(r2d(I)r−1 + (r − 1)d(I)).

On the other hand, by the proof of Theorem 3.3 (more precisely (3.1)), there
exists c ∈ R such that

d(I(n)) > δ(I)n+ c for all n > 1.

In particular, reg I(n) > d(I(n)) > δ(I)n+ c for all n > 1. Thus,

δ(I)n+ c 6 reg I(n) 6 δ(I)n+ 2r + r(r2d(I)r−1 + (r − 1)d(I))

for all n > 1. It follows that

lim
n→∞

reg(I(n))

n
= δ(I),

as required. �

Remark 3.8. Although the limits limn→∞
d(I(n))

n
and limn→∞

reg(I(n))

n
do exist,

it is not true that the limit

lim
n→∞

ti(I
(n))

n
exists for all i ≥ 0.

Example 3.9. In the polynomial ring R = Q[x, y, z, u, v], consider the ideal I with
the primary decomposition

I = (x2, y2, z2)2 ∩ (x3, y3, u) ∩ (z, v).

By [27, Lemma 4.2] we have

depth(R/I(n)) =

{
1 if n is odd,

2 if n is even.

From the Auslander-Buchsbaum formula, we get

pd I(n) =

{
3 if n is odd,

2 if n is even.

In particular, t3(I(n)) = −∞ if n is even, and t3(I(n)) > 0 if n is odd. Since t3(I(n))
is a quasi-linear function in n for n� 0, we deduce that

lim inf
s→∞

t3(I(2s+1))

2s+ 1
> 0.

So the limit limn→∞
t3(I(n))

n
does not exit.

4. Cover ideals

In this section we investigate the symbolic powers of cover ideals of graphs. Our
main results in this section are:

(1) Theorem 4.6, which determines explicitly the invariant δ(J(G)) in terms of
the combinatorial data of G;

(2) Theorem 4.9, which computes the maximal generating degrees of the sym-
bolic powers of J(G).
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Combining these results with a result on the Koszul properties of the symbolic
powers of some cover ideals, we construct in Theorem 5.15 a family of graphs G for
which both reg J(G)(n) and d(J(G)(n)) are not eventually linear function of n.

Let ∆ be a simplicial complex on the vertex set {1, . . . , r} and n > 1. We first
describe SPn(I∆) in a more specific way. For F ∈ F(∆), NP (PnF ) is defined by
the system ∑

i/∈F

xi > n, x1 > 0, . . . , xr > 0,

so that SPn(I∆) is determined by the following system of inequalities:

(4.1)

{∑
i/∈F xi > n, for F ∈ F(∆),

x1 > 0, . . . , xr > 0.

From this, one has

Remark 4.1. Let xα ∈ I(n)
∆ be a monomial. The following are equivalent:

(1) xα ∈ G(I
(n)
∆ );

(2) for every i such that αi > 1, we have xα−ei /∈ I(n)
∆ ,

(3) for every i such that 〈α, ei〉 > 1, there exists F ∈ F(∆) such that i /∈ F
and

〈
α,
∑
j /∈F ej

〉
= n.

The following lemma is a consequence of the last remark.

Lemma 4.2. Let p > 1, m1, . . . ,mp > 0 be integers and xαj ∈ I(mj)
∆ be monomials

for j = 1, . . . , p. Assume that xα1+···+αp ∈ I
(m1)
∆ · · · I(mp)

∆ ⊆ I
(m1+···+mp)
∆ is a

minimal generator of I
(m1+···+mp)
∆ . Then for all n1, . . . , np > 0, xn1α1+···+npαp is

a minimal generator of I
(m1n1+···+mpnp)
∆ .

In particular:

(i) For every subset W ⊆ [p], x
∑

i∈W αi is a minimal generator of I
(
∑

i∈W mi)

∆ .

(ii) If xα ∈ G(I∆) then xnα ∈ G(I
(n)
∆ ) for all n > 1.

Proof. We claim that for every 1 6 i 6 p, if mi = 0 then αi = 0. Indeed, for
example, assume mp = 0 and αp 6= 0. Then

xα1+···+αp = xαpxα1+···+αp−1 /∈ G(I
(m1+···+mp−1)
∆ ) = G(I

(m1+···+mp)
∆ ),

a contradiction. Hence the claim is true. In view of the desired conclusion, we can
assume that mi > 1 for all i = 1, . . . , p.

Take arbitrary i such that 〈n1α1 +· · ·+npαp, ei〉 > 1. Then 〈α1 +· · ·+αp, ei〉 >
1. Since xα1+···+αp ∈ G(I

(m1+···+mp)
∆ ), by Remark 4.1, there exists F ∈ F(∆) such

that i /∈ F and 〈
α1 + · · ·+ αp,

∑
j /∈F

ej

〉
= m1 + · · ·+mp.

For all u = 1, . . . , p, since xαu ∈ I(mu)
∆ ,〈
αu,

∑
j /∈F

ej

〉
> mu.
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Thus the equality actually happens for all u = 1, . . . , p. This implies that〈
n1α1 + · · ·+ npαp,

∑
j /∈F

ej

〉
= m1n1 + · · ·+mpnp.

Hence by Remark 4.1, xn1α1+···+npαp is a minimal generator of I
(m1n1+···+mpnp)
∆ .

The proof is concluded. �

Lemma 4.3. For all n > 1, there is an inequality d(I
(n)
∆ ) 6 δ(I∆)n.

Proof. For simplicity, denote δ = δ(I∆). Let xα be a minimal generator of I
(n)
∆ .

We may assume that αi > 1 for i = 1, . . . , p and αi = 0 for i = p+1, . . . , r for some
1 6 p 6 r.

For each i = 1, . . . , p, there is a facet Fi ∈ F(∆) which does not contain i such
that α lies in the hyperplane

∑
j /∈Fi

xj = n. From the system (4.1) we imply that

the intersection of SPn(I∆) with the set{∑
j /∈Fi

xj = n for i = 1, . . . , p,

xs = 0 for s = p+ 1, . . . , r,

is a compact face of SPn(I∆).
Since α belongs to this face, there is a vertex γ of SPn(I∆) lying on this face

such that |α| 6 |γ|. As γ/n is a vertex of SP(I∆), |α| 6 |γ| = |γ/n| · n 6 δn. The
conclusion follows. �

Example 4.4. Let G be a graph on the vertex set {1, . . . , r}. Let

I(G) = (xixj | {i, j} ∈ E(G)) ⊆ k[x1, . . . , xr]

be the edge ideal of G. Then d(I(G)(n)) = 2n for all n > 1.
Indeed, for any n > 1 we have d(I(G)(n)) 6 2n by [2, Corollary 2.11]. On

the other hand, if xixj is a minimal generator of I(G), then (xixj)
n is a minimal

generator of I(G)(n), and so d(I(G)(n)) > 2n. Hence, d(I(G)(n)) = 2n.
Of course, I(G)(n) need not be generated in degree 2n. For example, if I(G) =

(xy, xz, yz) then

I(G)(2) = (x, y)2 ∩ (x, z)2 ∩ (y, z)2 = (x2y2, x2z2, y2z2, xyz).

We do not know whether for any graph G, reg I(G)(n) is asymptotically linear
in n. This is the case when G is a cycle (see [13, Corollary 5.4]).

Let G be a graph on [r] = {1, . . . , r}. Then the polyhedron SP(J(G)) is defined
by the following system of inequalities:

(4.2)

{
xi + xj > 1, for {i, j} ∈ E(G),

x1 > 0, . . . , xr > 0.

The following lemma is quite useful to identify the vertices of SP(J(G)).

Lemma 4.5. Let G be a graph on [r] with no isolated vertex, and α = (α1, . . . , αr) ∈
Rr. Assume that α is a vertex of SP(J(G)). Then αi ∈ {0, 1/2, 1} for every
i = 1, . . . , r. Denote S0 = {i : αi = 0}, S1 = {i : αi = 1} and S1/2 = {i : αi = 1/2}.
Then the following statements hold:

(i) S0 is an independent set of G.
(ii) S1 = N(S0).
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(iii) The induced subgraph of G on S1/2 has no bipartite component.
(iv) If v is a leaf not lying in S0 and N(v) = {u} then u /∈ S1.

Proof. Since α is a vertex of SP(J(G)), by [33, Formula (23), Page 104], α is the
unique solution of a system

(4.3)

{
xi + xj = 1, for {i, j} ∈ E1,

xi = 0, for i ∈ V1,

of exactly r linearly independent equations, where E1 ⊆ E(G) and V1 ⊆ {1, . . . , r}
with |E1|+ |V1| = r.

Step 1: Let H be the subgraph of G with the same vertex set and E(H) = E1.
Let H1, . . . ,Hs be connected components of H. Assume that V (Hi) ∩ V1 6= ∅ for
i = 1, . . . , t; and V (Hi) ∩ V1 = ∅ for i = t + 1, . . . , s for some 0 6 t 6 s. We show

that αj ∈ {0, 1} if j ∈
⋃t
i=1 V (Hi) and αj = 1/2 if j ∈

⋃s
i=t+1 V (Hi).

For each i ∈ {1, . . . , t} and each j ∈ Hi, we take p ∈ V (Hi) ∩ S. Then αp = 0
by the assumption. Since Hi is connected, there is a path from p to j in Hi, say

p = j0, j1, . . . , jm = j.

Since αju +αju+1
= 1 for u = 0, . . . ,m−1, we deduce that αjm =

{
0, if m is even,

1, if m is odd.

For each u = t+ 1, . . . , s, from the above discussion, the system

(4.4)

{
xi + xj = 1,

{i, j} ∈ E(Hu),

also has a unique solution. As V (Hu) ∩ V1 = ∅, Hu cannot be an isolated vertex,
so E(Hu) 6= ∅. Since xi = 1/2 for all i ∈ V (Hu) is a solution of the last system, it
is the unique one. Hence we see that αi ∈ {0, 1, 1/2} for all i.

Step 2: If there are adjacent vertices i, j ∈ S0 then as α ∈ SP(J(G)), we get
0 = αi + αj ≥ 1. This is a contradiction. Hence S0 is an independent set, proving
(i).

Step 3: Similarly there can be no edge connecting any i ∈ S0 with some j ∈ S1/2.
Hence N(S0) ⊆ S1.

Now assume that S1 has a vertex, say i, that is not adjacent to any vertex in S0.
Then γ = α− 1

2ei is a point of SP(J(G)). On the other hand, α+ 1
2ei is obviously

a point of SP(J(G)). Hence we have a convex decomposition

α =
1

2
(α− ei/2) +

1

2
(α + ei/2),

contradicting the fact that α is a vertex of SP(J(G)). Thus, as G has no isolated
vertex, every vertex in S1 is adjacent to one in S0, and thus S1 ⊆ N(S0). In
particular, S1 = N(S0), proving (ii).

Step 4: Next we show (iii). Assume the contrary, the induced subgraph of G on
S1/2 has a bipartite component G1. Let (A,B) be the bipartition of G1. Construct

the vectors α′,α′′ as follows: α′i =


αi if i /∈ A ∪B,
0, if i ∈ A,
1, if i ∈ B

and
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α′′i =


αi if i /∈ A ∪B,
1, if i ∈ A,
0, if i ∈ B.

We show that α′,α′′ ∈ SP(J(G)). Indeed, take an edge {i, j} ∈ E(G). If
neither i nor j belong to A ∪ B, then α′i + α′j = αi + αj ≥ 1. If exactly one of
i and j belongs to A ∪ B, we can assume that i does. Then j ∈ S1, since by (ii),
V (G1) ⊆ S1/2 ⊆ V (G) \N(S0). In this case α′i + α′j = α′i + αj = 1 + α′i ≥ 1. If
both i and j belong to A∪B, then we can assume that i ∈ A, j ∈ B, so α′i+α′j = 1.
Hence in any case α′ ∈ SP(J(G)), and the same argument works for α′′.

But then the convex decomposition α = (α′ + α′′)/2 shows that α is not a
vertex of SP(J(G)), a contradiction. Thus (iii) is true.

Step 5: Assume that u ∈ S1. Since v /∈ S0, either v ∈ S1 or v ∈ S1/2. If v ∈ S1

then by (ii), v ∈ N(S0), a contradiction with v is a leaf and its unique neighbor is
u ∈ S1. Hence v ∈ S1/2. Define the vectors α1, α2 as follows:

α1
i =

{
αi if i 6= v,

0, if i = v,

and

α2
i =

{
αi if i 6= v,

1, if i = v.

Since α2 ≥ α componentwise, α2 ∈ SP(J(G)). We show that α1 ∈ SP(J(G)).
Take any edge {i, j} ∈ E(G). If i 6= v and j 6= v, then α1

i + α1
j = αi + αj ≥ 1. If

say i = v, then necessarily j = u, and

α1
i + α1

j = α1
v + α1

u = 0 + αu = 1,

noting that u ∈ S1. Hence α1 ∈ SP(J(G)). But then the convex decomposition
α = (α1 +α2)/2 shows that α is not a vertex of SP(J(G)), a contradiction. Thus
(iv) is true and the proof is concluded. �

The first main result of this section is

Theorem 4.6. Let G be a graph with on [r] with no isolated vertex, and J = J(G).
Then

δ(J) =

(4.5)

r

2
+

1

2
max{|N(S)| − |S| | S ∈ ∆(G) and G \N [S] has no bipartite component}.

Proof. Let d be the expression in the last line of (4.5).
Step 1: We show that d ≤ δ(J).
Let S be an independent set of G such that d = r/2 + (|N(S)| − |S|)/2 and

G \N [S] has no bipartite component.
For i = 1, . . . , r, define γi as follows

γi =


0 if i ∈ S,
1 if i ∈ N(S),
1
2 if i ∈ V (G) \N [S].
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Let γ = (γ1, . . . , γr). Then γ is a point of SP(J). Since 2γ ∈ Nr, x2γ ∈ J(G)(2).
Observe that x2γ is a minimal generator of J(G)(2), since G has no isolated vertex.
Hence |2γ| 6 2δ(J) by Lemma 4.3, namely δ(J) > |γ| = d.

Step 2: To prove the reverse inequality, let α = (α1, . . . , αr) be any vertex of
SP(J). By Lemma 4.5, αi ∈ {0, 1/2, 1} for every i. Let S = S0 = {i | αi = 0},
S1 = {i | αi = 1} and S1/2 = {i | αi = 1/2}. By the same lemma, S ∈ ∆(G) and
G \N [S] has no bipartite component.

Thus

|α| = |S1|+
|S1/2|

2
=
|S|+ |S1|+ |S1/2|

2
+
|S1| − |S|

2
=
r

2
+
|N(S)| − |S|

2
6 d.

Choosing the vertex α such that |α| = δ(J), we deduce δ(J) 6 d, as required. �

For cover ideals, the symbolic Rees algebra is generated in degree at most 2.

Theorem 4.7 (Herzog-Hibi-Trung [17, Theorem 5.1]). Let G be a graph and J =
J(G). Then for every s > 1,

(1) J (2s) = (J (2))s.
(2) J (2s+1) = J(J (2))s.

An immediate corollary is

Corollary 4.8. Let G be a graph. Then reg J(G)(n) is a quasi-linear function of
n of period at most 2 for n large enough.

Proof. Follows from Theorem 4.7 and [34, Theorem 3.2]. �

The next main result in this section is

Theorem 4.9. Let G be a graph and J = J(G). Then

(1) d(J (2s)) = δ(J)2s for every s > 1.
(2) There are m1 ∈ G(J (2)) and m2 ∈ G(J) such that m1m2 ∈ G(J (3)). Let e be

the maximal degree of such an m2 (among all of its possible choices). Then

d(J (2s+1)) = δ(J)2s+ e, for every s > d(J)− e.
(3) If δ(J) = d(J) or δ(J) = r/2, then d(J (2s+1)) = δ(J)2s+ d(J) for s > 0.

Proof. (1) By Lemma 4.3, d(J (2s)) ≤ δ(J)2s.
For the reverse inequality, let α = (α1, . . . , αr) be a vertex of SP(J) such that

δ(J) = |α|. By [33, Formula 23 in Page 104], α is a unique solution of the following
system {

xi + xj = 1, for {i, j} ∈ E1,

xi = 0, for i ∈ V1,

where E1 ⊆ E(G) and V1 ⊆ {1, . . . , r} with |E1| + |V1| = r. By Lemma 4.5,
αi ∈ {0, 1/2, 1} for every i.

Since 2sα ∈ Nr, we get x2sα ∈ J(G)(2s). Note that 2sα is a vertex of SP2s(J),
so x2sα is a generator of J(G)(2s). It follows that d(J (2s)) > 2s|α| = δ(J)2s, as
desired.

(2) Let I = J (2). By Theorem 4.7 we have J (2s+1) = IsJ . Note that d(I) = 2δ(J)
by part (1) above. Therefore, we can write I = I1 + I2 where I2 is generated by
elements of G(I) of degree exactly 2δ(J) and I1 is generated by the remaining
elements.
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We first prove following
Claim: I2J 6⊆ I1J .
Indeed, if I2J ⊆ I1J , we will derive a contradiction. Since IJ = (I1 + I2)J =

I1J + I2J = I1J , for every n > 1, from this equality and Theorem 4.7 we get
J (2n+1) = InJ = In1 J . In particular, d(J (2n+1)) 6 d(I1)n+ d(J), so d(I1) > 2δ(J)
by Theorem 3.3. On the other hand, d(I1) < 2δ(J) by the definition of I1, a
contradiction.

We now return to proving part (2). Recall that by Theorem 4.7, J (3) = J (2)J =
IJ and J (2s+1) = IsJ . Since J (2s+1) = IsJ , there exist g ∈ G(Is) and f ∈ G(J)
such that gf ∈ G(J (2s+1)) and d(J (2s+1)) = deg(gf).

Represent g as g = g1 · · · gs, where each gi is in I. Since gf ∈ G(J (2s+1)), we
deduce from Lemma 4.2 that gi ∈ G(J (2)) = G(I) and gif ∈ G(J (3)) = G(IJ) for
any i. By the same lemma, gsi f ∈ G(J (2s+1)) for all i. Assume that deg g1 6 · · · 6
deg gs. Then

d(J (2s+1)) = deg(gf) = deg g1 + · · ·+ deg gs + deg f

6 sdeg gs + deg f 6 d(J (2s+1)),

so that deg g1 = · · · = deg gs and

deg(gf) = sdeg(gi) + deg(f) for i = 1, . . . , s.

By the claim, there exist m1 ∈ G(I) with deg(m1) = 2δ(J) and m2 ∈ G(J) such
that m1m2 ∈ G(IJ). Let (m1,m2) be a such couple such that e = deg(m2) is
maximal. By Lemma 4.2, ms

1m2 ∈ G(J (2s+1)). In particular,

(4.6) d(J (2s+1)) > deg(m1)s+ deg(m2) = δ(J)2s+ e.

It remains to show that the equality occurs whenever s > d(J) − e. Indeed, if
deg(g1) = 2δ(J), then we must have e = deg(f) by the definition of e. In this case,
d(J (2s+1)) = δ(J)2s+ e.

Assume that deg(g1) < 2δ(J). Since s > d(J)− e > deg(f)− deg(m2), we have

δ(J)2s+ deg(m2) > (deg(g1) + 1)s+ deg(f)− s

= deg(g1)s+ deg(f) = d(J (2s+1)),

so thanks to (4.6), d(J (2s+1)) = δ(J)2s+ e, as required.
(3) If δ(J) = d(J), then there exists m ∈ G(J) of degree d(J). By Lemma 4.2,

m(2s+1) is a minimal generator of J (2s+1), so d(J (2s+1)) > δ(J)(2s+1). The reverse
inequality follows from Lemma 4.3.

If δ(J) = r/2, then for α = (1, . . . , 1) ∈ Nr, xα ∈ G(I) and |α| = 2δ(J). Let
xγ ∈ G(J) be such that |γ| = d(J). Then xsαxγ ∈ G(J (2s+1)) by Lemma 4.2 and
Theorem 4.7. Therefore, d(J (2s+1)) > δ(J)2s+d(J). The reverse inequality follows
from the equality J (2s+1) = (J (2))sJ . �

The following example shows that d(J(G)(2n+1)) need not be a linear function
in n from n = 0.

Example 4.10. Let G be a graph with the vertex set

{xi, yi, zi | i = 1, . . . , 5} ∪ {u, v, w}
which is depicted in Figure 2. Using the EdgeIdeals package in Macaulay2 [12], the
graph G and its cover ideal are given as follows.
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R=ZZ/32003[x_1..x_5,y_1..y_5,z_1..z_5,u,v,w];

G=graph(R,{x_1*x_2,x_1*x_3,x_1*x_4,x_1*x_5,x_2*x_3,x_2*x_4,

x_2*x_5,x_3*x_4,x_3*x_5,x_4*x_5,x_1*y_1,x_1*z_1,x_2*y_2,x_2*z_2,

x_3*y_3,x_3*z_3,x_4*y_4,x_4*z_4,x_5*y_5,x_5*z_5,x_3*u,x_4*u,y_5*u,

u*v,u*w,v*w});

J=dual edgeIdeal G

In particular, G has 18 vertices and 26 edges.

x2

x1

x5

x4

y3 z3

z2

y2

z1

y1 z5

y5

y4

z4

u

v

w

x3

Figure 2. The graph G

Let J = J(G). By using Macaulay2 [12] we get

(1) d(J) = 9, d(J (2)) = 19, and d(J (3)) = 27. By Theorem 4.9, δ(J) = 19/2.

(2) The monomials m1 = u2v2
∏5
i=1(xiyizi) ∈ G(J (2)) and

m2 = x2x3x4x5y1z1uv ∈ G(J)

satisfy m1m2 ∈ G(J (3)). Note that deg(m1) = 19,deg(m2) = 8.

In the notation of Theorem 4.9, we deduce 8 ≤ e ≤ d(J) = 9. If e = 9, then by
ibid. we have d(J (2n+1)) = δ(J)2n + 9 = 19n + 9 for n > d(J) − 9 = 0. Setting
n = 1, we get d(J (3)) = 28, a contradiction. Hence e = 8 and d(J (2n+1)) = 19n+ 8
if (and only if) n > d(J)− 8 = 1.

5. The Koszul property of symbolic powers of cover ideals

The following result is our main tool in the study of the Koszul property of
symbolic powers.

Theorem 5.1. Let (R,m) be a standard graded k-algebra. Let x be a non-zero
linear form and I ′, T be non-trivial homogeneous ideals of R such that the following
conditions are fulfilled:

(i) I ′ is a Koszul module and x is I ′-regular (e.g. x is an R-regular element),
(ii) T ⊆ mI ′,
(iii) x is a regular element with respect to R/T and grm T .
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Denote I = xI ′ + T . Then the decomposition I = xI ′ + T is a Betti splitting, and
there is a chain

ldR T ≤ ldR I = ldR(T + (x)) = ldR(T/xT ) ≤ ldR T + 1.

Moreover, I is a Koszul module if and only if so is T .

Before proving Theorem 5.1, we recall the following result.

Lemma 5.2 (Nguyen [26, Theorem 3.1]). Let 0→M ′ → P ′ → N ′ → 0 be a short
exact sequence of non-zero finitely generated R-modules where

(i) M ′ is a Koszul module;
(ii) M ′ ∩mP ′ = mM ′.

Then there are inequalities ldR P
′ ≤ ldRN

′ ≤ max{ldR P ′, 1}. In particular,
ldRN

′ = ldR P
′ if ldR P

′ ≥ 1 and ldRN
′ ≤ 1 if ldR P

′ = 0.
Moreover, ldRN

′ = 0 if and only if ldR P
′ = 0 and for all s ≥ 1, we have

M ′ ∩msP ′ = msM .

We also have an easy observation.

Lemma 5.3. Let (R,m) be a standard graded k-algebra, and x ∈ m a non-zero
linear form. Let T be a homogeneous ideal of R such that x is (R/T )-regular. Then
the following are equivalent:

(1) x is grm T -regular,
(2) msT : x = ms−1T for all s ≥ 1.

Proof. Clearly x is grm T -regular if and only if

(5.1) (ms+2T : x) ∩msT = ms+1T, for all s ≥ 0.

Hence (2) =⇒ (1).
Conversely, assume that (1) is true. Since ms−1T ⊆ msT : x, it suffices to show

for all s ≥ 1 that msT : x ⊆ ms−1T . Induct on s ≥ 1.
For s = 1,

mT : x ⊆ T : x = T,

where the equality follows from the hypothesis x is (R/T )-regular.
Assume that the statement holds true for s ≥ 1. Using the induction hypothesis,

we have

ms+1T : x ⊆ (ms+1T : x) ∩ (msT : x) ⊆ (ms+1T : x) ∩ms−1T = msT.

The equality in the chain follows from (5.1). The proof is concluded. �

Proof of Theorem 5.1. We proceed through several steps.
Step 1: First we establish the equalities ldR I = ldR T/xT = ldR(T + (x)).

Consider the short exact sequence

0 −→ xI ′ −→ I −→ T

xI ′ ∩ T
=

T

xT
−→ 0.

The equality holds since T : x = T ⊆ I ′.
We claim that

(5.2) xI ′ ∩msI = msxI ′ for all s ≥ 1.
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The inclusion “⊇” is clear. For the other inclusion, take a ∈ xI ′ ∩ msI = xI ′ ∩
ms(xI ′+T ). Subtracting to an element in msxI ′, we may assume that a ∈ xI ′∩msT .
The last module is contained in

(x) ∩msT = x(msT : x) ⊆ xms−1T ⊆ xmsI ′.
In the last chain, the first inclusion follows from Lemma 5.3 and the hypothesis x
is grm T -regular. The second inclusion follows from the hypothesis T ⊆ mI ′. Thus
the claim follows.

Recall that xI ′ ∼= I ′ is Koszul by the hypothesis. Hence using Lemma 5.2 for
the above exact sequence, and Equality (5.2), we get

ldR I = ldR(T/xT ).

Arguing similarly as above for the ideal T + (x) = xR+T , we have ldR(T + (x)) =
ldR T/xT . Hence ldR I = ldR(T/xT ) = ldR(T + (x)), as claimed.

Step 2: Note that x is T -regular, since it is grm T -regular. Let K(x;T ) denote

the Koszul complex 0 → T (−1)
·x−→ T → 0, then K(x;T ) is quasi-isomorphic to

T/xT . Hence using (the graded analogue of) a result of Iyengar and Römer [22,
Remark 2.12], we obtain

ldR T ≤ ldRK(x;T ) = ldR(T/xT ) ≤ ldR T + 1.

Hence we get the desired chain

ldR T ≤ ldR I = ldR(T/xT ) ≤ ldR T + 1.

Step 3: For the assertion on Betti splitting, note that xI ′ ∩ T = xT . Since x
is T -regular, then the morphism TorRi (k, xT ) −→ TorRi (k, T ) is the multiplication

by x of TorRi (k, T ), which is trivial. Since xT ⊆ mxI ′ and xI ′ is Koszul, the map

TorRi (k, xT ) −→ TorRi (k, xI ′) is also trivial thanks to [28, Lemma 4.10(b1)]. Hence
by Lemma 2.4, the decomposition I = xI ′ + T is a Betti splitting.

Step 4: As shown above, ldR T ≤ ldR I, hence if I is Koszul then so is T .
Conversely, assume that T is Koszul. Now x is grm T -regular, so by (the graded
analogue of) [22, Theorem 2.13(a)], we deduce that T/xT is also Koszul. It remains
to use the equality ldR I = ldR T/xT . The proof is concluded. �

Example 5.4. The following example shows that the condition x is grm T -regular
in Theorem 5.1 is critical, even when the base ring is regular.

Let R = k[a, b, c, d], T = (a, c2)(b, d2) = (ab, ad2, bc2, c2d2). Let x = a − b,
I = (x) + T , m = R+. We claim that:

(i) x is (R/T )-regular but not grm T -regular,
(ii) T is Koszul but I is not.

(i): We observe that T : x = T because T = (a, c2) ∩ (b, d2). We also have

c2d2x = c2(ad2)− d2(bc2) ∈ m2T.

Hence c2d2 ∈ (m2T : x) \ (mT ), thus x is not grm T -regular.
(ii): Write T = aJ + L where J = (b, d2), L = c2(b, d2). Then J is Koszul,

L ⊆ mJ and L ∼= J(−2) is Koszul. Applying Corollary 5.6, T is also Koszul.
We have

I = T + (x) = (x) + (a2, ac2, ad2, c2d2).

Denote L = (a2, ac2, ad2, c2d2) ⊆ S = k[a, c, d]. Note that R = S[x], so by Corollary
5.6 and Lemma 2.2, ldR I = ldR(LR+ (x)) = ldS L.
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Assume that I is Koszul, then so is L. Denote by L≤s the ideal generated by
homogeneous elements of degree at most s of L. Then by [15, Lemma 8.2.11], we
also have L≤3 = (a2, ac2, ad2) ∼= (a, c2, d2)(−1) is Koszul. In particular, by Lemma
2.1, regL≤3 = 3.

But then reg(a, c2, d2) = 2! This contradiction confirms that I is not Koszul.

Remark 5.5. Example 5.4 also shows that even if T is a Koszul ideal in a poly-
nomial ring R, and x is a regular linear form modulo T , the ideal T + (x) need not
be Koszul.

Nevertheless, it is not hard to see that this is true if moreover T has a linear
resolution. Indeed, in this case T ∼= grm T as R-modules, so x is grm T -regular.
Applying Theorem 5.1, we get ldR(T + (x)) = ldR T = 0.

The next consequence of Theorem 5.1 generalizes [28, Lemma 8.2].

Corollary 5.6. Let (R,m) be a polynomial ring over k. Let x be a non-zero linear
form, I ′, T be non-trivial homogeneous ideals of R such that the following conditions
are satisfied:

(i) I ′ is Koszul,
(ii) T ⊆ mI ′,

(iii) there exists a polynomial subring S of R such that R = S[x] and T is
generated by elements in S.

Denote I = xI ′ + T . Then the decomposition I = xI ′ + T is a Betti splitting and
ldR I = ldR T .

Proof. First we verify that x, I ′, and T satisfy the hypotheses of Theorem 5.1. Note
that condition (iii) ensures that x is (R/T )-regular. Hence it remains to check that
x is grm T -regular. By the proof of Lemma 5.3, we only need to show that for all
s ≥ 1,

msT : x ⊆ ms−1T.

Take a ∈ msT : x.
By change of coordinates, we can assume that x is one of the variables. Let n be

the graded maximal ideal of S extended to R. Then ms = ((x) +n)s = xms−1 +ns,
therefore

xa ∈ msT = xms−1T + nsT.

So for some b ∈ ms−1T , x(a− b) ∈ nsT , namely

a− b ∈ nsT : x = nsT.

Therefore a ∈ ms−1T + nsT = ms−1T , as claimed.
That I = xI ′ + T is a Betti splitting follows from Theorem 5.1.
Regarding T as an ideal of S, by Theorem 5.1, we also have

ldR I = ldR T/xT = ldR

(
T ⊗k

k[x]

(x)

)
= ldS T,

where the last equality holds because of [29, Lemma 2.3]. Hence ldR I = ldR T , as
desired. �

The main result of this section is as follows.

Theorem 5.7. Let G be the graph obtained by adding to each vertex of a graph H
at least one pendant. Then all the symbolic powers of the cover ideal J(G) of G are
Koszul.
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First, we need an auxiliary lemma. If m = xα1
1 · · ·xαr

r is a monomial of R, its
support is defined by supp(m) = {xi | αi 6= 0}. For a set B of monomials in R, set
suppB =

⋃
m∈B supp(m).

Lemma 5.8. Let I be a momomial ideal of S = k[x1, . . . , xs]. Let 1 ≤ t ≤ s be an
integer. Assume that for every monomial m ∈ S with supp(m) ⊆ {x1, . . . , xt}, the
ideal (m) ∩ I is Koszul. Denote R = S[y, z]. Let m1 = yαfg, where α ≥ 1 is an
integer and f, g are monomials of S satisfying the following conditions:

(i) supp(g) ⊆ {x1, . . . , xt},
(ii) supp f ∩

(
suppG(I) ∪ {x1, . . . , xt}

)
= ∅.

Then for all monomials m ∈ R with supp(m) ⊆ {x1, . . . , xt} and all p, q > 0, the
ideal (z,m1)p ∩ (mzq) ∩ I is Koszul.

Proof. We prove by induction on p+ q. If p+ q = 0, then p = q = 0. In this case,
the conclusion holds true by the assumption.

Assume that p+ q > 1. If p 6 q, then we have

(z,m1)p ∩ (mzq) ∩ I = (mzq) ∩ I.

Since (mzq) ∩ I = zq((m) ∩ I), we have (mzq) ∩ I is Koszul.
Assume that p > q. Consider two cases.
Case 1: q = 0. We have

(z,m1)p ∩ (m) ∩ I = (z,m1)p ∩ ((m) ∩ I)

= (z(z,m1)p−1 + (mp
1)) ∩ ((m) ∩ I)

= zJ + L

where J = (z,m1)p−1 ∩ (m) ∩ I and L = (mp
1) ∩ (m) ∩ I.

Observe that J is Koszul by the induction hypothesis. From the assumptions,
supp(yαf) ∩ (supp(m) ∪ suppG(I)) = ∅, so

L = (ypαfpgp) ∩ (m) ∩ I = ypαfp((gp) ∩ (m) ∩ I)

= ypαfp(lcm(gp,m) ∩ I).

Since supp lcm(gp,m) ⊆ {x1, . . . , xt}, the assumptions yields that lcm(gp,m)∩ I is
Koszul. Therefore L is Koszul.

The above arguments also give

L ⊆ yα
(
y(p−1)αfpgp ∩ (m) ∩ I

)
⊆ y

(
(mp−1

1 ) ∩ (m) ∩ I
)
⊆ yJ.

Thus (z,m1)p ∩ (m) ∩ I is Koszul by Corollary 5.6.
Case 2: q > 1. Then

(z,m1)p ∩ (mzq) ∩ I = zq((z,m1)p−q ∩ (m) ∩ I),

which is Koszul by the induction hypothesis. The proof is complete. �

Now we present the

Proof of Theorem 5.7. Assume that V (H) = {x1, . . . , xd}. Let R = k[x : x ∈
V (G)]. In order to prove the theorem we prove the stronger statement that (m) ∩
J(G)(n) is Koszul for every monomial m ∈ R with supp(m) ⊆ {x1, . . . , xd}. Choos-
ing m = 1, we get the desired conclusion.

Induct on d.
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Step 1: If d = 1, then G is a star with the edge set E(G) = {x1y1, . . . , x1ye},
where e ≥ 1. In this case we have J(G) = (x1, y1 · · · ye) and J(G)(n) = (x1, y1 · · · ye)n.
Assume that m = xp1. Since

(m) ∩ J(G)(n) = (xp1) ∩ (x1, y1 · · · ye)n = xp1(x1, y1 · · · ye)max{0,n−p},

it suffices to prove that (x1, y1 · · · ye)n is Koszul for all n ≥ 0.
If n = 0, this is clear. Assume that n ≥ 1 and the statement holds for n− 1. We

write x = x1, h = y1 · · · ye. Then

(x1, y1 · · · ye)n = (x, h)n = x(x, h)n−1 + (hn).

By the induction hypothesis, (x, h)n−1 is Koszul. Applying Corollary 5.6,

ldR(x, h)n = ldR(hn) = 0.

Step 2: Assume that d > 2. Let y1, . . . , ye be the vertices of the pendants
of G which are adjacent to xd, where e ≥ 1. Let H ′ = H \ {xd} and G′ =
G \ {xd, y1, . . . , ye}. Then V (H ′) = {x1, . . . , xd−1} and G′ is obtained by adding to
each vertex of H ′ at least one pendant.

Let S be the polynomial ring with variables being the vertices of G \ {xd, y1}.
Denote I = J(G′)(n). By the induction hypothesis and Lemma 2.2, (m′) ∩ I is
Koszul for every monomial m′ ∈ S with supp(m′) ⊆ {x1, . . . , xd−1}.

Denote y = y1, z = xd, then R = S[y, z].
Let m1 =

∏
x∈NG(z) x, f = y2 · · · ye, g =

∏
x∈NH(z) x. Then

(i) m1 = yfg,
(ii) supp(g) ⊆ {x1, . . . , xd−1},

(iii) supp(f) ∩
(

suppG(I) ∪ {x1, . . . , xd−1}
)

= ∅.
Moreover by Lemma 2.5,

J(G)(n) = (z, y1)n ∩ · · · ∩ (z, ye)
n ∩

⋂
x∈NH(z)

(z, x)n ∩ J(G′)(n)

= (z, y1 · · · yeg)n ∩ I = (z,m1)n ∩ I.

The second equality holds by observing that (z, y1 · · · yeg) is a complete intersection,
or by direct inspection.

Take any monomial m ∈ R with supp(m) ⊆ {x1, . . . , xd−1, z}. We can write
m = m′zp where supp(m′) ⊆ {x1, . . . , xd−1}. Hence

(m) ∩ J(G)(n) = (z,m1)n ∩ (m) ∩ I = (z,m1)n ∩ (m′zp) ∩ I.

By Lemma 5.8, the last ideal is Koszul. This finishes the induction on d and the
proof. �

The corona cor(G) of a graph G is the graph obtained from G by adding a
pendant at each vertex of G. More generally, the generalized corona cor(G, s) is
the graph obtained from G by adding s ≥ 1 pendant edges to each vertex of G (see
Figure 1).

By Alexander duality [15, Chapter 8], we know that the edge ideal I(G) is Koszul
(having a linear resolution) if and only if J(G) is sequentially Cohen-Macaulay (re-
spectively, Cohen-Macaulay). Combining this with work of Villarreal [37, Section
4], Francisco and Hà [8, Corollary 3.6], we know that J(cor(G)) has a linear reso-
lution. We generalize this for all symbolic powers of J(cor(G)) as follows.
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Corollary 5.9. Let G be a simple graph. Then all the symbolic powers of the cover
ideal J(cor(G)) have linear resolutions.

We introduce some more notations. Let V (G) = {x1, . . . , xd}, where it is harm-
less to assume that d ≥ 1. Let y1, . . . , yd be the new vertices in V (cor(G)), where
yi is only adjacent to xi for all i = 1, . . . , d.

Convention 5.10. We denote the coordinates of the ambient R2d containing
SP(J(cor(G))) by x1, . . . , xd, y1, . . . , yd instead of x1, . . . , xd, xd+1, . . . , x2d, thus
yi = xd+i for i = 1, . . . , d.

The proof of Corollary 5.9 depends on the following lemma (where Convention
5.10 is in force).

Lemma 5.11. Denote J = J(cor(G)). Then for any vertex α ∈ R2d of SP(J), up
to a relabelling of the variables, there exist integers 0 ≤ p ≤ q ≤ d such that α is a
solution of the following system:

x1 = · · · = xp = yp+1 = · · · = yq = 0,

y1 = · · · = yp = xp+1 = · · · = xq = 1,

xj = yj = 1/2, if q + 1 ≤ j ≤ d.

In particular, |α| = d.

Proof. For the first assertion, note that by Lemma 4.5, αi ∈ {0, 1, 1/2} for all i =
1, . . . , 2d. Denote S0 = {xi : αi = 0}, S1 = {xi : αi = 1}, S1/2 = {xi : αi = 1/2}.
By Lemma 4.5, we also have S0 is an independent set of cor(G).

Without loss of generality, we can assume that S0 = {x1, . . . , xp, yp+1, . . . , yq}
for some 0 ≤ p ≤ q ≤ d (recall Convention 5.10). We have to show that S1 =
{y1, . . . , yq, xp+1, . . . , xq}.

By Lemma 4.5, {y1, . . . , yq, xp+1, . . . , xq} ⊆ N(S0) = S1. Clearly yq+1, . . . , yd /∈
S1 since they do not belong to N(S0). Hence it remains to show that xi /∈ S1 for
q + 1 ≤ i ≤ d.

By the definition of S0, yi /∈ S0. Now yi is a leaf of cor(G) and N(yi) = {xi}, so
by Lemma 4.5, xi /∈ S1, as desired.

The second assertion now follows from accounting. The proof is concluded. �

Proof of Corollary 5.9. It is harmless to assume that d = |V (G)| ≥ 1, as mentioned
above. By Theorem 5.7 it suffices to show that J (n) = J(cor(G))(n) generated by
monomials of degree dn.

Step 1: Take any vertex v ∈ R2d of SP(J). By Lemma 5.11, it follows that
|v| = d; in particular δ(J) = d.

Step 2: Let xα be a minimal generator of J (n). Since α ∈ SPn(J), we get
1

n
α ∈ SP(J). Together with Step 1, it follows that

1

n
|α| > min{|v| | v is a vertex of SP(J)} = d,

namely |α| > nd.
On the other hand, by Lemma 4.3,

|α| 6 d(J (n)) 6 δ(J)n = dn.

Thus |α| = nd, as required. �
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a

b

c

d

Figure 3. The graph G2

Remark 5.12. A graph G which contains no induced cycle of length at least 4 is
called a chordal graph. We say that G is a star graph based on a complete graph
Km if G is connected and V (G) = {1, . . . ,m,m+ 1, . . . ,m+g} for some g ≥ 0 such
that:

(1) the complete graph on {1, . . . ,m} is a subgraph of G, and,
(2) there is no edge in G connecting i and j for all m+ 1 ≤ i < j ≤ m+ g.

Any star graph based on a complete graph is chordal.
Let G be a chordal graph. Francisco and Van Tuyl [10, Proof of Theorem

3.2] showed that for such a G, J(G) is Koszul1. In [16], Herzog, Hibi and Ohsugi
conjectured that all the powers of J(G) are Koszul. Furthermore, in ibid., Theorem
3.3, they confirmed this in the case G is a star graph based on a complete graph
Km. Hence it is natural to ask: If G is star graph based on a complete graph, is it
true that J(G)(n) Koszul for all n > 1?

The answer is “No!” Here is a counterexample. Consider the graph G2 in Figure
3. It is the complete graph on the vertices {a, b, c, d} with one edge removed. The
corresponding cover ideal is

J = J(G2) = (bc, abd, acd).

Since G2 is a star graph based on K2, J and all of its ordinanary powers are Koszul
by [16, Theorem 3.3]. But J (n) is not Koszul for all n ≥ 2 by [4, Page 186].

It is natural to ask

Question 5.13. Classify all star graphs based on a complete graph G such that
all the symbolic powers of J(G) are Koszul.

The cover number of a graph G is the minimal cardinality of a vertex cover.
Observe that a subset τ ⊆ V (G) is a minimal vertex cover of G if and only if
V (G) \ τ is a maximal independent set of G.

Let Km be a complete graph with m vertices and G = cor(Km, s) where m > 3
and s > 2. In the rest of the paper we show that both d(J(G)(n)) and reg(J(G)(n))
are not necessarily asymptotic linear functions in n.

Lemma 5.14. For any m > 3 and s > 2, we have:

(1) d(J(cor(Km, s))) = m+ s− 1.

1This result can be proved quicky using Corollary 5.6.
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(2) δ(J(cor(Km, s))) = 1
2m(s+ 1).

Proof. Let G = cor(Km, s). Then G has r = m(s+ 1) vertices and ms leaves.
(1) Let S be a maximal independent set of G. Then either S is the set of leaves

of G, or S consists of a vertex of Km and (m− 1)s leaves which are incident with
the remaining vertices of Km. Thus, the cover number of G is

m(s+ 1)− (1 + (m− 1)s) = m+ s− 1,

and thus d(J(G)) = m+ s− 1.
(2) Since |V (G)| = m(s+1), by Theorem 4.6 we only need to prove the following:

Let S be an independent set of G such that G \N [S] has no bipartite components.
Then |N(S)| ≤ |S|, with equality happens when S = ∅.

We consider three cases:
Case 1: S = ∅. Then N(S) = ∅ and |N(S)| − |S| = 0.
Case 2: S contains a vertex of Km, say v. Then G \ N [S] is either empty or

totally disconnected, in which case it is bipartite. Since G \N [S] has no bipartite
component, the first alternative happens. It follows that S consists of v and all the
leaves not adjacent to it. Thus, |S| = 1 + (m− 1)s ≥ |N(S)| = s+m− 1, since

1 + (m− 1)s− (s+m− 1) = (m− 2)(s− 1) > 0.

Case 3: S contains only leaves of G. Let v1, . . . , vm be vertices of Km. Then
N(S) consists only of vertices of Km, say v1, . . . , vt for 1 ≤ t ≤ m. Each vi requires
at least a leaf adjacent to it, so clearly |S| ≥ t = |N(S)|.

The proof is concluded. �

Finally, we present a family of counterexamples to Question 1.2.

Theorem 5.15. Let G = cor(Km, s) where m > 3 and s > 2. Let J = J(G) be its
cover ideal. Then for all n > 0,

(1) reg J (2n) = d(J (2n)) = m(s+ 1)n;
(2) reg(J (2n+1)) = d(J (2n+1)) = m(s+ 1)n+m+ s− 1.

In particular, for all n,

reg(J (n)) = d(J (n)) = (m+ s− 1)n+ (m− 2)(s− 1)
⌊n

2

⌋
,

which is not an eventually linear function of n.

Proof. By Theorem 5.7, J (n) is Koszul for all n ≥ 1. Hence by Lemma 2.1,
reg(J (n)) = d(J (n)) for all n.

Note that by Lemma 5.14, δ(J) = δ(J(G)) = m(s+1)/2, namely half the number
of vertices of G. Hence by Theorem 4.9, for all n > 0

d(J (2n)) = 2nδ(J),

d(J (2n+1)) = 2nδ(J) + d(J).

From Proposition 5.14(1), d(J) = m+ s− 1, so the desired formulas follow. �

Remark 5.16. The smallest counterexample for Question 1.2 that we have lives
in embedding dimension 9. If we allows non-squarefree monomial ideals, then there
are also counterexamples in embedding dimension 4.

Consider the ideal

I = (x, y2) ∩ (x, a) ∩ (a2, ab2, b3) ⊆ k[x, y, a, b].
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Using arguments similar to the proof of Theorem 5.15, we can show that for all
n ≥ 1, I(n) is Koszul, and reg I(n) = 4n+

⌊
n+1

2

⌋
. Hence reg I(n) is quasi-linear but

not eventually linear.
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