LAN PROPERTY FOR THE DRIFT PARAMETER OF ERGODIC
DIFFUSIONS WITH JUMPS FROM DISCRETE OBSERVATIONS

NGOC KHUE TRAN

ABSTRACT. We consider a multidimensional diffusion with jumps driven by a Brownian
motion and a Poisson random measure associated with a Lévy process without Gaussian
component, whose drift coefficient depends on a multidimensional unknown parameter. In
continuity with the recent work by Kohatsu-Higa et al. [I8] where only the case of finite
jump activity is studied, in this paper the case of infinite jump activity is next investigated.
We prove the local asymptotic normality property from high-frequency discrete observations
with increasing observation window by assuming some hypotheses on the coefficients of the
equation, the ergodicity of the solution and the integrability of the Lévy measure. To obtain
the result, our approach is essentially based on Malliavin calculus techniques initiated by
Gobet [7, 8] and a subtle analysis on the jump structure of the Lévy process developed
recently by Ben Alaya et al. [2].

1. INTRODUCTION

On a complete probability space (€2, F, P) which will be specified later on, we consider the
d-dimensional process X? = (X{);>0 solution to the following stochastic differential equation
(SDE) with jumps

dX? = b(0, XO)dt + o(X?)dB, + / (X0 2) (N(dt,d2) — v{dz)dr) (L.1)
RO
where X§ = 29 € R? is fixed and known, R¢ := R?\ {0}, B = (B;);>0 is a d-dimensional
Brownian motion, and N(dt,dz) is a Poisson random measure in (Ry x RE, B(R; x R%))
independent of B with intensity measure v(dz)dt. The Lévy measure v(dz) can be finite
or infinite. The Poisson random measure N (dt,dz) is associated to a centered Lévy process
Z = (Z)¢>0 without Gaussian component, that is, the Lévy-1td6 decomposition of Z takes the
form Z; = fg ng zN(ds,dz) for any ¢ > 0, where N(dt,dz) := N(dt,dz) — v(dz)dt denotes
the compensated Poisson random measure and N(dt, dz) ==} oo «; 1{az,2010(s,02,)(ds, dz).
Here, the jump amplitude of Z is defined as AZ; := Z; — Z;_ for any s > 0, AZy := 0,
8(s,~) denotes the Dirac measure at the point (s,z) € Ry x Rf, and B(Ry x R) denotes the
Borel g-algebra on R x ]Rg. The unknown parameter § = (61, ...,0,,) belongs to ©, an open
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subset of R™, for some integer m > 1. Let {ﬁt}tZO denote the natural filtration generated
by B and N. The coefficients b = (b1,...,bg) : © x RY — R% o : R? — R? @ R? and
c:RYx R4 — R? are measurable functions satisfying the Lipschitz continuity condition (A1)
below under which equation has a unique {ft}tzo—adapted cadlag solution X? possessing
the strong Markov property (see [I3, Theorem III1.2.32] or [I, Theorems 6.2.9. and 6.4.6.]).
We denote by P? the probability measure induced by the process X? on the canonical space
(D(R4,R%), B(D(R;,R%))) endowed with the natural filtration {ﬁt}tzo- Here D(R,,R%)
denotes the set of R%-valued cadlag functions defined on R, and B(D(R,R%)) is its Borel

~ ~ PO (P9 ~

o-algebra. We denote by EY the expectation with respect to (w.r.t.) PY. Let P—), (—>), po-
L(P ~ ~ ~

a.s., i), and (—2 denote the convergence in P?-probability, in P?-law, in P?-almost surely,

in P-probability, and in P-law, respectively. For z € R?, |x| denotes the Euclidean norm. |A|

denotes the Frobenius norm of the square matrix A, and tr(A) denotes the trace. * denotes

the transpose.

The class of Lévy-driven SDEs has recently received a lot of attention in various fields of
applications such as physics, neurosciences, mathematical finance,.... The statistical study
for these SDEs has become an active domain of research. Parameter estimation for diffusion
processes from discrete observations can be found, for instance, in [4l [5, [16]. In the case of
diffusions with jumps, see [23, [6], B3, 29] 32| 26].

For § € ©® and n € N*, a discrete observation at deterministic and equidistant times t; =
kAn, k € {0,...,n} of the process X solution to is denoted by X™? = (X, X7, ..., X}).
We assume that the sequence of sampling time-step sizes A,, satisfies the high-frequency and
infinite horizon conditions: A, — 0 and nA,, — oo as n — oo. Let P? denote the probability
law of the random vector X,

The Local Asymptotic Normality (LAN) property is a fundamental concept in the asymp-
totic theory of statistics. This property was introduced by Le Cam [20] and Héjek [9] in the
situations where the asymptotic Fisher information matrix is deterministic. In our setting, we
say that the LAN property holds at 8 € © with rate of convergence ¢, (/) and asymptotic
Fisher information matrix I'(°) if for any u € R™, as n — oo,

%+onn, (00)u ~,0
dPp " n,0° L) 0 1 * 0

where N'(0,T(6%)) is a centered R™-valued Gaussian random variable with covariance matrix
I'(0°). Here, I'(°) is a symmetric positive definite non-random matrix in R™*™_ A (09) is
a diagonal matrix in R™*™ whose diagonal entries tend to zero as n — oco. Later on, the con-
cept of Local Asymptotic Mixed Normality (LAMN) property was developed by Jeganathan
[T4] when the asymptotic Fisher information matrix I'(§°) is random. These properties al-
low to introduce the notion of asymptotically efficient estimators in the sense of Héjek-Le
Cam convolution theorem and to give the lower bounds for the variance of estimators (see
Jeganathan [14]). Assume that the LAN property holds at point 6% on the one hand, a
sequence of estimators (é\n)n21 of the parameter 6° is called asymptotically efficient at 6° in
the sense of H4jek-Le Cam convolution theorem if as n — oo,

ok, (0%) (B0 — %) "5 W0, T (%) ).
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On the other hand, the minimax theorem states that the lower bound for the asymptotic
variance of estimators is given by the Cramer-rao lower bound I'(#°)~!. We refer the reader
to Subsection 7.1 of Hopfner [10] or Le Cam and Lo Yang [21] for further details.

On the basis of continuous observations, the LAMN property was studied by Luschgy [22]
for semimartingale. In the case of discrete observations, the Malliavin calculus approach
initiated by Gobet [7, [§] is used to obtain the LAMN and LAN properties. In [7], the author
addressed the LAMN property for multidimensional elliptic diffusion processes. Later on, the
LAN property was established in [§] for multidimensional ergodic diffusions. More recently,
Ben Alaya et al. [3] have proved the LAN property in the subcritical case, the local asymptotic
quadraticity (LAQ) in the critical case, and the LAMN property in the supercritical case for
the Cox-Ingersoll-Ross process. In presence of jumps, several Lévy-driven SDEs have been
investigated. More precisely, Kawai [15] studied the LAN property for the ergodic Ornstein-
Uhlenbeck processes with jumps by using the fact that the solution and transition density are
semi-explicit. See also [17), 34] in the case of a simple Lévy process and an ergodic Ornstein-
Uhlenbeck process with Poisson jumps, respectively. Recently, Kohatsu-Higa et al. [I8] have
obtained the LAN property for the SDE with jumps in a particular case where the
driving Lévy process is a compound Poisson process with finite Lévy measure. More recently,
in [2] Ben Alaya et al. have studied the local asymptotic properties for the growth rate of a
jump-type CIR process driven by a subordinator with a possible infinite jump activity.

To our knowledge, the validity of the LAN property for SDEs having a Brownian
driver and a more general driving Lévy process with possible infinite Lévy measure has never
been addressed in the literature. Thus, the purpose of this paper is to prove the LAN property
for the drift parameter of diffusions with jumps from discrete observations under some
appropriate assumptions on the coefficients of the equation, the ergodicity of the solution and
the integrability of the Lévy measure. This paper solves the open problem stated in page 933
of [I5] and page 423 of [I8] in the case where the unknown parameter appears only in the
drift coefficient.

The first challenge is that the transition density of the solution to equation is not
explicit in general, which complicates the analysis of the log-likelihood of the discretized
process (Xfo,Xfl, e ,an). To overcome this challenge, the Malliavin calculus approach
initiated by Gobet [7, [§] is used to obtain an explicit expression for the logarithm derivative
of the transition density w.r.t. the parameter (see Lemma and . This allows us to
derive an appropriate stochastic expansion of the log-likelihood ratio (see Lemma . Let
us mention that this Malliavin calculus approach has been intensively developed in [15] 17,
18, B4, B, 2]. In order to show the main contributions, we use a central limit theorem for
triangular arrays of random variables and the ergodicity (see Lemma . These random
variables are given by the terms which are determined by the Gaussian and drift components
of equation (|1.1J).

The second challenge is to deal with the negligible contributions of the stochastic expansion
of the log-likelihood ratio. As will be seen in Subsection [4.3] one difficulty comes from the fact

MO whereas

that the conditional expectations are computed under the probability measure pY:
the convergence is proven under the probability measure P? with P?" =+ po +(£), where 0?+ (0)
will be specified later on as a parameter value close to #°. To solve this problem, two technical
Lemmas [3.6] and which describe the Girsanov change of measures and the deviation of

Girsanov change of measures, are mainly used. Recall that in [§] the author used a change
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of transition densities together with the upper and lower bounds of Gaussian type of the
transition densities. This argument cannot be applied to our SDE with jumps where the
upper and lower bounds of the transition densities may be of different characteristics due
to the fact that the behavior of the transition density changes strongly with the presence of
jumps.

The other difficulty is due to the jump components appearing in the stochastic expansion of
the log-likelihood ratio (see Lemma . To resolve this difficulty, we apply a new approach
developed recently by Ben Alaya et al. in [2] where a subtle analysis on the jump structure
of the Lévy processes involving the amplitude of jumps and number of jumps is mainly used.
More concretely, this approach consists in splitting the jumps of the Lévy processes into small
jumps and big jumps, and then conditioning on the number of big jumps outside and inside
the conditional expectation. When the number of big jumps of the Lévy processes outside
and inside the conditional expectation is different, a large deviation principle in the estimate
can be used (see and ) and otherwise, an analysis on the complementary set is
used (see ) All these arguments combined with the usual moment estimates allow to
derive the exact large deviation type estimates given in Lemma[5.1] where the decreasing rate
is determined by the intensity of the big jumps and the asymptotic behavior of the small
jumps. This decreasing rate together with the help of condition (A5) on the integrability
condition of the Lévy measure will show the negligible contributions of the jump components
in the asymptotics. It is worth noticing that this new approach allows to include more general
driving Lévy processes with possible infinite Lévy measure. Recall that the approach in [I8],
Lemma A.14] relies on conditioning on the jump structure involving number of jumps and
amplitude of jumps, and using lower bounds for the transition density and upper bounds for
the transition density conditioned on the jump structure in order to obtain the large deviation
type estimates. Besides, only the case of compound Poisson process with finite Lévy measure
is studied in [I8]. Thus, the result derived in this paper can be seen as an improvement of
the one obtained in [18].

The issue of parameter estimation for Lévy-driven SDEs from discrete observations usually
requires an additional assumption on the decreasing rate of A,,, for instance, the rate nA}, — 0
for some p > 1 or the rate may depend on the behavior of the Lévy measure v near zero, see
[23, Theorem 3.5 and Theorem 4.6] and [6, Theorem 3.2]. On the one hand, our approach
does not require neither additional assumption on the decreasing rate of A,, (see Remark
nor the tail behavior of the transition density. On the other hand, our approach keeps a wide
class of Lévy processes in applications (see Example [2.1]).

This paper is organized as follows. In Section 2, we formulate assumptions on equation
and provide a wide class of Lévy processes in applications which satisfies the assumption
on the integrability of the Lévy measure. Furthermore, the main result is stated in Theorem
2.2l Section 3 is devoted to preliminary results which are needed for the proof of Theorem
such as an explicit expression for the logarithm derivative of the transition density, some
crucial moment estimates, a conditional expectation formula, deviation of Girsanov change of
measures, a discrete ergodic theorem. The proofs of these results are somewhat technical and
are delayed to Appendix to maintain the flow of the exposition. We prove our main result
in Section 4, which follows the aforementioned strategy. Finally, the proofs of some technical
lemmas are presented in Section 5, where a result on the large deviation type estimates is
also proven.
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As usual, constants will be denoted by C' which may change of value from one line to the
next.

2. ASSUMPTIONS AND MAIN RESULT

We consider the following hypotheses on equation (1.1)) we shall work with.

(A1) For any 6 € ©, there exist a constant L > 0 and a function ¢ : R& — R, of polynomial
growth in z satisfying ((2)1,<; < C|z| with a constant C' > 0 such that for all z,y € R,
z € Rg,
b6, 2) = b(0,y)| +|o(x) —o(y)| < L]z —yl,
le(@,2) — c(y, 2)| < C(2)|x —yl, |e(z,2)] < ((2)(1 +|=]).
Moreover, the Lipschitz constant L is uniformly bounded on ©.

(A2) The diffusion matrix o satisfies an uniform ellipticity condition, that is, there exists a
constant ¢ > 1 such that for all z, £ € RY,

1
Slel? < lo(@)el® < clef.

(A3) The functions b, o and c are of class C! w.r.t. § and x. Each partial derivative dp,b,
Oz,b, 0,0 and O,,c is of class C! w.r.t. . Moreover, there exist positive constants C, g,
v € (0, 1], independent of (9,91,02,x,y,z) € 03 x (R%)? x R¢ such that
(a) |02,0(0,2)| + |0r;0(2)| < C, and [0r,c(x, 2)| < ((2);
(b) |a(-,2)| < C(1+ |2]9) for h(-, z) = 0p,b(0, x), 0%, ,,;b(6, %), 0, , b(6,x) or O, o(x);
() 02, 4;c(@, 2)| < CC(2) (1+ |z]);
(d) Op,b(-,x) is - Hélder continuous w.r.t § € ©:

|96,6(0", ) — 0g,b(6%, )| < C10" — 027 (1 + []).

Y
(A4) For all § € O, the process X" is ergodic in the sense that there exists a unique invariant
probability measure 7y(dz) such that the ergodic theorem holds, that is, as T' — oo,

J Y A =7
7 | 9Xi)dt — | g(z)me(da),
0 R

for any mg-integrable function g : R? — R. Moreover, [pq|z[Pmg(dz) < oo, for any
p > 0.

(A5) The Lévy measure v satisfies f‘
.

>1 121Pv(dz) < oo for any p > 1 and f0<|z‘§1 |z|v(dz) <

The uniform ellipticity condition (A2) and regularity condition (A3)(a)-(c) on the coeffi-
cients are required in order to be able to apply the Malliavin calculus. Condition (A3)(d) is
needed to show the main contributions of the stochastic expansion of the log-likelihood ratio
(see Lemma[4.2)). The ergodicity in the sense of (A4) was shown by Masuda in [24, Theorem
2.1] for a class of multidimensional diffusions with jumps. More recently, in [0, Lemma 2.1],
conditions for the existence of an invariant measure 7y and the ergodicity in the sense of (A4)
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are given for one-dimensional Lévy-driven SDEs with ¢(z,z) = y(z)z. Several examples of
ergodic diffusion processes with jumps are given in [32]. Moreover, results on ergodicity and
exponential ergodicity which are understood in the sense of [27] and which are both stronger
than the sense of (A4) have been established by Masuda [24] for diffusion processes with
jumps.

The ergodicity also implies that for all p > 0,

sup E? [|Xfyp} < +oo. (2.1)
t€R+

See [24, Theorem 2.2] and [0, Lemma 2.1].

The integrability condition (A5) of the Lévy measure controls the behavior of the small
jumps and big jumps of the Lévy process, which is required in order to prove the negligible
contribution of the jump component in the expansion (see Lemma . With the help of
condition (A5), the jump component is dominated over by the Gaussian component in a
small time interval.

Example 2.1. Condition (A5) can be verified for a wide class of Lévy measures: finite Lévy
measure and infinite Lévy measure.

1) Lévy measure of a Poisson process v(dz) = Ad1(dz), where X > 0 is the parameter of the
Poisson process and 61(dz) is the Dirac measure supported on {1}.

2) Lévy measure of a compound Poisson process with exponentially distributed jump sizes
v(dz) = CAe 19 o) (2)dz, for some constants C' € (0,00) and A € (0, 00).

3) Lévy measure of Gamma process v(dz) = 72_16_’\Z1(0700)(2)dz, where v and X\ are
positive constants.
2

4) Lévy measure of inverse Gaussian process with v(dz) = \/%ef szl(opo)(z)dz, for a

positive constant d.

5) Lévy measure of a subordinator which is given by the gamma probability distribution.
That is, v(dz) = %za_le_Azl(o’oo)(z)dz where a € (—1,00) and X is a positive constant.

6) Lévy measure of Variance gamma process

V(dz) = {C’eGL]z\_ll %f 2<0
Ce M2z if z>0,
where C, G, M are positive constants.

7) Lévy measure of normal inverse Gaussian process
ad e K (alz])
™ ||
where § >0, a >0, —a < B < «, K)\(z) is the modified Bessel function of the third kind

1 [ 1
Ky(z) = 2/0 urt exp{—Qz(u—Ful)}du.

8) Lévy measure of some generalized tempered stable processes

cpe M? c_e M-l
v(dz) = 0,00 ()2 + e Lo ()2,

v(dz) = dz,
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with parameters satisfying c4 >0, ¢; >0, Ay >0, A_ >0, ay <1 and a— < 1.

For fixed 0° € ©, we consider a discrete observation X n0° — (X%O,Xflo, . ,Xf:) of the
process X %°  The main result of this paper is the following LAN property.

Theorem 2.2. Assume conditions (A1)-(A5). Then, the LAN property holds for the like-
lihood at 6° with rate of convergence ona, (6°) = diag(\/iTn, cee \/nITn) where @) A (0°) =

=oAL (0% = \/an and asymptotic Fisher information matrix

F(GO) :/ (V@b(ﬁo,x))*(aa*)fl(x)VQb(GO,a:)ﬂgo(dx), (2.2)
R4
where the elements of matriz T'(0°) = (T(0°); ;)1<ij<m € R™ @ R™ are given by

r0%),;; = /]Rd (Ogib(eo,x))* (UU*)_I(az)ﬁgjb(Ho,m)ﬂgo(daz).

That is, for all w € R™, as n — oo,
90 u

dP, VI ) 1,
logzlrj (Xnﬁ ) = wN(0,0(6%) = Su T8,
where N'(0,T(6°)) is a centered R™-valued Gaussian random variable with covariance matriz

INCAR

Remark 2.3. Theorem can be seen as an extension of the result obtained by Gobet in
[8, Theorem 4.1] for ergodic diffusions in the case when the unknown parameter appears only
in the drift coefficient and when a jump component is added to the solution process. When
the jump component in is degenerate, we recover the same formula for the asymptotic

Fisher information matriz T'(6°) of ergodic diffusions without jumps obtained in [8, Theorem
4.1].

Remark 2.4. Theorem generalizes the result obtained by Kohatsu-Higa et al. in [18|
Theorem 2.2] when the unknown parameter is multidimensional and when the jump component
of driving Lévy processes are more general and of a possible infinite jump activity.

Remark 2.5. When the LAN property holds at 6° with rate of convergence ppa, (0°) =
diag(\/nli, e \/an) and asymptotic Fisher information matriz T'(0°), in this case a se-

quence of estimators (é\n)nzl of 6° is said to be asymptotically efficient at 6° in the sense of
Hdjek-Le Cam convolution theorem if as n — oo,

~ po°
Vi, (B, - 6°) ) V0,100,
Note that a sequence of estimators which is asymptotically efficient in the sense of Hdjek-Le

Cam convolution theorem achieves asymptotically the Cramér-Rao lower bound T'(6°)~1 for
the estimation variance. For details, we refer the reader to e.g. [21].

In [23], the author constructs a discretized likelihood estimator with jump filtering from the
time-continuous likelihood function, which is given by (6) in [23], for the drift parameter of an
Ornstein-Uhlenbeck process driven by a Lévy process whose jump component is of finite jump
activity or infinite jump activity. Combining our main result Theorem and [23], Theorem
3.5 and Theorem 4.6], this estimator is asymptotically efficient in the sense of Hdjek-Le Cam
convolution theorem.
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More recently, in [0], a filtered mazimum likelihood estimator (FMLE) for the drift param-
eter of the one-dimensional SDE with c(x,z) = y(z)z, driven by a Lévy process with
a possible infinite jump activity, is constructed by applying a jump filter to the discretized
likelihood function. This FMLE is given by (3.5) in [0]. As a consequence of our main re-
sult Theorem (2.2 and [6l Theorem 3.2|, this FMLE is asymptotically efficient in the sense
of Hdjek-Le Cam convolution theorem since its variance achieves the lower bound for the
asymptotic variance of estimators with the optimal rate of convergence.

Example 2.6. 1) Consider the one-dimensional Ornstein-Uhlenbeck process driven by a Lévy
process X102 = (Xfl’QQ)tZO defined as

t
X000 = o /0 (02 — 0:1XJ%)ds + 0 By + Z;

t t "
=x0+ / (02 — 6, X9%2)ds + o B, + / / zN(ds,dz),
0 0 JRg

where 0 = (01,02), 01 > 0, 0 > 0. Assume that the Lévy measure satisfies condition (AB)

which implies f‘z|>2 log |z|v(dz) < 400. This integrability, together with 6, > 0, ensures that

X992 s ergodic in the sense of (A4) with an invariant probability measure Ty, g,(dz) which
can be computed explicitly (see [31, Theorem 17.5 and Corollary 17.9] and [24, Theorem 2.6]),
and satisfies [ |x[Pmo, g, (dx) < 0o for any p > 0. In particular,

)

6’

2
R 01,0 1 0
tll)Iglo Ef02(xT192)2] = /szﬂel,eg(dx) =20, <02 + /Ro 221/(dz)) + (01> .
Then, the matriz T'(01,02) is given by

lim BOv02 [ x7102) = / xmy, 0, (dx) =
R

t—o00

1 2 2 ?
o° + [ 2*v(dz)) + <) —=
P(61,02) = — | 201 (o7 + ) o o

0’2 02

Notice that in this case conditions (A1)-(A3) hold. As a consequence of Theorem under
., . . 1
condition (A5), the LAN property holds with rate of convergence dlag(m,ﬁ) and

asymptotic Fisher information matriz T'(0°) = T'(69,69).
2) Consider the one-dimensional Lévy process defined as

Xf:aco—I-Ht—l—aBt—i—Zt

t ~
= a:o—i-Ht—l—aBt—i—/ / zN (ds,dz),
0 JRro

where 0 € R and 0 > 0. Assume that the Lévy measure satisfies condition (A5). Notice that
conditions (A1)-(A3) hold. Then as a consequence of Theorem (2.2, under condition (A5),
the LAN property holds with rate of convergence \/an and asymptotic Fisher information

re°) = % In this case, condition (A4) is not needed since T'(0°) can be obtained without
using the ergodicity assumption, but thanks to the simple structure of the drift and diffusion

coefficients (see (4.6) below).
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As usual, constants will be denoted by C' which may change of value from one line to the
next.

3. PRELIMINARIES

In this section, we are going to present some preliminary results which are needed for the

proof of Theorem To simplify the exposition, for ¢ € {1,...,m} we use the following
notations

0% = (09,...,00),u = (u1,us,...,un),
PO+ — 0 Y g0 ML g0y Um
+M (1+m7 7m+\/m)a

% + Ui+1 90 + Um )
"t e )
00T (0) == (69, ...,00 |, 00 + 0 g0 4 WL g0 Um oy

7 ( ) ( 1 i—1 \/T i+1 \/m m \/TLT)

Conditions (A1)-(Az2) imply that the law of the discrete observation X™¢ = (X{ X{ ... X{)
of the process X? has a density in (R%)"*! that we denote by p,(-;#). Under conditions (A1),
(A2) and (A3)(a), for any ¢ > s the law of X{ conditioned on X? = z possesses a positive
transition density p’(t — s, z,y), which is differentiable w.r.t. §. To analyze the log-likelihood
ratio in Theorem the Markov property is used to rewrite the global likelihood function

in terms of a product of transition densities and then a mean value theorem is applied. More
precisely,

09 = (69,...,0%_,,0

dP§ o (X70°;60) P (X707 60)
n—1 p00+ 50 50 n—1 p9(1)+ 0 B
S (s ) - S (02
r—o P D
n—1 90+ 90+ 60+ 00+ 60+
p ! p 2 p ? p m—1 p
= log (A ,X ,X )
kZO <p€g+ pegJr pegil p99n+ p90 ) T let1
T o T 0 o
0 0 0 )
S (s ) S (50
k=0 p = b
90+ 90+
-+ Z log ) OII <Ana th 7th+1) -+ Z log <An7 th ’th+1)
k=0 v

n

Dp,p"" (O

1
\/nA / 00*(6

a@p Z) 90 90
+zm/ TN

0 0
(an, X8, X1 ) ar

n

0+
9, p% ¢

1
o \/nT / o (A”’thXtm)dg
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1 aampegj(e) 0 oo
o+ Z \/W WD (an, X7, X1 ) . (3.1)
Then, using the approach developed in [7, 8], the integration by parts formula of the Malli-
avin calculus on each interval [tg,tx+1] will be applied to obtain an explicit expression for
the logarithm derivative of the transition density w.r.t. the parameter appearing in the
decomposition . Towards this aim, we introduce canonical filtered probability spaces
(QF, F{Fihi>0,P?Y), i € {1,...,4}, associated respectively to each of four processes B, N, W
and M. Here W = (W;)>0 is a d-dimensional Brownian motion, M(dt,dz) is a Pois-
son random measure with intensity measure v(dz)dt associated to a centered Lévy process
Z (Zt)t>0 without Gaussian component. The Levy—Ito decomposition of 7 takes the form

= fo ng 2M(ds,dz) for any t > 0, where M (dt,dz) := M(dt,dz) — v(dz)dt denotes the

compensated Poisson random measure, M(dt,dz) := 3 ;1 (AZ,4019(s.07,)(ds, dz). Here,

the jump amplitude of Z is defined as AZ := Z, — Z,_ for any s > 0, AZy := 0. Four pro-
cesses B, N,W, M are mutually independent. Let (2, F, {]—"t}t>0, P) be the product filtered
probablhty space of these four canonical spaces. We denote Q= 0! x 02, F=rlg F2
P=Pl@P, /i=FoF0=0x0" F=FaoF, P=P P! ad F, = F} o F.
Thus, Q =QxQ, F=F®F,P=P@P, /i=F®F, and E = E®QE, where E, E, E
denote the expectation w.r.t. P, P and P respectively.

To avoid confusion with the observed process X?, we are going to introduce an independent
copy of X%, denoted by Y? = (Y,?);>¢, for which the Malliavin calculus will be applied. On the
same probability space (Q, F,P), we consider the stochastic flow Y?(s,z) = (Y (s, z),t > s),
x € R? on the time interval [s,00) and with initial condition Y?(s,z) = z satisfying

Y0 (s, ) :x+/tb(9,yj(s,x))du+/ta(yf(s,x))dwu

n / t /R g (Y (s,2), )M (du, d2).

In particular, we denote Y? = Y;?(0, z0), for all £ > 0. Thus,

vy :zo+/0 b(6, Y")du+/ Ndw, +/ /Rd M (du, dz). (3.3)

The Malliavin calculus on the Wiener space induced by the Brownian motion W will be
applied. Let D and § denote respectively the Malliavin derivative and the Skorohod integral
w.r.t. W on each interval [tg,tx41]. We denote by D'? the space of random variables which
are differentiable in the sense of Malliavin, and by Dom § the domain of §. We refer to
Nualart [28] for a detailed exposition of the Malliavin calculus on the Wiener space and
the Malliavin calculus adapted to our framework is introduced, for instance, in [30]. Recall
that for a differentiable random variable F € D2, its Malliavin derivative is denoted by
DF = (D'F,...,DF), where D' is the Malliavin derivative in the ith direction W* of the
Brownian motion W = (W' ..., W¢9), for i € {1,...,d}. For a Rvalued process U =
(U',...,U%) € Dom 6, the Skorohod integral of U is defined as 6(U) = Ele §4(U"), where
% denotes the Skorohod integral w.r.t. W<
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For any k € {0,...,n — 1}, under conditions (A1), (A2) and (A3)(a)-(b), the process
(Y2 (tg,x),t € [tr,txr1]) is differentiable w.r.t. = and 6 (see Kunita [I9]). We denote by
(V.Y (tg, ), t € [ty,trs1]) the Jacobian matrix, and by (0p, Y (tg, ), t € [tg,trs1]) the de-

rivative w.r.t. 6; for i € {1,...,m}. These processes solve a system of SDEs
t
VoY (tkyx) =Tg+ | Vab(0, Y (te, 2)) Vi Y (ty, x)ds (3.4)
tk

t —
+Z v 205 (Y2 (ty, ))vxy;"(tk,x)dwg+/t Rdv (Y2 (tg, ), 2)Vo YO (ty, )M (ds, dz),

t
09, Y (tr, ) = / (00,000, Y2 (14, @) + Vb0, Y (1, 2))0, Y (15, 2) ) ds (3.5)
ty
, z vma] 000+ [ [ a0 (1,21, 200Y 0 ) s, 02),
tr ]R
fori € {1,...,m}, where o1,...,04 : R = R? denote the columns of the matrix o.

Moreover, under conditions (A1), (A2) and (A3)(a)-(c), the random variables Y, (¢, x),
V.Y (tr,7), (VoY (tr,z))~! and 0y, Y (tr, ) belong to DY2 for any ¢ € [tg,try1] (see [30,
Theorem 3]). Furthermore, the Malliavin derivative D,Y,?(tz,z) satisfies the following equa-
tion

DY? (ty, ) = o(Y2 (ty, z / Vb8, Y7 (ty, ) DY (ty, z)du

d t N
+Z/ vgcaj(Yu@(tk,x))DSY5(tk,x)de+/ Voe(YO (ty, ), 2) DY (t, ) M (du, dz),
j=175 s JRE

for s <t a.e., and DY (t,z) = 0 for s >t a.e. By [30, Proposition 7], it holds that
DY/ (th, x) = VaX{ (th, 2) (VY (b, 2)) ' (V] (b 2)) L, 41 (5).

Now, for all k € {0, ...,n—1} and z € R?, we denote by IS?H: the probability law of Y starting
at x at time tg, i.e. Pfk x(A) = E[lA\Y;z = z]forall A € F, and by Eka the expectation w.r.t.
Pfk .. That is, for all F-measurable random variables V, we have E?kI[V] = E[V!Y}i = x].
Hence, E?kx is the expectation under the probability law of Y starting at = at time ty.
Similarly, we denote by 13ka the probability law of X? starting at z at time 4, i.e., ?ka (A) =

[1A|Xt = z] for all A € F, and by E} _ the expectatlon Ww.I.t. Ptk .- That is, for all F-

measurable random variables V', we have Ee [V] [V|X f = 1] Let Pfk g = Pfk +® Ptk .
be the product measure, and Etk .= E?k . tk . denotes the expectation w.r.t. Ptk -

As in [7, Proposition 4.1], we obtain the following explicit expression for the logarithm
derivative of the transition density w.r.t. 6 in terms of a conditional expectation.

Lemma 3.1. Under conditions (A1), (A2) and (A3)(a)-(c), for alli € {1,...,m}, k €
{0,..,n—1},0 €0, and x,y € R?,

3929
p

(Bneey) = 3Bl 5 (0t m)O0 Y () [V, =]
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where U (ty, x) = (Uf (tg, ), t € [tr, tega]) with Uf (ty, z) = (DY (tr, @) 7"
We next derive the following decomposition of the Skorohod integral appearing in the
conditional expectation of Lemma
Lemma 3.2. Under conditions (A1), (A2) and (A3)(a)-(c), for alli € {1,...,m}, k €
{0,..,n—1},0 €0, and x € R?,
6 (U9 (1 2)00,YE,, (14 @) ) = Bn(@p,000,))" (00") ™ () (Y, = Vil = b(0, V) A, )
0.k 0,k 0.k 0.k 0.k 0.k

where

0,k betr [l 1 0 119 0
R / / tr (VoY (ty, 1)) 195,00, Y (tk,x)))*> oL (Y2 (ty, 7))V, Y, (tk,:z)> duds,
tk S

Ry = / (VoYY (13, 2)) ™ 00,b(0, VY (11, 2))) " ds

Ly

’ / (Yt ) (0 (Y o )))* — (VY ) (0 (Y (3, 2)))") TV,

173

RO* — / (Y2 01 2) 7 0000, Y2 11 2))” — (Va0 (b)) 0,56, ¥ (15, 2)))° ) ds

tg

[ ) (0 O )

tg

tei
RY = 8,000, (00") ) [ (10030~ 000, ) .
k

R = auon 0 YE)) o) 03 [ (o070) = o0 >) aw.,

0k tet1
Ry"™ = A, (0p,b(0, Yt ) (oc* Ytk / / ds ,dz).
tr Rd

As a consequence of Lemma [3.1] and [3.2], we derive the following explicit expression for the
logarithm derivative of the transition density.

Lemma 3.3. Under conditions (A1), (A2) and (A3)(a)-(c), for alli € {1,...,m}, k €
{0,..,n—1},0 €0, and x,y € R?,

8
0 p (Ap,z,y) = (99,b(0, 7)) (00") () (y — x — b(0, ) Ay,)
1 ~ 0.k 0.k 0.k 0.k 0.k 0.k
+ IEW [ Ry”™+ Ry" + Ry™ — Ry” — Ry — Ry ‘ thyr y} :

We will use the following estimates for the solution to (3.2)).
Lemma 3.4. Assume conditions (A1), (A2) and (A5).

(i) For any p > 1 and 6 € ©, there exists a constant C, > 0 such that for all k €
{0, e n = 1} andt € [tk,tk+1],

p P
Bf o [ () = Y ()| ] < Cplt = tal 3 (1 + Jal?).




LAN PROPERTY FOR ERGODIC DIFFUSIONS WITH JUMPS 13

(ii) For any function g defined on © x R? with polynomial growth in x uniformly in 6 € ©,
there exist constants C,q > 0 such that for all k € {0,....n — 1} and t € [tx, txt1],

E?k,(ﬂ [

Moreover, all these statements remain valid for X°.

9(0. Y/ (tr,))|| < C (1 + |19,

Using conditions (A1), (A2), (A3)(a)-(c) and (A5), and Gronwall’s inequality, it can
be checked that for any 6 € © and p > 2, there exist constants C),q > 0 such that for all
ke {0, v, — 1} and t € [tk,tk+1],

~ p
E?k,z [ DSY?(t/f?x)‘ } < Cp?

p V4 ~
VY (o) + | (Vo) ]+ s B

SE[tk,tk+1]

P ~
agin(tk,x)‘ } + sup Eka[

5€[tx,tp11]

B | D, (VY{(teo))|'] <Coa+12). (30)

where the constant C), is uniform in . As a consequence, we have the following estimates,
which follow easily from (j5.3)), Lemma and properties of the expectation of the Brownian
motion and the Skorohod integral.

Lemma 3.5. Under conditions (A1), (A2), (A3)(a)-(c) and (A5), for any 6 € © and
p > 2, there exist constants Cp,q > 0 such that for all k € {0,...,n — 1},

Bp o [-RUF+ RSN+ R =0, (3.7)

~ p 3p+1
Bp o [[-BUF+ RSM 4 R < Gt (1 Jal?). (3.8)

We next recall Girsanov’s theorem on each interval [t,t,1]. For all §,0' € ©, € R?
and k € {0,...,n — 1}, by [13| Theorem II1.5.34], the probability measures Pfk@ and Pfkl’z are
absolutely continuous w.r.t. each other and its Radon-Nikodym derivative is given by

dﬁ@ 1 tk+1 _ 1 1 1
o (X iettian)) = v { / o (X! (b0, X7") - b0, X{")) dBy
k

tk,il?

1 /tk+1
2 Ji,
0

po
By Girsanov’s theorem, the process B' ks = (B, """, t € [tp,trs1]) is a Brownian motion

po
under Py,

(3.9)

o (x?") (b(&,Xfl) - b(@l,Xfl)> ‘th}.

where for any t € [tg, tgi1],

By !
B, ™" = By — / o M (x) (b0, X2 — b(0", X2)) ds.

ty
Next, we give two following technical lemmas which will be useful in the sequel.

Lemma 3.6. Assume conditions (A1), (A2) and (A3)(a). Then for any 6 € ©, k €
{0,...,n = 1} and F, ,  -measurable random variable V,

0 [0
E” |EY
tk,ka

0 00 T 0
|:V|}/tk+1 = th+1] “Ftk:| = EthXeO [V] .
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Now, to simplify the notation, for j € {1,...,m} we set

(g0 j+1 0 Um
0](0+) T (617'-'70] 170]7€]+1+\/;7Tn,...,9m+\/m).

Lemma 3.7. Assume conditions (A1), (A2), (A3)(a)-(b) and (A5). Let p,q > 1 satisfying
that %—l—% = 1. Then for any k € {0,...,n—1} and x € R?, there exist constants C > 0,q; > 0

such that for any ﬁtk+1—measurable random variable V,

=p0

[
=097 (0) dPy, » 60+ (0)
Epo |V C@T% (Xe' " Dieltitrny) ) — 1

< CVA, (1+ |2|) (

0

0 1
v 0 (0+ E
A%gw(tw,nvu)

VnlAn

9?+1 =~0; (0+) 1

/ (Et;Jracl HV‘qD " dfiy1| +
Uj41

€Z+1+ VniAy

+ 4

Om SOm(04) a
Ly (B I)

0
RV . v \/nAn

Remark 3.8. From (3.7)) in Lemma E, the random variable —R?’k + Rg’k + Rg’k has zero
mean, which turns out to be useful in Lemma[{.f Furthermore, Lemma allows to give

e rate nTr—— — —/— N € esttmates, whic w1 e usea in emma LI smg ese
th t\/A\/an \}ﬁ'th timat hich will b d in L Using th

technical Lemmas and we do not require an additional assumption on the decreasing
rate of Ay, for instance, nAl, — 0 for some p > 1.

Next, we prove a discrete ergodic theorem.

Lemma 3.9. Assume conditions (A1), (A4) and (A5). Let g : R? — R be a differentiable
function satisfying that |g(x)| and |Vg(x)| have polynomial growth in x. Then, as n — oo,

n—1 .

1 p
=S g(x2) = | gla)mpo(da),
n =0 Rd

We finally recall a convergence in probability result and a central limit theorem for tri-
angular arrays of random variables. For each n € N, let ((xn)r>1 be a sequence of random
variables defined on the filtered probability space (2, F,{F:}t>0,P), and assume that they
are JFy, . -measurable, for all k.

Lemma 3.10. [I2] Lemma 3.4] a) Assume that as n — oo,

n—1 n—1
D) Y E[GualFo] =0, and (i) Y E [, |F] 0.
k=0 k=0

_ P
Then as n — oo, Zzzé Cen — 0.

b) Assume that 3 7—5 E[|Chnl|Fi] 250 asn — co. Then asn — oo, S0 Chn L.
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Lemma 3.11. [12) Lemma 3.6] Assume that there exist real numbers Q and V > 0 such that

n—1 n—1
ElGalFil Q0 Y (B[GEuF] = BlGenlFl)?) > V; and
k=0 k=0
n—1 P
E [Gh ol Fe,] — 0,
k=0

as n — oo. Then as n — oo, Zz;é Cim l:(—PQ N(,V) + @, where N(0,V) is a centered

Gaussian random variable with variance V.

4. PROOF OF THEOREM [2.2]

In this section, the proof of Theorem [2.2] will be divided into three steps. We begin deriving
an appropriate stochastic expansion of the log-likelihood ratio by using Lemma [3.3] The sec-
ond step will show the main contributions of the stochastic expansion by applylng the central
limit theorem for triangular arrays of random variables and the ergodicity property. Finally,
the last step is devoted to treat the negligible contributions of the stochastic expansion.

4.1. Stochastic expansion of the log-likelihood ratio.

Lemma 4.1. Assume conditions (A1), (A2) and (A3)(a)-(c). Then

Eavoy.w n—1 m n—1 m
log dP,ZlP%O ( X 90) kzo ;& b kzo ; \/W {He ik n Hgo,i,k i Hgo,i,k
n Ef:;% [R‘) +(0),k Rzi”(z) k RiOW) k Rg“(e) k Ytiﬂm _ kaoﬂ} }df, (4.1)
where
binn = e [ (2000000, X2)) (00") 7 (xE)
(X8 (B, = Bu) + (b(0%, XE) = (67 (0), X0)) A ) dt,
ROk — _RITOK | pOT Ok | gl Ok

' Tt
1 = 8 (o067 (0,2) (o)) [ (b0, X8 — b6, X1 d,
ti

' N t41

Y = A, (00,560 (0, X0 (00") 1 (XE) / (ox - (Xf:)> 4Bs,
00 ik 0 0 et 0
g = A, (89ib(9?+(€)7Xt9k )) oo* X9 / / (X%, 2)N(ds, dz).
Rd

Proof. Using the decomposition (3.1) and Lemma we obtain that

0 u

n—1 m g

dp, Yo 0p,p"i
logPszO( n90) ZZ\/HT/ 65” A Xf;),Xf:H)dé

k=0 i=1
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n—1 m 1
U; [N o\ — 0 0 0 0
=> Wf /0 <(8eib(9?+(€),ka)) (o0") 1(ka)(ka+1 — Xy, —b(077(0), X7, )An)
k=0 i=1 n
L =007 ) [ po0t (o pT Ok p00T Ok 09 (0).k[(007(0) _ (g0
B [Rz Ok _ gl Ok _ Ok _ gl ‘Ytk“ :thﬂ} de. (4.2)

Next, using equation ((1.1)), we get that

x?

te+1

0 0 0 brt1 0 0
— X} =0o(X{) (B, — By,) +b(0°, X7 ) Ay + / <b(00, X2 - b6, X7, )) ds

tg
tey1 tet1 ~

+/ (U(Xg")_g(ng))stJr/ / (X%, 2)N(ds, dz).
tr tr Rg

This, together with (4.2]), gives the desired result. O

In the next two subsections, we will prove that the random variable &; , , determined by
the Gaussian and drift components of equation (1.1)) is the only term that contributes to the
limit and all the others terms are negligible.

In all what follows, Lemma will be used repeatedly without being quoted.

4.2. Main contributions: LAN property.

Lemma 4.2. Assume conditions (A1)-(A4). Then as n — o,

n—1 m 500

S o T wN(O.TE) — ST,

k=0 i=1
where T'(0°) is given by (2.2)).
Proof. Applying Lemma to Y- &k, it suffices to show that as n — oo,

n—1 ~0

~ ~ PG 1
SOE [GnlFi] T — 3T — uiti DO = = wun (i, (43)
k=0
ol S o 7 g N
Z <E9 [fi,k,nﬁj,k,n ftk} —EB° [gi,k,n‘Ftk} E’ {fj,k,n’]:tk]> — uu;T(0%); 5, (4.4)
k=0
n—1 g R 1300

Ef [(&,k,n)ﬂ}—tk} — 0. (4.5)
k=0

Proof of (4.3). Using the fact that E? (Bt — By, |.7/-:tk] =0, we have

nfl/\ R n—1 } 1 "
S enalF] = X e [ (000000, XE)) " (00) 7 (X
k=0 k=0

nA\,

(b8, XE7) — b(O7F (0), XE))) A

— 1
U; * o\ —
=Y /0 (00,006, X)) (o0) 7 (X0)) (b(6°, XE7) — b(67F (0), X)) ) A
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n—1
+ E gi,l,k,n;
k=0

where
0 0.\ * o\ — 0
52,17]6 n — M / 90+(£)7 Xtek ) - 3&5(907 Xtek )) (GU ) I(Xtak )
0
- (b(eﬂ, Xy - b(60*+(0), X! )) Ande.
Then, using the mean value theorem,

0 0 0 0 0 0
(00, XE1) — b+ (0), XE7) = — (b0 (0), X7) — (0%, XE) + b(O%F:, XE) — b(6%, X,

+o (00, XD — (0%, XY+ b(6%F, XE) — b(6", X9°))

m—1’

/89 90+(a€) th d + — /a9z+1 0?11 )7ka0)da
+

(e

/ 09, (0% (), X0 )da)

0 Ujt1 0 Um 0
=05,b(6° ka) N 1+1b(90,ka)+-~+W89mb(90,ka)da>

b0V (a0), X1) — 05,0(6°, X0))) da

\/nA
U541 0 0
+ \/T% (691+1 (G?j-rl( )7 Xtek ) - 80i+1b(007 Xtek )) do
Um ! 0+ 00 0 y6°
R el (0,605 (), XE) — 00,,b(6°, X)) dev),
where, to simplify the exposition, we have set for j € {i +1,...,m},
09 () == (69,...,00 60 + ol 00 Uikl g0 4 Um oy
i (Oé) (1 —1 +a\/T 7,+1+\/m m+m)
0+ (N . (g0 0 Uj Uj+1 0 Um
Hj (a).—(91,...,0J 170'+am79j+1+\/m,..., m—f‘m)

Therefore,

n—1

—~ 0 o~
E E’ [gi,k,n‘ftk} =
k=0

4L g b(6Y, X9°) +

*\— Ui
W%, X1 00) ™ (XE) (G O, X))

Bp, b(6°, X9°)>A

VnA, bitt \/nA
n—1 n—1

+ Z §i1kn + Z (Mikn + Mtk + -+ T en)
k=0 k=0

9 n—1
u; * S\ —
= 223 (90,b(0°, XE)) (00™) T XD b(6", X )

n

17

)
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Uillit] -
- Gt g (ae_b(eo XHO)) (00™) (X0 )0, (0", X))

n k=0 1 o
n—1
Ui, * *y—
—— Z (agib(907xtek0)) (oc™) 1(Xt9,f)89mb(90,Xf:)
k=0

n—1 n—1
+ Z gi,l,k,n + Z (ni,k,n + Ni+1,kn +- 77m,k,n) ’
k=0 k=0

where for any j € {i +1,...,m},

W2 [ -
Midin = =+ /O /0 (90,b(6°, XE1))* (o) 7 (X0 ) (00,0060 (a), X0 ) — 0p,b(6°, X)) ) dadt,

U;Uj
Mjkn = —
n

1
/0 (9,b(6%, X)) (00™) (X2 (89jb(6’?+(0z), X0y — 9, b(6°, Xf,f)) da.

Using Lemma [3.9) as n — oo,
9 n—1
u; 0 vo°y\" #\—1 /60 0 16°
—%;O(aeibw XE)) (00™) M (XE)3ab(6°, XE))
Ui U1 - 0 v6°\* x\—1 7 360 0 6°
— SRS (90(0° X0)) (007) M X )00y, 0067, X))
k=0 (4.6)

n—1
Ui Uy, 0\ * £\ — 0 0
N (900067, XE)) (00" T X)) Da,, b(0°, X))
k=0
~,0 1
L —§U?F(9O)i,z' — w1 D (041 — -+ = Uty T (0°)i -

)

Next, using conditions (A2)-(A3),

n—1
~ ~ C
EeO[Zfilkn SZEGOHQIkn]Si,
k=0 1 k=0 (Vndn)1
which tends to zero. Similarly, for any j € {i,...,m},
[|n—1 T n—1 C
B : <N TEB [(|nipnll € ——mee—.
;_Om,k,n = rar [|77],k,nH = (m),},

Thus, we have shown that as n — oo,

n—1 n—1 ~0
P@
Z §i1kn + Z (Mikn + i1 e + -+ M) — 0.
k=0 k=0
Therefore, as n — oo,

n—1

Z E |:£i,k:,n

k=0

which gives (4.3)).

~ po° 1
ftk:| — —§U?F(90)i,z‘ — w1 D001 — -+ — T (0%)im,
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Proof of (4.4). First, from the previous computations,

E” [6inlPou | B [€inl P | = =20 18b00+€ X0 (oot) (XY
fz,k,n|}—tk gj,k,nu:tk = n 91‘ (z (0), tk) (00*)™( tk)

(b(@o XY~ b(097 (0), X0) )dé

b(60F (at), X{ )da

= A, / (9n.b(60* (0), th>)*(0ff*>”(Xt9:)(£

b(0% (o), X! )da)aw

Uu
s /a9z+1 0?-:_1 ),Xf:)da—i—

- / (ae b2+ (0). X0)) (o0)~ (X0 (1 / 05, b7 (o), X )dos

VA,

Uj+1 0 00 m 0 1Y
\/;T/ Bgm (9]1_1 ),th)da+"‘+\/nT/ 0p,, b( ¢9+ ), X; )da)d@

Thus,
n—1 _
~n0 ~ ~n0 ~ 0
> B |Gkl B [l SZ\E9 (€6l B | B €500l P
k=0 k=0
C n—1
< ﬁ <1+ ‘th’q)’
k=0

for some constant ¢ > 0, which converges to zero in ﬁ(’o—probability as n — oo. Thus, as
n — oo,
n—1 =40
S B [gi,k,n@k} E° [gj,k7n|ﬁtk] o (4.7)
k=0
Next,

g0 ~ uitt; e~ g [ (L[ 0\ * 0
SOE” [GiknbinnlFu| = SR 3R [ || (aabeer0.x8)) 0oy x)
k=0 " k=0 0 /0

(X)) (Bur = B) + (b06° X5) = 007+ (0), XE)) An ) (o(X0) (Boyy = Br)

0 0 * N\ — 0 0 =~
+ (b(6% X0 — (), X0)) An) (00" 7 (X0 )90, bOTH(¢), X, )dfdf’ftk]

n—1 .1 1
Ui * o\ —
=S [ (an6 (0, X8)) (0" X 20,068 (), X atar
k=0 0 JO

+ = An;i: /0 1 /0 1 (00,0002 (0), X0)) " (00™) 18 (b6, X8 — b(62+(0), X11))

(b8, XE)) = (O (), XE) ) (00") T (X0, )00, b(00 (), X0, yatar
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n—1 n—1
U; U 0.\ * *\ — 0 0 i, i, i,
N (90067, XE)) (00" X0, 006% X0 + D (B + HYE + HY),

k=0 k=0

where 67F(£') := (69, 091, 00 + 0 7=, 00,1 + 2, .., 0, + =) and

ik Uil vt 0+ 00 0 v6°\\* w\—1/ v-6° 0 160 '
ik = 00,07 (0), XE) — 90,b(6°, X{*)) " (00")~ (XE1) o, b(6°, X{° e,

0 0

i U U4 1 1 O\ % *\ — 0 0 0
= 2 [ b0 (0. X)) (o0 8 (00,005 (€). XED) = 000 X))t

i Ui Ws Lot 0.\ * S\ — 0 0 0

g =M, [ (o6 0. XE) o)) (w00, X0 - o (0. X))

- (b(@o, X{) - b(0%t (¢), X! )) (00" ) TN XY )9, (00T (2), XEVdede.
Again, by Lemma [3.9] as n — oo,
LS (0, 6000, 5 (001 (X2)9p 5(6%, X2°) 25 10
=3 (90b(6°, X0)) (00") (X0 )0, b(68°, Xf7) T T(6")s
k=0

Next, using conditions (A2)-(A3),

= = (Vihn)
and
n—1 n—1
o || | < e [fm] <
k=0 k=0
Hence, as n — oo,
n—1 0
(H;"’“ +HY 4 Hf,’“) 0.
k=0
Therefore, as n — oo,
n—1 0
ZEGO {fi,k,nfj,k,nu?tk} LN w;iu1(0°); 5,
k=0
which, together with , gives .
Proof of . Basic computations yield
n—1 n—1
S5 [ 1F] < ST (14121,
k=0 k=0

for some constants C', ¢ > 0. The proof of Lemma [4.2] is completed.
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4.3. Negligible contributions.
Lemma 4.3. Under conditions (A1)-(A5), as n — oo,

—& 0 k 69,k 69,i,k
% sy )y
> { IR
v Ef:z% [RG?WW _ RO RO OK B0 ‘ e ijﬂ} }dﬂ M.
Proof. The proof is completed by combining the four Lemmas [£.444.7] below. O

Consequently, the proof of Theorem [2.2]is now completed from Lemmas [4.1] 4.2 and [4.3]
Lemma 4.4. Under conditions (A1), (A2), (A3)(a)-(c), (A4) and (A5), as n — oo,

n—1 m ~00+ 00+ 0k © g0 1360
kzo Z; \/W tk,XBO {R ‘Y Xt’““} @
=0 1=

Proof. Tt suffices to show that conditions (i) and (ii) of Lemma a) hold under the measure
p?’ applied to the random variable

. ~9°+ O | pod* ), (©) 60
<Z kn . \/m XQO |: ( ‘ tk+1 th+1 df?
for any ¢ € {1,...,m}. We start showing (i) of Lemma a). Applying Lemma to
~ 00+
0 =60"(0) and V = ROTT(Ok and using the fact that, by (13.7), Efi ;?0 [R9?+(Z)’k] =0, we
k

g

obtain that

n_lAeo - g P [0t o) 6% (0) |y 0 (0) 90 -

? 1
> 5 o] -3 e B B [0 0O =58 o
k=0 k=0 n

n—1

, L _po+
- / E OJRYTOFae = o,

— /nA-g 0 tk,th
Thus, the term appearing in condltlon (i) of Lemma a) actually equals zero.

Next, applying Jensen’s inequality and Lemma to 6 = 697 (¢) and V = ( R9?+(£),k)2’ and
, we obtain that

E‘

n—1 2
90 _ P s 50O | oot @),k |30 (O 90 =
ZE [l,m | = A3E [(/ EN [R (©). ‘ e th+1] dé) ]ftk]
k=0 0 b
n—1
<y wIEY G | (R ) v O = x| | P | e
= nA3 Xeo tk+1 let1 tk
k=0
n—1 2 o0+
_ uj =07 (£) 09% (0),k < O 00 q
> HA%/O B o {(R ) ]dé cu2 Y2 Z(1+|th| ).

for some constant ¢ > 0, which converges to zero in p?° -probability as n — oo. Thus,

S0 Cien 250 for any 7 € {1,...,m}. Thus, the result follows. O
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Lemma 4.5. Assume conditions (A1), (A2), (A3)(a)-(b), (A4) and (A5). Then as n —

. 1 . 0+ ()+ <90
§ Ui HGO,Z k EG 0) .9 90 B
\/W/O { 4 00 |: ‘ tk+1 th:+l:| }dz 0-
; n ke X¢

k=0 i=1

Proof. We rewrite

04 =097 (¢ 09t (0), k| 00T (¢ 0
Hz .k Et ;0)0 [sz @) i ()_Xe
tg

ter1 tk+1:|

= D (@0,b(60 (0, X])) (00") T (XT)) ( / " (b0, X2 — w60, X2 ds

~00+ (¢ trt1 ¢ ¢ 00+ (¢
. o M (b(e?w) v ) —pe0+ (o), v ”)) ds| v, zxf:+l])
k

tk,th

= A (09, b(6) 7 (2), Xf,f))*(fm*)_l(kao) (M; 1 km + Mo kn)

where
bt 9o 9o 0 90 0 90
Mi,l,kﬁl = / (b(eov Xs ) - b(a(]? th ) - (b(01+(£)’Xs ) - b(@z—i_(f)’ th ))) dS,
7%
th+1
Mizin= [ (6270, XE) - 068" (0. X)) s
7%
=600 [ [ 10k 00T 0+ (g, y O (O
R [ 0 et O ]

Thus,

FO0T [ 09t (0),k

, 000k 077 () _ 60
Czkn . \/m/ {H tk’thlS R4 tht1 th+1:| }dé

/ A, 069 (0), X)) (00™) (XY (Mg o + M) df

\/nA3

Cz,l,k,n + Cz,?,kz,na

where
Gintom = ﬁ b0 (), X0))*(00™) TH(X P )My gl
N oy — 0
Cz 2,kn — \/r 90+ 6)7 thk )) (UU ) l(XtHk )ML?JC,HCM‘

90

We are going to show that >~ Cz,l,kn H 0 and Zk 0 Gi2kn o.

First, using the mean value theorem,

b(6°, X2°) — b(097(0), X2") = b(6%F,, X&) — b(67T (£), X2") + b(6%1,, X2°) — b(6%F,, X¥)

i+1
e (0%, XY — b0 |, X2+ b(6°, XY — b(6%, X2°)
Us
= \/RT/ 89 90+ O(g) XOO \/7%/ a@ﬁl 9?—-&1—1 )7X390)da
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1
U 0
.M 9 b+ X%Vda.
e [ 00,0005 (). X2
Therefore,
0
b(6°, X2°) — b(6%, X7 ) — (b(69F (), X2") — b(60F(0), X[))
= b(6", X‘”)—b(@?’*(ﬂ) X% — (b(6°, XY — b(62F(0), X2))

\/nT / b(09* (ab), XI°) — 89ib(9?+(a€),ka0)> da

1
Ui+1 0 40 0 69
- \/m 0 (801+1 (011_1( )7 X ) 891+1 (‘911_1( )7 th )) da

1
Um
SR | (agmb(99n+(a),xg0) _ agmb(99n+(a),Xf:)> do.

Next, using the mean value theorem for vector-valued functions,

0 0 1 0 0 0 0 0
D9, b(0) " (), XI') — 99,b(07" (), X7,) = ( /0 Jog,b( X, +v(X! —Xfmdv) (X7 - X)),

for all j € {i,...,m}, where the Jacobian matrix is given by

Bobr - Bob
0 0 0 0 0 0
Boba - OB,

Then, using conditions (A2)-(A3) and Lemma [3.4] (i), we get that
Zﬁao [!C¢,1,km| |ﬁtk} < Z (1 + |Xao ) 7
k=0

for some constant ¢ > 0, which converges to zero in p?° -probability as n — oco. Thus, by
=0

6
Lemma [3.10{b), 377 ¢i1 e — 0 for any i € {1,...,m}.

Next, using Girsanov’s theorem and Lemma we get that

~ ~ - tr4+1
B [MiaaalZi] =8| [ (0008 0. %0 - 62 00, x2)) as
k

=00 [ (™ 7, 00 o+ (0) 0 60+ o 1~
~Ey [ /tk (02 (), v ) = ve? (o), v )ds( o O =x ||,
_e [ (b(02+(0), X7) — b(62*(0). X10)) d
s wXl L, LA i \hAn ) ) a8
B0 00 @) [ [ (0 gy 0O 0+ 00
—E) [Etkﬂ; [ /t (b4 (), ¥ ) —we2* (o), v ) )as | O = X8
dp?’
S07H O [ [P ok oy OO g0ty x0T O b X7
BN (0.1 o0, x0T as a0

b, X P
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90+(€) trt1 0+ ¢ (Z) 0+ 9?+ (Z)
Etk:XG,S [/tk <b(01 (), Y ) = b(0;7(0), Y, )>d3
ROTO | [T g0+ a0 0+ 60* (1) dlng,XfE
Et x0° {/ (b(&i (), Xs" ) = b(0;7(0), Xy} ))ds (W — 1)]
kst t dPtl XGO
ko X{

0+ tet1 0+ 0t
T L e, X0 o, )]

tk’XGIS te
~09t (¢ tet1 e o
B, );gz) [/t (b(9?+(€),Ysz Y~ b2t (0), v, ())) ds]
b k k
=40
90+(£) +1 04 9?+(€) 0+ 9?+(£) dPt]mX@D
=B, xp0 (b8 (0, x5 ) = b(o* (0, X7 ))ds (e —1) .
th dPtz 0
k>

where we have used the fact that X% @ is the independent copy of vy, Here, to simplify

are® o ap?°

0
L. . tk,Xf tk,Xf 90+(£)
kE — k @
the exposition, we write o = =0 (( p )te[tk,tk+1})-
Pt P 5
tkvxtk 12°B th

Then, using Lemma 3.7 with ¢ = 2, conditions (A1)-(A2) and Lemma[3.4] (i), we get that

n—1
Ro° 0 69\ \* x\—1/ 709\ 1560 =
'ZE [Ci,?,k,n|]:tk kzo M 0 + E)’th )) (UU ) (th )E [Mi,27k7n|]:tk]d€
9*@ 0.\ % oy — 0
~| = Vil 2 ;g%[aibw;”wm&» (00") (X))
0
tk+l 0+ 90+(€) 0+ 90+(£) tk,Xte:
/ (b6 (0), x2 ) — b0+ (0), X7 9))ds (M—1)]d5’
ty dPt; X90
g
< |ul’ = EQ?JF(E) ) b90+ / XHO * #\—1 X90
< T 2 Jy e | (000, X0 0o) )
=0
e 0+ 0] 0+ 09% () te, X,
. B0+ (0), X2y — b6+ (0), X7 ))ds (W_Q e
tk P’
tr, X0
90 1
(7 % ~ 2
’ ‘ Z/ r +|X00‘q1> (/ <E0(0t0 [|V| }) a0,
fOp i tr, X
Vb
0944 6:01(04) 3 09, o)
* / u; (Etl;eo [\V’ D dbip1| + -+ / (Et x¢° [\V! D dt
00+ \ TR Ot 2=
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—_

3

An 90
SONCLADE
k=0

<C

for some constants ¢; > 0, ¢ > 0, which converges to zero in ISGO—probability as n — o0o. Here,

= (D, b(O0(0), X)) (00*) 7 (XT) / 00 (0, x5O @0+ ), x5O as.

tg

and we have used the mean value theorem for vector-valued functions,
0+ 0+
b(6 (0), x5 ) = v(et (o), x5; )

1 0+ 0+ 0+ 0+ 0+
9 l 9 0 0.7 (e 0;T (e 97T (¢
0

ti )

where the Jacobian matrix is given by

0+ 0+ 0+
axlbl 8$db1 . e e
= o e O - X O,
Oprby ... Ouyba

~ ~  po°
Therefore, 37, EY’ (Gi2.km] Ft,.] P 0asn— .

Next, applying Jensen’s inequality and Lemma [3.6] conditions (A1)-(A2), the mean value
theorem for vector-valued functions and Lemma (i), we obtain that

ZEO C@,2,kn‘ tk] -

2 n—1
- nA / tk,X90|:

2 n—1
U

1 2
B oo ([ @062+, X200 (00) (X802 ) |
_ g 0

2
}dﬁ

0\ \ % *\ — 0
b b(0) (0), X[ ) (00™) THXE ) M2k

9 n—1 9
i E° 0+ 09\ * \—1/ v0°
= QnAn — Jo {Etk,xf;’ [ (Op,b(0; 7 (€), X3, ) (00™) " (X{ )Mi21kn ]
~n0 "'9(~)+ . .
B [E;) [ (00,b(07* (), X)) (00") M (X0 ) M2 (th —kaH”}de
u? A Dk 0+ 00\\#/ __x\—1 360 2
=2 E7 o0 | [(0a,0(0;7(0), X3 ) (00™) ™ (X4, ) Mi21 km
nAy, — Jo b X0,
=67 (0) 0+ 00\ \* *\—1 9O 2
+Et; x0° (99,0(0; 7 (€), Xy, )" (00™) ™ ( Xy, )M 2.2, m ¢
L

< cu2 2 (141527,
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for some constant ¢ > 0, which converges to zero in ﬁeo—probability as n — oo. Here

tkt+1
Mz = [ (W60, X0) = b(62(0). XL1))

173

tht1 0+ 0+
M; 22 kn —/ (b(H?Jr(@)aYtsei (E)) — b(Q?JF(E),Y;Zi (g)))ds.

tg

=500
Thus, by Lemma [3.10 a), Z;é Gi2em P70 for any ¢ € {1,...,m}. Thus, the result
follows. O

Lemma 4.6. Under conditions (A1), (A2), (A3)(b), (A4) and (A5), as n — oo,

n—1
0 k 7,+(Z 00+ 90 ﬁ@o
Z Z \/m { R Etmxeo [ ‘ tk+1 th+1:| }CM 0

k=0 i=1

Proof. For any i € {1,...,m}, we set

90+ 09T (€),k |+ 09T (¢ 0
) {Rs) (o), ’Kkll()—Xfm} }cw.

90 zk
/nA3/ {H t X"O

Using Lemma we get that

C’i,k,n =

n—1 n—1

~ u; T po 000k =00t ) (0) .k 3,097 (0) 0 o
ftk} = /(; Ee |:H5 Etl XgO [RE; }}/tk:-l XtGkJrl] ‘]:tk:| de

1
U =0 00ik]  =O9T(0) [ 00T (0).k
- R [H 0 } B RS dt =0
RYALAYS /0 < X 1P b Xf:[ i |

Next, proceeding as in the proof of Lemma for the term (; 2 1., we obtain that

n—1 A n—1

~n0 0
> OE [ zkn|‘7:tk} < Cu; 72 (1 + X7, \q> ;
k=0 k=0

for some constant ¢ > 0, which converges to zero in ﬁeo—probability as n — oo. Thus, by
0

Lemma [3.10] a), we have shown that Zk 0 Cikn P—> 0 for any 7« € {1,...,m}. Thus, the
result follows. O

Lemma 4.7. Assume conditions (A1), (A2), (A3)(a)-(b), (A4) and (A5). Then as n —

n—1 m ) 1 ) 04 0+ 0+ (g $eo
U ik 0,7 (0) 0,7 (0),k|0;" (£) 0 P
i 3/ {Ha ik _ 0O [RG i, kaH] }de 0.
22, X
Proof. For any i € {1,...,m}, we set

. 0 ) 7k 00+ 00+
Czkn = \/W {H ' Xeo |: ‘ tk+1 tk+1:| }dﬁ,
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Using Lemma we get that

n—lA L, o
B (Gl B ] = / 7o {Hﬁ ik E ; (e%) [RZ" O,k
; Z \/W o X0

7tk

0] 60 =
tk+1 th+1:| “Ftk:| de

00,i,k] _ 0070 (bt (0K
(%Xeo H ] - B xlFe ]> dl = 0.

RY nA3
This shows that the term (i) of Lemma [3.10| a) is actually equal to 0 for all n > 1.

We next show that condition (ii) of Lemma a) holds. For this, using Jensen’s inequality
and Lemma we obtain that for any ¢ > 1,

n—1 g0 o R n—1 U,L g0 1 00.i k ~ g0+ () 00+ g0 2 ~
S B Gl = 3 B [([ (B RO < g )ar) V7]
k=0 k=

2 nol o o0+ 0+ o0+ 9
Ui 700 0%k _ 00O | pl Ok |30 (0) 00 ~
< nA3 Z/O E [(Hﬁ E X90 [Rﬁ ’ tk+1 th+1:| > |'Ftk:|dZ
™ k=0
9 n—1 1 trt1
U ~00
= Ef [( (097 (¢ < / / N(ds, dz)
nA, k—O/O timeIS
~90+ tet1 90+ 6%+ (o) 50 2
tk X9° / / ,Z (ds d2)|Y,' =Xy >> }d@
2 n 1

/ (1+ X2 A ((A%An>3+ [ e e [ ceman) )

1

_Cu?<(/\vnAn)é+/|Z|<U <2<z)u(dz)+An( S (d2)) )ii@ﬂxﬁqul),

k=0

for some constant g1 > 0, where e, (097 (¢)) := (a,,ib(eg’+ ), ng)) (00*) "L (X{"), and (vn)nz1
defined in Subsection is a positive sequence satisfying lim, oo v, = 0, and A, =
f|z‘>vn v(dz).
When [pqv(dz) < 400, then Ay, < [pav(dz) < +00. Therefore, A, A, — 0 as n — oc.
When [p.v(dz) = +oo, then A\, = [pav(dz) = +o0 as n — oo. Then, there exist

e € (0,1) and ng € N such that \,, < A5! for all n > ng. This implies that A\, , A, < A for
all n > ng. Therefore, A\, A, — 0 as n — oo.

Using Lebesgue’s dominated convergence theorem, the fact that v, — 0 and ((2)1};<; <
C|z|, and condition (A5), we get that [ C%(2)v(dz) — 0 as n — oo and ng C(2)v(dz) <
oo. Furthermore, using Lemma as n — oo,

1 n—1 =60
e (1 ) B [ fal e (dn) < +oc.
k=0

Hence, we have shown that > 7= E?°[¢2 \]:tk] L 0asn— oo. Thus, by Lemma (3.10| a)

ikn

the result follows. t
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5. APPENDIX
5.1. Proof of Lemma [3.11

Proof. Let f : RY — R be a continuously differentiable function with compact support.
Fix t € [tg,tg+1]. The chain rule of the Malliavin calculus gives (Dt(f(Y;ZH(tk,x))))* =

(Vf(Y;ZH(tk, z)))* DthiH(tk’ x). Since the matrix DtY;iH(tk, x) is invertible a.s., we have
(VY (e 2)))* = (De(f(YE,, (tr, 2))))* U7 (tg, 2), where UY (ty, @) = (DiYy] | (tr. )"

Then, using the integration by parts formula of the Malliavin calculus on [tk, tx11], we get
that for any i € {1,...,m},

B £V, (tes2))| = B (TS, (b0, )" 00,5, (0, )]

1 ~ [ [te+1
3 B | [0 ) o (]

LT e (5.1)
=3 B[O o) U0 0 ()|
_ ALE O (1 )6 (U (1, )00,V (1)) |

Observe that by 1' the family ((Vf(Y}/ZH(tk,a:)))* 892.Ytz+1(tk,m),0 € ©) is uniformly

integrable. This justifies that we can interchange 0y, and E. Note that here oV) =
(V1 1)) for any V' € Dom 6.

Next, using the stochastic flow property, we have that

Q0B [0, ()] = | £0)000" (Do),
and
E [f(YtZH(tk, 7))o (Ue(tkvaj)a&}/;&i+1(tka 33))}
=B [1(0)6 (V" ()00, Y, (tr0) ) | Vi = 2]
[ TR [5 (U 2)0n Y, 1) |V = Y, = 0] 2 (B )iy,
which, together with , finishes the desired proof. O

5.2. Proof of Lemma [3.21

Proof. From ([3.4]) and It6’s formula,

M&

tg

(VoY (th, ) =1 — /t(Vfo(tkaiv))_l <be( Ot Vaeoi (Y (b, )))2> ds

1:1

d t A
-3 / (VoY (11, 2)) " Vs (VO (b, )WV
i=1 7tk

+/t: Rg(vaf(tk,;U) (Id—I-VxC( ~(tr, ), )) (Vec(YE (ty, x), 2))?v(dz)ds
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t —
—/ (Yt 2) " (Lo VeV (112).2)) Vael¥E (15, ), 2) M (ds, d2),
tr RO
which, together with (3.5)) and Itd’s formula again, implies that

tht1
(VoY (b, 2)) 100, Y (th, @) = / (VoY (t, )~ 09,000, Yy (th, 2))ds.  (5.2)

tg

Then, using the product rule [28, (1.48)], the fact that the Skorohod integral and the Ito6
integral of an adapted process coincide, and (5.2)), we obtain that

6 (U7t 2)00,YE,, (th, ) )

=5 (07 (VO (b ) VYO (11, ) (VoY (b ) 00,V (b1 0))

tht1

= (5ei5’,:i+1(tk,w))*((inﬁZH(tk’fL‘))_l)*/ (VoY (th,2))* (o (Y (th, )" dWs

tr

[ (D2 (@Y ) (T 02 Y o (O ) V¥ 1, 2)) s

tr

te+1

_ / (VY2 (11, 7)) 00,b(0, Y (b1, )" ds / (V¥ (b, 2) (0 (V2 (1, 2))) AW,

tg

/:kﬂ /tk+1 tr ( Dy (¥ (b, ) 780,000, Y2 (b, 2)))) 07 (V2 (1 ) VY (4, 2) ) duds.

We next add and subtract the matrix (VoY (tx,2)) 1 99,b(6, Y (tx,x)))* in the first in-
tegral and the matrix (V,Y;? " (tr, )" (o *1(Y‘9 (tg,x)))* in the second integral. This, together

with the fact that Y (¢, ) Y =z, yields
_ , 0.k | Ok | pok
6 (U7 (b, )00, Y2, (s 0) ) = Dlo™ (V) 0060, YD) (Way, = We,) — RYF 4 RE* + RO™.

(5.3)
On the other hand, by equation (3.3) we have that

tr4+1
Wi, — Wiy, = a—l(lfti)<ni+l — Y —b(6,Y)A, / (b(e Y9 — b(o, Yti)) ds

[ e [ o )

This, together with (5.3]), concludes the desired result. O

5.3. Proof of Lemma [3.6l

O

Proof. For simplicity, we denote g(y) = g(Xf:,y) = Ee ‘ b1 = ] for all y € R%

Then, applying Girsanov’s theorem, we obtain that

~n0 |~ 0 = =~ 0 0 0
E? [Ee X [V\YtZH —Xfm} {]—"tk} . { (X7, )| X0 } Ee " { o Xfm)}
k

ks
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_ ~ g0
70 0 dP%Xf;S 0
= t X90 g( tk+1) 36 ((Xt )te[tk,tk+1])
kot dPt 560
L ke,
~ /\90 _— -
=6 =6 0 dPtthE 9 9
= Etkyxf;’ Etkyxf: g(thJrl) po . <(Xt )te[tkﬂfkﬂ]) ‘thﬂ
tkaXtGk
- ~0 i
de o0
_ 0 0 0 ks ey 6 0
- Etk7X90 g<th+1)Etk,X90 Do <(Xt )te[tkikﬂ]) ‘thﬁ»l
2z 23 dPt 00
B ks g 1]
=40
~ e, X0
_ 0 kg (% 90
= [ 9B o | (XDt ) X, = 0] 2B XE iy
g
tk,XfIS
N
fk x¢°
0 0 _ 0 Tt 0 0 _ (% 90
Etk,XOO _V‘}/tk+1 yi| Etk,Xgo Ae ((Xt )te[tk,tk+1]> ‘th+1 - y p (An7th 7y)dy
R4 g t dPt 0
k> t
ap?’
b, X0
_ 6 ks ey 6 6 _ 6 _ 0 00
_/ Et X90 V N <(Xt )te[tk,tk+1]> ‘th+1 =Y, }/;'k:+1 =Yy|p (A’Vlﬂth 7y)dy
Rd Ry dP 90
| tk7th
N
_ _dp” -
~ e, X?
_ 1o 6 kg, 6 0 4 _ v
- Etk,XQO Etk,Xeﬂ 14 56 (( t )te[tk,tk+1])‘th+l7)/vtk+l - th+1
bk ty | dP 0 14
tk,ka
=90
] _dP?” -
ty, X
_ 10 6 ko, 6 0 0 _ v
- Etk,Xf,S Etk,Xf: Vdﬁe . (X3 )te[tkvtk+1])}th+l’}/tk+l - th+1
B tk7ka oo
0 0
~ dp? dp?
_ E9 V tk7XtGIS X@ _ E@ V E@ tk’XtekO X@
- tk,XfO 1’50 (( t)te[t]mt]ﬁul]) - tk,XfO[ ] t]meO d§0 ( t)tE[tk,thrl]
kL t XGO k k t XgO
ks ti k> g
_ 0
Etk X00 [V] Y
k) tk

where we have used that fact that, by definition of Efk 2> for any ]?tk .;-measurable random

variable V} and F3, ,  -measurable random variable V5,

o
= y:| Etkﬂi [%‘KZ+1

(% [ 6
ter = y:| = Etk,x |:V1V2‘th+1 =, }/tk-H = y:| ,

B . Vil xS
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90

dP
. t X {0 .
and the independence between V' and df,ek ’; ((Xf)te[tk,tk+1})a together with
tk,xfk
g0
B )] =1
= t Jteltitir])| =
tk7ka dek 00 thtics
g
Thus, the result follows. [l
5.4. Proof of Lemma [3.7]
Proof. Using (3.9)), we have that
~ o~ ~n0+
dpY’ g —ap}
0ty - P
apy; 0 A
~09F ~g0+ ~097F, ~0%F ~q0 ~p0+ ~ ~q0
(@R — Py ) 4 (P — dP) + o+ (dP)T, — AP, + (P, — dPY)
o =09F (o)
dP; .
/ T i P + / B [T g
= 0; 0+ ( . Oiv1 | = g0 i+1
us 09T (¢ ui 09t (¢
Wt \ap) Y 00,1+ vy Y
6%, 4 dﬁf:;1(0+) 09, dlgf;néo'i‘)
4+ .. —|—/ - 807”71 W dgm—l +/ N 89m Tm d9m
Ot ik Py’ , 09+ B dPy .
o tht 60+ (¢ 60+ (¢
= / . / (Dp,b(0:0+), X7 D))" (0") (X7 )
00+ i= Sty
1000 00+ (1) 0y (0 Prer
S dBy — o7 (XT ) (b(0;(0+), X, TT) = (07T (0), X)) de Y db;
Pt;ia:
071 tet1 04 0+
s [ b0, X O e )
9?+1+\/% tr
poi+1(0+)
0+ 0+ 04 plit
. <dBt — o X N (01 (04), X7 1) — (09T (0), X7 m))dt) i
dPt; .
o s 007 (0)\yx( sy =1 3007 (O)
L R R CRTONCIS A NS R
9%-&-\/% tr
50m (04)
0+ 0+ 0+ dP
.<dBt_g—1(Xfi (Z))(b(ﬁm(OJr),Xfi Oy — b6t (o), X (@))dt) %d@m,
dp,?

ti,x
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where for j € {i,...,m},

dpPOY Py Ot e
. = ,\eli):r(e) (( tl )te[tk,tk+1])’

~ O7+
ay O apl
and
Uj+1 Um,
0;(0+) = (69,...,09 1,0;,69,, + 0%+ ).

\/nAn7” v,

Then, using Girsanov’s theorem, we get that

g0
=00 (0) dPy,, 60+ (0)
Etwc 14 Agoix (Xt )te[tk,tkH] -1

(©)
dPt; .
9? ~n0+ tk+1 04 o
= [, ELO [T @00 X Oy en )
00+ ’ tk
AGL(CH-)
1 x e 07 (¢ 00+ (¢ dPy;
.<dBt_U L) ei0), X — b0, X7 ()))dt> d132%+(e) i
tr,T
e o s 00t (¢ 60+ (¢
" /00 Uiql Ef’z’mw) [V/t (69i+1b(0i+1(0+)7 ¢ ( )))*(U*)_I(th ( ))
ity k
0;
—1x % O 0,7 (¢) 0+ 02 (o) o )
N dBy — o7 (X[ Y (0041 (0+), X7 ) —b(60F(0), X7 ) dt ) —2E | d6;4
t t i t d1’59-+(€)
tr,T

" B e 09t (¢ 00+ (¢
4 .. —|—/ Ef;,x(e) [V/ (89mb(9m(0+)7th ( )))*(U*)fl(th ( ))
[%

O . ves 23
O (0+)
_ 09t (¢ 0%t (¢ 09t (¢ dpy @
- (dBt —o X ) b0 04). X7 ) e, X )>)dt> o
tr,T
07 . tht1 , . Py
= [ B [T @00, X000y ) ek O] e
69+0 2t th
9?+1 . lkt1 ) _ 13514,-1(0'*)
+/ 5 Ef;fxl(“) [V/ (aai+lb(0i+1(0+)’sz+1(0+)))*(a*)—l(sz+1(0+))dBt e }d9i+1
N b

ggn R tri1 f)9m(0+)
e [T B [ @0, b0 04, X)) (00) O] s

09, + “ﬁn iy

o plyon  pEOn . . .
Here, for j € {i,...,m} the process B ' = (B, ,t € [tk,try1]) is a Brownian motion
under ﬁf}i’fﬂ, where for any t € [tg, txi1],

50, (04) t 0+ 0+ 0+

B,"** =B, - / o (X8 D) (b(0;(0+), X2y — (09t (0), XZ D)) ds.
173
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Next, using Holder’s and Burkholder-Davis-Gundy’s inequalities, conditions (A2) and (A3)(b),
and Lemma (ii), we get that

=p0

077 () dPf . 60+ (0)
Etkvx 4 dﬁe?i(@ (Xt )te[tk,tk+1] -1
07 . tet1 poi(0+)
< / B0 (v / (9,b(0:(0+), X Oy (o)L (XD Oy, re || a6
69 k) ’ th
P VnAy
9?+1 ~0..1(0 tk+1 0 0 B 1391+1(0+)
L OV [T @u b 00 X o) O | doi
91+1+\/7n bk
O R tht1 Bom (0+)
et [0 RO [ @, 000004, X070 o0 e O as
Ot i t

1
9(0+ q
<
C’\/oo_,’_é uz tk$ HV‘ ])
p_y [t ,
<Ag 1/ Eth [6 B(0;(04), X0y (J*)_I(sz(0+))‘p] ds) a0,

el /9 (B )

l+1+ VnlAnp

-1 Kk 3 * k) — i L
<A2 / Ef:rxl (0+) HaeH—l Z+1(0+)’Xt€z+1(0+))) (0. ) I(th +1(0+))‘ ]ds) d0i+1)

Tl /9 g (ETIV )"

P

p_ tet1
. <AT2L 1/t Efk mU+) Ha b (O+)7Xfm(OJr)))*(o_*)fl(Xfm(OJr))‘p} d5> d@m‘
k

07
gc\/Anuwwl)( [ Eevr )" a0
0940 ——i=

VnlAn

D=

=

SR

0711 ~g. 1 09, R 1
+ / - <Ef;rxl(0+) Hv‘q]) “dOiq| -+ / (EfZ:EOJF) Hv‘q]) " d6,, )7
91+1+\/ﬁ 090 +\/m

for some constants C' > 0, g1 > 0, where p,¢ > 1 and % + E = 1. Thus, the result follows. [

5.5. Proof of Lemma [3.91

Proof. Using the mean value theorem, Cauchy-Schwarz inequality, the fact that |Vg(z)| has
polynomial growth in x, and Lemma we get that
} ds

] e Z / " [[ox?) - a(xt)

ty

-1

]_ nln X@O d X@O
nA, Jo 5T Z

k

E”
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1 tk+1 90 90 90 90 90
= / B / Vo(X +u(X? — X0))du (XS - th)
k=0

] ds

1
1 nol tk+1 ’\90 1 90 00 90 2 2 ’\00 00 00
<A kzzo/tk E '/0 Vo(X2 +u(xX? = X)) du (E UX ~ x?

1
Cmn_l Bet1 L0 0 0 0. |2 2
< 3 | (/D Be [(vg(xfk +u(x? —ka))‘ ]du) ds

- nlA, = Ju
< CVA,, (5.4)

which tends to zero as n — oo. On the other hand, using condition (A4) and the fact that
|g(x)| has polynomial growth in z, we obtain that as n — oo,

QD%dS

- A g(XP)ds 2 / )70 (d). (5.5)

Thus, the result follows from ([5.4)) and ( . O

5.6. Large deviation type estimates. Let (v,),>1 be a positive sequence which satisfies
limy, 0 v = 0. The process Z" = (Z;");>0 defined by Z;™ = 3 1 .o, AZ1{jaz,|>0,) 1S @
compound Poisson process with intensity of big jumps A, = f|z|>vn v(dz) and distribution

1|z|>vny(dz)
Av

of big jumps . Then, we can split the jumps of the Lévy process Z; into small

jumps and big jumﬂs as follows

/ /]Rd N(ds, dz) / /Z|<Un N(ds, dz) + / /|Z>Un N(ds, dz).

Hence, from ({1.1)), for any ¢ > 0, we can write

t
Xf:mo—i—/ b(6, X")ds+/ (X%)dB, +/ / N(ds,dz)
| |<vn

= f RV,

Let NU» = (N;/™)¢>0 denote the Poisson process with intensity A, counting the big jumps of
the compound Poisson process Z*.

Similarly, the process Zvn = (Zf")tzg defined by Zf” = Zogsgt AZSl{\AZS\>un} is a

compound Poisson process with intensity of big jumps )\vn and distribution of big jumps
d
M Then, we can split the jumps of Lévy process Zt into small jumps and big jumps

un

as follows

/ / M (ds, dz) / / (Y2, 2)M(ds, dz) + / / M (ds, dz).
R¢ |z|<vn |z\>vn
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Hence, from (3.3)), for any ¢ > 0, we can write

t
Yf::co+/ b(b, Y‘))ds+/ (Y9)dw, +/ / (Y, 2)M(ds, dz)
|z|<vn

/ /Zlm (Y0, 2)M(ds, dz).

Let MV = (M;™)¢>o denote the Poisson process with intensity A,, counting the big jumps

(5.7)

of the compound Poisson process Z.
Now, for k € {0,...,n — 1}, we consider the events No,k(vn) = {N;", — Ny = 0} which

lkt1

have no big jumps of Z" in the interval [tx, tx41) and Nzl’k(vn) : {Nti’ll — N;;" > 1} which

have one or more than one big jump of Z"" in the interval [tx,tx11). Similarly, we consider
the events No(vn) := {M," — M;" = 0} which have no big jumps of Z"* in the interval

tet+1

[tk, tr+1) and NZl’k(vn) = {M,;", — M;;* > 1} which have one or more than one big jump

of ZUn in the interval [ty thr1)-

We set ep(0) := (89 (9,Xf;)>* (UU*)_I(Xf:). Next, as in [2, Lemma 5.3], we obtain the

following large deviation type estimates.

Lemma 5.1. Assume conditions (A1), (A2), (A3)(b), and (A5). Then, for any 0 € O,
there exist constants C > 0 and q1 > 0 such that for all ¢ > 1, and k € {0,...,n — 1},

N tr4+1

EGO 90|:< </ / dS dZ)

e, Xy, d
~ tk+1 2
el e -

C’<1+\Xf:|‘11)An<(/\UnAn)q+/|Z|<U Clewldz) + A 3 ((z)u(dz)>2).

Proof. Splitting the Poisson integrals into small jumps and big jumps, we get that

R tet1
Ef: e [( < / / (X% 2)N(ds, dz)
Tt
(7 2
-0 _ 90
_ E%Xgo [/ /Rd ds dz) ’ tepr = thﬂ})) ]
trt1 tr4+1
= Ee0 X0 [( </ / Xg0 N(ds,dz) + / / Xe0 N(ds, dz)
th |2|<vn tg |z|>vn

th+1
_E [ / / (Y2, 2)M(ds, dz)
b th tr |z|<vn

trt1 N 9
+ /t /| | (Y, 2)M(ds,dz2)|Y) | = Xf,fﬂ])) ] <3(Dp,+Di,+Di,), (58)
k Z|>Un
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2
tet1
1 60 90
Dy =E] (o0 || ex(0) / / (X% 2)N(ds,dz) ,
kst |z|<vp
2
tr41
~pn0 0
D2 — R’ / / M (ds, dz) ‘ — x?
k,n 60 t t )
tk,th t;ﬁ |<Un K1 k1

D} —E o (X% 2)N(ds, dz)
k.n t}mxeo t, |z|>vn ’
trt1 2
~ R U / M(ds, d2) ‘}le—Xf:l]>>]
g, X |>U'n. + +

First, using Burkholder-Davis-Gundy’s inequality and condition (A1),

tet1 2
1~ 6°
Dy, <C /Z|<U tk,XGIS {(ek(G)c(Xs,z)) } v(dz)ds

1+|ka°\<11 /t o /| L CE)s (5.9)

—c (11X, [ i),

|z|<vn

for some constant g; > 0. Next, using Jensen’s inequality, Lemma Burkholder-Davis-
Gundy’s inequality and condition (A1),

- le+1
760 0 0 _ w0
D SEy sgr | Py <€k<9) f, e, O s ) Y = X0
. [ [ . 2
B o | (@@ [ e o)iiasa
tlthk tk |Z|§’Un
<C (1 + |ka°|‘11) An/ C(2)w(dz), (5.10)
|z|<vn
for some constant ¢; > 0. Next, multiplying the random variable outside the conditional
expectation of D o by 1 ok (vm) + 1]\7>1 Loy W get that
lk+1
3 _ 1o
Dkv" - Etk: XQO [ (1N0 k(vn) + 1N>1 & (vn) ( (/t‘k /|Z>v (ds dz)
=0 et 0 0
a Etk, [/ /> dS dz )Ytkﬂ = th+1]>) ] - MO,k,n +M21J€7n’
Un
(5.11)
where

MS, = E90 1 o (X%, 2)N(ds,d
0,k,n xg° Noux( e (0 " e s,dz)
Un,
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~ lkt1 2
0 90
B, s, —XWD) |
0 tht1 o
Mgl,k,n Ee X00|: Ntk (vn) (ek (/tk /|>U e(X2, (ds,dz)

tht1 2
w0 90
B[], e, Xw]))}

We start treating Mg i.n Multiplying the random variable inside the conditional expectation
of M&kﬂ by 1 ) and using equation ([5.7)), we get that

No i (vn) + 1ﬁ21,k(vn

Mgkn :E90 o |:1]/\7 . < < /tk+1/ X90 (dz)dS
ok, te X7, 0,k(V e |z|>vn

tet1 2
~5 ) ) ) —
B Etk,Xflg [(1N0,k(vn) + 1N>1 k(“n)) /tk /|z>v Yo 2) ds dz) ‘ fra1 T th“})) ]
tet+1
_ AQO 00
_Etk,Xf,S[ No,k(vn) ( < /tk /||>vn o(Xy, z)v(dz)d
EY 15 o (Y2, 2)v(dz)ds|Yy = X%
+ tk,ng[ No,k(vn) 2> (dz) S’ tetv1 tk+1:|

173
~ trt+1 2
0 - 0 _ 0°
Sl oot o)

=0 9 0 bt 0 Bt 0
SE [1]@1’,@(%) <Y;k+1 - / b0, Y?)ds — / o (YO)dW,

tr tr

_/tkﬂ/ e(Y?,2)M(ds, dz) >\Yti 1 —Xf;+l]>> } Zﬁ: M, jome (5.12)

tei1 2
/t / | ide)ds > ]
k Z>Un
tei1 2
-0 90
(Q)Etk,X‘go No,(vn) / /|Z>U dz d8| ter1 th+1]> ]’

2
_ yo°
1£;€,X9kO _1N21,k(vn) (Y;fkﬂ Ytk |Ytk+1 th+1}> ] )

- tkt1 2
0 0 4 6%
WO, o [1x o [ MOV, = x0] ) ]
k
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trt1 2
0 A 0 0 9°
M0,5,k,n - Etk,XfIS |:1N0,k(vn) <ek(0)Etk,X‘90 {1N>1 k(vn) / o (Yy)dWs ‘Y;kﬂ - th+1}> ]’

tkt+1 2
]‘[9 _ /\90 . 0 o 90
0,6,k,n — Etk»Xgo [1No,k(vn) (ek(e)Etk,X"O N>1(vn) / /|< ds dz) } Ukt th+1]> ]
z|<vp

0 e bt 0 2
M0717k7n = b XGO |:< /t /l X (dZ)d > :|
k Z >vUn

(5.13)
<c(reixgm)ai( [ d<<z>u<dz>),

for some constant ¢q; > 0. Next, using Lemma

560 e 0 6
R O [ R AR )
~ tit1 2
=E . l:(ek(e)/ / c(Yf_,z)v(dz)ds) } (5.14)
tk7th tr ‘Z|>Un

<c(texgm) ai( [ coma)’

for some constant ¢; > 0. Using Lemma Hoélder’s inequality with 117 + % = 1, and the fact
that ﬁf o0 (]V>1’k(vn)) < CAy, Ape onBn < O\, A, we get that
k> tg -

. tea1
0 6’
M04k” < Et X(’O [Etk,Xf,S |:1N21,k(vn) <ek(0)/ b(6,Yy) > ‘ thar tk“H

tr

~g tet1 0 2
=B [1@%(%) (ek(Q) /tk b(9, Y )ds) }
1 1
~ tet1 20|\ ? [~ ~ q
< (Efmf;’ [(ekw) / b9, ¥7)ds) D (Pfkvxeo (N>1,k<vn>)>

tg

< C(1+1X71™) A2 (A, An) (5.15)

for some constant ¢; > 0. Similarly,
560 =0 K 0
Mo B = E X90 [Etkvalf |:1]\~/'21,k(vn) (ek(‘g) /tk o(Yy)dW, > ‘ thp1 — th+1H

=0 th+1 0 2
- Ethg |:1N>1,k(vn) <ek(0)/ U(Y;, )dWs> :|

tg

1 1
~ trt1 2p P [~ ~ q
6 0 6
< (Etkyxtgs[(ek(ﬂ) /tk (V! dWS) D (Ptk,XQIS (Nzl’k(vn))>

<C (1 + yxf:\ql) A o, Ap) . (5.16)

~—
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Next, using Lemma Burkholder-Davis-Gundy’s inequality and condition (A1),

=60 =0 bt 0 7T 2 90
Mg g o < E X0 E%kao e (0) t e oYY, 2)M(ds,dz) ) |V & =X]
k Z|SUn
tea1 . 2
= Kek(e) / / | c(Yf_,z)M(ds,dz)) }
tr z|<vp,

< C(1+|Xf:|‘ﬂ)An/ () (dz). (5.17)

|z|<vn

Now, we treat the term Mg 3 pn- For this, using equation (5.6) and the fact that there is no
big jump of Z“» in the interval [tg,tx+1), we get that

2
6 560 0° 90 6 00
M073J<3,n E X90 |:1]/\70’k(vn) < (9) (th+1 th )E X"O [1N>1 & (vn) | tht1 th+1]> :|

T lht1 ot
o [

tk+1 tk+1
/ / (X% 2)N(ds, dz) / / (X7, 2)v(dz)ds >
tr |z|<vn tr |Z|>’L)n

2
0 60
X E XGO |: N>1 k:(Un ‘}/tk+1 th+1i|> :| S 4ZM0731i1k1n’ (518)
=1

where

0 bt 0 2
Mg,S,l,k,n Ee €k(9)/ b(a XH )dSEH XGO |:1N>1 & (vn) } tet1 ka-&-l]) :|’

r trt+1 2
0 760 0° 0 _ 0°
M073v27k7" E X‘90 1]\Afo,k(vn) <€k(9)/t (X )dB E X(’0 [ N>1 & (vn) ‘ tey1 = th“}) :|’
k

tet1 2
90 90
ul6) | /| e AN s 4B, o[ = X ) ]
k Z|SUn

0 o0 | ek 90 0 o 1\’
Mo 3.4km = Etk’Xf: 11\7%(1,“) er(0) (X 2)v (dz)dSE k,X"O {1]?217,6(%)‘5@“1 = thﬂ} :

tr |z|>vn

0 69
Moz skn =B, X0 150w (on)

Using Holder’s inequality with % + % = 1 and Jensen’s inequality together with Lemma

1 1

tht1 2 I3 q

9 60 0 P 00 9 0 a

M0,3,1,k,n < <Etk7X90 [<6k(9)/t b(0, X, )d5> }) (Etk,Xfo [E XGO [ N>1.x(vn) ’ b1 th+1]]>
k

1
thyr1 2p P a
2p—1 00 0° 0
= (Anp /tk Etk,Xoo [<6k(0>b(9’Xs )ds) ]d8> (Etk’XQO[ N>1*’“(U")]>

1 1
tet1 2p p [ - 1
_ 2p—1 09 00 0
- <Anp /t B o [(ek(é)b(ﬁ,Xs )ds) ]ds) (P%ng (N>17k(vn))>
<C (1 + \Xffyq1> A2 (A Ap)i . (5.19)
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Next, using Holder’s inequality with ]% + % = 1 and Burkholder-Davis-Gundy’s inequality
together with Lemma [3.6]

Mg,3,2,k,n <C (1 + |ka0|q1) A, ()\vnAn)é . (5.20)

Using Burkholder-Davis-Gundy’s inequality and condition (A1),

~g0 tk+1 90 2
M033kn—E XeO[( /t /||< (X (ds,dz)) ]
k Un

c(1+ |ka°|41) An/ C(2)w(dz). (5.21)
|z|<vn
Observe that
~0 tr+1 2
M8 s gpm < E 0 K / / (X7, 2)v(dz)ds ) ]
tr ‘ |>7Jn
<C (1+ \Xf:ym Ag / g(z)y<dz)) . (5.22)
R§

Therefore, from (5.18)-(5.22)), we have shown that

My < C (141X5 1) A (()\UnA )i+ /|Z<U C(2)v(dz) + A g C(Z)V(dZ))Q)-
- ’ (5.23)

Thus, from (5.12)-(5.17)) and (5.23)), we have shown that

My, <C (1 n |ka°|q1) An<(AvnAn)é " /|Z|<U C2(2)v(dz) +An</Rd C(z)y(dz)>2>.
o ’ (5.24)

Finally, we treat M. 21 k.n- Multiplying the random variable inside the conditional expectation
of M>1 kn DY 1 (o) +1 Rorx(on) and using equations (5.6) and (5.7]), we get that

M, =E" 0|15 e (X7 )N (ds, d
>1,kn — X9° Notk(vn) er(0 z)N ( s,dz)
|z|>vn
~ Lttt 2
0 9 _ 90
_Etk,X"O [ <1N0 k(Un) N>1 & (vn) / /||>U c(Ys- ds dz) ’Ytkﬂ th+1:|>) ]
trt1 00
tk,X00|: N>1 k(vn) (ek </tk /|>vn X (ds,dz)
~0 trt+1 0 40
B o [1]@1716(%)/ /|Z>U (Vi 2)M (ds, d2)| VY, = thﬂ}

tri1 90 2
+ tk X"O[ No,k(vn) / / dz ds‘ ther1 th+1}>) ]
’ |z\>vn

=60 90 90 Bt 90 bt 00
= E thO 1]’\}>1 k(Un) ek(e) th+1 - th — b(07 XS )dS — O-(XS )dBS
IR et

tk tg
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lk+1
/tk /ZKU” 2)N(ds,dz) — :Xgo [1]@%(%) (YtH1 Yy
s 0 KA s 0 9 90
_/tk b(G,YS)ds—/tk o(v)aw, - | /|<vn c(YO ., 2)M(ds, d2) ‘YtkH —thﬂ]
~ tet1 2
Y o e —xf:J>> |
8
<8 MYy hm (5.25)
=1
where

0 _ 1O R 60 60
MZLl,k,n - Etk,XfIS [1N>1,k(un)< (9) (th+1 B th
2
0 6 0 0 0
B Etk,XtBIS [1ﬁ>1,k(vn)(y;fk+1 o Ytk) Y;kJrl th+1}>> ]’
r tk+1 2
0 760
Man=FL ( / xthar) |
tk+1 2
o(xap ) |

o(X?, 2)N(ds, dz)ﬂ :

X90 N>1 & (vn)
k+1

N V.
tX >1k(n |\<Un

r tre41 2
0 EY° 0 0 6°
M21,5,k,n E XOO N>1 k(vn) < t XBO 1N21,k(Un) /tk b(67 Y:s )dS’Y;ﬁkH th+1:|> :| )

0

r trt1 0 o 2

15;€,X9O 1N>1 k(Un)/ o (Yy)dWs Tt+1 _th+1]) ]’
tri1 2
_ yo°
tk7X90 N>1k Un) / /|Z<U ds dz) ’ trt1 th-u]) }’
0 2

_ 0

Ytk 1 th+1]> }

First, we treat the term Mgl Lkn- Using equation (5.7)) and the fact that there is no big jump
of ZUn in the interval [tk,tk+1), we get that

0 7300 6 60
Mz en = B, X00|:1N21’k(vn)< (9)<th+1 Xt

2
6 00
.0t

_ 16° _ 00 0 T _
=E X"]S |:1N21,k(’l}n)( (9) (th+1 th) <1 Etk:Xte,S [1N217k(vn)

M? = Ef
21,6,k,n Etk,Xfo N>1 k(Un

0 _ e
M21777kan - Etk,Xteo N>1 k(Un

tkt+1
6 90 0

- (X3,

tkt1

N ~
— Xy )E X@O |:1N>1k('Un)

- x?

tet1 tk+1:| ) ]
o 2
0

Ytk+1 th+1]> ]

_ 560 R 00 00\T0 L
=B xg {1Nzl,k(vn)< WO (XE, = XE)E] {1 1921 kon)
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2
— 5¢° 00 00\ 70 00
N Etk,Xf,? Ns1k(vn) ( th+1 — Xy )E XGO { No.x(vn) tk+1 th+1:| }
2
— R’ 0 0 00
Etk:Xf,S Nx1k(vn) ( t X"O [ NO,k(Un)(Y;kJrl o Y;k) Ytk+1 th+1:|> }
g0 tht1 p tht1 )
- Etk,XHO N>1 k(vn) tk,Xf?O No & (Un) / b(@ Y )ds + /tk U(Y; )dWs
tk+l Tttt 2
- [ o )i, -]
tr |z|<vn tr |z|>vn
= 4ZM21,1,i,k,m (5.26)
=1
where
B tei1 2
90 0 90
M>1,].,1,]€ n E XQO ]\7>1 k < XQO lNO & ’Un) / 0 Y ds} thp1 th+1:|> :| R
tei1 2
90 00
M>1,172,k2 n Etk,X o N>1 k < tk,XQO NO & ’Un) / dW th+1:|) :| R
0 ~g0 tet1 0 2
M21,173 k n Et XGO N>1 k U’n < tk,XeO 1N0,k(vn) / /||<U C(YS—’ dS dZ ‘}/tkﬁ»l — th+1:|) :| 3
tht1
0 500 0 . 9o
Mz11 400 =B X0 1N21,k(vn) <€k(9)Etk’Xt Nl Un)/ /|Z|>U v(dz2) ds’ =X

; 0 0 0
Proceeding as the terms Mg, ;s Mgy, Mgy, and M0’374’k’n, we get that for any
q>1,

Me <O (14 (X°[1) A2 (A, An)i, MY <O (14 1X°19) Ap (Ao, An)
>1,1,1kn = + X7, | n Ao, An)e, MZg 9k, < + [ X [T ) An (Aw,An) e,
0
Mg < C (LX) Ay [ i) (5.27)
|z|<vpn
o 2
M§1,1,4,k,n_ ( +|X9 ’ql AQ / C(z )) ;

for some constant ¢; > 0. Thus, from and (| m, we have shown that

ML < C (141X0 1) An<(AvnAn)3 + / 3 C(2)w(dz) + A ( 9 C(z)u(dz))2>.

(5.28)
Similarly, we obtain that for any ¢ > 1,
1
Mg on + My sn < C (14 XE17) AZ (O, )1,
1
Mgl,?,,k,n + Mgl,&k,n <C (1 + |Xt9k ’q1> n (Ao, Ap) e,

0
M+ Mo <C (14 1XE 1) A [ aputan),

|21<vn
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My < € (LX) 83 [ o)
0

This, together with (5.25)) and (5.28)), concludes that for any ¢ > 1,

MLy, < C (14 1X0 ) An<()\UnAn)rlz +/|

Fawtas) + 8 [ cwta)’),
’ (5.29)

z|<vp

for some constant g; > 0. Thus, the result follows from (5.8)), (5.9)), (5.10), (5.11), (5.24) and
(15.29). (|
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