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Abstract. We consider a multidimensional diffusion with jumps driven by a Brownian
motion and a Poisson random measure associated with a Lévy process without Gaussian
component, whose drift coefficient depends on a multidimensional unknown parameter. In
continuity with the recent work by Kohatsu-Higa et al. [18] where only the case of finite
jump activity is studied, in this paper the case of infinite jump activity is next investigated.
We prove the local asymptotic normality property from high-frequency discrete observations
with increasing observation window by assuming some hypotheses on the coefficients of the
equation, the ergodicity of the solution and the integrability of the Lévy measure. To obtain
the result, our approach is essentially based on Malliavin calculus techniques initiated by
Gobet [7, 8] and a subtle analysis on the jump structure of the Lévy process developed
recently by Ben Alaya et al. [2].

1. Introduction

On a complete probability space (Ω,F ,P) which will be specified later on, we consider the
d-dimensional process Xθ = (Xθ

t )t≥0 solution to the following stochastic differential equation
(SDE) with jumps

dXθ
t = b(θ,Xθ

t )dt+ σ(Xθ
t )dBt +

∫
Rd0
c(Xθ

t−, z) (N(dt, dz)− ν(dz)dt) , (1.1)

where Xθ
0 = x0 ∈ Rd is fixed and known, Rd0 := Rd \ {0}, B = (Bt)t≥0 is a d-dimensional

Brownian motion, and N(dt, dz) is a Poisson random measure in (R+ × Rd0,B(R+ × Rd0))
independent of B with intensity measure ν(dz)dt. The Lévy measure ν(dz) can be finite
or infinite. The Poisson random measure N(dt, dz) is associated to a centered Lévy process
Z = (Zt)t≥0 without Gaussian component, that is, the Lévy-Itô decomposition of Z takes the

form Zt =
∫ t

0

∫
Rd0
zÑ(ds, dz) for any t ≥ 0, where Ñ(dt, dz) := N(dt, dz) − ν(dz)dt denotes

the compensated Poisson random measure and N(dt, dz) :=
∑

0≤s≤t 1{∆Zs 6=0}δ(s,∆Zs)(ds, dz).
Here, the jump amplitude of Z is defined as ∆Zs := Zs − Zs− for any s > 0, ∆Z0 := 0,
δ(s,z) denotes the Dirac measure at the point (s, z) ∈ R+ × Rd0, and B(R+ × Rd0) denotes the

Borel σ-algebra on R+×Rd0. The unknown parameter θ = (θ1, . . . , θm) belongs to Θ, an open
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subset of Rm, for some integer m ≥ 1. Let {F̂t}t≥0 denote the natural filtration generated
by B and N . The coefficients b = (b1, . . . , bd) : Θ × Rd → Rd, σ : Rd → Rd ⊗ Rd and
c : Rd×Rd0 → Rd are measurable functions satisfying the Lipschitz continuity condition (A1)

below under which equation (1.1) has a unique {F̂t}t≥0-adapted càdlàg solution Xθ possessing
the strong Markov property (see [13, Theorem III.2.32] or [1, Theorems 6.2.9. and 6.4.6.]).

We denote by P̂θ the probability measure induced by the process Xθ on the canonical space

(D(R+,Rd),B(D(R+,Rd))) endowed with the natural filtration {F̂t}t≥0. Here D(R+,Rd)
denotes the set of Rd-valued càdlàg functions defined on R+, and B(D(R+,Rd)) is its Borel

σ-algebra. We denote by Êθ the expectation with respect to (w.r.t.) P̂θ. Let
P̂θ−→,

L(P̂θ)−→ , P̂θ-

a.s.,
P−→, and

L(P)−→ denote the convergence in P̂θ-probability, in P̂θ-law, in P̂θ-almost surely,
in P-probability, and in P-law, respectively. For x ∈ Rd, |x| denotes the Euclidean norm. |A|
denotes the Frobenius norm of the square matrix A, and tr(A) denotes the trace. ∗ denotes
the transpose.

The class of Lévy-driven SDEs has recently received a lot of attention in various fields of
applications such as physics, neurosciences, mathematical finance,. . . . The statistical study
for these SDEs has become an active domain of research. Parameter estimation for diffusion
processes from discrete observations can be found, for instance, in [4, 5, 16]. In the case of
diffusions with jumps, see [23, 6, 33, 29, 32, 26].

For θ ∈ Θ and n ∈ N∗, a discrete observation at deterministic and equidistant times tk =
k∆n, k ∈ {0, . . . , n} of the processXθ solution to (1.1) is denoted byXn,θ = (Xθ

t0 , X
θ
t1 , . . . , X

θ
tn).

We assume that the sequence of sampling time-step sizes ∆n satisfies the high-frequency and
infinite horizon conditions: ∆n → 0 and n∆n →∞ as n→∞. Let Pθn denote the probability
law of the random vector Xn,θ.

The Local Asymptotic Normality (LAN) property is a fundamental concept in the asymp-
totic theory of statistics. This property was introduced by Le Cam [20] and Hájek [9] in the
situations where the asymptotic Fisher information matrix is deterministic. In our setting, we
say that the LAN property holds at θ0 ∈ Θ with rate of convergence ϕn∆n(θ0) and asymptotic
Fisher information matrix Γ(θ0) if for any u ∈ Rm, as n→∞,

log
dP

θ0+ϕn∆n (θ0)u
n

dPθ0

n

(
Xn,θ0

) L(P̂θ
0
)−→ u∗N (0,Γ(θ0))− 1

2
u∗Γ(θ0)u,

where N (0,Γ(θ0)) is a centered Rm-valued Gaussian random variable with covariance matrix
Γ(θ0). Here, Γ(θ0) is a symmetric positive definite non-random matrix in Rm×m, ϕn∆n(θ0) is
a diagonal matrix in Rm×m whose diagonal entries tend to zero as n→∞. Later on, the con-
cept of Local Asymptotic Mixed Normality (LAMN) property was developed by Jeganathan
[14] when the asymptotic Fisher information matrix Γ(θ0) is random. These properties al-
low to introduce the notion of asymptotically efficient estimators in the sense of Hájek-Le
Cam convolution theorem and to give the lower bounds for the variance of estimators (see
Jeganathan [14]). Assume that the LAN property holds at point θ0, on the one hand, a

sequence of estimators (θ̂n)n≥1 of the parameter θ0 is called asymptotically efficient at θ0 in
the sense of Hájek-Le Cam convolution theorem if as n→∞,

ϕ−1
n∆n

(θ0)
(
θ̂n − θ0

) L(P̂θ
0
)−→ N (0,Γ(θ0)−1).
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On the other hand, the minimax theorem states that the lower bound for the asymptotic
variance of estimators is given by the Cramer-rao lower bound Γ(θ0)−1. We refer the reader
to Subsection 7.1 of Höpfner [10] or Le Cam and Lo Yang [21] for further details.

On the basis of continuous observations, the LAMN property was studied by Luschgy [22]
for semimartingale. In the case of discrete observations, the Malliavin calculus approach
initiated by Gobet [7, 8] is used to obtain the LAMN and LAN properties. In [7], the author
addressed the LAMN property for multidimensional elliptic diffusion processes. Later on, the
LAN property was established in [8] for multidimensional ergodic diffusions. More recently,
Ben Alaya et al. [3] have proved the LAN property in the subcritical case, the local asymptotic
quadraticity (LAQ) in the critical case, and the LAMN property in the supercritical case for
the Cox-Ingersoll-Ross process. In presence of jumps, several Lévy-driven SDEs have been
investigated. More precisely, Kawai [15] studied the LAN property for the ergodic Ornstein-
Uhlenbeck processes with jumps by using the fact that the solution and transition density are
semi-explicit. See also [17, 34] in the case of a simple Lévy process and an ergodic Ornstein-
Uhlenbeck process with Poisson jumps, respectively. Recently, Kohatsu-Higa et al. [18] have
obtained the LAN property for the SDE with jumps (1.1) in a particular case where the
driving Lévy process is a compound Poisson process with finite Lévy measure. More recently,
in [2] Ben Alaya et al. have studied the local asymptotic properties for the growth rate of a
jump-type CIR process driven by a subordinator with a possible infinite jump activity.

To our knowledge, the validity of the LAN property for SDEs (1.1) having a Brownian
driver and a more general driving Lévy process with possible infinite Lévy measure has never
been addressed in the literature. Thus, the purpose of this paper is to prove the LAN property
for the drift parameter of diffusions with jumps (1.1) from discrete observations under some
appropriate assumptions on the coefficients of the equation, the ergodicity of the solution and
the integrability of the Lévy measure. This paper solves the open problem stated in page 933
of [15] and page 423 of [18] in the case where the unknown parameter appears only in the
drift coefficient.

The first challenge is that the transition density of the solution to equation (1.1) is not
explicit in general, which complicates the analysis of the log-likelihood of the discretized
process (Xθ

t0 , X
θ
t1 , . . . , X

θ
tn). To overcome this challenge, the Malliavin calculus approach

initiated by Gobet [7, 8] is used to obtain an explicit expression for the logarithm derivative
of the transition density w.r.t. the parameter (see Lemma 3.1 and 3.3). This allows us to
derive an appropriate stochastic expansion of the log-likelihood ratio (see Lemma 4.1). Let
us mention that this Malliavin calculus approach has been intensively developed in [15, 17,
18, 34, 3, 2]. In order to show the main contributions, we use a central limit theorem for
triangular arrays of random variables and the ergodicity (see Lemma 4.2). These random
variables are given by the terms which are determined by the Gaussian and drift components
of equation (1.1).

The second challenge is to deal with the negligible contributions of the stochastic expansion
of the log-likelihood ratio. As will be seen in Subsection 4.3, one difficulty comes from the fact

that the conditional expectations are computed under the probability measure P̃θ
0+
i (`) whereas

the convergence is proven under the probability measure P̂θ
0

with P̂θ
0 6= P̃θ

0+
i (`), where θ0+

i (`)
will be specified later on as a parameter value close to θ0. To solve this problem, two technical
Lemmas 3.6 and 3.7, which describe the Girsanov change of measures and the deviation of
Girsanov change of measures, are mainly used. Recall that in [8] the author used a change
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of transition densities together with the upper and lower bounds of Gaussian type of the
transition densities. This argument cannot be applied to our SDE with jumps where the
upper and lower bounds of the transition densities may be of different characteristics due
to the fact that the behavior of the transition density changes strongly with the presence of
jumps.

The other difficulty is due to the jump components appearing in the stochastic expansion of
the log-likelihood ratio (see Lemma 4.7). To resolve this difficulty, we apply a new approach
developed recently by Ben Alaya et al. in [2] where a subtle analysis on the jump structure
of the Lévy processes involving the amplitude of jumps and number of jumps is mainly used.
More concretely, this approach consists in splitting the jumps of the Lévy processes into small
jumps and big jumps, and then conditioning on the number of big jumps outside and inside
the conditional expectation. When the number of big jumps of the Lévy processes outside
and inside the conditional expectation is different, a large deviation principle in the estimate
can be used (see (5.12) and (5.18)) and otherwise, an analysis on the complementary set is
used (see (5.26)). All these arguments combined with the usual moment estimates allow to
derive the exact large deviation type estimates given in Lemma 5.1 where the decreasing rate
is determined by the intensity of the big jumps and the asymptotic behavior of the small
jumps. This decreasing rate together with the help of condition (A5) on the integrability
condition of the Lévy measure will show the negligible contributions of the jump components
in the asymptotics. It is worth noticing that this new approach allows to include more general
driving Lévy processes with possible infinite Lévy measure. Recall that the approach in [18,
Lemma A.14] relies on conditioning on the jump structure involving number of jumps and
amplitude of jumps, and using lower bounds for the transition density and upper bounds for
the transition density conditioned on the jump structure in order to obtain the large deviation
type estimates. Besides, only the case of compound Poisson process with finite Lévy measure
is studied in [18]. Thus, the result derived in this paper can be seen as an improvement of
the one obtained in [18].

The issue of parameter estimation for Lévy-driven SDEs from discrete observations usually
requires an additional assumption on the decreasing rate of ∆n, for instance, the rate n∆p

n → 0
for some p > 1 or the rate may depend on the behavior of the Lévy measure ν near zero, see
[23, Theorem 3.5 and Theorem 4.6] and [6, Theorem 3.2]. On the one hand, our approach
does not require neither additional assumption on the decreasing rate of ∆n (see Remark 3.8)
nor the tail behavior of the transition density. On the other hand, our approach keeps a wide
class of Lévy processes in applications (see Example 2.1).

This paper is organized as follows. In Section 2, we formulate assumptions on equation
(1.1) and provide a wide class of Lévy processes in applications which satisfies the assumption
on the integrability of the Lévy measure. Furthermore, the main result is stated in Theorem
2.2. Section 3 is devoted to preliminary results which are needed for the proof of Theorem
2.2, such as an explicit expression for the logarithm derivative of the transition density, some
crucial moment estimates, a conditional expectation formula, deviation of Girsanov change of
measures, a discrete ergodic theorem. The proofs of these results are somewhat technical and
are delayed to Appendix to maintain the flow of the exposition. We prove our main result
in Section 4, which follows the aforementioned strategy. Finally, the proofs of some technical
lemmas are presented in Section 5, where a result on the large deviation type estimates is
also proven.



LAN PROPERTY FOR ERGODIC DIFFUSIONS WITH JUMPS 5

As usual, constants will be denoted by C which may change of value from one line to the
next.

2. Assumptions and main result

We consider the following hypotheses on equation (1.1) we shall work with.

(A1) For any θ ∈ Θ, there exist a constant L > 0 and a function ζ : Rd0 → R+ of polynomial
growth in z satisfying ζ(z)1|z|≤1 ≤ C|z| with a constant C > 0 such that for all x, y ∈ Rd,
z ∈ Rd0,

|b(θ, x)− b(θ, y)|+ |σ(x)− σ(y)| ≤ L|x− y|,
|c(x, z)− c(y, z)| ≤ ζ(z)|x− y|, |c(x, z)| ≤ ζ(z)(1 + |x|).

Moreover, the Lipschitz constant L is uniformly bounded on Θ.

(A2) The diffusion matrix σ satisfies an uniform ellipticity condition, that is, there exists a
constant c ≥ 1 such that for all x, ξ ∈ Rd,

1

c
|ξ|2 ≤ |σ(x)ξ|2 ≤ c|ξ|2.

(A3) The functions b, σ and c are of class C1 w.r.t. θ and x. Each partial derivative ∂θib,
∂xib, ∂xiσ and ∂xic is of class C1 w.r.t. x. Moreover, there exist positive constants C, q,
γ ∈ (0, 1], independent of

(
θ, θ1, θ2, x, y, z

)
∈ Θ3 × (Rd)2 × Rd0 such that

(a) |∂xib(θ, x)|+ |∂xiσ(x)| ≤ C, and |∂xic(x, z)| ≤ ζ(z);

(b) |h(·, x)| ≤ C (1 + |x|q) for h(·, x) = ∂θib(θ, x), ∂2
xi,xjb(θ, x), ∂2

θi,xj
b(θ, x) or ∂2

xi,xjσ(x);

(c) |∂2
xi,xjc(x, z)| ≤ Cζ(z) (1 + |x|);

(d) ∂θib(·, x) is γ- Hölder continuous w.r.t θ ∈ Θ:

|∂θib(θ
1, x)− ∂θib(θ

2, x)| ≤ C|θ1 − θ2|γ (1 + |x|q) .

(A4) For all θ ∈ Θ, the process Xθ is ergodic in the sense that there exists a unique invariant
probability measure πθ(dx) such that the ergodic theorem holds, that is, as T →∞,

1

T

∫ T

0
g(Xθ

t )dt
P̂θ−→
∫
Rd
g(x)πθ(dx),

for any πθ-integrable function g : Rd → R. Moreover,
∫
Rd |x|

pπθ(dx) < ∞, for any
p > 0.

(A5) The Lévy measure ν satisfies
∫
|z|>1 |z|

pν(dz) <∞ for any p ≥ 1 and
∫

0<|z|≤1 |z|ν(dz) <
∞.

The uniform ellipticity condition (A2) and regularity condition (A3)(a)-(c) on the coeffi-
cients are required in order to be able to apply the Malliavin calculus. Condition (A3)(d) is
needed to show the main contributions of the stochastic expansion of the log-likelihood ratio
(see Lemma 4.2). The ergodicity in the sense of (A4) was shown by Masuda in [24, Theorem
2.1] for a class of multidimensional diffusions with jumps. More recently, in [6, Lemma 2.1],
conditions for the existence of an invariant measure πθ and the ergodicity in the sense of (A4)
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are given for one-dimensional Lévy-driven SDEs with c(x, z) = γ(x)z. Several examples of
ergodic diffusion processes with jumps are given in [32]. Moreover, results on ergodicity and
exponential ergodicity which are understood in the sense of [27] and which are both stronger
than the sense of (A4) have been established by Masuda [24] for diffusion processes with
jumps.

The ergodicity also implies that for all p > 0,

sup
t∈R+

Êθ
[
|Xθ

t |p
]
< +∞. (2.1)

See [24, Theorem 2.2] and [6, Lemma 2.1].

The integrability condition (A5) of the Lévy measure controls the behavior of the small
jumps and big jumps of the Lévy process, which is required in order to prove the negligible
contribution of the jump component in the expansion (see Lemma 4.7). With the help of
condition (A5), the jump component is dominated over by the Gaussian component in a
small time interval.

Example 2.1. Condition (A5) can be verified for a wide class of Lévy measures: finite Lévy
measure and infinite Lévy measure.

1) Lévy measure of a Poisson process ν(dz) = λδ1(dz), where λ > 0 is the parameter of the
Poisson process and δ1(dz) is the Dirac measure supported on {1}.

2) Lévy measure of a compound Poisson process with exponentially distributed jump sizes
ν(dz) = Cλe−λz1(0,∞)(z)dz, for some constants C ∈ (0,∞) and λ ∈ (0,∞).

3) Lévy measure of Gamma process ν(dz) = γz−1e−λz1(0,∞)(z)dz, where γ and λ are
positive constants.

4) Lévy measure of inverse Gaussian process with ν(dz) = δ√
2πz3

e−
γ2z

2 1(0,∞)(z)dz, for a

positive constant δ.

5) Lévy measure of a subordinator which is given by the gamma probability distribution.
That is, ν(dz) = λα

Γ(α)z
α−1e−λz1(0,∞)(z)dz where α ∈ (−1,∞) and λ is a positive constant.

6) Lévy measure of Variance gamma process

ν(dz) =

{
CeGz|z|−1 if z < 0

Ce−Mzz−1 if z > 0,

where C,G,M are positive constants.

7) Lévy measure of normal inverse Gaussian process

ν(dz) =
αδ

π

eβzK1(α|z|)
|z|

dz,

where δ > 0, α > 0, −α < β < α, Kλ(z) is the modified Bessel function of the third kind

Kλ(z) =
1

2

∫ ∞
0

uλ−1 exp

{
−1

2
z(u+ u−1)

}
du.

8) Lévy measure of some generalized tempered stable processes

ν(dz) =
c+e
−λ+z

z1+α+
1(0,∞)(z)dz +

c−e
−λ−|z|

|z|1+α−
1(−∞,0)(z)dz,
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with parameters satisfying c+ > 0, c1 > 0, λ+ > 0, λ− > 0, α+ < 1 and α− < 1.

For fixed θ0 ∈ Θ, we consider a discrete observation Xn,θ0
= (Xθ0

t0 , X
θ0

t1 , . . . , X
θ0

tn ) of the

process Xθ0
. The main result of this paper is the following LAN property.

Theorem 2.2. Assume conditions (A1)-(A5). Then, the LAN property holds for the like-
lihood at θ0 with rate of convergence ϕn∆n(θ0) = diag( 1√

n∆n
, . . . , 1√

n∆n
) where ϕ1

n∆n
(θ0) =

· · · = ϕmn∆n
(θ0) = 1√

n∆n
and asymptotic Fisher information matrix

Γ(θ0) =

∫
Rd

(
∇θb(θ0, x)

)∗
(σσ∗)−1(x)∇θb(θ0, x)πθ0(dx), (2.2)

where the elements of matrix Γ(θ0) = (Γ(θ0)i,j)1≤i,j≤m ∈ Rm ⊗ Rm are given by

Γ(θ0)i,j =

∫
Rd

(
∂θib(θ

0, x)
)∗

(σσ∗)−1(x)∂θjb(θ
0, x)πθ0(dx).

That is, for all u ∈ Rm, as n→∞,

log
dP

θ0+ u√
n∆n

n

dPθ0

n

(
Xn,θ0

) L(P̂θ
0
)−→ u∗N (0,Γ(θ0))− 1

2
u∗Γ(θ0)u,

where N (0,Γ(θ0)) is a centered Rm-valued Gaussian random variable with covariance matrix
Γ(θ0).

Remark 2.3. Theorem 2.2 can be seen as an extension of the result obtained by Gobet in
[8, Theorem 4.1] for ergodic diffusions in the case when the unknown parameter appears only
in the drift coefficient and when a jump component is added to the solution process. When
the jump component in (1.1) is degenerate, we recover the same formula for the asymptotic
Fisher information matrix Γ(θ0) of ergodic diffusions without jumps obtained in [8, Theorem
4.1].

Remark 2.4. Theorem 2.2 generalizes the result obtained by Kohatsu-Higa et al. in [18,
Theorem 2.2] when the unknown parameter is multidimensional and when the jump component
of driving Lévy processes are more general and of a possible infinite jump activity.

Remark 2.5. When the LAN property holds at θ0 with rate of convergence ϕn∆n(θ0) =
diag( 1√

n∆n
, . . . , 1√

n∆n
) and asymptotic Fisher information matrix Γ(θ0), in this case a se-

quence of estimators (θ̂n)n≥1 of θ0 is said to be asymptotically efficient at θ0 in the sense of
Hájek-Le Cam convolution theorem if as n→∞,√

n∆n

(
θ̂n − θ0

) L(P̂θ
0
)−→ N (0,Γ(θ0)−1).

Note that a sequence of estimators which is asymptotically efficient in the sense of Hájek-Le
Cam convolution theorem achieves asymptotically the Cramér-Rao lower bound Γ(θ0)−1 for
the estimation variance. For details, we refer the reader to e.g. [21].

In [23], the author constructs a discretized likelihood estimator with jump filtering from the
time-continuous likelihood function, which is given by (6) in [23], for the drift parameter of an
Ornstein-Uhlenbeck process driven by a Lévy process whose jump component is of finite jump
activity or infinite jump activity. Combining our main result Theorem 2.2 and [23, Theorem
3.5 and Theorem 4.6], this estimator is asymptotically efficient in the sense of Hájek-Le Cam
convolution theorem.
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More recently, in [6], a filtered maximum likelihood estimator (FMLE) for the drift param-
eter of the one-dimensional SDE (1.1) with c(x, z) = γ(x)z, driven by a Lévy process with
a possible infinite jump activity, is constructed by applying a jump filter to the discretized
likelihood function. This FMLE is given by (3.5) in [6]. As a consequence of our main re-
sult Theorem 2.2 and [6, Theorem 3.2], this FMLE is asymptotically efficient in the sense
of Hájek-Le Cam convolution theorem since its variance achieves the lower bound for the
asymptotic variance of estimators with the optimal rate of convergence.

Example 2.6. 1) Consider the one-dimensional Ornstein-Uhlenbeck process driven by a Lévy

process Xθ1,θ2 = (Xθ1,θ2
t )t≥0 defined as

Xθ1,θ2
t = x0 +

∫ t

0
(θ2 − θ1X

θ1,θ2
s )ds+ σBt + Zt

= x0 +

∫ t

0
(θ2 − θ1X

θ1,θ2
s )ds+ σBt +

∫ t

0

∫
R0

zÑ(ds, dz),

where θ = (θ1, θ2), θ1 > 0, σ > 0. Assume that the Lévy measure satisfies condition (A5)
which implies

∫
|z|>2 log |z|ν(dz) < +∞. This integrability, together with θ1 > 0, ensures that

Xθ1,θ2 is ergodic in the sense of (A4) with an invariant probability measure πθ1,θ2(dx) which
can be computed explicitly (see [31, Theorem 17.5 and Corollary 17.9] and [24, Theorem 2.6]),
and satisfies

∫
R |x|

pπθ1,θ2(dx) <∞ for any p > 0. In particular,

lim
t→∞

Êθ1,θ2 [Xθ1,θ2
t ] =

∫
R
xπθ1,θ2(dx) =

θ2

θ1
,

lim
t→∞

Êθ1,θ2 [(Xθ1,θ2
t )2] =

∫
R
x2πθ1,θ2(dx) =

1

2θ1

(
σ2 +

∫
R0

z2ν(dz)

)
+

(
θ2

θ1

)2

.

Then, the matrix Γ(θ1, θ2) is given by

Γ(θ1, θ2) =
1

σ2


1

2θ1

(
σ2 +

∫
R0
z2ν(dz)

)
+

(
θ2

θ1

)2

−θ2

θ1

−θ2

θ1
1

 .

Notice that in this case conditions (A1)-(A3) hold. As a consequence of Theorem 2.2, under
condition (A5), the LAN property holds with rate of convergence diag( 1√

n∆n
, 1√

n∆n
) and

asymptotic Fisher information matrix Γ(θ0) = Γ(θ0
1, θ

0
2).

2) Consider the one-dimensional Lévy process defined as

Xθ
t = x0 + θt+ σBt + Zt

= x0 + θt+ σBt +

∫ t

0

∫
R0

zÑ(ds, dz),

where θ ∈ R and σ > 0. Assume that the Lévy measure satisfies condition (A5). Notice that
conditions (A1)-(A3) hold. Then as a consequence of Theorem 2.2, under condition (A5),
the LAN property holds with rate of convergence 1√

n∆n
and asymptotic Fisher information

Γ(θ0) = 1
σ2 . In this case, condition (A4) is not needed since Γ(θ0) can be obtained without

using the ergodicity assumption, but thanks to the simple structure of the drift and diffusion
coefficients (see (4.6) below).
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As usual, constants will be denoted by C which may change of value from one line to the
next.

3. Preliminaries

In this section, we are going to present some preliminary results which are needed for the
proof of Theorem 2.2. To simplify the exposition, for i ∈ {1, . . . ,m} we use the following
notations

θ0 = (θ0
1, . . . , θ

0
m), u = (u1, u2, . . . , um),

θ0+ := θ0 +
u√
n∆n

= (θ0
1 +

u1√
n∆n

, . . . , θ0
m +

um√
n∆n

),

θ0+
i := (θ0

1, . . . , θ
0
i−1, θ

0
i +

ui√
n∆n

, θ0
i+1 +

ui+1√
n∆n

, . . . , θ0
m +

um√
n∆n

),

θ0+
i (`) := (θ0

1, . . . , θ
0
i−1, θ

0
i + `

ui√
n∆n

, θ0
i+1 +

ui+1√
n∆n

, . . . , θ0
m +

um√
n∆n

).

Conditions (A1)-(A2) imply that the law of the discrete observationXn,θ = (Xθ
t0 , X

θ
t1 , . . . , X

θ
tn)

of the process Xθ has a density in (Rd)n+1 that we denote by pn(·; θ). Under conditions (A1),
(A2) and (A3)(a), for any t > s the law of Xθ

t conditioned on Xθ
s = x possesses a positive

transition density pθ(t− s, x, y), which is differentiable w.r.t. θ. To analyze the log-likelihood
ratio in Theorem 2.2, the Markov property is used to rewrite the global likelihood function
in terms of a product of transition densities and then a mean value theorem is applied. More
precisely,

log
dP

θ0+ u√
n∆n

n

dPθ0

n

(
Xn,θ0

)
= log

pn

(
Xn,θ0

; θ0 + u√
n∆n

)
pn
(
Xn,θ0 ; θ0

) = log
pn

(
Xn,θ0

; θ0+
)

pn
(
Xn,θ0 ; θ0

)
=

n−1∑
k=0

log
pθ

0+

pθ0

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

log
pθ

0+
1

pθ0

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

log

(
pθ

0+
1

pθ
0+
2

pθ
0+
2

pθ
0+
3

· · · p
θ0+
i

pθ
0+
i+1

· · · p
θ0+
m−1

pθ
0+
m

pθ
0+
m

pθ0

)(
∆n, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

log
pθ

0+
1

pθ
0+
2

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
+

n−1∑
k=0

log
pθ

0+
2

pθ
0+
3

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
+ · · ·+

n−1∑
k=0

log
pθ

0+
i

pθ
0+
i+1

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
+ · · ·+

n−1∑
k=0

log
pθ

0+
m

pθ0

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
=

n−1∑
k=0

u1√
n∆n

∫ 1

0

∂θ1p
θ0+
1 (`)

pθ
0+
1 (`)

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
d`

+

n−1∑
k=0

u2√
n∆n

∫ 1

0

∂θ2p
θ0+
2 (`)

pθ
0+
2 (`)

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
d`

+ · · ·+
n−1∑
k=0

ui√
n∆n

∫ 1

0

∂θip
θ0+
i (`)

pθ
0+
i (`)

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
d`
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+ · · ·+
n−1∑
k=0

um√
n∆n

∫ 1

0

∂θmp
θ0+
m (`)

pθ
0+
m (`)

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
d`. (3.1)

Then, using the approach developed in [7, 8], the integration by parts formula of the Malli-
avin calculus on each interval [tk, tk+1] will be applied to obtain an explicit expression for
the logarithm derivative of the transition density w.r.t. the parameter appearing in the
decomposition (3.1). Towards this aim, we introduce canonical filtered probability spaces
(Ωi,F i, {F it}t≥0,P

i), i ∈ {1, . . . , 4}, associated respectively to each of four processes B,N,W
and M . Here W = (Wt)t≥0 is a d-dimensional Brownian motion, M(dt, dz) is a Pois-
son random measure with intensity measure ν(dz)dt associated to a centered Lévy process

Z̃ = (Z̃t)t≥0 without Gaussian component. The Lévy-Itô decomposition of Z̃ takes the form

Z̃t =
∫ t

0

∫
Rd0
zM̃(ds, dz) for any t ≥ 0, where M̃(dt, dz) := M(dt, dz) − ν(dz)dt denotes the

compensated Poisson random measure, M(dt, dz) :=
∑

0≤s≤t 1{∆Z̃s 6=0}δ(s,∆Z̃s)
(ds, dz). Here,

the jump amplitude of Z̃ is defined as ∆Z̃s := Z̃s − Z̃s− for any s > 0, ∆Z̃0 := 0. Four pro-
cesses B,N,W,M are mutually independent. Let (Ω,F , {Ft}t≥0,P) be the product filtered

probability space of these four canonical spaces. We denote Ω̂ = Ω1 × Ω2, F̂ = F1 ⊗ F2,

P̂ = P1 ⊗ P2, F̂t = F1
t ⊗ F2

t , Ω̃ = Ω3 × Ω4, F̃ = F3 ⊗ F4, P̃ = P3 ⊗ P4, and F̃t = F3
t ⊗ F4

t .

Thus, Ω = Ω̂ × Ω̃, F = F̂ ⊗ F̃ , P = P̂ ⊗ P̃, Ft = F̂t ⊗ F̃t, and E = Ê ⊗ Ẽ, where E, Ê, Ẽ

denote the expectation w.r.t. P, P̂ and P̃, respectively.

To avoid confusion with the observed process Xθ, we are going to introduce an independent
copy of Xθ, denoted by Y θ = (Y θ

t )t≥0, for which the Malliavin calculus will be applied. On the
same probability space (Ω,F ,P), we consider the stochastic flow Y θ(s, x) = (Y θ

t (s, x), t ≥ s),
x ∈ Rd on the time interval [s,∞) and with initial condition Y θ

s (s, x) = x satisfying

Y θ
t (s, x) = x+

∫ t

s
b(θ, Y θ

u (s, x))du+

∫ t

s
σ(Y θ

u (s, x))dWu

+

∫ t

s

∫
Rd0
c(Y θ

u−(s, x), z)M̃(du, dz).

(3.2)

In particular, we denote Y θ
t ≡ Y θ

t (0, x0), for all t ≥ 0. Thus,

Y θ
t = x0 +

∫ t

0
b(θ, Y θ

u )du+

∫ t

0
σ(Y θ

u )dWu +

∫ t

0

∫
Rd0
c(Y θ

u−, z)M̃(du, dz). (3.3)

The Malliavin calculus on the Wiener space induced by the Brownian motion W will be
applied. Let D and δ denote respectively the Malliavin derivative and the Skorohod integral
w.r.t. W on each interval [tk, tk+1]. We denote by D1,2 the space of random variables which
are differentiable in the sense of Malliavin, and by Dom δ the domain of δ. We refer to
Nualart [28] for a detailed exposition of the Malliavin calculus on the Wiener space and
the Malliavin calculus adapted to our framework is introduced, for instance, in [30]. Recall
that for a differentiable random variable F ∈ D1,2, its Malliavin derivative is denoted by
DF = (D1F, . . . ,DdF ), where Di is the Malliavin derivative in the ith direction W i of the
Brownian motion W = (W 1, . . . ,W d), for i ∈ {1, . . . , d}. For a Rd-valued process U =

(U1, . . . , Ud) ∈ Dom δ, the Skorohod integral of U is defined as δ(U) =
∑d

i=1 δ
i(U i), where

δi denotes the Skorohod integral w.r.t. W i.
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For any k ∈ {0, . . . , n − 1}, under conditions (A1), (A2) and (A3)(a)-(b), the process
(Y θ
t (tk, x), t ∈ [tk, tk+1]) is differentiable w.r.t. x and θ (see Kunita [19]). We denote by

(∇xY θ
t (tk, x), t ∈ [tk, tk+1]) the Jacobian matrix, and by (∂θiY

θ
t (tk, x), t ∈ [tk, tk+1]) the de-

rivative w.r.t. θi for i ∈ {1, . . . ,m}. These processes solve a system of SDEs

∇xY θ
t (tk, x) = Id +

∫ t

tk

∇xb(θ, Y θ
s (tk, x))∇xY θ

s (tk, x)ds (3.4)

+
d∑
j=1

∫ t

tk

∇xσj(Y θ
s (tk, x))∇xY θ

s (tk, x)dW j
s +

∫ t

tk

∫
Rd0
∇xc(Y θ

s−(tk, x), z)∇xY θ
s (tk, x)M̃(ds, dz),

∂θiY
θ
t (tk, x) =

∫ t

tk

(
∂θib(θ, Y

θ
s (tk, x)) +∇xb(θ, Y θ

s (tk, x))∂θiY
θ
s (tk, x)

)
ds (3.5)

+
d∑
j=1

∫ t

tk

∇xσj(Y θ
s (tk, x))∂θiY

θ
s (tk, x)dW j

s +

∫ t

tk

∫
Rd0
∇xc(Y θ

s−(tk, x), z)∂θiY
θ
s (tk, x)M̃(ds, dz),

for i ∈ {1, . . . ,m}, where σ1, ..., σd : Rd → Rd denote the columns of the matrix σ.

Moreover, under conditions (A1), (A2) and (A3)(a)-(c), the random variables Y θ
t (tk, x),

∇xY θ
t (tk, x), (∇xY θ

t (tk, x))−1 and ∂θiY
θ
t (tk, x) belong to D1,2 for any t ∈ [tk, tk+1] (see [30,

Theorem 3]). Furthermore, the Malliavin derivative DsY
θ
t (tk, x) satisfies the following equa-

tion

DsY
θ
t (tk, x) = σ(Y θ

s (tk, x)) +

∫ t

s
∇xb(θ, Y θ

u (tk, x))DsY
θ
u (tk, x)du

+
d∑
j=1

∫ t

s
∇xσj(Y θ

u (tk, x))DsY
θ
u (tk, x)dW j

u +

∫ t

s

∫
Rd0
∇xc(Y θ

u−(tk, x), z)DsY
θ
u (tk, x)M̃(du, dz),

for s ≤ t a.e., and DsY
θ
t (tk, x) = 0 for s > t a.e. By [30, Proposition 7], it holds that

DsY
θ
t (tk, x) = ∇xY θ

t (tk, x)(∇xY θ
s (tk, x))−1σ(Y θ

s (tk, x))1[tk,t](s).

Now, for all k ∈ {0, ..., n−1} and x ∈ Rd, we denote by P̃θtk,x the probability law of Y θ starting

at x at time tk, i.e., P̃θtk,x(A) = Ẽ[1A|Y θ
tk

= x] for all A ∈ F̃ , and by Ẽθtk,x the expectation w.r.t.

P̃θtk,x. That is, for all F̃-measurable random variables V , we have Ẽθtk,x[V ] = Ẽ[V |Y θ
tk

= x].

Hence, Ẽθtk,x is the expectation under the probability law of Y θ starting at x at time tk.

Similarly, we denote by P̂θtk,x the probability law of Xθ starting at x at time tk, i.e., P̂θtk,x(A) =

Ê[1A|Xθ
tk

= x] for all A ∈ F̂ , and by Êθtk,x the expectation w.r.t. P̂θtk,x. That is, for all F̂-

measurable random variables V , we have Êθtk,x[V ] = Ê[V |Xθ
tk

= x]. Let Pθtk,x := P̂θtk,x ⊗ P̃θtk,x
be the product measure, and Eθtk,x = Êθtk,x ⊗ Ẽθtk,x denotes the expectation w.r.t. Pθtk,x.

As in [7, Proposition 4.1], we obtain the following explicit expression for the logarithm
derivative of the transition density w.r.t. θ in terms of a conditional expectation.

Lemma 3.1. Under conditions (A1), (A2) and (A3)(a)-(c), for all i ∈ {1, . . . ,m}, k ∈
{0, ..., n− 1}, θ ∈ Θ, and x, y ∈ Rd,

∂θip
θ

pθ
(∆n, x, y) =

1

∆n
Ẽθtk,x

[
δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
) ∣∣∣Y θ

tk+1
= y
]
,



12 NGOC KHUE TRAN

where U θ(tk, x) = (U θt (tk, x), t ∈ [tk, tk+1]) with U θt (tk, x) = (DtY
θ
tk+1

(tk, x))−1.

We next derive the following decomposition of the Skorohod integral appearing in the
conditional expectation of Lemma 3.1.

Lemma 3.2. Under conditions (A1), (A2) and (A3)(a)-(c), for all i ∈ {1, . . . ,m}, k ∈
{0, ..., n− 1}, θ ∈ Θ, and x ∈ Rd,

δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)

= ∆n(∂θib(θ, x))∗(σσ∗)−1(x)
(
Y θ
tk+1
− Y θ

tk
− b(θ, Y θ

tk
)∆n

)
−Rθ,k1 +Rθ,k2 +Rθ,k3 −R

θ,k
4 −R

θ,k
5 −R

θ,k
6 ,

where

Rθ,k1 =

∫ tk+1

tk

∫ tk+1

s
tr
(
Ds

(
((∇xY θ

u (tk, x))−1∂θib(θ, Y
θ
u (tk, x)))∗

)
σ−1(Y θ

s (tk, x))∇xY θ
s (tk, x)

)
duds,

Rθ,k2 =

∫ tk+1

tk

((∇xY θ
s (tk, x))−1∂θib(θ, Y

θ
s (tk, x)))∗ds

·
∫ tk+1

tk

(
(∇xY θ

s (tk, x))∗(σ−1(Y θ
s (tk, x)))∗ − (∇xY θ

tk
(tk, x))∗(σ−1(Y θ

tk
(tk, x)))∗

)
dWs,

Rθ,k3 =

∫ tk+1

tk

(
((∇xY θ

s (tk, x))−1∂θib(θ, Y
θ
s (tk, x)))∗ − ((∇xY θ

tk
(tk, x))−1∂θib(θ, Y

θ
tk

(tk, x)))∗
)
ds

·
∫ tk+1

tk

(∇xY θ
tk

(tk, x))∗(σ−1(Y θ
tk

(tk, x)))∗dWs,

Rθ,k4 = ∆n(∂θib(θ, Y
θ
tk

))∗(σσ∗)−1(Y θ
tk

)

∫ tk+1

tk

(
b(θ, Y θ

s )− b(θ, Y θ
tk

)
)
ds,

Rθ,k5 = ∆n(∂θib(θ, Y
θ
tk

))∗(σσ∗)−1(Y θ
tk

)

∫ tk+1

tk

(
σ(Y θ

s )− σ(Y θ
tk

)
)
dWs,

Rθ,k6 = ∆n(∂θib(θ, Y
θ
tk

))∗(σσ∗)−1(Y θ
tk

)

∫ tk+1

tk

∫
Rd0
c(Y θ

s−, z)M̃(ds, dz).

As a consequence of Lemma 3.1 and 3.2, we derive the following explicit expression for the
logarithm derivative of the transition density.

Lemma 3.3. Under conditions (A1), (A2) and (A3)(a)-(c), for all i ∈ {1, . . . ,m}, k ∈
{0, ..., n− 1}, θ ∈ Θ, and x, y ∈ Rd,

∂θip
θ

pθ
(∆n, x, y) = (∂θib(θ, x))∗(σσ∗)−1(x) (y − x− b(θ, x)∆n)

+
1

∆n
Ẽθtk,x

[
−Rθ,k1 +Rθ,k2 +Rθ,k3 −R

θ,k
4 −R

θ,k
5 −R

θ,k
6

∣∣Y θ
tk+1

= y
]
.

We will use the following estimates for the solution to (3.2).

Lemma 3.4. Assume conditions (A1), (A2) and (A5).

(i) For any p ≥ 1 and θ ∈ Θ, there exists a constant Cp > 0 such that for all k ∈
{0, ..., n− 1} and t ∈ [tk, tk+1],

Ẽθtk,x

[∣∣∣Y θ
t (tk, x)− Y θ

tk
(tk, x)

∣∣∣p] ≤ Cp |t− tk| p2∧1 (1 + |x|p) .
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(ii) For any function g defined on Θ×Rd with polynomial growth in x uniformly in θ ∈ Θ,
there exist constants C, q > 0 such that for all k ∈ {0, ..., n− 1} and t ∈ [tk, tk+1],

Ẽθtk,x

[∣∣∣g(θ, Y θ
t (tk, x))

∣∣∣] ≤ C (1 + |x|q) .

Moreover, all these statements remain valid for Xθ.

Using conditions (A1), (A2), (A3)(a)-(c) and (A5), and Gronwall’s inequality, it can
be checked that for any θ ∈ Θ and p ≥ 2, there exist constants Cp, q > 0 such that for all
k ∈ {0, ..., n− 1} and t ∈ [tk, tk+1],

Ẽθtk,x

[∣∣∣∇xY θ
t (tk, x)

∣∣∣p +
∣∣∣(∇xY θ

t (tk, x))−1
∣∣∣p]+ sup

s∈[tk,tk+1]
Ẽθtk,x

[∣∣∣DsY
θ
t (tk, x)

∣∣∣p] ≤ Cp,
Ẽθtk,x

[∣∣∣∂θiY θ
t (tk, x)

∣∣∣p]+ sup
s∈[tk,tk+1]

Ẽθtk,x

[∣∣∣Ds

(
∇xY θ

t (tk, x)
)∣∣∣p] ≤ Cp (1 + |x|q), (3.6)

where the constant Cp is uniform in θ. As a consequence, we have the following estimates,
which follow easily from (5.3), Lemma 3.4 and properties of the expectation of the Brownian
motion and the Skorohod integral.

Lemma 3.5. Under conditions (A1), (A2), (A3)(a)-(c) and (A5), for any θ ∈ Θ and
p ≥ 2, there exist constants Cp, q > 0 such that for all k ∈ {0, ..., n− 1},

Ẽθtk,x

[
−Rθ,k1 +Rθ,k2 +Rθ,k3

]
= 0, (3.7)

Ẽθtk,x

[∣∣∣−Rθ,k1 +Rθ,k2 +Rθ,k3

∣∣∣p] ≤ Cp∆ 3p+1
2

n (1 + |x|q) . (3.8)

We next recall Girsanov’s theorem on each interval [tk, tk+1]. For all θ, θ1 ∈ Θ, x ∈ Rd

and k ∈ {0, ..., n− 1}, by [13, Theorem III.5.34], the probability measures P̂θtk,x and P̂θ
1

tk,x
are

absolutely continuous w.r.t. each other and its Radon-Nikodym derivative is given by

dP̂θtk,x

dP̂θ
1

tk,x

(
(Xθ1

t )t∈[tk,tk+1]

)
= exp

{∫ tk+1

tk

σ−1(Xθ1

t )
(
b(θ,Xθ1

t )− b(θ1, Xθ1

t )
)
dBt

− 1

2

∫ tk+1

tk

∣∣∣σ−1(Xθ1

t )
(
b(θ,Xθ1

t )− b(θ1, Xθ1

t )
)∣∣∣2 dt}. (3.9)

By Girsanov’s theorem, the process B
P̂θtk,x = (B

P̂θtk,x
t , t ∈ [tk, tk+1]) is a Brownian motion

under P̂θtk,x, where for any t ∈ [tk, tk+1],

B
P̂θtk,x
t := Bt −

∫ t

tk

σ−1(Xθ1

s )
(
b(θ,Xθ1

s )− b(θ1, Xθ1

s )
)
ds.

Next, we give two following technical lemmas which will be useful in the sequel.

Lemma 3.6. Assume conditions (A1), (A2) and (A3)(a). Then for any θ ∈ Θ, k ∈
{0, ..., n− 1} and F̃tk+1

-measurable random variable V ,

Êθ
0

[
Ẽθ
tk,X

θ0
tk

[
V
∣∣Y θ
tk+1

= Xθ0

tk+1

] ∣∣F̂tk] = Ẽθ
tk,X

θ0
tk

[V ] .
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Now, to simplify the notation, for j ∈ {1, . . . ,m} we set

θj(0+) := (θ0
1, . . . , θ

0
j−1, θj , θ

0
j+1 +

uj+1√
n∆n

, . . . , θ0
m +

um√
n∆n

).

Lemma 3.7. Assume conditions (A1), (A2), (A3)(a)-(b) and (A5). Let p, q > 1 satisfying
that 1

p + 1
q = 1. Then for any k ∈ {0, ..., n−1} and x ∈ Rd, there exist constants C > 0, q1 > 0

such that for any F̂tk+1
-measurable random variable V ,∣∣∣∣∣∣Êθ0+

i (`)
tk,x

V
 dP̂θ

0

tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
− 1

∣∣∣∣∣∣
≤ C

√
∆n (1 + |x|q1)

(∣∣∣∣∣
∫ θ0

i

θ0
i+`

ui√
n∆n

(
Ê
θi(0+)
tk,x

[|V |q]
) 1
q
dθi

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+

ui+1√
n∆n

(
Ê
θi+1(0+)
tk,x

[|V |q]
) 1
q
dθi+1

∣∣∣∣∣+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ um√

n∆n

(
Ê
θm(0+)
tk,x

[|V |q]
) 1
q
dθm

∣∣∣∣∣
)
.

Remark 3.8. From (3.7) in Lemma 3.5, the random variable −Rθ,k1 + Rθ,k2 + Rθ,k3 has zero
mean, which turns out to be useful in Lemma 4.4. Furthermore, Lemma 3.7 allows to give
the rate

√
∆n

1√
n∆n

= 1√
n

in the estimates, which will be used in Lemma 4.5. Using these

technical Lemmas 3.5 and 3.7, we do not require an additional assumption on the decreasing
rate of ∆n, for instance, n∆p

n → 0 for some p > 1.

Next, we prove a discrete ergodic theorem.

Lemma 3.9. Assume conditions (A1), (A4) and (A5). Let g : Rd → R be a differentiable
function satisfying that |g(x)| and |∇g(x)| have polynomial growth in x. Then, as n→∞,

1

n

n−1∑
k=0

g(Xθ0

tk
)

P̂θ
0

−→
∫
Rd
g(x)πθ0(dx).

We finally recall a convergence in probability result and a central limit theorem for tri-
angular arrays of random variables. For each n ∈ N, let (ζk,n)k≥1 be a sequence of random
variables defined on the filtered probability space (Ω,F , {Ft}t≥0,P), and assume that they
are Ftk+1

-measurable, for all k.

Lemma 3.10. [12, Lemma 3.4] a) Assume that as n→∞,

(i)

n−1∑
k=0

E [ζk,n|Ftk ]
P−→ 0, and (ii)

n−1∑
k=0

E
[
ζ2
k,n|Ftk

] P−→ 0.

Then as n→∞,
∑n−1

k=0 ζk,n
P−→ 0.

b) Assume that
∑n−1

k=0 E [|ζk,n||Ftk ]
P−→ 0 as n→∞. Then as n→∞,

∑n−1
k=0 ζk,n

P−→ 0.
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Lemma 3.11. [12, Lemma 3.6] Assume that there exist real numbers Q and V > 0 such that

n−1∑
k=0

E [ζk,n|Ftk ]
P−→ Q,

n−1∑
k=0

(
E
[
ζ2
k,n|Ftk

]
− (E [ζk,n|Ftk ])2

)
P−→ V, and

n−1∑
k=0

E
[
ζ4
k,n|Ftk

] P−→ 0,

as n → ∞. Then as n → ∞,
∑n−1

k=0 ζk,n
L(P)−→ N (0, V ) + Q, where N (0, V ) is a centered

Gaussian random variable with variance V .

4. Proof of Theorem 2.2

In this section, the proof of Theorem 2.2 will be divided into three steps. We begin deriving
an appropriate stochastic expansion of the log-likelihood ratio by using Lemma 3.3. The sec-
ond step will show the main contributions of the stochastic expansion by applying the central
limit theorem for triangular arrays of random variables and the ergodicity property. Finally,
the last step is devoted to treat the negligible contributions of the stochastic expansion.

4.1. Stochastic expansion of the log-likelihood ratio.

Lemma 4.1. Assume conditions (A1), (A2) and (A3)(a)-(c). Then

log
dP

θ0+ u√
n∆n

n

dPθ0

n

(
Xn,θ0

)
=

n−1∑
k=0

m∑
i=1

ξi,k,n +
n−1∑
k=0

m∑
i=1

ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

4 +Hθ0,i,k
5 +Hθ0,i,k

6

+ Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k −Rθ

0+
i (`),k

4 −Rθ
0+
i (`),k

5 −Rθ
0+
i (`),k

6

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`, (4.1)

where

ξi,k,n =
ui√
n∆n

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

·
(
σ(Xθ0

tk
)
(
Btk+1

−Btk
)

+
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

∆n

)
d`,

Rθ
0+
i (`),k = −Rθ

0+
i (`),k

1 +R
θ0+
i (`),k

2 +R
θ0+
i (`),k

3 ,

Hθ0,i,k
4 = ∆n

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

∫ tk+1

tk

(
b(θ0, Xθ0

s )− b(θ0, Xθ0

tk
)
)
ds,

Hθ0,i,k
5 = ∆n

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

∫ tk+1

tk

(
σ(Xθ0

s )− σ(Xθ0

tk
)
)
dBs,

Hθ0,i,k
6 = ∆n

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

∫ tk+1

tk

∫
Rd0
c(Xθ0

s−, z)Ñ(ds, dz).

Proof. Using the decomposition (3.1) and Lemma 3.3, we obtain that

log
dP

θ0+ u√
n∆n

n

dPθ0

n

(
Xn,θ0

)
=

n−1∑
k=0

m∑
i=1

ui√
n∆n

∫ 1

0

∂θip
θ0+
i (`)

pθ
0+
i (`)

(
∆n, X

θ0

tk
, Xθ0

tk+1

)
d`
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=
n−1∑
k=0

m∑
i=1

ui√
n∆n

∫ 1

0

(
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)
(
Xθ0

tk+1
−Xθ0

tk
− b(θ0+

i (`), Xθ0

tk
)∆n

)
+

1

∆n
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k −Rθ

0+
i (`),k

4 −Rθ
0+
i (`),k

5 −Rθ
0+
i (`),k

6

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

])
d`. (4.2)

Next, using equation (1.1), we get that

Xθ0

tk+1
−Xθ0

tk
= σ(Xθ0

tk
)
(
Btk+1

−Btk
)

+ b(θ0, Xθ0

tk
)∆n +

∫ tk+1

tk

(
b(θ0, Xθ0

s )− b(θ0, Xθ0

tk
)
)
ds

+

∫ tk+1

tk

(
σ(Xθ0

s )− σ(Xθ0

tk
)
)
dBs +

∫ tk+1

tk

∫
Rd0
c(Xθ0

s−, z)Ñ(ds, dz).

This, together with (4.2), gives the desired result. �

In the next two subsections, we will prove that the random variable ξi,k,n determined by
the Gaussian and drift components of equation (1.1) is the only term that contributes to the
limit and all the others terms are negligible.

In all what follows, Lemma 3.9 will be used repeatedly without being quoted.

4.2. Main contributions: LAN property.

Lemma 4.2. Assume conditions (A1)-(A4). Then as n→∞,

n−1∑
k=0

m∑
i=1

ξi,k,n
L(P̂θ

0
)−→ u∗N (0,Γ(θ0))− 1

2
u∗Γ(θ0)u,

where Γ(θ0) is given by (2.2).

Proof. Applying Lemma 3.11 to
∑m

i=1 ξi,k,n, it suffices to show that as n→∞,

n−1∑
k=0

Êθ
0
[
ξi,k,n|F̂tk

]
P̂θ

0

−→ −1

2
u2
iΓ(θ0)i,i − uiui+1Γ(θ0)i,i+1 − · · · − uiumΓ(θ0)i,m, (4.3)

n−1∑
k=0

(
Êθ

0
[
ξi,k,nξj,k,n|F̂tk

]
− Êθ

0
[
ξi,k,n|F̂tk

]
Êθ

0
[
ξj,k,n|F̂tk

])
P̂θ

0

−→ uiujΓ(θ0)i,j , (4.4)

n−1∑
k=0

Êθ
0
[
(ξi,k,n)4|F̂tk

]
P̂θ

0

−→ 0. (4.5)

Proof of (4.3). Using the fact that Êθ
0
[Btk+1

−Btk |F̂tk ] = 0, we have

n−1∑
k=0

Êθ
0
[
ξi,k,n|F̂tk

]
=

n−1∑
k=0

ui√
n∆n

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

·
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

∆nd`

=

n−1∑
k=0

ui√
n∆n

∫ 1

0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

∆nd`
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+
n−1∑
k=0

ξi,1,k,n,

where

ξi,1,k,n =
ui√
n∆n

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)− ∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

·
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

∆nd`.

Then, using the mean value theorem,

b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
) = −

(
b(θ0+

i (`), Xθ0

tk
)− b(θ0+

i+1, X
θ0

tk
) + b(θ0+

i+1, X
θ0

tk
)− b(θ0+

i+2, X
θ0

tk
)

+ · · ·+ b(θ0+
m−1, X

θ0

tk
)− b(θ0+

m , Xθ0

tk
) + b(θ0+

m , Xθ0

tk
)− b(θ0, Xθ0

tk
)
)

= −
(
`

ui√
n∆n

∫ 1

0
∂θib(θ

0+
i (α`), Xθ0

tk
)dα+

ui+1√
n∆n

∫ 1

0
∂θi+1

b(θ0+
i+1(α), Xθ0

tk
)dα

+ · · ·+ um√
n∆n

∫ 1

0
∂θmb(θ

0+
m (α), Xθ0

tk
)dα
)

= −
(
`

ui√
n∆n

∂θib(θ
0, Xθ0

tk
) +

ui+1√
n∆n

∂θi+1
b(θ0, Xθ0

tk
) + · · ·+ um√

n∆n
∂θmb(θ

0, Xθ0

tk
)dα
)

−
(
`

ui√
n∆n

∫ 1

0

(
∂θib(θ

0+
i (α`), Xθ0

tk
)− ∂θib(θ

0, Xθ0

tk
)
)
dα

+
ui+1√
n∆n

∫ 1

0

(
∂θi+1

b(θ0+
i+1(α), Xθ0

tk
)− ∂θi+1

b(θ0, Xθ0

tk
)
)
dα

+ · · ·+ um√
n∆n

∫ 1

0

(
∂θmb(θ

0+
m (α), Xθ0

tk
)− ∂θmb(θ0, Xθ0

tk
)
)
dα
)
,

where, to simplify the exposition, we have set for j ∈ {i+ 1, . . . ,m},

θ0+
i (α`) := (θ0

1, . . . , θ
0
i−1, θ

0
i + α`

ui√
n∆n

, θ0
i+1 +

ui+1√
n∆n

, . . . , θ0
m +

um√
n∆n

),

θ0+
j (α) := (θ0

1, . . . , θ
0
j−1, θ

0
j + α

uj√
n∆n

, θ0
j+1 +

uj+1√
n∆n

, . . . , θ0
m +

um√
n∆n

).

Therefore,

n−1∑
k=0

Êθ
0
[
ξi,k,n|F̂tk

]
= −

n−1∑
k=0

ui√
n∆n

(∂θib(θ
0, Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)
( ui

2
√
n∆n

∂θib(θ
0, Xθ0

tk
)

+
ui+1√
n∆n

∂θi+1
b(θ0, Xθ0

tk
) + · · ·+ um√

n∆n
∂θmb(θ

0, Xθ0

tk
)
)

∆n

+

n−1∑
k=0

ξi,1,k,n +

n−1∑
k=0

(ηi,k,n + ηi+1,k,n + · · ·+ ηm,k,n)

= −u
2
i

2n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θib(θ

0, Xθ0

tk
)
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− uiui+1

n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θi+1

b(θ0, Xθ0

tk
)

− · · · − uium
n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θmb(θ

0, Xθ0

tk
)

+

n−1∑
k=0

ξi,1,k,n +

n−1∑
k=0

(ηi,k,n + ηi+1,k,n + · · ·+ ηm,k,n) ,

where for any j ∈ {i+ 1, . . . ,m},

ηi,k,n = −u
2
i

n

∫ 1

0

∫ 1

0
(∂θib(θ

0, Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)`
(
∂θib(θ

0+
i (α`), Xθ0

tk
)− ∂θib(θ

0, Xθ0

tk
)
)
dαd`,

ηj,k,n = −uiuj
n

∫ 1

0
(∂θib(θ

0, Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)
(
∂θjb(θ

0+
j (α), Xθ0

tk
)− ∂θjb(θ

0, Xθ0

tk
)
)
dα.

Using Lemma 3.9, as n→∞,

− u2
i

2n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θib(θ

0, Xθ0

tk
)

− uiui+1

n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θi+1

b(θ0, Xθ0

tk
)

− · · · − uium
n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θmb(θ

0, Xθ0

tk
)

P̂θ
0

−→ −1

2
u2
iΓ(θ0)i,i − uiui+1Γ(θ0)i,i+1 − · · · − uiumΓ(θ0)i,m.

(4.6)

Next, using conditions (A2)-(A3),

Êθ
0

[∣∣∣∣∣
n−1∑
k=0

ξi,1,k,n

∣∣∣∣∣
]
≤

n−1∑
k=0

Êθ
0

[|ξi,1,k,n|] ≤
C

(
√
n∆n)γ

,

which tends to zero. Similarly, for any j ∈ {i, . . . ,m},

Êθ
0

[∣∣∣∣∣
n−1∑
k=0

ηj,k,n

∣∣∣∣∣
]
≤

n−1∑
k=0

Êθ
0

[|ηj,k,n|] ≤
C

(
√
n∆n)γ

.

Thus, we have shown that as n→∞,

n−1∑
k=0

ξi,1,k,n +

n−1∑
k=0

(ηi,k,n + ηi+1,k,n + · · ·+ ηm,k,n)
P̂θ

0

−→ 0.

Therefore, as n→∞,

n−1∑
k=0

Êθ
0
[
ξi,k,n|F̂tk

]
P̂θ

0

−→ −1

2
u2
iΓ(θ0)i,i − uiui+1Γ(θ0)i,i+1 − · · · − uiumΓ(θ0)i,m,

which gives (4.3).
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Proof of (4.4). First, from the previous computations,

Êθ
0
[
ξi,k,n|F̂tk

]
Êθ

0
[
ξj,k,n|F̂tk

]
=
uiuj
n

∆n

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

·
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)
d`

∫ 1

0

(
∂θjb(θ

0+
j (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

·
(
b(θ0, Xθ0

tk
)− b(θ0+

j (`), Xθ0

tk
)
)
d`

=
uiuj
n

∆n

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)
(
`

ui√
n∆n

∫ 1

0
∂θib(θ

0+
i (α`), Xθ0

tk
)dα

+
ui+1√
n∆n

∫ 1

0
∂θi+1

b(θ0+
i+1(α), Xθ0

tk
)dα+ · · ·+ um√

n∆n

∫ 1

0
∂θmb(θ

0+
m (α), Xθ0

tk
)dα
)
d`

·
∫ 1

0

(
∂θjb(θ

0+
j (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)
(
`

uj√
n∆n

∫ 1

0
∂θjb(θ

0+
j (α`), Xθ0

tk
)dα

+
uj+1√
n∆n

∫ 1

0
∂θj+1

b(θ0+
j+1(α), Xθ0

tk
)dα+ · · ·+ um√

n∆n

∫ 1

0
∂θmb(θ

0+
m (α), Xθ0

tk
)dα
)
d`.

Thus, ∣∣∣∣∣
n−1∑
k=0

Êθ
0
[
ξi,k,n|F̂tk

]
Êθ

0
[
ξj,k,n|F̂tk

]∣∣∣∣∣ ≤
n−1∑
k=0

∣∣∣Êθ0
[
ξi,k,n|F̂tk

]
Êθ

0
[
ξj,k,n|F̂tk

]∣∣∣
≤ C

n2

n−1∑
k=0

(1 + |Xtk |
q) ,

for some constant q > 0, which converges to zero in P̂θ
0
-probability as n → ∞. Thus, as

n→∞,

n−1∑
k=0

Êθ
0
[
ξi,k,n|F̂tk

]
Êθ

0
[
ξj,k,n|F̂tk

]
P̂θ

0

−→ 0. (4.7)

Next,

n−1∑
k=0

Êθ
0
[
ξi,k,nξj,k,n|F̂tk

]
=
uiuj
n∆n

n−1∑
k=0

Êθ
0

[ ∫ 1

0

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)

·
(
σ(Xθ0

tk
)
(
Btk+1

−Btk
)

+
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

∆n

)(
σ(Xθ0

tk
)
(
Btk+1

−Btk
)

+
(
b(θ0, Xθ0

tk
)− b(θ0+

j (`′), Xθ0

tk
)
)

∆n

)∗
(σσ∗)−1(Xθ0

tk
)∂θjb(θ

0+
j (`′), Xθ0

tk
)d`d`′|F̂tk

]
=
uiuj
n

n−1∑
k=0

∫ 1

0

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θjb(θ

0+
j (`′), Xθ0

tk
)d`d`′

+
uiuj
n

∆n

n−1∑
k=0

∫ 1

0

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

·
(
b(θ0, Xθ0

tk
)− b(θ0+

j (`′), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θjb(θ

0+
j (`′), Xθ0

tk
)d`d`′
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=
uiuj
n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θjb(θ

0, Xθ0

tk
) +

n−1∑
k=0

(
H i,k

7 +H i,k
8 +H i,k

9

)
,

where θ0+
j (`′) := (θ0

1, . . . , θ
0
j−1, θ

0
j + `′

uj√
n∆n

, θ0
j+1 +

uj+1√
n∆n

, . . . , θ0
m + um√

n∆n
) and

H i,k
7 =

uiuj
n

∫ 1

0

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)− ∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θjb(θ

0, Xθ0

tk
)d`d`′,

H i,k
8 =

uiuj
n

∫ 1

0

∫ 1

0
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)
(
∂θjb(θ

0+
j (`′), Xθ0

tk
)− ∂θjb(θ

0, Xθ0

tk
)
)
d`d`′,

H i,k
9 =

uiuj
n

∆n

∫ 1

0

∫ 1

0

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

·
(
b(θ0, Xθ0

tk
)− b(θ0+

j (`′), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θjb(θ

0+
j (`′), Xθ0

tk
)d`d`′.

Again, by Lemma 3.9, as n→∞,

1

n

n−1∑
k=0

(
∂θib(θ

0, Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
)∂θjb(θ

0, Xθ0

tk
)

P̂θ
0

−→ Γ(θ0)i,j .

Next, using conditions (A2)-(A3),

Êθ
0

[∣∣∣∣∣
n−1∑
k=0

(
H i,k

7 +H i,k
8

)∣∣∣∣∣
]
≤

n−1∑
k=0

Êθ
0
[∣∣∣H i,k

7 +H i,k
8

∣∣∣] ≤ C

(
√
n∆n)γ

,

and

Êθ
0

[∣∣∣∣∣
n−1∑
k=0

H i,k
9

∣∣∣∣∣
]
≤

n−1∑
k=0

Êθ
0
[∣∣∣H i,k

9

∣∣∣] ≤ C

n
.

Hence, as n→∞,

n−1∑
k=0

(
H i,k

7 +H i,k
8 +H i,k

9

)
P̂θ

0

−→ 0.

Therefore, as n→∞,

n−1∑
k=0

Êθ
0
[
ξi,k,nξj,k,n|F̂tk

]
P̂θ

0

−→ uiujΓ(θ0)i,j ,

which, together with (4.7), gives (4.4).

Proof of (4.5). Basic computations yield

n−1∑
k=0

Êθ
0
[
(ξi,k,n)4|F̂tk

]
≤ Cu4

i

n2

n−1∑
k=0

(
1 + |Xθ0

tk
|q
)
,

for some constants C, q > 0. The proof of Lemma 4.2 is completed. �
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4.3. Negligible contributions.

Lemma 4.3. Under conditions (A1)-(A5), as n→∞,

n−1∑
k=0

m∑
i=1

ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

4 +Hθ0,i,k
5 +Hθ0,i,k

6

+ Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k −Rθ

0+
i (`),k

4 −Rθ
0+
i (`),k

5 −Rθ
0+
i (`),k

6

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

P̂θ
0

−→ 0.

Proof. The proof is completed by combining the four Lemmas 4.4-4.7 below. �

Consequently, the proof of Theorem 2.2 is now completed from Lemmas 4.1, 4.2 and 4.3.

Lemma 4.4. Under conditions (A1), (A2), (A3)(a)-(c), (A4) and (A5), as n→∞,

n−1∑
k=0

m∑
i=1

ui√
n∆3

n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
d`

P̂θ
0

−→ 0.

Proof. It suffices to show that conditions (i) and (ii) of Lemma 3.10 a) hold under the measure

P̂θ
0

applied to the random variable

ζi,k,n :=
ui√
n∆3

n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
d`,

for any i ∈ {1, . . . ,m}. We start showing (i) of Lemma 3.10 a). Applying Lemma 3.6 to

θ = θ0+
i (`) and V = Rθ

0+
i (`),k, and using the fact that, by (3.7), Ẽ

θ0+
i (`)

tk,X
θ0
tk

[Rθ
0+
i (`),k] = 0, we

obtain that
n−1∑
k=0

Êθ
0
[
ζi,k,n|F̂tk

]
=

n−1∑
k=0

ui√
n∆3

n

∫ 1

0
Êθ

0

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

] ∣∣F̂tk] d`
=

n−1∑
k=0

ui√
n∆3

n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[Rθ
0+
i (`),k]d` = 0.

Thus, the term appearing in condition (i) of Lemma 3.10 a) actually equals zero.

Next, applying Jensen’s inequality and Lemma 3.6 to θ = θ0+
i (`) and V = (Rθ

0+
i (`),k)2, and

(3.8), we obtain that

n−1∑
k=0

Êθ
0
[
ζ2
i,k,n|F̂tk

]
=

n−1∑
k=0

u2
i

n∆3
n

Êθ
0

[(∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
Rθ

0+
i (`),k

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
d`

)2 ∣∣F̂tk
]

≤
n−1∑
k=0

u2
i

n∆3
n

∫ 1

0
Êθ

0

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[(
Rθ

0+
i (`),k

)2 ∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

] ∣∣F̂tk] d`
=

n−1∑
k=0

u2
i

n∆3
n

∫ 1

0
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[(
Rθ

0+
i (`),k

)2
]
d` ≤ Cu2

i

√
∆n

n

n−1∑
k=0

(
1 + |Xθ0

tk
|q
)
,

for some constant q > 0, which converges to zero in P̂θ
0
-probability as n → ∞. Thus,∑n−1

k=0 ζi,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}. Thus, the result follows. �
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Lemma 4.5. Assume conditions (A1), (A2), (A3)(a)-(b), (A4) and (A5). Then as n→
∞,

n−1∑
k=0

m∑
i=1

ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

4 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

4

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

P̂θ
0

−→ 0.

Proof. We rewrite

Hθ0,i,k
4 − Ẽ

θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

4

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]
= ∆n(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)

(∫ tk+1

tk

(
b(θ0, Xθ0

s )− b(θ0, Xθ0

tk
)
)
ds

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), Y
θ0+
i (`)

s )− b(θ0+
i (`), Y

θ0+
i (`)

tk
)

)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

])
= ∆n(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
) (Mi,1,k,n +Mi,2,k,n) ,

where

Mi,1,k,n =

∫ tk+1

tk

(
b(θ0, Xθ0

s )− b(θ0, Xθ0

tk
)−

(
b(θ0+

i (`), Xθ0

s )− b(θ0+
i (`), Xθ0

tk
)
))
ds,

Mi,2,k,n =

∫ tk+1

tk

(
b(θ0+

i (`), Xθ0

s )− b(θ0+
i (`), Xθ0

tk
)
)
ds

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), Y
θ0+
i (`)

s )− b(θ0+
i (`), Y

θ0+
i (`)

tk
)
)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

]
.

Thus,

ζi,k,n : =
ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

4 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

4

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

=
ui√
n∆3

n

∫ 1

0
∆n(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
) (Mi,1,k,n +Mi,2,k,n) d`

= ζi,1,k,n + ζi,2,k,n,

where

ζi,1,k,n =
ui√
n∆n

∫ 1

0
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,1,k,nd`,

ζi,2,k,n =
ui√
n∆n

∫ 1

0
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,2,k,nd`.

We are going to show that
∑n−1

k=0 ζi,1,k,n
P̂θ

0

−→ 0 and
∑n−1

k=0 ζi,2,k,n
P̂θ

0

−→ 0.

First, using the mean value theorem,

b(θ0, Xθ0

s )− b(θ0+
i (`), Xθ0

s ) = b(θ0+
i+1, X

θ0

s )− b(θ0+
i (`), Xθ0

s ) + b(θ0+
i+2, X

θ0

s )− b(θ0+
i+1, X

θ0

s )

+ · · ·+ b(θ0+
m , Xθ0

s )− b(θ0+
m−1, X

θ0

s ) + b(θ0, Xθ0

s )− b(θ0+
m , Xθ0

s )

= −` ui√
n∆n

∫ 1

0
∂θib(θ

0+
i (α`), Xθ0

s )dα− ui+1√
n∆n

∫ 1

0
∂θi+1

b(θ0+
i+1(α), Xθ0

s )dα
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− · · · − um√
n∆n

∫ 1

0
∂θmb(θ

0+
m (α), Xθ0

s )dα.

Therefore,

b(θ0, Xθ0

s )− b(θ0, Xθ0

tk
)−

(
b(θ0+

i (`), Xθ0

s )− b(θ0+
i (`), Xθ0

tk
)
)

= b(θ0, Xθ0

s )− b(θ0+
i (`), Xθ0

s )−
(
b(θ0, Xθ0

tk
)− b(θ0+

i (`), Xθ0

tk
)
)

= −` ui√
n∆n

∫ 1

0

(
∂θib(θ

0+
i (α`), Xθ0

s )− ∂θib(θ
0+
i (α`), Xθ0

tk
)
)
dα

− ui+1√
n∆n

∫ 1

0

(
∂θi+1

b(θ0+
i+1(α), Xθ0

s )− ∂θi+1
b(θ0+

i+1(α), Xθ0

tk
)
)
dα

− · · · − um√
n∆n

∫ 1

0

(
∂θmb(θ

0+
m (α), Xθ0

s )− ∂θmb(θ0+
m (α), Xθ0

tk
)
)
dα.

Next, using the mean value theorem for vector-valued functions,

∂θjb(θ
0+
j (α), Xθ0

s )− ∂θjb(θ
0+
j (α), Xθ0

tk
) =

(∫ 1

0
J∂θj b(X

θ0

tk
+ v(Xθ0

s −Xθ0

tk
))dv

)
· (Xθ0

s −Xθ0

tk
),

for all j ∈ {i, . . . ,m}, where the Jacobian matrix is given by

J∂θj b(X
θ0

tk
+ v(Xθ0

s −Xθ0

tk
)) =

∂
2
θjx1

b1 . . . ∂2
θjxd

b1
...

. . .
...

∂2
θjx1

bd . . . ∂2
θjxd

bd

 (θ0+
j (α), Xθ0

tk
+ v(Xθ0

s −Xθ0

tk
)).

Then, using conditions (A2)-(A3) and Lemma 3.4 (i), we get that

n−1∑
k=0

Êθ
0
[
|ζi,1,k,n|

∣∣F̂tk] ≤ C√∆n

n

n−1∑
k=0

(
1 + |Xθ0

tk
|q
)
,

for some constant q > 0, which converges to zero in P̂θ
0
-probability as n → ∞. Thus, by

Lemma 3.10 b),
∑n−1

k=0 ζi,1,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}.
Next, using Girsanov’s theorem and Lemma 3.6, we get that

Êθ
0
[
Mi,2,k,n|F̂tk

]
= Êθ

0

[ ∫ tk+1

tk

(
b(θ0+

i (`), Xθ0

s )− b(θ0+
i (`), Xθ0

tk
)
)
ds

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), Y
θ0+
i (`)

s )− b(θ0+
i (`), Y

θ0+
i (`)

tk
)
)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

] ∣∣F̂tk]
= Êθ

0

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), Xθ0

s )− b(θ0+
i (`), Xθ0

tk
)
)
ds

]
− Êθ

0

tk,X
θ0
tk

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), Y
θ0+
i (`)

s )− b(θ0+
i (`), Y

θ0+
i (`)

tk
)
)
ds
∣∣∣Y θ0+

i (`)
tk+1

= Xθ0

tk+1

]]

= Ê
θ0+
i (`)

tk,X
θ0
tk

[ ∫ tk+1

tk

(
b(θ0+

i (`), X
θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)
)
ds

dP̂θ
0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

]
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− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), Y
θ0+
i (`)

s )− b(θ0+
i (`), Y

θ0+
i (`)

tk
)
)
ds

]

= Ê
θ0+
i (`)

tk,X
θ0
tk

[ ∫ tk+1

tk

(
b(θ0+

i (`), X
θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]

+ Ê
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), X
θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)
)
ds

]
− Ẽ

θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

(
b(θ0+

i (`), Y
θ0+
i (`)

s )− b(θ0+
i (`), Y

θ0+
i (`)

tk
)

)
ds

]

= Ê
θ0+
i (`)

tk,X
θ0
tk

[ ∫ tk+1

tk

(
b(θ0+

i (`), X
θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]
,

where we have used the fact that Xθ0+
i (`) is the independent copy of Y θ0+

i (`). Here, to simplify

the exposition, we write

dP̂θ
0

tk,X
θ0
tk

dP̂
θ0+
i

(`)

tk,X
θ0
tk

=

dP̂θ
0

tk,X
θ0
tk

dP̂
θ0+
i

(`)

tk,X
θ0
tk

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
.

Then, using Lemma 3.7 with q = 2, conditions (A1)-(A2) and Lemma 3.4 (i), we get that

∣∣∣∣∣
n−1∑
k=0

Êθ
0
[ζi,2,k,n|F̂tk ]

∣∣∣∣∣ =

∣∣∣∣∣
n−1∑
k=0

ui√
n∆n

∫ 1

0
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Êθ

0
[Mi,2,k,n|F̂tk ]d`

∣∣∣∣∣
=

∣∣∣∣ ui√
n∆n

n−1∑
k=0

∫ 1

0
Ê
θ0+
i (`)

tk,X
θ0
tk

[
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)

·
∫ tk+1

tk

(
b(θ0+

i (`), X
θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]
d`

∣∣∣∣
≤ |ui|√

n∆n

n−1∑
k=0

∫ 1

0

∣∣∣∣Êθ0+
i (`)

tk,X
θ0
tk

[
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)

·
∫ tk+1

tk

(
b(θ0+

i (`), X
θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)
)
ds
(dP̂θ

0

tk,X
θ0
tk

dP̂
θ0+
i (`)

tk,X
θ0
tk

− 1
)]∣∣∣∣d`

≤ C |ui|√
n∆n

n−1∑
k=0

∫ 1

0

√
∆n

(
1 + |Xθ0

tk
|q1
)( ∣∣∣∣∣

∫ θ0
i

θ0
i+`

ui√
n∆n

(
Ê
θi(0+)

tk,X
θ0
tk

[
|V |2

]) 1
2

dθi

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+

ui+1√
n∆n

(
Ê
θi+1(0+)

tk,X
θ0
tk

[
|V |2

]) 1
2

dθi+1

∣∣∣∣∣+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ um√

n∆n

(
Ê
θm(0+)

tk,X
θ0
tk

[
|V |2

]) 1
2

dθm

∣∣∣∣∣
)
d`
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≤ C∆n

n

n−1∑
k=0

(
1 + |Xθ0

tk
|q
)
,

for some constants q1 > 0, q > 0, which converges to zero in P̂θ
0
-probability as n→∞. Here,

V : = (∂θib(θ
0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)

∫ tk+1

tk

(
b(θ0+

i (`), X
θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)
)
ds.

and we have used the mean value theorem for vector-valued functions,

b(θ0+
i (`), X

θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
tk

)

=

(∫ 1

0
Jb(X

θ0+
i (`)
tk

+ v(X
θ0+
i (`)
s −Xθ0+

i (`)
tk

))dv

)
· (Xθ0+

i (`)
s −Xθ0+

i (`)
tk

),

where the Jacobian matrix is given by

Jb(X
θ0+
i (`)
tk

+ v(X
θ0+
i (`)
s −Xθ0+

i (`)
tk

))

=

∂x1b1 . . . ∂xdb1
...

. . .
...

∂x1bd . . . ∂xdbd

 (θ0+
i (`), X

θ0+
i (`)
tk

+ v(X
θ0+
i (`)
s −Xθ0+

i (`)
tk

)).

Therefore,
∑n−1

k=0 Êθ
0
[ζi,2,k,n|F̂tk ]

P̂θ
0

−→ 0 as n→∞.

Next, applying Jensen’s inequality and Lemma 3.6, conditions (A1)-(A2), the mean value
theorem for vector-valued functions and Lemma 3.4 (i), we obtain that

n−1∑
k=0

Êθ
0
[ζ2
i,2,k,n|F̂tk ] =

u2
i

n∆n

n−1∑
k=0

Êθ
0

tk,X
θ0
tk

[(∫ 1

0
(∂θib(θ

0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,2,k,nd`

)2]

≤ u2
i

n∆n

n−1∑
k=0

∫ 1

0
Êθ

0

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,2,k,n

∣∣∣∣2]d`
≤ 2

u2
i

n∆n

n−1∑
k=0

∫ 1

0

{
Êθ

0

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,2,1,k,n

∣∣∣∣2]

+ Êθ
0

tk,X
θ0
tk

[
Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,2,2,k,n

∣∣∣∣2∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]]}
d`

= 2
u2
i

n∆n

n−1∑
k=0

∫ 1

0

{
Êθ

0

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,2,1,k,n

∣∣∣∣2]

+ Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∣∣∣∣(∂θib(θ0+
i (`), Xθ0

tk
))∗(σσ∗)−1(Xθ0

tk
)Mi,2,2,k,n

∣∣∣∣2]}d`
≤ Cu2

i

∆2
n

n

n−1∑
k=0

(
1 + |Xθ0

tk
|q
)
,
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for some constant q > 0, which converges to zero in P̂θ
0
-probability as n→∞. Here

Mi,2,1,k,n =

∫ tk+1

tk

(
b(θ0+

i (`), Xθ0

s )− b(θ0+
i (`), Xθ0

tk
)
)
ds,

Mi,2,2,k,n =

∫ tk+1

tk

(
b(θ0+

i (`), Y
θ0+
i (`)

s )− b(θ0+
i (`), Y

θ0+
i (`)

tk
)
)
ds.

Thus, by Lemma 3.10 a),
∑n−1

k=0 ζi,2,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}. Thus, the result
follows. �

Lemma 4.6. Under conditions (A1), (A2), (A3)(b), (A4) and (A5), as n→∞,

n−1∑
k=0

m∑
i=1

ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

5 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

5

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

P̂θ
0

−→ 0.

Proof. For any i ∈ {1, . . . ,m}, we set

ζi,k,n :=
ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

5 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

5

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`.

Using Lemma 3.6, we get that

n−1∑
k=0

Êθ
0
[
ζi,k,n|F̂tk

]
=

n−1∑
k=0

ui√
n∆3

n

∫ 1

0
Êθ

0

[
Hθ0,i,k

5 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

5

∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

] ∣∣F̂tk] d`
=

n−1∑
k=0

ui√
n∆3

n

∫ 1

0

(
Êθ

0

tk,X
θ0
tk

[
Hθ0,i,k

5

]
− Ẽ

θ0+
i (`)

tk,X
θ0
tk

[R
θ0+
i (`),k

5 ]

)
d` = 0.

Next, proceeding as in the proof of Lemma 4.5 for the term ζi,2,k,n, we obtain that

n−1∑
k=0

Êθ
0
[
ζ2
i,k,n|F̂tk

]
≤ Cu2

i

∆n

n

n−1∑
k=0

(
1 + |Xθ0

tk
|q
)
,

for some constant q > 0, which converges to zero in P̂θ
0
-probability as n → ∞. Thus, by

Lemma 3.10 a), we have shown that
∑n−1

k=0 ζi,k,n
P̂θ

0

−→ 0 for any i ∈ {1, . . . ,m}. Thus, the
result follows. �

Lemma 4.7. Assume conditions (A1), (A2), (A3)(a)-(b), (A4) and (A5). Then as n→
∞,

n−1∑
k=0

m∑
i=1

ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

6 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

6

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`

P̂θ
0

−→ 0.

Proof. For any i ∈ {1, . . . ,m}, we set

ζi,k,n :=
ui√
n∆3

n

∫ 1

0

{
Hθ0,i,k

6 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

6

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]}
d`.
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Using Lemma 3.6, we get that

n−1∑
k=0

Êθ
0
[ζi,k,n|F̂tk ] =

n−1∑
k=0

ui√
n∆3

n

∫ 1

0
Êθ

0

[
Hθ0,i,k

6 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

6

∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

] ∣∣F̂tk] d`
=

n−1∑
k=0

ui√
n∆3

n

∫ 1

0

(
Êθ

0

tk,X
θ0
tk

[
Hθ0,i,k

6

]
− Ẽ

θ0+
i (`)

tk,X
θ0
tk

[R
θ0+
i (`),k

6 ]

)
d` = 0.

This shows that the term (i) of Lemma 3.10 a) is actually equal to 0 for all n ≥ 1.

We next show that condition (ii) of Lemma 3.10 a) holds. For this, using Jensen’s inequality
and Lemma 5.1, we obtain that for any q > 1,

n−1∑
k=0

Êθ
0
[ζ2
i,k,n|F̂tk ] =

n−1∑
k=0

u2
i

n∆3
n

Êθ
0

[(∫ 1

0

(
Hθ0,i,k

6 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

6 |Y θ0+
i (`)

tk+1
= Xθ0

tk+1

])
d`
)2∣∣F̂tk]

≤ u2
i

n∆3
n

n−1∑
k=0

∫ 1

0
Êθ

0

[(
Hθ0,i,k

6 − Ẽ
θ0+
i (`)

tk,X
θ0
tk

[
R
θ0+
i (`),k

6

∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

])2∣∣F̂tk]d`
=

u2
i

n∆n

n−1∑
k=0

∫ 1

0
Êθ

0

tk,X
θ0
tk

[(
ek(θ

0+
i (`))

(∫ tk+1

tk

∫
Rd0
c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽ
θ0+
i (`)

tk,X
θ0
tk

[∫ tk+1

tk

∫
Rd0
c(Y

θ0+
i (`)

s− , z)M̃(ds, dz)

∣∣∣∣Y θ0+
i (`)

tk+1
= Xθ0

tk+1

]))2]
d`

≤ C u2
i

n∆n

n−1∑
k=0

∫ 1

0

(
1 + |Xθ0

tk
|q1
)

∆n

(
(λυn∆n)

1
q +

∫
|z|≤υn

ζ2(z)ν(dz) + ∆n

(∫
Rd0
ζ(z)ν(dz)

)2
)
d`

= Cu2
i

(
(λυn∆n)

1
q +

∫
|z|≤υn

ζ2(z)ν(dz) + ∆n

(∫
Rd0
ζ(z)ν(dz)

)2
)

1

n

n−1∑
k=0

(
1 + |Xθ0

tk
|q1
)
,

for some constant q1 > 0, where ek(θ
0+
i (`)) :=

(
∂θib(θ

0+
i (`), Xθ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
), and (υn)n≥1

defined in Subsection 5.6 is a positive sequence satisfying limn→∞ υn = 0, and λυn :=∫
|z|>υn ν(dz).

When
∫
Rd ν(dz) < +∞, then λυn ≤

∫
Rd ν(dz) < +∞. Therefore, λυn∆n → 0 as n→∞.

When
∫
Rd ν(dz) = +∞, then λυn →

∫
Rd ν(dz) = +∞ as n → ∞. Then, there exist

ε ∈ (0, 1) and n0 ∈ N such that λυn ≤ ∆ε−1
n for all n ≥ n0. This implies that λυn∆n ≤ ∆ε

n for
all n ≥ n0. Therefore, λυn∆n → 0 as n→∞.

Using Lebesgue’s dominated convergence theorem, the fact that υn → 0 and ζ(z)1|z|≤1 ≤
C|z|, and condition (A5), we get that

∫
|z|≤υn ζ

2(z)ν(dz)→ 0 as n→∞ and
∫
Rd0
ζ(z)ν(dz) <

∞. Furthermore, using Lemma 3.9, as n→∞,

1

n

n−1∑
k=0

(
1 + |Xθ0

tk
|q1
)

P̂θ
0

−→
∫
Rd

(1 + |x|q1)πθ0(dx) < +∞.

Hence, we have shown that
∑n−1

k=0 Êθ
0
[ζ2
i,k,n|F̂tk ]

P̂θ
0

−→ 0 as n → ∞. Thus, by Lemma 3.10 a),
the result follows. �
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5. Appendix

5.1. Proof of Lemma 3.1.

Proof. Let f : Rd → R be a continuously differentiable function with compact support.
Fix t ∈ [tk, tk+1]. The chain rule of the Malliavin calculus gives (Dt(f(Y θ

tk+1
(tk, x))))∗ =

(∇f(Y θ
tk+1

(tk, x)))∗DtY
θ
tk+1

(tk, x). Since the matrix DtY
θ
tk+1

(tk, x) is invertible a.s., we have

(∇f(Y θ
tk+1

(tk, x)))∗ = (Dt(f(Y θ
tk+1

(tk, x))))∗ U θt (tk, x), where U θt (tk, x) = (DtY
θ
tk+1

(tk, x))−1.

Then, using the integration by parts formula of the Malliavin calculus on [tk, tk+1], we get
that for any i ∈ {1, . . . ,m},

∂θiẼ
[
f(Y θ

tk+1
(tk, x))

]
= Ẽ

[
(∇f(Y θ

tk+1
(tk, x)))∗ ∂θiY

θ
tk+1

(tk, x)
]

=
1

∆n
Ẽ

[∫ tk+1

tk

(∇f(Y θ
tk+1

(tk, x)))∗ ∂θiY
θ
tk+1

(tk, x)dt

]
=

1

∆n
Ẽ

[∫ tk+1

tk

(Dt(f(Y θ
tk+1

(tk, x))))∗ U θt (tk, x) ∂θiY
θ
tk+1

(tk, x)dt

]
=

1

∆n
Ẽ
[
f(Y θ

tk+1
(tk, x))δ

(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)]
.

(5.1)

Observe that by (3.6), the family ((∇f(Y θ
tk+1

(tk, x)))∗ ∂θiY
θ
tk+1

(tk, x), θ ∈ Θ) is uniformly

integrable. This justifies that we can interchange ∂θi and Ẽ. Note that here δ(V ) ≡
δ(V 1[tk,tk+1](·)) for any V ∈ Dom δ.

Next, using the stochastic flow property, we have that

∂θiẼ
[
f(Y θ

tk+1
(tk, x))

]
=

∫
Rd
f(y)∂θip

θ(∆n, x, y)dy,

and

Ẽ
[
f(Y θ

tk+1
(tk, x))δ

(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)]

= Ẽ
[
f(Y θ

tk+1
)δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
) ∣∣∣Y θ

tk
= x

]
=

∫
Rd
f(y)Ẽ

[
δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
) ∣∣∣Y θ

tk
= x, Y θ

tk+1
= y
]
pθ(∆n, x, y)dy,

which, together with (5.1), finishes the desired proof. �

5.2. Proof of Lemma 3.2.

Proof. From (3.4) and Itô’s formula,

(∇xY θ
t (tk, x))−1 = Id −

∫ t

tk

(∇xY θ
s (tk, x))−1

(
∇xb(θ, Y θ

s (tk, x))−
d∑
i=1

(∇xσi(Y θ
s (tk, x)))2

)
ds

−
d∑
i=1

∫ t

tk

(∇xY θ
s (tk, x))−1∇xσi(Y θ

s (tk, x))dW i
s

+

∫ t

tk

∫
Rd0

(∇xY θ
s (tk, x))−1

(
Id +∇xc(Y θ

s−(tk, x), z)
)−1

(∇xc(Y θ
s−(tk, x), z))2ν(dz)ds
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−
∫ t

tk

∫
Rd0

(∇xY θ
s (tk, x))−1

(
Id +∇xc(Y θ

s−(tk, x), z)
)−1
∇xc(Y θ

s−(tk, x), z)M̃(ds, dz),

which, together with (3.5) and Itô’s formula again, implies that

(∇xY θ
tk+1

(tk, x))−1∂θiY
θ
tk+1

(tk, x) =

∫ tk+1

tk

(∇xY θ
s (tk, x))−1∂θib(θ, Y

θ
s (tk, x))ds. (5.2)

Then, using the product rule [28, (1.48)], the fact that the Skorohod integral and the Itô
integral of an adapted process coincide, and (5.2), we obtain that

δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)

= δ
(
σ−1(Y θ

· (tk, x))∇xY θ
· (tk, x)(∇xY θ

tk+1
(tk, x))−1∂θiY

θ
tk+1

(tk, x)
)

= (∂θiY
θ
tk+1

(tk, x))∗((∇xY θ
tk+1

(tk, x))−1)∗
∫ tk+1

tk

(∇xY θ
s (tk, x))∗(σ−1(Y θ

s (tk, x)))∗dWs

−
∫ tk+1

tk

tr
(
Ds

(
(∂θiY

θ
tk+1

(tk, x))∗((∇xY θ
tk+1

(tk, x))−1)∗
)
σ−1(Y θ

s (tk, x))∇xY θ
s (tk, x)

)
ds

=

∫ tk+1

tk

((∇xY θ
s (tk, x))−1∂θib(θ, Y

θ
s (tk, x)))∗ds

∫ tk+1

tk

(∇xY θ
s (tk, x))∗(σ−1(Y θ

s (tk, x)))∗dWs

−
∫ tk+1

tk

∫ tk+1

s
tr
(
Ds

(
((∇xY θ

u (tk, x))−1∂θib(θ, Y
θ
u (tk, x)))∗

)
σ−1(Y θ

s (tk, x))∇xY θ
s (tk, x)

)
duds.

We next add and subtract the matrix ((∇xY θ
tk

(tk, x))−1∂θib(θ, Y
θ
tk

(tk, x)))∗ in the first in-

tegral and the matrix (∇xY θ
tk

(tk, x))∗(σ−1(Y θ
tk

(tk, x)))∗ in the second integral. This, together

with the fact that Y θ
tk

(tk, x) = Y θ
tk

= x, yields

δ
(
U θ(tk, x)∂θiY

θ
tk+1

(tk, x)
)

= ∆n(σ−1(Y θ
tk

)∂θib(θ, Y
θ
tk

))∗(Wtk+1
−Wtk)−Rθ,k1 +Rθ,k2 +Rθ,k3 .

(5.3)

On the other hand, by equation (3.3) we have that

Wtk+1
−Wtk = σ−1(Y θ

tk
)

(
Y θ
tk+1
− Y θ

tk
− b(θ, Y θ

tk
)∆n −

∫ tk+1

tk

(
b(θ, Y θ

s )− b(θ, Y θ
tk

)
)
ds

−
∫ tk+1

tk

(
σ(Y θ

s )− σ(Y θ
tk

)
)
dWs −

∫ tk+1

tk

∫
Rd0
c(Y θ

s−, z)M̃(ds, dz)

)
.

This, together with (5.3), concludes the desired result. �

5.3. Proof of Lemma 3.6.

Proof. For simplicity, we denote g(y) = g(Xθ0

tk
, y) := Ẽθ

tk,X
θ0
tk

[V
∣∣Y θ
tk+1

= y] for all y ∈ Rd.

Then, applying Girsanov’s theorem, we obtain that

Êθ
0

[
Ẽθ
tk,X

θ0
tk

[
V
∣∣Y θ
tk+1

= Xθ0

tk+1

] ∣∣F̂tk] = Êθ
0
[
g(Xθ0

tk+1
)
∣∣Xθ0

tk

]
= Êθ

0

tk,X
θ0
tk

[
g(Xθ0

tk+1
)
]
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= Êθ
tk,X

θ0
tk

g(Xθ
tk+1

)

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

)
= Êθ

tk,X
θ0
tk

Êθ
tk,X

θ0
tk

g(Xθ
tk+1

)

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1




= Êθ
tk,X

θ0
tk

g(Xθ
tk+1

)Êθ
tk,X

θ0
tk

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1




=

∫
Rd
g(y)Êθ

tk,X
θ0
tk

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

∣∣∣Xθ
tk+1

= y

 pθ(∆n, X
θ0

tk
, y)dy

=

∫
Rd

Ẽθ
tk,X

θ0
tk

[
V
∣∣Y θ
tk+1

= y
]

Êθ
tk,X

θ0
tk

[dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1

= y

]
pθ(∆n, X

θ0

tk
, y)dy

=

∫
Rd

Eθ
tk,X

θ0
tk

V dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

) ∣∣∣Xθ
tk+1

= y, Y θ
tk+1

= y

 pθ(∆n, X
θ0

tk
, y)dy

= Êθ
tk,X

θ0
tk

[
Eθ
tk,X

θ0
tk

[
V

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

∣∣Xθ
tk+1

, Y θ
tk+1

= Xθ
tk+1

]]

= Eθ
tk,X

θ0
tk

[
Eθ
tk,X

θ0
tk

[
V

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

∣∣Xθ
tk+1

, Y θ
tk+1

= Xθ
tk+1

]]

= Eθ
tk,X

θ0
tk

[
V

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

]
= Ẽθ

tk,X
θ0
tk

[V ] Êθ
tk,X

θ0
tk

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

(
(Xθ

t )t∈[tk,tk+1]

)
= Ẽθ

tk,X
θ0
tk

[V ] ,

where we have used that fact that, by definition of Eθtk,x, for any F̂tk+1
-measurable random

variable V1 and F̃tk+1
-measurable random variable V2,

Êθtk,x

[
V1|Xθ

tk+1
= y
]

Ẽθtk,x

[
V2|Y θ

tk+1
= y
]

= Eθtk,x

[
V1V2|Xθ

tk+1
= y, Y θ

tk+1
= y
]
,
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and the independence between V and

dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1]), together with

Êθ
tk,X

θ0
tk

[dP̂θ
0

tk,X
θ0
tk

dP̂θ
tk,X

θ0
tk

((Xθ
t )t∈[tk,tk+1])

]
= 1.

Thus, the result follows. �

5.4. Proof of Lemma 3.7.

Proof. Using (3.9), we have that

dP̂θ
0

tk,x

dP̂
θ0+
i (`)
tk,x

− 1 =
dP̂θ

0

tk,x
− dP̂

θ0+
i (`)
tk,x

dP̂
θ0+
i (`)
tk,x

=
(dP̂

θ0+
i+1

tk,x
− dP̂

θ0+
i (`)
tk,x

) + (dP̂
θ0+
i+2

tk,x
− dP̂

θ0+
i+1

tk,x
) + · · ·+ (dP̂θ

0+
m
tk,x
− dP̂

θ0+
m−1

tk,x
) + (dP̂θ

0

tk,x
− dP̂θ

0+
m
tk,x

)

dP̂
θ0+
i (`)
tk,x

=

∫ θ0
i

θ0
i+`

ui√
n∆n

∂θi

dP̂
θi(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθi +

∫ θ0
i+1

θ0
i+1+

ui+1√
n∆n

∂θi+1

dP̂
θi+1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθi+1

+ · · ·+
∫ θ0

m−1

θ0
m−1+

um−1√
n∆n

∂θm−1

dP̂
θm−1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθm−1 +

∫ θ0
m

θ0
m+ um√

n∆n

∂θm

dP̂
θm(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

 dθm

=

∫ θ0
i

θ0
i+`

ui√
n∆n

∫ tk+1

tk

(∂θib(θi(0+), X
θ0+
i (`)
t ))∗(σ∗)−1(X

θ0+
i (`)
t )

·
(
dBt − σ−1(X

θ0+
i (`)
t )

(
b(θi(0+), X

θ0+
i (`)
t )− b(θ0+

i (`), X
θ0+
i (`)
t )

)
dt

)
dP̂

θi(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

dθi

+

∫ θ0
i+1

θ0
i+1+

ui+1√
n∆n

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), X

θ0+
i (`)
t ))∗(σ∗)−1(X

θ0+
i (`)
t )

·
(
dBt − σ−1(X

θ0+
i (`)
t )

(
b(θi+1(0+), X

θ0+
i (`)
t )− b(θ0+

i (`), X
θ0+
i (`)
t )

)
dt

)
dP̂

θi+1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

dθi+1

+ · · ·+
∫ θ0

m

θ0
m+ um√

n∆n

∫ tk+1

tk

(∂θmb(θm(0+), X
θ0+
i (`)
t ))∗(σ∗)−1(X

θ0+
i (`)
t )

·
(
dBt − σ−1(X

θ0+
i (`)
t )

(
b(θm(0+), X

θ0+
i (`)
t )− b(θ0+

i (`), X
θ0+
i (`)
t )

)
dt

)
dP̂

θm(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

dθm,
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where for j ∈ {i, . . . ,m},

dP̂
θj(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

=
dP̂

θj(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
,

and

θj(0+) := (θ0
1, . . . , θ

0
j−1, θj , θ

0
j+1 +

uj+1√
n∆n

, . . . , θ0
m +

um√
n∆n

).

Then, using Girsanov’s theorem, we get that

Ê
θ0+
i (`)
tk,x

V
 dP̂θ

0

tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
− 1


=

∫ θ0
i

θ0
i+`

ui√
n∆n

Ê
θ0+
i (`)
tk,x

[
V

∫ tk+1

tk

(∂θib(θi(0+), X
θ0+
i (`)
t ))∗(σ∗)−1(X

θ0+
i (`)
t )

·
(
dBt − σ−1(X

θ0+
i (`)
t )

(
b(θi(0+), X

θ0+
i (`)
t )− b(θ0+

i (`), X
θ0+
i (`)
t )

)
dt

)
dP̂

θi(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

]
dθi

+

∫ θ0
i+1

θ0
i+1+

ui+1√
n∆n

Ê
θ0+
i (`)
tk,x

[
V

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), X

θ0+
i (`)
t ))∗(σ∗)−1(X

θ0+
i (`)
t )

·
(
dBt − σ−1(X

θ0+
i (`)
t )

(
b(θi+1(0+), X

θ0+
i (`)
t )− b(θ0+

i (`), X
θ0+
i (`)
t )

)
dt

)
dP̂

θi+1(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

]
dθi+1

+ · · ·+
∫ θ0

m

θ0
m+ um√

n∆n

Ê
θ0+
i (`)
tk,x

[
V

∫ tk+1

tk

(∂θmb(θm(0+), X
θ0+
i (`)
t ))∗(σ∗)−1(X

θ0+
i (`)
t )

·
(
dBt − σ−1(X

θ0+
i (`)
t )

(
b(θm(0+), X

θ0+
i (`)
t )− b(θ0+

i (`), X
θ0+
i (`)
t )

)
dt

)
dP̂

θm(0+)
tk,x

dP̂
θ0+
i (`)
tk,x

]
dθm

=

∫ θ0
i

θ0
i+`

ui√
n∆n

Ê
θi(0+)
tk,x

[
V

∫ tk+1

tk

(∂θib(θi(0+), X
θi(0+)
t ))∗(σ∗)−1(X

θi(0+)
t )dB

P̂
θi(0+)
tk,x

t

]
dθi

+

∫ θ0
i+1

θ0
i+1+

ui+1√
n∆n

Ê
θi+1(0+)
tk,x

[
V

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), X

θi+1(0+)
t ))∗(σ∗)−1(X

θi+1(0+)
t )dB

P̂
θi+1(0+)

tk,x

t

]
dθi+1

+ · · ·+
∫ θ0

m

θ0
m+ um√

n∆n

Ê
θm(0+)
tk,x

[
V

∫ tk+1

tk

(∂θmb(θm(0+), X
θm(0+)
t ))∗(σ∗)−1(X

θm(0+)
t )dB

P̂
θm(0+)
tk,x

t

]
dθm.

Here, for j ∈ {i, . . . ,m} the process B
P̂
θj(0+)

tk,x = (B
P̂
θj(0+)

tk,x

t , t ∈ [tk, tk+1]) is a Brownian motion

under P̂
θj(0+)
tk,x

, where for any t ∈ [tk, tk+1],

B
P̂
θj(0+)

tk,x

t := Bt −
∫ t

tk

σ−1(X
θ0+
i (`)
s )

(
b(θj(0+), X

θ0+
i (`)
s )− b(θ0+

i (`), X
θ0+
i (`)
s )

)
ds.
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Next, using Hölder’s and Burkholder-Davis-Gundy’s inequalities, conditions (A2) and (A3)(b),
and Lemma 3.4 (ii), we get that∣∣∣∣∣∣Êθ0+

i (`)
tk,x

V
 dP̂θ

0

tk,x

dP̂
θ0+
i (`)
tk,x

(
(X

θ0+
i (`)
t )t∈[tk,tk+1]

)
− 1

∣∣∣∣∣∣
≤

∣∣∣∣∣
∫ θ0

i

θ0
i+`

ui√
n∆n

∣∣∣∣∣Êθi(0+)
tk,x

[
V

∫ tk+1

tk

(∂θib(θi(0+), X
θi(0+)
t ))∗(σ∗)−1(X

θi(0+)
t )dB

P̂
θi(0+)
tk,x

t

]∣∣∣∣∣ dθi
∣∣∣∣∣

+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+

ui+1√
n∆n

∣∣∣∣∣Êθi+1(0+)
tk,x

[
V

∫ tk+1

tk

(∂θi+1
b(θi+1(0+), X

θi+1(0+)
t ))∗(σ∗)−1(X

θi+1(0+)
t )dB

P̂
θi+1(0+)

tk,x

t

]∣∣∣∣∣ dθi+1

∣∣∣∣∣
+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ um√

n∆n

∣∣∣∣Êθm(0+)
tk,x

[
V

∫ tk+1

tk

(∂θmb(θm(0+), X
θm(0+)
t ))∗(σ∗)−1(X

θm(0+)
t )dB

P̂
θm(0+)
tk,x

t

]∣∣∣∣ dθm
∣∣∣∣∣

≤ C
∣∣∣ ∫ θ0

i

θ0
i+`

ui√
n∆n

(
Ê
θi(0+)
tk,x

[|V |q]
) 1
q

·
(

∆
p
2
−1

n

∫ tk+1

tk

Ê
θi(0+)
tk,x

[∣∣∣∂θib(θi(0+), X
θi(0+)
t ))∗(σ∗)−1(X

θi(0+)
t )

∣∣∣p] ds) 1
p

dθi

∣∣∣
+ C

∣∣∣ ∫ θ0
i+1

θ0
i+1+

ui+1√
n∆n

(
Ê
θi+1(0+)
tk,x

[|V |q]
) 1
q

·
(

∆
p
2
−1

n

∫ tk+1

tk

Ê
θi+1(0+)
tk,x

[∣∣∣∂θi+1
b(θi+1(0+), X

θi+1(0+)
t ))∗(σ∗)−1(X

θi+1(0+)
t )

∣∣∣p] ds) 1
p

dθi+1

∣∣∣
+ · · ·+ C

∣∣∣ ∫ θ0
m

θ0
m+ um√

n∆n

(
Ê
θm(0+)
tk,x

[|V |q]
) 1
q

·
(

∆
p
2
−1

n

∫ tk+1

tk

Ê
θm(0+)
tk,x

[∣∣∣∂θmb(θm(0+), X
θm(0+)
t ))∗(σ∗)−1(X

θm(0+)
t )

∣∣∣p] ds) 1
p

dθm

∣∣∣
≤ C

√
∆n (1 + |x|q1)

(∣∣∣∣∣
∫ θ0

i

θ0
i+`

ui√
n∆n

(
Ê
θi(0+)
tk,x

[|V |q]
) 1
q
dθi

∣∣∣∣∣
+

∣∣∣∣∣
∫ θ0

i+1

θ0
i+1+

ui+1√
n∆n

(
Ê
θi+1(0+)
tk,x

[|V |q]
) 1
q
dθi+1

∣∣∣∣∣+ · · ·+

∣∣∣∣∣
∫ θ0

m

θ0
m+ um√

n∆n

(
Ê
θm(0+)
tk,x

[|V |q]
) 1
q
dθm

∣∣∣∣∣
)
,

for some constants C > 0, q1 > 0, where p, q > 1 and 1
p + 1

q = 1. Thus, the result follows. �

5.5. Proof of Lemma 3.9.

Proof. Using the mean value theorem, Cauchy-Schwarz inequality, the fact that |∇g(x)| has
polynomial growth in x, and Lemma 3.4, we get that

Êθ
0

[∣∣∣∣∣ 1

n∆n

∫ n∆n

0
g(Xθ0

s )ds− 1

n

n−1∑
k=0

g(Xθ0

tk
)

∣∣∣∣∣
]
≤ 1

n∆n

n−1∑
k=0

∫ tk+1

tk

Êθ
0
[∣∣∣g(Xθ0

s )− g(Xθ0

tk
)
∣∣∣] ds
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=
1

n∆n

n−1∑
k=0

∫ tk+1

tk

Êθ
0

[∣∣∣∣∫ 1

0
∇g(Xθ0

tk
+ u(Xθ0

s −Xθ0

tk
))du

(
Xθ0

s −Xθ0

tk

)∣∣∣∣] ds
≤ 1

n∆n

n−1∑
k=0

∫ tk+1

tk

(
Êθ

0

[∣∣∣∣∫ 1

0
∇g(Xθ0

tk
+ u(Xθ0

s −Xθ0

tk
))du

∣∣∣∣2
]) 1

2 (
Êθ

0

[∣∣∣Xθ0

s −Xθ0

tk

∣∣∣2]) 1
2

ds

≤ C
√

∆n

n∆n

n−1∑
k=0

∫ tk+1

tk

(∫ 1

0
Êθ

0

[∣∣∣∇g(Xθ0

tk
+ u(Xθ0

s −Xθ0

tk
))
∣∣∣2] du) 1

2

ds

≤ C
√

∆n, (5.4)

which tends to zero as n → ∞. On the other hand, using condition (A4) and the fact that
|g(x)| has polynomial growth in x, we obtain that as n→∞,

1

n∆n

∫ n∆n

0
g(Xθ0

s )ds
P̂θ

0

−→
∫
Rd
g(x)πθ0(dx). (5.5)

Thus, the result follows from (5.4) and (5.5). �

5.6. Large deviation type estimates. Let (υn)n≥1 be a positive sequence which satisfies
limn→∞ υn = 0. The process Zυn = (Zυnt )t≥0 defined by Zυnt =

∑
0≤s≤t ∆Zs1{|∆Zs|>υn} is a

compound Poisson process with intensity of big jumps λυn :=
∫
|z|>υn ν(dz) and distribution

of big jumps
1|z|>υnν(dz)

λυn
. Then, we can split the jumps of the Lévy process Zt into small

jumps and big jumps as follows∫ t

0

∫
Rd0
c(Xθ

s−, z)Ñ(ds, dz) =

∫ t

0

∫
|z|≤υn

c(Xθ
s−, z)Ñ(ds, dz) +

∫ t

0

∫
|z|>υn

c(Xθ
s−, z)Ñ(ds, dz).

Hence, from (1.1), for any t ≥ 0, we can write

Xθ
t = x0 +

∫ t

0
b(θ,Xθ

s )ds+

∫ t

0
σ(Xθ

s )dBs +

∫ t

0

∫
|z|≤υn

c(Xθ
s−, z)Ñ(ds, dz)

+

∫ t

0

∫
|z|>υn

c(Xθ
s−, z)Ñ(ds, dz).

(5.6)

Let Nυn = (Nυn
t )t≥0 denote the Poisson process with intensity λυn counting the big jumps of

the compound Poisson process Zυn .

Similarly, the process Z̃υn = (Z̃υnt )t≥0 defined by Z̃υnt =
∑

0≤s≤t ∆Z̃s1{|∆Z̃s|>υn} is a

compound Poisson process with intensity of big jumps λυn and distribution of big jumps
1|z|>υnν(dz)

λυn
. Then, we can split the jumps of Lévy process Z̃t into small jumps and big jumps

as follows∫ t

0

∫
Rd0
c(Y θ

s−, z)M̃(ds, dz) =

∫ t

0

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz) +

∫ t

0

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz).
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Hence, from (3.3), for any t ≥ 0, we can write

Y θ
t = x0 +

∫ t

0
b(θ, Y θ

s )ds+

∫ t

0
σ(Y θ

s )dWs +

∫ t

0

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

+

∫ t

0

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz).

(5.7)

Let Mυn = (Mυn
t )t≥0 denote the Poisson process with intensity λυn counting the big jumps

of the compound Poisson process Z̃υn .

Now, for k ∈ {0, ..., n − 1}, we consider the events N̂0,k(υn) := {Nυn
tk+1
− Nυn

tk
= 0} which

have no big jumps of Zυn in the interval [tk, tk+1) and N̂≥1,k(υn) := {Nυn
tk+1
−Nυn

tk
≥ 1} which

have one or more than one big jump of Zυn in the interval [tk, tk+1). Similarly, we consider

the events Ñ0,k(υn) := {Mυn
tk+1
−Mυn

tk
= 0} which have no big jumps of Z̃υn in the interval

[tk, tk+1) and Ñ≥1,k(υn) := {Mυn
tk+1
−Mυn

tk
≥ 1} which have one or more than one big jump

of Z̃υn in the interval [tk, tk+1).

We set ek(θ) :=
(
∂θib(θ,X

θ0

tk
)
)∗

(σσ∗)−1(Xθ0

tk
). Next, as in [2, Lemma 5.3], we obtain the

following large deviation type estimates.

Lemma 5.1. Assume conditions (A1), (A2), (A3)(b), and (A5). Then, for any θ ∈ Θ,
there exist constants C > 0 and q1 > 0 such that for all q > 1, and k ∈ {0, ..., n− 1},

Êθ
0

tk,X
θ0
tk

[(
ek(θ)

(∫ tk+1

tk

∫
Rd0
c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[ ∫ tk+1

tk

∫
Rd0
c(Y θ

s−, z)M̃(ds, dz)
∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

(
(λυn∆n)

1
q +

∫
|z|≤υn

ζ2(z)ν(dz) + ∆n

(∫
Rd0
ζ(z)ν(dz)

)2
)
.

Proof. Splitting the Poisson integrals into small jumps and big jumps, we get that

Êθ
0

tk,X
θ0
tk

[(
ek(θ)

(∫ tk+1

tk

∫
Rd0
c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[ ∫ tk+1

tk

∫
Rd0
c(Y θ

s−, z)M̃(ds, dz)
∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= Êθ

0

tk,X
θ0
tk

[(
ek(θ)

(∫ tk+1

tk

∫
|z|≤υn

c(Xθ0

s−, z)Ñ(ds, dz) +

∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[ ∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

+

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
≤ 3

(
D1
k,n +D2

k,n +D3
k,n

)
, (5.8)
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where

D1
k,n = Êθ

0

tk,X
θ0
tk

(ek(θ)∫ tk+1

tk

∫
|z|≤υn

c(Xθ0

s−, z)Ñ(ds, dz)

)2
 ,

D2
k,n = Êθ

0

tk,X
θ0
tk

(ek(θ)Ẽθtk,Xθ0
tk

[∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2
 ,

D3
k,n = Êθ

0

tk,X
θ0
tk

[(
ek(θ)

(∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[ ∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
.

First, using Burkholder-Davis-Gundy’s inequality and condition (A1),

D1
k,n ≤ C

∫ tk+1

tk

∫
|z|≤υn

Êθ
0

tk,X
θ0
tk

[(
ek(θ)c(X

θ0

s−, z)
)2
]
ν(dz)ds

≤ C
(

1 + |Xθ0

tk
|q1
)∫ tk+1

tk

∫
|z|≤υn

ζ2(z)ν(dz)ds

= C
(

1 + |Xθ0

tk
|q1
)

∆n

∫
|z|≤υn

ζ2(z)ν(dz),

(5.9)

for some constant q1 > 0. Next, using Jensen’s inequality, Lemma 3.6, Burkholder-Davis-
Gundy’s inequality and condition (A1),

D2
k,n ≤ Êθ

0

tk,X
θ0
tk

Ẽθ
tk,X

θ0
tk

(ek(θ) ∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

)2 ∣∣∣Y θ
tk+1

= Xθ0

tk+1


= Ẽθ

tk,X
θ0
tk

(ek(θ) ∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

)2


≤ C
(

1 + |Xθ0

tk
|q1
)

∆n

∫
|z|≤υn

ζ2(z)ν(dz), (5.10)

for some constant q1 > 0. Next, multiplying the random variable outside the conditional
expectation of D3

k,n by 1
N̂0,k(υn)

+ 1
N̂≥1,k(υn)

, we get that

D3
k,n = Êθ

0

tk,X
θ0
tk

[(
1
N̂0,k(υn)

+ 1
N̂≥1,k(υn)

)(
ek(θ)

(∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[ ∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= M θ

0,k,n +M θ
≥1,k,n,

(5.11)

where

M θ
0,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

(∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)Ñ(ds, dz)
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− Ẽθ
tk,X

θ0
tk

[ ∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
,

M θ
≥1,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[ ∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
.

We start treating M θ
0,k,n. Multiplying the random variable inside the conditional expectation

of M θ
0,k,n by 1

Ñ0,k(υn)
+ 1

Ñ≥1,k(υn)
and using equation (5.7), we get that

M θ
0,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

(
−
∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)ds

− Ẽθ
tk,X

θ0
tk

[
(1
Ñ0,k(υn)

+ 1
Ñ≥1,k(υn)

)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

(
−
∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)ds

+ Ẽθ
tk,X

θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

∣∣Y θ
tk+1

= Xθ0

tk+1

]
− Ẽθ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

(
−
∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)ds

+ Ẽθ
tk,X

θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

∣∣Y θ
tk+1

= Xθ0

tk+1

]
− Ẽθ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

(
Y θ
tk+1
− Y θ

tk
−
∫ tk+1

tk

b(θ, Y θ
s )ds−

∫ tk+1

tk

σ(Y θ
s )dWs

−
∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

)∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
≤ 6

6∑
i=1

M θ
0,i,k,n, (5.12)

where

M θ
0,1,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)ds

)2]
,

M θ
0,2,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
0,3,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

(
Y θ
tk+1
− Y θ

tk

)∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
0,4,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

b(θ, Y θ
s )ds

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,
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M θ
0,5,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

σ(Y θ
s )dWs

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
0,6,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
.

First,

M θ
0,1,k,n ≤ Êθ

0

tk,X
θ0
tk

[(
ek(θ)

∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)ds

)2]
≤ C

(
1 + |Xθ0

tk
|q1
)

∆2
n

(∫
Rd0
ζ(z)ν(dz)

)2
,

(5.13)

for some constant q1 > 0. Next, using Lemma 3.6,

M θ
0,2,k,n ≤ Êθ

0

tk,X
θ0
tk

[
Ẽθ
tk,X

θ0
tk

[(
ek(θ)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

)2∣∣Y θ
tk+1

= Xθ0

tk+1

]]
= Ẽθ

tk,X
θ0
tk

[(
ek(θ)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

)2]
≤ C

(
1 + |Xθ0

tk
|q1
)

∆2
n

(∫
Rd0
ζ(z)ν(dz)

)2
,

(5.14)

for some constant q1 > 0. Using Lemma 3.6, Hölder’s inequality with 1
p + 1

q = 1, and the fact

that P̃θ
tk,X

θ0
tk

(Ñ≥1,k(υn)) ≤ Cλυn∆ne
−λυn∆n ≤ Cλυn∆n, we get that

M θ
0,4,k,n ≤ Êθ

0

tk,X
θ0
tk

[
Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

(
ek(θ)

∫ tk+1

tk

b(θ, Y θ
s )ds

)2∣∣Y θ
tk+1

= Xθ0

tk+1

]]
= Ẽθ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

(
ek(θ)

∫ tk+1

tk

b(θ, Y θ
s )ds

)2]

≤
(

Ẽθ
tk,X

θ0
tk

[(
ek(θ)

∫ tk+1

tk

b(θ, Y θ
s )ds

)2p
]) 1

p
(

P̃θ
tk,X

θ0
tk

(
Ñ≥1,k(υn)

)) 1
q

≤ C
(

1 + |Xθ0

tk
|q1
)

∆2
n (λυn∆n)

1
q , (5.15)

for some constant q1 > 0. Similarly,

M θ
0,5,k,n ≤ Êθ

0

tk,X
θ0
tk

[
Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

(
ek(θ)

∫ tk+1

tk

σ(Y θ
s )dWs

)2∣∣Y θ
tk+1

= Xθ0

tk+1

]]
= Ẽθ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

(
ek(θ)

∫ tk+1

tk

σ(Y θ
s )dWs

)2]

≤
(

Ẽθ
tk,X

θ0
tk

[(
ek(θ)

∫ tk+1

tk

σ(Y θ
s )dWs

)2p
]) 1

p
(

P̃θ
tk,X

θ0
tk

(
Ñ≥1,k(υn)

)) 1
q

≤ C
(

1 + |Xθ0

tk
|q1
)

∆n (λυn∆n)
1
q . (5.16)
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Next, using Lemma 3.6, Burkholder-Davis-Gundy’s inequality and condition (A1),

M θ
0,6,k,n ≤ Êθ

0

tk,X
θ0
tk

[
Ẽθ
tk,X

θ0
tk

[(
ek(θ)

∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

)2∣∣Y θ
tk+1

= Xθ0

tk+1

]]
= Ẽθ

tk,X
θ0
tk

[(
ek(θ)

∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

)2]
≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

∫
|z|≤υn

ζ2(z)ν(dz). (5.17)

Now, we treat the term M θ
0,3,k,n. For this, using equation (5.6) and the fact that there is no

big jump of Zυn in the interval [tk, tk+1), we get that

M θ
0,3,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

(
Xθ0

tk+1
−Xθ0

tk

)
Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

(∫ tk+1

tk

b(θ,Xθ0

s )ds+

∫ tk+1

tk

σ(Xθ0

s )dBs

+

∫ tk+1

tk

∫
|z|≤υn

c(Xθ0

s−, z)Ñ(ds, dz)−
∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)ds

)

× Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
≤ 4

4∑
i=1

M θ
0,3,i,k,n, (5.18)

where

M θ
0,3,1,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

∫ tk+1

tk

b(θ,Xθ0

s )dsẼθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
0,3,2,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

∫ tk+1

tk

σ(Xθ0

s )dBsẼ
θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
0,3,3,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

∫ tk+1

tk

∫
|z|≤υn

c(Xθ0

s−, z)Ñ(ds, dz)Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
0,3,4,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂0,k(υn)

(
ek(θ)

∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)dsẼθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
.

Using Hölder’s inequality with 1
p + 1

q = 1 and Jensen’s inequality together with Lemma 3.6,

M θ
0,3,1,k,n ≤

(
Êθ

0

tk,X
θ0
tk

[(
ek(θ)

∫ tk+1

tk

b(θ,Xθ0

s )ds
)2p
]) 1

p
(

Êθ
0

tk,X
θ0
tk

[
Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

|Y θ
tk+1

= Xθ0

tk+1

]]) 1
q

≤
(

∆2p−1
n

∫ tk+1

tk

Êθ
0

tk,X
θ0
tk

[(
ek(θ)b(θ,X

θ0

s )ds
)2p
]
ds

) 1
p
(

Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

]) 1
q

=

(
∆2p−1
n

∫ tk+1

tk

Êθ
0

tk,X
θ0
tk

[(
ek(θ)b(θ,X

θ0

s )ds
)2p
]
ds

) 1
p
(

P̃θ
tk,X

θ0
tk

(
Ñ≥1,k(υn)

)) 1
q

≤ C
(

1 + |Xθ0

tk
|q1
)

∆2
n (λυn∆n)

1
q . (5.19)
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Next, using Hölder’s inequality with 1
p + 1

q = 1 and Burkholder-Davis-Gundy’s inequality

together with Lemma 3.6,

M θ
0,3,2,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆n (λυn∆n)
1
q . (5.20)

Using Burkholder-Davis-Gundy’s inequality and condition (A1),

M θ
0,3,3,k,n ≤ Êθ

0

tk,X
θ0
tk

[(
ek(θ)

∫ tk+1

tk

∫
|z|≤υn

c(Xθ0

s−, z)Ñ(ds, dz)

)2]
≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

∫
|z|≤υn

ζ2(z)ν(dz). (5.21)

Observe that

M θ
0,3,4,k,n ≤ Êθ

0

tk,X
θ0
tk

[(
ek(θ)

∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)ν(dz)ds

)2]
≤ C

(
1 + |Xθ0

tk
|q1
)

∆2
n

(∫
Rd0
ζ(z)ν(dz)

)2
. (5.22)

Therefore, from (5.18)-(5.22), we have shown that

M θ
0,3,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

(
(λυn∆n)

1
q +

∫
|z|≤υn

ζ2(z)ν(dz) + ∆n

(∫
Rd0
ζ(z)ν(dz)

)2
)
.

(5.23)

Thus, from (5.12)-(5.17) and (5.23), we have shown that

M θ
0,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

(
(λυn∆n)

1
q +

∫
|z|≤υn

ζ2(z)ν(dz) + ∆n

(∫
Rd0
ζ(z)ν(dz)

)2
)
.

(5.24)

Finally, we treat M θ
≥1,k,n. Multiplying the random variable inside the conditional expectation

of M θ
≥1,k,n by 1

Ñ0,k(υn)
+ 1

Ñ≥1,k(υn)
and using equations (5.6) and (5.7), we get that

M θ
≥1,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[(
1
Ñ0,k(υn)

+ 1
Ñ≥1,k(υn)

)∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(∫ tk+1

tk

∫
|z|>υn

c(Xθ0

s−, z)Ñ(ds, dz)

− Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]
+ Ẽθ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(
Xθ0

tk+1
−Xθ0

tk
−
∫ tk+1

tk

b(θ,Xθ0

s )ds−
∫ tk+1

tk

σ(Xθ0

s )dBs
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−
∫ tk+1

tk

∫
|z|≤υn

c(Xθ0

s−, z)Ñ(ds, dz)− Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

(
Y θ
tk+1
− Y θ

tk

−
∫ tk+1

tk

b(θ, Y θ
s )ds−

∫ tk+1

tk

σ(Y θ
s )dWs −

∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

)∣∣∣Y θ
tk+1

= Xθ0

tk+1

]
+ Ẽθ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]

≤ 8
8∑
i=1

M θ
≥1,i,k,n, (5.25)

where

M θ
≥1,1,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(
Xθ0

tk+1
−Xθ0

tk

− Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

(
Y θ
tk+1
− Y θ

tk

)∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
,

M θ
≥1,2,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

∫ tk+1

tk

b(θ,Xθ0

s )ds

)2]
,

M θ
≥1,3,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

∫ tk+1

tk

σ(Xθ0

s )dBs

)2]
,

M θ
≥1,4,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

∫ tk+1

tk

∫
|z|≤υn

c(Xθ0

s−, z)Ñ(ds, dz)

)2]
,

M θ
≥1,5,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

b(θ, Y θ
s )ds

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
≥1,6,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

σ(Y θ
s )dWs

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
≥1,7,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
≥1,8,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
.

First, we treat the term M θ
≥1,1,k,n. Using equation (5.7) and the fact that there is no big jump

of Z̃υn in the interval [tk, tk+1), we get that

M θ
≥1,1,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(
Xθ0

tk+1
−Xθ0

tk

−
(
Xθ0

tk+1
−Xθ0

tk

)
Ẽθ
tk,X

θ0
tk

[
1
Ñ≥1,k(υn)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(
Xθ0

tk+1
−Xθ0

tk

)(
1− Ẽθ

tk,X
θ0
tk

[
1
Ñ≥1,k(υn)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

]))2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(
Xθ0

tk+1
−Xθ0

tk

)
Ẽθ
tk,X

θ0
tk

[
1− 1

Ñ≥1,k(υn)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
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= Êθ
0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)

(
Xθ0

tk+1
−Xθ0

tk

)
Ẽθ
tk,X

θ0
tk

[
1
Ñ0,k(υn)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

(
Y θ
tk+1
− Y θ

tk

)∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
= Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

(∫ tk+1

tk

b(θ, Y θ
s )ds+

∫ tk+1

tk

σ(Y θ
s )dWs

+

∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)−

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

)∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]

≤ 4
4∑
i=1

M θ
≥1,1,i,k,n, (5.26)

where

M θ
≥1,1,1,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

b(θ, Y θ
s )ds

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
≥1,1,2,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

σ(Y θ
s )dWs

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
≥1,1,3,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|≤υn

c(Y θ
s−, z)M̃(ds, dz)

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
,

M θ
≥1,1,4,k,n = Êθ

0

tk,X
θ0
tk

[
1
N̂≥1,k(υn)

(
ek(θ)Ẽ

θ

tk,X
θ0
tk

[
1
Ñ0,k(υn)

∫ tk+1

tk

∫
|z|>υn

c(Y θ
s−, z)ν(dz)ds

∣∣∣Y θ
tk+1

= Xθ0

tk+1

])2]
.

Proceeding as the terms M θ
0,3,1,k,n, M θ

0,3,2,k,n, M θ
0,3,3,k,n and M θ

0,3,4,k,n, we get that for any
q > 1,

M θ
≥1,1,1,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆2
n (λυn∆n)

1
q , M θ

≥1,1,2,k,n ≤ C
(

1 + |Xθ0

tk
|q1
)

∆n (λυn∆n)
1
q ,

M θ
≥1,1,3,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

∫
|z|≤υn

ζ2(z)ν(dz), (5.27)

M θ
≥1,1,4,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆2
n

(∫
Rd0
ζ(z)ν(dz)

)2
,

for some constant q1 > 0. Thus, from (5.26) and (5.27), we have shown that

M θ
≥1,1,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

(
(λυn∆n)

1
q +

∫
|z|≤υn

ζ2(z)ν(dz) + ∆n

(∫
Rd0
ζ(z)ν(dz)

)2
)
.

(5.28)

Similarly, we obtain that for any q > 1,

M θ
≥1,2,k,n +M θ

≥1,5,k,n ≤ C
(

1 + |Xθ0

tk
|q1
)

∆2
n (λυn∆n)

1
q ,

M θ
≥1,3,k,n +M θ

≥1,6,k,n ≤ C
(

1 + |Xθ0

tk
|q1
)

∆n (λυn∆n)
1
q ,

M θ
≥1,4,k,n +M θ

≥1,7,k,n ≤ C
(

1 + |Xθ0

tk
|q1
)

∆n

∫
|z|≤υn

ζ2(z)ν(dz),
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M θ
≥1,8,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆2
n

(∫
Rd0
ζ(z)ν(dz)

)2
.

This, together with (5.25) and (5.28), concludes that for any q > 1,

M θ
≥1,k,n ≤ C

(
1 + |Xθ0

tk
|q1
)

∆n

(
(λυn∆n)

1
q +

∫
|z|≤υn

ζ2(z)ν(dz) + ∆n

(∫
Rd0
ζ(z)ν(dz)

)2
)
,

(5.29)

for some constant q1 > 0. Thus, the result follows from (5.8), (5.9), (5.10), (5.11), (5.24) and
(5.29). �
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[9] Hájek, J. (1972), Local asymptotic minimax and admissibility in estimation, Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), Vol. I: Theory of statistics, 175–194.
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