
BOUNDS FOR HILBERT COEFFICIENTS
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Abstract. Let (A,m) be a noetherian local ring with dim(A) = d ≥ 1 and
depth(A) ≥ d− 1. Let J be an m-primary ideal and write σJ (k) = depth(G(Jk)).
Elias [4] proved that σJ(k) is constant for k À 0 and denoted this number by σ(J).
In this paper, we investigate the non-negativity and non-positivity for the Hilbert
coefficients ei(J) under some conditions for σJ(r), where r = reg(G(J)) + 1. In
case of J = Q is a parameter ideal, we establish bounds for the Hilbert coefficients
of Q in terms of dimension and the first Hilbert coefficient e1(Q).

Introduction

Let (A,m) be a noetherian local ring of dimension d and J an m-primary ideal
of A. Let `(.) denote the length of an A-module. The Hilbert-Samuel function of A
with respect to J is the function HJ : Z −→ N0 given by

HJ(n) =

{
`(A/Jn) if n ≥ 0;
0 if n < 0.

There exists a unique polynomial PJ(x) ∈ Q[x] (called the Hilbert- Samuel poly-
nomial) of degree d such that HJ(n) = PJ(n) for n À 0 and it is written by

PJ(n) =
d∑

i=0

(−1)i

(
n + d− i− 1

d− i

)
ei(J).

Then, the integers ei(J) is called Hilbert coefficients of J . Let denote by G(J) =
⊕n≥0J

n/Jn+1 the associated graded ring of A with respect to J . In [4], Elias denoted
σJ(k) = depth(G(Jk)) and proved that σJ(k) is constant for k À 0. We call this
number σ(J).

The aim of this paper is to investigate the sign of ei(J) for i = 3, ..., d under
assumption σJ(r) ≥ d − 2, here r = reg(G(J)) + 1. In case J = Q is a parameter
ideal and depth(A) ≥ d − 1, we establish bounds for the Hilbert coefficients ei(Q),
for i = 2, ..., d, in terms of the dimension and the first Hilbert coefficient e1(Q).

First, we study the non-negativity of the Hilbert coefficients. It is well known
that e0(J) is always positive. There were several results on the non-negativity of
the Hilbert coefficients ei(J). If A is Cohen-Macaulay, Northcott [19] proved the non-
negativity of the first Hilbert coefficient e1(J). Narita [18] proved the non-negativity
of the second Hilbert coefficient e2(J) and he also showed that it is possible for e3(J)
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to be negative. However, Itoh [9] showed that if J is a normal parameter ideal, then
e3(J) ≥ 0. Later, Corso-Polini-Rossi [3] improved the proof the of Itoh on the non-
negativity of Hilbert coefficients of m-primary asymptotically normal ideal in the
case dim(A) = 3.

The first main result of this paper is to prove the non-negativity ed(J) under
condition σJ(r) ≥ d− 1.

Theorem 2.2 Let (A, m) be a Cohen-Macaulay ring of dimension d ≥ 2. Let J be
an m-primary ideal such that σJ(r) ≥ d− 1. Then ed(J) ≥ 0.

It is well known that σJ(r) ≥ depth(G(J)). Thus, Theorem 2.2 implies an early
result of Marley [16] on the non-negativity of all Hilbert coefficients ei(J) with
assumption depth(G(J)) ≥ d− 1.

Next we study the non-positivity of the Hilbert coefficients. If J = Q is a param-
eter ideal of a Cohen-Macaulay ring A, then ei(Q) = 0 for i = 1, ..., d. If A is an
arbitrary ring, Mandal-Singh-Verma [15] showed that e1(Q) ≤ 0 for all parameter
ideals of A. If depth(A) ≥ d − 1, McCune [17] showed that e2(Q) ≤ 0 and Saikia-
Saloni [24] proved that e3(Q) ≤ 0 for every parameter ideal Q. In [17], McCune
also proved that if Q is a parameter ideal such that depth(G(Q)) ≥ d − 1, then
ei(Q) ≤ 0 for i = 1, ...., d. Later, Saikia-Saloni [24] and Linh-Trung [12] proved that
if depth(A) ≥ d − 1 and Q is a parameter ideal such that depth(G(Q)) ≥ d − 2,
then ei(Q) ≤ 0 for i = 1, ...., d. In [21], Puthenpurakal obtained remarkable results
about non-positivity of e3(J).

The second main result of this paper is a generalization a recent result of Linh
[13, Proposition 3.5] on the non-positivity of the d-th Hilbert coefficients ed(J).

Theorem 2.4 Let (A, m) be a noetherian local ring with dim(A) = d ≥ 3 and
depth(A) ≥ d − 1. Let J be an m-primary ideal such that r(J) ≤ d − 1 and
σJ(r) ≥ d− 2. Then ed(J) ≤ 0.

Theorem 2.4 implies an early result of Mafy and Nadery [14] that if A is a Cohen-
Macaulay ring of dimension 4 and J an m-primary asymptotically normal ideal such
that r(J) ≤ 3, then e4(J) ≤ 0. From Theorem 2.4, we get some interesting results
and one of them is a generalization of an early results of Saikia-Saloni [24, Corollary
3.2] and Linh-Trung [12, Theorem 2.9].

Corollary 2.9 Let (A,m) a noetherian local ring with dim(A) = d ≥ 3 and
depth(A) ≥ d − 1. Let J be an m-primary ideal of A such that r(J) ≤ 2 and
depth(G(J)) ≥ d− 2. Then

ei(J) ≤ 0 for i = 3, ..., d.

Finally, we want to bound the Hilbert coefficients in terms of several common
invariants. If A is Cohen-Macaulay and generalized Cohen-Macaulay, Srinivas and
Trivedi [25]-[27] gave bounds for the Hilbert coefficients of m-primary ideals in terms
of the dimension and multiplicity. If A is an arbitrary ring, Rossi, Trung and Valla
[22] established bounds for the Hilbert coefficients of the maximal ideal in terms
of the dimension and an extended degree. In [11], the author gave bounds for
the Hilbert coefficients of m-primary ideals in terms of the degree of nilpotency.
Recently, Goto and Ozeki [6] established uniform bounds for the Hilbert coefficients
of parameter ideals in a generalized Cohen-Macaulay ring.
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The next main result of the paper is to establish bounds for the Hilbert coefficients
of parameter ideals in terms of the dimension and the first coefficient e1(Q).

Theorem 3.4 Let A be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥
d− 1. Let Q be a parameter ideal of A. Then

|ei(Q)| ≤ 3.2i−2ri−1|e1(Q)| for i = 2, ..., d,

where r = max{[−4e1(Q)](d−1)! + e1(Q)− 1, 0}+ 1.

The paper is divided into three sections. In Section 1, we prepare some facts relate
to the Hilbert coefficients and regularity. In Section 2, we prove the non-negativity
and non-positivity for the Hilbert coefficients of m-primary ideals. In Section 3,
we establish bounds for the Hilbert coefficients of parameter ideals in terms of the
dimension and the first Hilbert coefficient.

1. Preliminary

Let (A,m) be a noetherian local ring of dimension d and J be an m-primary ideal
of A. A numerical function

HJ : Z −→ N0

n 7−→ HJ(n) =

{
`(A/Jn) if n ≥ 0;
0 if n < 0

is said to be a Hilbert-Samuel function of A with respect to the ideal J . It is well
known that there exists a polynomial PJ ∈ Q[x] of degree d such that HJ(n) = PJ(n)
for n À 0. The polynomial PJ is called the Hilbert-Samuel polynomial of A with
respect to the ideal J and it is written of the form

PJ(n) =
d∑

i=0

(−1)i

(
n + d− i− 1

d− i

)
ei(J),

where ei(J) for i = 0, ..., d are integers, called Hilbert coefficients of J . In particu-
lar, e(J) = e0(J) and e1(J) are called the multiplicity and Chern coefficient of J ,
respectively. Denote

n(J) = max{n | HJ(n) 6= PJ(n)}.
An element x ∈ J\mJ is said to be superficial for J if there exists a number

c ∈ N such that (Jn : x) ∩ J c = Jn−1 for n > c. If A/m is infinite, then a superficial
element for J always exists. A sequence of elements x1, ..., xr ∈ J\mJ is said to be
a superficial sequence for J if xi is superficial for J/(x1, ...xi−1) for i = 1, ...r.

Suppose that dim(A) = d ≥ 1 and x ∈ J \mJ is a superficial element for J , then
`(0 :A x) < ∞ and dim(A/(x)) = dim(A)− 1 = d− 1. The following lemma give us
a relationship between ei(J) and ei(J1), where J1 = J(A/(x)).

Lemma 1.1. [23, Proposition 1.3.2] Let A be a noetherian local ring of dimension
d ≥ 2 and J be an m-primary ideal of A. Let x ∈ J\mJ be a superficial element for
J and J1 = J(A/(x)). Then

(i) ei(J) = ei(J1) for i = 0, ..., d− 2;

(ii) ed−1(J) = ed−1(J1) + (−1)d`(0 : x).
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If denote by G(J) = ⊕n≥0J
n/Jn+1 the associated graded ring of A with respect

to J and
ai(G(J)) = sup{n | H i

G(J)+
(G(J))n 6= 0},

then the Castelnuovo-Mumford regularity of G(J) is defined by

reg(G(J)) = max{ai(G(J)) + i | i ≥ 0}.
Lemma 1.2. Let (A, m) be a noetherian local ring of dimension d and J be an m-
primary ideal of A. Let x ∈ J \ mJ be a superficial element for J . Set Ā = A/(x)
and J̄ = JĀ. Then

(i) n(J) ≤ reg(G(J));

(ii) reg(G(J̄)) ≤ reg(G(J));

(iii) Jn+1 : x/Jn ∼= (0 : x) for n > reg(G(J)).

Proof.

(i) It is implied from [13, Lemma 2.1 and Lemma 2.2].

(ii) Let x∗ be an initial form of x in G(J). Then

reg(G(J)/(x∗)) ≤ reg(G(J)).

On the other hand, there is a natural graded epimorphism from G(J)/(x∗) to G(J̄)
whose kernel is

K =
⊕

n≥0

(Jn+1 + x ∩ Jn)/(Jn+1 + xJn−1).

Since x is superficial for J , x ∩ Jn+1 = xJn for n À 0. Hence Kn = 0 for n À 0.
Thus K is a module with finite length. Hence

reg(G(J̄)) ≤ reg(G(J)/(x∗)).

This implies
reg(G(J̄)) ≤ reg(G(J)).

(iii) From the exact sequence

0 −→ Jn+1 : x/Jn −→ A/Jn x−→ A/Jn+1 −→ A/(Jn+1, x) −→ 0,

we get

`(Jn+1 : x/Jn) = `(A/Jn)− `(A/Jn+1) + `(Ā/J̄n+1)

= `(Ā/J̄n+1)− `(Jn/Jn+1).

It is well known that Jn+1 : x/Jn ∼= (0 : x) for n À 0. From (i) and (ii), we have

n(J) ≤ reg(G(J)) and n(J̄) ≤ reg(G(J)).

It follows that
Jn+1 : x/Jn ∼= (0 : x) for n > reg(G(J)).

¤

Recall that an ideal K ⊆ J is called a reduction of J if Jn+1 = KJn for n À 0. If K
is a reduction of J and no other reduction of J is contained in K, then K is said to
be a minimal reduction of J . If K is a minimal reduction of J , then the reduction
number of J with respect to K, rK(J), is given by

rK(J) := min{ n | Jn+1 = KJn}.
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The reduction number of J , denoted r(J), is given by

r(J) := min{rK(J)| J is a minimal reduction of J}.
The following lemma give a relationship between reduction number of J and the
regularity of G(J).

Lemma 1.3. [28, Proposition 3.2]

ad(G(J)) + d ≤ r(J) ≤ reg(G(J)).

2. The sign of Hilbert coefficients

Through this section, let (A, m) be a noetherian local ring of dimension d, J be
an m-primary ideal of A and r = reg(G(J)) + 1. In this section, we investigate the
sign of Hilbert coefficients ei(J).

In [4, Proposition 2.2], Elias denoted σJ(k) = depth(G(Jk)) and proved that σJ(k)
is constant for k À 0. We call this number σ(J). By [7, Lemma 2.4],

ai(G(Jk)) ≤ [ai(G(J))/k] for all i ≤ d and k ≥ 1,

where [a] = max{m ∈ Z | m ≤ a}. Therefore

ai(G(Jk)) ≤ 0 for all i ≤ d and k ≥ r = reg(G(J)) + 1 (1)

and

σJ(k) ≥ depth(G(J)) for k ≥ 1. (2)

The following lemma gives whenever the number σJ(k) is positive.

Lemma 2.1. Let (A,m) be a noetherian local ring of dimension d ≥ 1 and J an m-
primary ideal of A. If depth(A) ≥ 1, then σJ(k) ≥ 1 for all k ≥ r = reg(G(J)) + 1.

Proof. From (1), we have ai(G(Jk)) ≤ 0 for all i = 0, ..., d and for k ≥ r. But by [8,
Theorem 5.2], a0(G(Jk)) < a1(G(Jk)) ≤ 0. Hence H0

G(Jk)+
(G(Jk)) = 0 for k ≥ r.

This implies that σJ(k) = depth(G(Jk)) ≥ 1 for all k ≥ r. ¤
Theorem 2.2. Let (A,m) be a Cohen-Macaulay ring of dimension d ≥ 1. Let J be
an m-primary ideal such that σJ(r) ≥ d− 1. Then ed(J) ≥ 0.

Proof. Let I = Jr, R = A[It] = ⊕n≥0I
n denote the Rees algebra of A with respect

to I, R+ = ⊕n>0Rn. By [1, Theorem 4.1] and [1, Theorem 3.8], we have

(−1)ded(J) = (−1)ded(I) = PI(0)−HI(0)

=
d∑

i=0

(−1)i`(H i
R+

(R)0)

=
d∑

i=0

(−1)i`(H i
G(I)+

G(I)0).

Since σJ(r) ≥ d − 1, depth(G(I)) ≥ d − 1. Thus H i
G(I)+

(G(I)) = 0 for all i =

0, ..., d− 2. From (1), ai(G(I)) ≤ 0 for all i ≥ 0. On the other hand, by [8, Theorem
5.2], ad−1(G(I)) < ad(G(I)) ≤ 0; that is, ad−1(G(I)) < 0. Hence

(−1)ded(J) = (−1)d`(Hd
G(I)+

(G(I))0).
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This implies that

ed(J) = `(Hd
G(I)+

(G(I))0) ≥ 0.

¤

Theorem 2.2 implies an early result of Marley [16, Corollary 2].

Corollary 2.3. Let (A, m) be a Cohen-Macaulay ring of dimension d ≥ 1. Let J be
an m-primary ideal such that depth(G(J)) ≥ d− 1. Then

ei(J) ≥ 0 for i = 1, ..., d.

Proof. From (2), σJ(r) ≥ depth(G(J)) ≥ d − 1. Applying Theorem 2.2, we get
ed(J) ≥ 0.

Without loss of generality, assume that A/m is infinite and x1, ..., xd−1 is a super-
ficial sequence for J . For i = 1, ..., d− 1, set Ai = A/(x1, ..., xi) and Ji = JAi. Then
ei(J) = ei(Jd−i) from Lemma 1.1. By assumption, we have

dim(Ad−i) = i and depth(G(Jd−i)) ≥ i− 1.

By [4, Proposition 2.2], σJd−i
(r′) ≥ depth(G(Jd−i)) ≥ i−1, where r′ = reg(G(Jd−i)).

Applying Theorem 2.2, we get ei(J) ≥ 0 for 1 = 1, ...., d− 1. ¤

The following theorem is a generalization of [13, Proposition 3.5].

Theorem 2.4. Let (A,m) be a noetherian local ring of dimension d ≥ 3 and
depth(A) ≥ d − 1. Let J be an m-primary ideal such that r(J) ≤ d − 1 and
σJ(r) ≥ d− 2. Then ed(J) ≤ 0.

Proof. Let I = Jr. By arguing as the proof in Proposition 2.2, we have

(−1)ded(J) = (−1)ded(I) = PI(0)−HI(0)

=
d∑

i=0

(−1)i`(H i
G(I)+

G(I)0).

Since σJ(r) = depth(G(I)) ≥ d−2, H i
G(I)+

(G(I)) = 0 for i = 0, ..., d−3. By Lemma

1.3, we have ad(G(I)) + d ≤ r(I). From [7, Lemma 2.7],

r(I) ≤ ]r(J) + 1− s(J)[

r
+ s(I)− 1 =

]r(J) + 1− d[

r
+ d− 1 ≤ d− 1.

Hence ad(G(I)) < 0. On the other hand, ai(G(I)) ≤ 0 for all i ≥ 0 from (1). By
applying [8, Theorem 5.2], we get ad−2(G(I)) < ad−1(G(I)) ≤ 0. It follows that

(−1)ded(J) = (−1)d−1`(Hd−1
G(I)+

G(I)0).

This implies that ed(J) = −`(Hd−1
G(I)+

(G(I))0) ≤ 0. ¤

From Theorem 2.2 and Theorem 2.4, we obtain the following corollary.

Corollary 2.5. Let (A, m) be a Cohen-Macaulay ring of dimension d ≥ 2. Let J be
an m-primary ideal such that r(J) ≤ d− 1 and σJ(r) ≥ d− 1. Then ed(J) = 0.
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An ideal J is said to be asymptotically normal if there exists an integer k ≥ 1
such that Jn is integrally closed for all n ≥ k. If J is an asymptotically normal
ideal of A, σ(J) ≥ 2 by [20, Theorem 7.3]. In [14, Theorem 1.5], Mafi and Naderi
proved that if A is a Cohen-Macaulay ring of dimension 4 and J be an m-primary
asymptotically normal ideal such that r(J) ≤ 3, then e4(J) ≤ 0. For k À 0, set
I = Jk. By similarly argument as the proof of Theorem 2.4, we get the following
corollary

Corollary 2.6. Let (A, m) be a noetherian local ring of dimension d = 4 and
depth(A) ≥ 3. Let J be an m-primary asymptotically normal ideal of A such that
r(J) ≤ 3. Then e4(J) ≤ 0.

Notice that the hypothesis of the ring A in Corollary 2.6 is not necessarily Cohen-
Macaulay.

Corollary 2.7. Let (A,m) be a noetherian ring of dimension d = 4 and depth(A) ≥
3. Let J be an m-primary ideal of A. If r(J) ≤ 2 and σJ(r) ≥ 2, then

ei(J) ≤ 0 for i = 3, 4.

Proof. Applying Theorem 3.2, we get e4(J) ≤ 0.

Without loss of generality, assume that A/m is infinite and x1 is a superficial
sequence for J . Let A1 = A/(x1) and J1 = JA1. Then dim(A1) = 3, J1 is a m-
primary ideal of A1 and e3(J) = e3(J1). Since depth(A) ≥ 3, depth(A1) ≥ 2. By
Lemma 2.1, σJ1(r1) ≥ 1, where r1 = reg(G(J1)) + 1. Moreover, r(J1) ≤ r(J) ≤ 2.
By applying Theorem 2.4, we obtain e3(J) = e3(J1) ≤ 0. ¤

In case of A is a Cohen-Macaulay ring of dimension d = 3 and r(I) = 2, Puthenpu-
rakal [21, Theorem 9.1] proved that e3(J) ≤ 0. The following corollary is a extension
the result of Puthenpurakal.

Corollary 2.8. Let (A, m) be a noetherian ring with dim(A) = d ≥ 3 and depth(A) ≥
d− 1. If J be an m-primary ideal of A such that r(J) ≤ 2, then e3(J) ≤ 0.

Proof. By Lemma 2.1, one has σJ(r) ≥ 1. If d = 3, by applying Theorem 2.4 we get
e3(J) ≤ 0.

If d > 3, without loss of generality, assume that A/m is infinite and x1, ..., xd−3 is a
superficial sequence for J . Let Ā = A/(x1, ..., xd−3) and J̄ = JĀ. Then dim(Ā) = 3,
depth(Ā) ≥ 2 and r(J̄) ≤ r(J) ≤ 2. Sine depth(Ā) ≥ 2 and by Lemma 2.1,
σJ̄(r′) ≥ 1, where r′ = reg(G(J̄)) + 1. It follows e3(J) = e3(J̄) from Lemma 1.1.
Applying Theorem 2.4, we obtain e3(J) = e3(J̄) ≤ 0. ¤

By (2), σJ(r) ≥ depth G(J). From Theorem 2.4, we get the following corollary.

Corollary 2.9. Let (A,m) a noetherian local ring with dim(A) = d ≥ 3 and
depth(A) ≥ d − 1. Let J be an m-primary ideal of A such that r(J) ≤ 2 and
depth(G(J)) ≥ d− 2. Then

ei(J) ≤ 0 for i = 3, ..., d.

Proof. It is well known that ed(J) ≤ 0. If d ≤ 4, the corollary is proved by Corollary
2.7. If d > 4, we need to prove that ed−i(J) ≤ 0 for i = 1, ..., d − 2. Indeed,
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without loss of generality, assume that A/m is infinite and x1, ..., xd is a superficial
sequence for J . For each i = 1, ..., d − 2, let Ai = A/(x1, ..., xi), Ji = JAi and
ri = reg(G(Ji))+1. From hypothesis, we have dim(Ai) = d−i, depth(Ai) ≥ d−i−1.
and r(Ji) ≤ r(J) ≤ 2. Since depth(G(J)) ≥ d− 2, depth(G(Ji)) ≥ d− i− 2. From
(2), σJi

(ri) ≥ depth(G(Ji)) ≥ d− i− 2. By applying Theorem 2.4, we get

ed−i(J) = ed−i(Ji) ≤ 0 for i = 1, , , , d− 2.

Hence ei(J) ≤ 0 for i = 2, ..., d− 1. ¤

Corollary 2.9 is a generalization of an early results of Saikia-Saloni [24, Corollary
3.2] and Linh-Trung [12, Theorem 2.9].

Example 2.10. Let A = Q[x, y, z](x,y,z) and J = (x3, y3, z3, x2y + z3, xz2, y2z +
x2z, xyz). Then K = (x3, y3, z3) is a minimal reduction of J and rK(J) = 2. Using
Macaulay 2, we compute depth(G(J)) = 0. Hence σJ(k) ≥ 1 for all k ≥ r. On the
other hand, the Hilbert series PG(J)(t) of G(J) is

PG(J)(t) =
∑

n≥0

`(Jn/Jn+1)tn =
h(t)

(1− t)3
,

where h(t) = a0 + a1t + · · ·+ as ∈ Z[t]. It follows that

h(t) = a0 + a1t + · · ·+ as = (1− 3t + 3t2 − t3)PG(J)(t).

Hence

a0 = `(A/J);

a1 = `(J/J2)− 3`(A/J);

a2 = `(J2/J3)− 3`(J/J2) + 3`(A/I);

ai = `(I i/I i+1)− 3`(I i−1/J i) + 3`(I i−2/J i−1)− `(I i−3/J i−2) for i ≥ 3.

By using Macaulay 2, we get

a0 = 13, a1 = 6, a2 = 13, a3 = −6, a4 = 1, a5 = a6, = · · · = 0.

That means

h(t) = 13 + 6t + 13t2 − 6t3 + t4.

So,

e0(J) = h(1) = 27; e1(J) = h′(1) = 18;

e2(J) = h”(1)/2! = 1; e3(J) = h(3)(1)/3! = −2.

This implies that σJ(k) = σ(J) = 1 for all k ≥ r = reg(G(J)) + 1.

3. Bound for Hilbert coefficients of parameter ideals

Let (A, m) be a noetherian local ring of dimension d and depth(A) ≥ d − 1. In
this section, we will establish bounds for the Hilbert coefficients of parameter ideals.
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Lemma 3.1. Let A be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥
d − 1. Let Q be a parameter ideal of A and x a superficial element for Q. For all
n ≥ 1, we have

`(Qn+1 : x/Qn) ≤ −
(
n + d− 3

d− 2

)
e1(Q).

Proof. Suppose that Q = (x1, ..., xd) and x = x1 is superficial for Q. Set J =
(x1, ..., xd−1), we have

Qn+1 : x/Qn = ((xQn + JnQ) : x)/Qn

= (Qn + (JnQ : x))/Qn

∼= (JnQ : x)/(Qn ∩ (JnQ : x)).

Since

Jn ⊆ Qn ∩ (JnQ : x),

we obtain

`(Qn+1 : x/Qn) ≤ `(Jn : x/Jn).

By [13, Corollary 4.4],

`(Jn : x/Jn) ≤ −
(
n + d− 3

d− 2

)
e1(Q).

This implies that

`(Qn+1 : x/Qn) ≤ −
(
n + d− 3

d− 2

)
e1(Q).

¤

Lemma 3.2. Let A be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥ 1.
Let I be an m-primary ideal of A and x a superficial element for I. Then

(−1)ded(I) =
r∑

k=0

(HĪ(k)− PĪ(k))−
r∑

k=0

`(Ik+1 : x/Ik),

where some r ≥ reg(G(I)) + 1, Ā = A/(x) and Ī = IĀ.

Proof. From [17, Lemma 3.2], we have

(−1)ded(I) =
∞∑

k=0

(HĪ(k)− PĪ(k)−
∞∑

k=0

`(Ik+1 : x/Ik).

By Lemma 1.2, n(Ī) ≤ reg(G(Ī)) ≤ reg(G(I)) < r and `(Ik+1 : x/Ik) = `(0 :A x) =
0 for k ≥ r. Thus

(−1)ded(I) =
r∑

k=0

(HĪ(k)− PĪ(k)−
r∑

k=0

`(Ik+1 : x/Ik),

¤

In [13], the author gave a bound for the regularity of associated graded ring with
respect to parameter ideals in terms of the first coefficient e1(Q).
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Theorem 3.3. [13, Theorem 4.5] Let A be a noetherian local ring of dimension
d ≥ 1 and depth(A) ≥ d− 1. Let Q be a parameter ideal of A. Then

reg(G(Q)) ≤ max{−e1(Q)− 1, 0} if d = 1;

reg(G(Q)) ≤ max{[−4e1(Q)](d−1)! + e1(Q)− 1, 0} if d ≥ 2.

Using the bound for the regularity of G(Q) in Theorem 3.3, we will establish
bounds for Hilbert coefficients ei(Q).

Theorem 3.4. Let A be a noetherian local ring of dimension d ≥ 2 and depth(A) ≥
d− 1. Let Q be a parameter ideal of A. Then

|ei(Q)| ≤ 3.2i−2ri−1|e1(Q)| for i = 2, ..., d,

where r = max{[−4e1(Q)](d−1)! + e1(Q)− 1, 0}+ 1.

Proof. By Lemma 3.2, we have

(−1)ded(Q) =
r∑

k=0

[HĀ(k)− PĀ(k)]−
r∑

k=0

`(Qk+1 : x/Qk)

=
r∑

k=0

[`(Ā/Q
k
)−

d−1∑

i=0

(−1)i

(
k + d− i− 2

d− i− 1

)
ei(Q)]−

r∑

k=0

`(Qk+1 : x/Qk).

By [13, Lemma 4.1],

0 ≤ `(Ā/Q
k
)−

(
k + d− 2

d− 1

)
e0(Q̄) ≤ −

(
k + d− 3

d− 2

)
e1(Q̄).

From [13, Corollary 4.3],

`(Qk+1 : x/Qk) ≤
(
k + d− 3

d− 2

)
|e1(Q)|.

Thus

|ed(Q)| ≤ 3
r∑

k=0

(
k + d− 3

d− 2

)
|e1(Q)|+

r∑

k=0

d−1∑

i=2

(
k + d− i− 2

d− i− 1

)
|ei(Q)|

≤ 3

(
r + d− 2

d− 1

)
|e1(Q)|+

d−1∑

i=2

r∑

k=0

(
k + d− i− 2

d− i− 1

)
|ei(Q)|

= 3

(
r + d− 2

d− 1

)
|e1(Q)|+

d−1∑

i=2

(
r + d− i− 1

d− i

)
|ei(Q)|.

Notice that (
r + d− 2

d− 1

)
≤ rd−1 and

(
r + d− i− 1

d− i

)
≤ rd−i.

Hence

|ed(Q)| ≤ 3.rd−1|e1(Q)|+
d−1∑

i=2

rd−iei(Q).

By induction on d, we may assume that

|ei(Q)| ≤ 3.2i−2.ri−1|e1(Q)| for i = 2, ..., d− 1.
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But ei(Q) = ei(Q) for i = 1, ..., d− 1, from Lemma 1.1. This implies that

|ei(Q)| ≤ 3.2i−2.ri−1|e1(Q)| = 3.2i−2.ri−1|e1(Q)| for i = 2, ..., d− 1.

It remains to prove the bound for ed(Q). Indeed, from inductive hypothesis we have

|ed(Q)| ≤ 3.rd−1|e1(Q)|+
d−1∑

i=2

rd−i.3.2i−2.ri−1|e1(Q)|

= 3.rd−1|e1(Q)|+
d−1∑

i=2

3.rd−1.2i−2|e1(Q)|

= 3.rd−1|e1(Q)|+ 3.rd−1|e1(Q)|(
d−1∑

i=2

2i−2)

= 3.rd−1|e1(Q)|+ 3.rd−1|e1(Q)|.(2d−2 − 1)

= 3.2d−2.rd−1|e1(Q)|.
This finishes the proof. ¤
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